2 * m68k micro operations
4 * Copyright (c) 2006-2007 CodeSourcery
5 * Written by Paul Brook
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include "m68k-qreg.h"
26 #define offsetof(type, field) ((size_t) &((type *)0)->field)
29 static long qreg_offsets[] = {
30 #define DEFO32(name, offset) offsetof(CPUState, offset),
31 #define DEFR(name, reg, mode) -1,
32 #define DEFF64(name, offset) offsetof(CPUState, offset),
37 #define CPU_FP_STATUS env->fp_status
39 #define RAISE_EXCEPTION(n) do { \
40 env->exception_index = n; \
44 #define get_op helper_get_op
45 #define set_op helper_set_op
46 #define get_opf64 helper_get_opf64
47 #define set_opf64 helper_set_opf64
51 if (qreg >= TARGET_NUM_QREGS) {
52 return env->qregs[qreg - TARGET_NUM_QREGS];
53 } else if (qreg == QREG_T0) {
56 return *(uint32_t *)(((long)env) + qreg_offsets[qreg]);
60 void set_op(int qreg, uint32_t val)
62 if (qreg >= TARGET_NUM_QREGS) {
63 env->qregs[qreg - TARGET_NUM_QREGS] = val;
64 } else if (qreg == QREG_T0) {
67 *(uint32_t *)(((long)env) + qreg_offsets[qreg]) = val;
71 float64 get_opf64(int qreg)
73 if (qreg < TARGET_NUM_QREGS) {
74 return *(float64 *)(((long)env) + qreg_offsets[qreg]);
76 return *(float64 *)&env->qregs[qreg - TARGET_NUM_QREGS];
80 void set_opf64(int qreg, float64 val)
82 if (qreg < TARGET_NUM_QREGS) {
83 *(float64 *)(((long)env) + qreg_offsets[qreg]) = val;
85 *(float64 *)&env->qregs[qreg - TARGET_NUM_QREGS] = val;
89 #define OP(name) void OPPROTO glue(op_,name) (void)
93 set_op(PARAM1, get_op(PARAM2));
99 set_op(PARAM1, PARAM2);
105 set_opf64(PARAM1, get_opf64(PARAM2));
111 set_opf64(PARAM1, 0);
117 uint32_t op2 = get_op(PARAM2);
118 uint32_t op3 = get_op(PARAM3);
119 set_op(PARAM1, op2 + op3);
125 uint32_t op2 = get_op(PARAM2);
126 uint32_t op3 = get_op(PARAM3);
127 set_op(PARAM1, op2 - op3);
133 uint32_t op2 = get_op(PARAM2);
134 uint32_t op3 = get_op(PARAM3);
135 set_op(PARAM1, op2 * op3);
141 uint32_t arg = get_op(PARAM2);
142 set_op(PARAM1, ~arg);
148 uint32_t arg = get_op(PARAM2);
149 set_op(PARAM1, -arg);
155 uint32_t arg = get_op(PARAM2);
156 arg = (arg >> 24) | (arg << 24)
157 | ((arg >> 16) & 0xff00) | ((arg << 16) & 0xff0000);
164 uint32_t op1 = get_op(PARAM1);
165 uint32_t op2 = get_op(PARAM2);
167 env->cc_dest &= ~CCF_Z;
169 env->cc_dest |= CCF_Z;
175 uint32_t arg = get_op(PARAM2);
177 for (n = 32; arg; n--)
185 uint32_t op1 = get_op(PARAM1);
186 uint32_t op2 = get_op(PARAM2);
189 env->cc_x = (op1 <= op2);
190 env->cc_op = CC_OP_SUBX;
191 res = op1 - (op2 + 1);
193 env->cc_x = (op1 < op2);
194 env->cc_op = CC_OP_SUB;
203 uint32_t op1 = get_op(PARAM1);
204 uint32_t op2 = get_op(PARAM2);
208 env->cc_x = (res <= op2);
209 env->cc_op = CC_OP_ADDX;
212 env->cc_x = (res < op2);
213 env->cc_op = CC_OP_ADD;
223 uint32_t op2 = get_op(PARAM2);
224 uint32_t op3 = get_op(PARAM3);
225 set_op(PARAM1, op2 & op3);
231 uint32_t op2 = get_op(PARAM2);
232 uint32_t op3 = get_op(PARAM3);
233 set_op(PARAM1, op2 | op3);
239 uint32_t op2 = get_op(PARAM2);
240 uint32_t op3 = get_op(PARAM3);
241 set_op(PARAM1, op2 ^ op3);
248 uint32_t op2 = get_op(PARAM2);
249 uint32_t op3 = get_op(PARAM3);
252 set_op(PARAM1, result);
258 uint32_t op1 = get_op(PARAM1);
259 uint32_t op2 = get_op(PARAM2);
262 set_op(PARAM1, result);
263 env->cc_x = (op1 << (op2 - 1)) & 1;
269 uint32_t op2 = get_op(PARAM2);
270 uint32_t op3 = get_op(PARAM3);
273 set_op(PARAM1, result);
279 uint32_t op1 = get_op(PARAM1);
280 uint32_t op2 = get_op(PARAM2);
283 set_op(PARAM1, result);
284 env->cc_x = (op1 >> (op2 - 1)) & 1;
290 int32_t op2 = get_op(PARAM2);
291 uint32_t op3 = get_op(PARAM3);
294 set_op(PARAM1, result);
300 int32_t op1 = get_op(PARAM1);
301 uint32_t op2 = get_op(PARAM2);
304 set_op(PARAM1, result);
305 env->cc_x = (op1 >> (op2 - 1)) & 1;
313 uint32_t op2 = get_op(PARAM2);
314 set_op(PARAM1, (uint8_t)op2);
320 uint32_t op2 = get_op(PARAM2);
321 set_op(PARAM1, (int8_t)op2);
327 uint32_t op2 = get_op(PARAM2);
328 set_op(PARAM1, (uint16_t)op2);
334 uint32_t op2 = get_op(PARAM2);
335 set_op(PARAM1, (int16_t)op2);
341 cpu_m68k_flush_flags(env, env->cc_op);
355 /* ??? This needs to make sure the throwing location is accurate. */
357 RAISE_EXCEPTION(EXCP_DIV0);
361 /* Avoid using a PARAM1 of zero. This breaks dyngen because it uses
362 the address of a symbol, and gcc knows symbols can't have address
364 if (PARAM1 == 2 && quot > 0xffff)
368 else if ((int32_t)quot < 0)
372 env->cc_dest = flags;
387 RAISE_EXCEPTION(EXCP_DIV0);
391 if (PARAM1 == 2 && quot != (int16_t)quot)
399 env->cc_dest = flags;
403 /* Halt is special because it may be a semihosting call. */
406 RAISE_EXCEPTION(EXCP_HALT_INSN);
413 RAISE_EXCEPTION(EXCP_HLT);
419 RAISE_EXCEPTION(PARAM1);
423 /* Floating point comparison sets flags differently to other instructions. */
429 src0 = get_opf64(PARAM2);
430 src1 = get_opf64(PARAM3);
431 set_opf64(PARAM1, helper_sub_cmpf64(env, src0, src1));
437 uint32_t op1 = get_op(PARAM1);
444 uint32_t op1 = get_op(PARAM1);
445 uint32_t op2 = get_op(PARAM2);
446 env->cc_x = (op1 < op2);
452 set_op(PARAM1, env->cc_x);
458 uint32_t op1 = get_op(PARAM1);
465 uint32_t op1 = get_op(PARAM1);
466 uint32_t op2 = get_op(PARAM2);
474 env->fp_result = get_opf64(PARAM1);
480 env->sr = get_op(PARAM1) & 0xffff;
492 uint32_t arg = get_op(PARAM1);
499 uint32_t arg = get_op(PARAM1);
506 int32_t arg = get_op(PARAM1);
513 int32_t arg = get_op(PARAM1);
525 void OPPROTO op_goto_tb0(void)
527 GOTO_TB(op_goto_tb0, PARAM1, 0);
530 void OPPROTO op_goto_tb1(void)
532 GOTO_TB(op_goto_tb1, PARAM1, 1);
541 /* Floating point. */
544 set_op(PARAM1, float64_to_int32(get_opf64(PARAM2), &CPU_FP_STATUS));
554 u.f = float64_to_float32(get_opf64(PARAM2), &CPU_FP_STATUS);
561 set_opf64(PARAM1, int32_to_float64(get_op(PARAM2), &CPU_FP_STATUS));
571 u.i = get_op(PARAM2);
572 set_opf64(PARAM1, float32_to_float64(u.f, &CPU_FP_STATUS));
578 float64 op0 = get_opf64(PARAM2);
579 set_opf64(PARAM1, float64_abs(op0));
585 float64 op0 = get_opf64(PARAM2);
586 set_opf64(PARAM1, float64_chs(op0));
592 float64 op0 = get_opf64(PARAM2);
593 set_opf64(PARAM1, float64_sqrt(op0, &CPU_FP_STATUS));
599 float64 op0 = get_opf64(PARAM2);
600 float64 op1 = get_opf64(PARAM3);
601 set_opf64(PARAM1, float64_add(op0, op1, &CPU_FP_STATUS));
607 float64 op0 = get_opf64(PARAM2);
608 float64 op1 = get_opf64(PARAM3);
609 set_opf64(PARAM1, float64_sub(op0, op1, &CPU_FP_STATUS));
615 float64 op0 = get_opf64(PARAM2);
616 float64 op1 = get_opf64(PARAM3);
617 set_opf64(PARAM1, float64_mul(op0, op1, &CPU_FP_STATUS));
623 float64 op0 = get_opf64(PARAM2);
624 float64 op1 = get_opf64(PARAM3);
625 set_opf64(PARAM1, float64_div(op0, op1, &CPU_FP_STATUS));
631 float64 op0 = get_opf64(PARAM2);
632 set_opf64(PARAM1, float64_round_to_int(op0, &CPU_FP_STATUS));
638 float64 op0 = get_opf64(PARAM2);
639 set_opf64(PARAM1, float64_trunc_to_int(op0, &CPU_FP_STATUS));
645 float64 op0 = get_opf64(PARAM2);
646 float64 op1 = get_opf64(PARAM3);
647 set_op(PARAM1, float64_compare_quiet(op0, op1, &CPU_FP_STATUS));
653 int op1 = get_op(PARAM1);
654 uint32_t op2 = get_op(PARAM2);
655 helper_movec(env, op1, op2);
660 #define MEMSUFFIX _raw
663 #if !defined(CONFIG_USER_ONLY)
664 #define MEMSUFFIX _user
666 #define MEMSUFFIX _kernel
671 /* TODO: The MAC instructions use 64-bit arithmetic fairly extensively.
672 This results in fairly large ops (and sometimes other issues) on 32-bit
673 hosts. Maybe move most of them into helpers. */
676 uint32_t op1 = get_op(PARAM1);
677 uint32_t op2 = get_op(PARAM2);
681 product = (uint64_t)op1 * op2;
682 res = (product << 24) >> 24;
683 if (res != product) {
684 env->macsr |= MACSR_V;
685 if (env->macsr & MACSR_OMC) {
686 /* Make sure the accumulate operation overflows. */
699 uint32_t op1 = get_op(PARAM1);
700 uint32_t op2 = get_op(PARAM2);
703 product = (uint64_t)op1 * op2;
704 if (product & (0xffffffull << 40)) {
705 env->macsr |= MACSR_V;
706 if (env->macsr & MACSR_OMC) {
707 /* Make sure the accumulate operation overflows. */
710 product &= ((1ull << 40) - 1);
713 env->mactmp = product;
719 int32_t op1 = get_op(PARAM1);
720 int32_t op2 = get_op(PARAM2);
724 product = (uint64_t)op1 * op2;
725 if (env->macsr & MACSR_RT) {
726 remainder = product & 0xffffff;
728 if (remainder > 0x800000)
730 else if (remainder == 0x800000)
731 product += (product & 1);
735 env->mactmp = product;
752 env->macc[acc] += env->mactmp;
759 env->macc[acc] -= env->mactmp;
769 sum = env->macc[acc];
770 result = (sum << 16) >> 16;
772 env->macsr |= MACSR_V;
774 if (env->macsr & MACSR_V) {
775 env->macsr |= MACSR_PAV0 << acc;
776 if (env->macsr & MACSR_OMC) {
777 /* The result is saturated to 32 bits, despite overflow occuring
778 at 48 bits. Seems weird, but that's what the hardware docs
780 result = (result >> 63) ^ 0x7fffffff;
783 env->macc[acc] = result;
792 sum = env->macc[acc];
793 if (sum & (0xffffull << 48)) {
794 env->macsr |= MACSR_V;
796 if (env->macsr & MACSR_V) {
797 env->macsr |= MACSR_PAV0 << acc;
798 if (env->macsr & MACSR_OMC) {
799 if (sum > (1ull << 53))
802 sum = (1ull << 48) - 1;
804 sum &= ((1ull << 48) - 1);
816 sum = env->macc[acc];
817 result = (sum << 16) >> 16;
819 env->macsr |= MACSR_V;
821 if (env->macsr & MACSR_V) {
822 env->macsr |= MACSR_PAV0 << acc;
823 if (env->macsr & MACSR_OMC) {
824 result = (result >> 63) ^ 0x7fffffffffffll;
827 env->macc[acc] = result;
833 env->macsr &= ~(MACSR_V | MACSR_Z | MACSR_N | MACSR_EV);
840 val = env->macc[acc];
842 env->macsr |= MACSR_Z;
843 else if (val & (1ull << 47));
844 env->macsr |= MACSR_N;
845 if (env->macsr & (MACSR_PAV0 << acc)) {
846 env->macsr |= MACSR_V;
848 if (env->macsr & MACSR_FI) {
849 val = ((int64_t)val) >> 40;
850 if (val != 0 && val != -1)
851 env->macsr |= MACSR_EV;
852 } else if (env->macsr & MACSR_SU) {
853 val = ((int64_t)val) >> 32;
854 if (val != 0 && val != -1)
855 env->macsr |= MACSR_EV;
857 if ((val >> 32) != 0)
858 env->macsr |= MACSR_EV;
870 val = env->macc[acc];
871 if (env->macsr & MACSR_SU) {
872 /* 16-bit rounding. */
873 rem = val & 0xffffff;
874 val = (val >> 24) & 0xffffu;
877 else if (rem == 0x800000)
879 } else if (env->macsr & MACSR_RT) {
880 /* 32-bit rounding. */
885 else if (rem == 0x80)
891 if (env->macsr & MACSR_OMC) {
893 if (env->macsr & MACSR_SU) {
894 if (val != (uint16_t) val) {
895 result = ((val >> 63) ^ 0x7fff) & 0xffff;
897 result = val & 0xffff;
900 if (val != (uint32_t)val) {
901 result = ((uint32_t)(val >> 63) & 0x7fffffff);
903 result = (uint32_t)val;
908 if (env->macsr & MACSR_SU) {
909 result = val & 0xffff;
911 result = (uint32_t)val;
914 set_op(PARAM1, result);
921 set_op(PARAM1, (uint32_t)env->macc[acc]);
928 int64_t val = env->macc[acc];
930 if (val == (int32_t)val) {
931 result = (int32_t)val;
933 result = (val >> 61) ^ 0x7fffffff;
935 set_op(PARAM1, result);
942 uint64_t val = env->macc[acc];
944 if ((val >> 32) == 0) {
945 result = (uint32_t)val;
947 result = 0xffffffffu;
949 set_op(PARAM1, result);
958 env->macsr &= ~(MACSR_PAV0 << acc);
967 env->macc[dest] = env->macc[src];
968 mask = MACSR_PAV0 << dest;
969 if (env->macsr & (MACSR_PAV0 << src))
980 val = env->macc[acc] & 0x00ff;
981 val = (env->macc[acc] >> 32) & 0xff00;
982 val |= (env->macc[acc + 1] << 16) & 0x00ff0000;
983 val |= (env->macc[acc + 1] >> 16) & 0xff000000;
992 val = (env->macc[acc] >> 32) & 0xffff;
993 val |= (env->macc[acc + 1] >> 16) & 0xffff0000;
1001 int32_t val = get_op(PARAM1);
1002 env->macc[acc] = ((int64_t)val) << 8;
1003 env->macsr &= ~(MACSR_PAV0 << acc);
1010 int32_t val = get_op(PARAM1);
1011 env->macc[acc] = val;
1012 env->macsr &= ~(MACSR_PAV0 << acc);
1019 uint32_t val = get_op(PARAM1);
1020 env->macc[acc] = val;
1021 env->macsr &= ~(MACSR_PAV0 << acc);
1028 int32_t val = get_op(PARAM1);
1031 res = env->macc[acc] & 0xffffffff00ull;
1032 tmp = (int16_t)(val & 0xff00);
1033 res |= ((int64_t)tmp) << 32;
1035 env->macc[acc] = res;
1036 res = env->macc[acc + 1] & 0xffffffff00ull;
1037 tmp = (val & 0xff000000);
1038 res |= ((int64_t)tmp) << 16;
1039 res |= (val >> 16) & 0xff;
1040 env->macc[acc + 1] = res;
1046 int32_t val = get_op(PARAM1);
1049 res = (uint32_t)env->macc[acc];
1051 res |= ((int64_t)tmp) << 32;
1052 env->macc[acc] = res;
1053 res = (uint32_t)env->macc[acc + 1];
1054 tmp = val & 0xffff0000;
1055 res |= (int64_t)tmp << 16;
1056 env->macc[acc + 1] = res;
1062 int32_t val = get_op(PARAM1);
1064 res = (uint32_t)env->macc[acc];
1065 res |= ((uint64_t)(val & 0xffff)) << 32;
1066 env->macc[acc] = res;
1067 res = (uint32_t)env->macc[acc + 1];
1068 res |= (uint64_t)(val & 0xffff0000) << 16;
1069 env->macc[acc + 1] = res;
1074 m68k_set_macsr(env, get_op(PARAM1));