4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #ifdef CONFIG_USER_ONLY
32 #include "qemu-common.h"
33 #include "qemu-char.h"
38 #include "qemu_socket.h"
40 /* XXX: these constants may be independent of the host ones even for Unix */
60 typedef struct GDBState {
61 CPUState *env; /* current CPU */
62 enum RSState state; /* parsing state */
66 uint8_t last_packet[4100];
68 #ifdef CONFIG_USER_ONLY
76 #ifdef CONFIG_USER_ONLY
77 /* XXX: This is not thread safe. Do we care? */
78 static int gdbserver_fd = -1;
80 /* XXX: remove this hack. */
81 static GDBState gdbserver_state;
83 static int get_char(GDBState *s)
89 ret = recv(s->fd, &ch, 1, 0);
91 if (errno != EINTR && errno != EAGAIN)
93 } else if (ret == 0) {
103 /* GDB stub state for use by semihosting syscalls. */
104 static GDBState *gdb_syscall_state;
105 static gdb_syscall_complete_cb gdb_current_syscall_cb;
113 /* If gdb is connected when the first semihosting syscall occurs then use
114 remote gdb syscalls. Otherwise use native file IO. */
115 int use_gdb_syscalls(void)
117 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
118 gdb_syscall_mode = (gdb_syscall_state ? GDB_SYS_ENABLED
121 return gdb_syscall_mode == GDB_SYS_ENABLED;
124 /* Resume execution. */
125 static inline void gdb_continue(GDBState *s)
127 #ifdef CONFIG_USER_ONLY
128 s->running_state = 1;
134 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
136 #ifdef CONFIG_USER_ONLY
140 ret = send(s->fd, buf, len, 0);
142 if (errno != EINTR && errno != EAGAIN)
150 qemu_chr_write(s->chr, buf, len);
154 static inline int fromhex(int v)
156 if (v >= '0' && v <= '9')
158 else if (v >= 'A' && v <= 'F')
160 else if (v >= 'a' && v <= 'f')
166 static inline int tohex(int v)
174 static void memtohex(char *buf, const uint8_t *mem, int len)
179 for(i = 0; i < len; i++) {
181 *q++ = tohex(c >> 4);
182 *q++ = tohex(c & 0xf);
187 static void hextomem(uint8_t *mem, const char *buf, int len)
191 for(i = 0; i < len; i++) {
192 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
197 /* return -1 if error, 0 if OK */
198 static int put_packet(GDBState *s, char *buf)
204 printf("reply='%s'\n", buf);
214 for(i = 0; i < len; i++) {
218 *(p++) = tohex((csum >> 4) & 0xf);
219 *(p++) = tohex((csum) & 0xf);
221 s->last_packet_len = p - s->last_packet;
222 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
224 #ifdef CONFIG_USER_ONLY
237 #if defined(TARGET_I386)
239 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
242 uint32_t *registers = (uint32_t *)mem_buf;
245 /* This corresponds with amd64_register_info[] in gdb/amd64-tdep.c */
246 uint64_t *registers64 = (uint64_t *)mem_buf;
248 if (env->hflags & HF_CS64_MASK) {
249 registers64[0] = tswap64(env->regs[R_EAX]);
250 registers64[1] = tswap64(env->regs[R_EBX]);
251 registers64[2] = tswap64(env->regs[R_ECX]);
252 registers64[3] = tswap64(env->regs[R_EDX]);
253 registers64[4] = tswap64(env->regs[R_ESI]);
254 registers64[5] = tswap64(env->regs[R_EDI]);
255 registers64[6] = tswap64(env->regs[R_EBP]);
256 registers64[7] = tswap64(env->regs[R_ESP]);
257 for(i = 8; i < 16; i++) {
258 registers64[i] = tswap64(env->regs[i]);
260 registers64[16] = tswap64(env->eip);
262 registers = (uint32_t *)®isters64[17];
263 registers[0] = tswap32(env->eflags);
264 registers[1] = tswap32(env->segs[R_CS].selector);
265 registers[2] = tswap32(env->segs[R_SS].selector);
266 registers[3] = tswap32(env->segs[R_DS].selector);
267 registers[4] = tswap32(env->segs[R_ES].selector);
268 registers[5] = tswap32(env->segs[R_FS].selector);
269 registers[6] = tswap32(env->segs[R_GS].selector);
270 /* XXX: convert floats */
271 for(i = 0; i < 8; i++) {
272 memcpy(mem_buf + 16 * 8 + 7 * 4 + i * 10, &env->fpregs[i], 10);
274 registers[27] = tswap32(env->fpuc); /* fctrl */
275 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
276 registers[28] = tswap32(fpus); /* fstat */
277 registers[29] = 0; /* ftag */
278 registers[30] = 0; /* fiseg */
279 registers[31] = 0; /* fioff */
280 registers[32] = 0; /* foseg */
281 registers[33] = 0; /* fooff */
282 registers[34] = 0; /* fop */
283 for(i = 0; i < 16; i++) {
284 memcpy(mem_buf + 16 * 8 + 35 * 4 + i * 16, &env->xmm_regs[i], 16);
286 registers[99] = tswap32(env->mxcsr);
288 return 8 * 17 + 4 * 7 + 10 * 8 + 4 * 8 + 16 * 16 + 4;
292 for(i = 0; i < 8; i++) {
293 registers[i] = env->regs[i];
295 registers[8] = env->eip;
296 registers[9] = env->eflags;
297 registers[10] = env->segs[R_CS].selector;
298 registers[11] = env->segs[R_SS].selector;
299 registers[12] = env->segs[R_DS].selector;
300 registers[13] = env->segs[R_ES].selector;
301 registers[14] = env->segs[R_FS].selector;
302 registers[15] = env->segs[R_GS].selector;
303 /* XXX: convert floats */
304 for(i = 0; i < 8; i++) {
305 memcpy(mem_buf + 16 * 4 + i * 10, &env->fpregs[i], 10);
307 registers[36] = env->fpuc;
308 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
309 registers[37] = fpus;
310 registers[38] = 0; /* XXX: convert tags */
311 registers[39] = 0; /* fiseg */
312 registers[40] = 0; /* fioff */
313 registers[41] = 0; /* foseg */
314 registers[42] = 0; /* fooff */
315 registers[43] = 0; /* fop */
317 for(i = 0; i < 16; i++)
318 tswapls(®isters[i]);
319 for(i = 36; i < 44; i++)
320 tswapls(®isters[i]);
324 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
326 uint32_t *registers = (uint32_t *)mem_buf;
329 for(i = 0; i < 8; i++) {
330 env->regs[i] = tswapl(registers[i]);
332 env->eip = tswapl(registers[8]);
333 env->eflags = tswapl(registers[9]);
334 #if defined(CONFIG_USER_ONLY)
335 #define LOAD_SEG(index, sreg)\
336 if (tswapl(registers[index]) != env->segs[sreg].selector)\
337 cpu_x86_load_seg(env, sreg, tswapl(registers[index]));
347 #elif defined (TARGET_PPC)
348 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
350 uint32_t *registers = (uint32_t *)mem_buf, tmp;
354 for(i = 0; i < 32; i++) {
355 registers[i] = tswapl(env->gpr[i]);
358 for (i = 0; i < 32; i++) {
359 registers[(i * 2) + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
360 registers[(i * 2) + 33] = tswapl(*((uint32_t *)&env->fpr[i] + 1));
362 /* nip, msr, ccr, lnk, ctr, xer, mq */
363 registers[96] = tswapl(env->nip);
364 registers[97] = tswapl(env->msr);
366 for (i = 0; i < 8; i++)
367 tmp |= env->crf[i] << (32 - ((i + 1) * 4));
368 registers[98] = tswapl(tmp);
369 registers[99] = tswapl(env->lr);
370 registers[100] = tswapl(env->ctr);
371 registers[101] = tswapl(ppc_load_xer(env));
377 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
379 uint32_t *registers = (uint32_t *)mem_buf;
383 for (i = 0; i < 32; i++) {
384 env->gpr[i] = tswapl(registers[i]);
387 for (i = 0; i < 32; i++) {
388 *((uint32_t *)&env->fpr[i]) = tswapl(registers[(i * 2) + 32]);
389 *((uint32_t *)&env->fpr[i] + 1) = tswapl(registers[(i * 2) + 33]);
391 /* nip, msr, ccr, lnk, ctr, xer, mq */
392 env->nip = tswapl(registers[96]);
393 ppc_store_msr(env, tswapl(registers[97]));
394 registers[98] = tswapl(registers[98]);
395 for (i = 0; i < 8; i++)
396 env->crf[i] = (registers[98] >> (32 - ((i + 1) * 4))) & 0xF;
397 env->lr = tswapl(registers[99]);
398 env->ctr = tswapl(registers[100]);
399 ppc_store_xer(env, tswapl(registers[101]));
401 #elif defined (TARGET_SPARC)
402 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
404 target_ulong *registers = (target_ulong *)mem_buf;
408 for(i = 0; i < 8; i++) {
409 registers[i] = tswapl(env->gregs[i]);
411 /* fill in register window */
412 for(i = 0; i < 24; i++) {
413 registers[i + 8] = tswapl(env->regwptr[i]);
415 #ifndef TARGET_SPARC64
417 for (i = 0; i < 32; i++) {
418 registers[i + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
420 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
421 registers[64] = tswapl(env->y);
426 registers[65] = tswapl(tmp);
428 registers[66] = tswapl(env->wim);
429 registers[67] = tswapl(env->tbr);
430 registers[68] = tswapl(env->pc);
431 registers[69] = tswapl(env->npc);
432 registers[70] = tswapl(env->fsr);
433 registers[71] = 0; /* csr */
435 return 73 * sizeof(target_ulong);
438 for (i = 0; i < 64; i += 2) {
441 tmp = ((uint64_t)*(uint32_t *)&env->fpr[i]) << 32;
442 tmp |= *(uint32_t *)&env->fpr[i + 1];
443 registers[i / 2 + 32] = tswap64(tmp);
445 registers[64] = tswapl(env->pc);
446 registers[65] = tswapl(env->npc);
447 registers[66] = tswapl(((uint64_t)GET_CCR(env) << 32) |
448 ((env->asi & 0xff) << 24) |
449 ((env->pstate & 0xfff) << 8) |
451 registers[67] = tswapl(env->fsr);
452 registers[68] = tswapl(env->fprs);
453 registers[69] = tswapl(env->y);
454 return 70 * sizeof(target_ulong);
458 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
460 target_ulong *registers = (target_ulong *)mem_buf;
464 for(i = 0; i < 7; i++) {
465 env->gregs[i] = tswapl(registers[i]);
467 /* fill in register window */
468 for(i = 0; i < 24; i++) {
469 env->regwptr[i] = tswapl(registers[i + 8]);
471 #ifndef TARGET_SPARC64
473 for (i = 0; i < 32; i++) {
474 *((uint32_t *)&env->fpr[i]) = tswapl(registers[i + 32]);
476 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
477 env->y = tswapl(registers[64]);
478 PUT_PSR(env, tswapl(registers[65]));
479 env->wim = tswapl(registers[66]);
480 env->tbr = tswapl(registers[67]);
481 env->pc = tswapl(registers[68]);
482 env->npc = tswapl(registers[69]);
483 env->fsr = tswapl(registers[70]);
485 for (i = 0; i < 64; i += 2) {
488 tmp = tswap64(registers[i / 2 + 32]);
489 *((uint32_t *)&env->fpr[i]) = tmp >> 32;
490 *((uint32_t *)&env->fpr[i + 1]) = tmp & 0xffffffff;
492 env->pc = tswapl(registers[64]);
493 env->npc = tswapl(registers[65]);
495 uint64_t tmp = tswapl(registers[66]);
497 PUT_CCR(env, tmp >> 32);
498 env->asi = (tmp >> 24) & 0xff;
499 env->pstate = (tmp >> 8) & 0xfff;
500 PUT_CWP64(env, tmp & 0xff);
502 env->fsr = tswapl(registers[67]);
503 env->fprs = tswapl(registers[68]);
504 env->y = tswapl(registers[69]);
507 #elif defined (TARGET_ARM)
508 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
514 /* 16 core integer registers (4 bytes each). */
515 for (i = 0; i < 16; i++)
517 *(uint32_t *)ptr = tswapl(env->regs[i]);
520 /* 8 FPA registers (12 bytes each), FPS (4 bytes).
521 Not yet implemented. */
522 memset (ptr, 0, 8 * 12 + 4);
524 /* CPSR (4 bytes). */
525 *(uint32_t *)ptr = tswapl (cpsr_read(env));
528 return ptr - mem_buf;
531 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
537 /* Core integer registers. */
538 for (i = 0; i < 16; i++)
540 env->regs[i] = tswapl(*(uint32_t *)ptr);
543 /* Ignore FPA regs and scr. */
545 cpsr_write (env, tswapl(*(uint32_t *)ptr), 0xffffffff);
547 #elif defined (TARGET_M68K)
548 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
556 for (i = 0; i < 8; i++) {
557 *(uint32_t *)ptr = tswapl(env->dregs[i]);
561 for (i = 0; i < 8; i++) {
562 *(uint32_t *)ptr = tswapl(env->aregs[i]);
565 *(uint32_t *)ptr = tswapl(env->sr);
567 *(uint32_t *)ptr = tswapl(env->pc);
569 /* F0-F7. The 68881/68040 have 12-bit extended precision registers.
570 ColdFire has 8-bit double precision registers. */
571 for (i = 0; i < 8; i++) {
573 *(uint32_t *)ptr = tswap32(u.l.upper);
574 *(uint32_t *)ptr = tswap32(u.l.lower);
576 /* FP control regs (not implemented). */
577 memset (ptr, 0, 3 * 4);
580 return ptr - mem_buf;
583 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
591 for (i = 0; i < 8; i++) {
592 env->dregs[i] = tswapl(*(uint32_t *)ptr);
596 for (i = 0; i < 8; i++) {
597 env->aregs[i] = tswapl(*(uint32_t *)ptr);
600 env->sr = tswapl(*(uint32_t *)ptr);
602 env->pc = tswapl(*(uint32_t *)ptr);
604 /* F0-F7. The 68881/68040 have 12-bit extended precision registers.
605 ColdFire has 8-bit double precision registers. */
606 for (i = 0; i < 8; i++) {
607 u.l.upper = tswap32(*(uint32_t *)ptr);
608 u.l.lower = tswap32(*(uint32_t *)ptr);
611 /* FP control regs (not implemented). */
614 #elif defined (TARGET_MIPS)
615 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
621 for (i = 0; i < 32; i++)
623 *(target_ulong *)ptr = tswapl(env->gpr[env->current_tc][i]);
624 ptr += sizeof(target_ulong);
627 *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_Status);
628 ptr += sizeof(target_ulong);
630 *(target_ulong *)ptr = tswapl(env->LO[env->current_tc][0]);
631 ptr += sizeof(target_ulong);
633 *(target_ulong *)ptr = tswapl(env->HI[env->current_tc][0]);
634 ptr += sizeof(target_ulong);
636 *(target_ulong *)ptr = tswapl(env->CP0_BadVAddr);
637 ptr += sizeof(target_ulong);
639 *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_Cause);
640 ptr += sizeof(target_ulong);
642 *(target_ulong *)ptr = tswapl(env->PC[env->current_tc]);
643 ptr += sizeof(target_ulong);
645 if (env->CP0_Config1 & (1 << CP0C1_FP))
647 for (i = 0; i < 32; i++)
649 if (env->CP0_Status & (1 << CP0St_FR))
650 *(target_ulong *)ptr = tswapl(env->fpu->fpr[i].d);
652 *(target_ulong *)ptr = tswap32(env->fpu->fpr[i].w[FP_ENDIAN_IDX]);
653 ptr += sizeof(target_ulong);
656 *(target_ulong *)ptr = (int32_t)tswap32(env->fpu->fcr31);
657 ptr += sizeof(target_ulong);
659 *(target_ulong *)ptr = (int32_t)tswap32(env->fpu->fcr0);
660 ptr += sizeof(target_ulong);
663 /* "fp", pseudo frame pointer. Not yet implemented in gdb. */
664 *(target_ulong *)ptr = 0;
665 ptr += sizeof(target_ulong);
667 /* Registers for embedded use, we just pad them. */
668 for (i = 0; i < 16; i++)
670 *(target_ulong *)ptr = 0;
671 ptr += sizeof(target_ulong);
675 *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_PRid);
676 ptr += sizeof(target_ulong);
678 return ptr - mem_buf;
681 /* convert MIPS rounding mode in FCR31 to IEEE library */
682 static unsigned int ieee_rm[] =
684 float_round_nearest_even,
689 #define RESTORE_ROUNDING_MODE \
690 set_float_rounding_mode(ieee_rm[env->fpu->fcr31 & 3], &env->fpu->fp_status)
692 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
698 for (i = 0; i < 32; i++)
700 env->gpr[env->current_tc][i] = tswapl(*(target_ulong *)ptr);
701 ptr += sizeof(target_ulong);
704 env->CP0_Status = tswapl(*(target_ulong *)ptr);
705 ptr += sizeof(target_ulong);
707 env->LO[env->current_tc][0] = tswapl(*(target_ulong *)ptr);
708 ptr += sizeof(target_ulong);
710 env->HI[env->current_tc][0] = tswapl(*(target_ulong *)ptr);
711 ptr += sizeof(target_ulong);
713 env->CP0_BadVAddr = tswapl(*(target_ulong *)ptr);
714 ptr += sizeof(target_ulong);
716 env->CP0_Cause = tswapl(*(target_ulong *)ptr);
717 ptr += sizeof(target_ulong);
719 env->PC[env->current_tc] = tswapl(*(target_ulong *)ptr);
720 ptr += sizeof(target_ulong);
722 if (env->CP0_Config1 & (1 << CP0C1_FP))
724 for (i = 0; i < 32; i++)
726 if (env->CP0_Status & (1 << CP0St_FR))
727 env->fpu->fpr[i].d = tswapl(*(target_ulong *)ptr);
729 env->fpu->fpr[i].w[FP_ENDIAN_IDX] = tswapl(*(target_ulong *)ptr);
730 ptr += sizeof(target_ulong);
733 env->fpu->fcr31 = tswapl(*(target_ulong *)ptr) & 0xFF83FFFF;
734 ptr += sizeof(target_ulong);
736 /* The remaining registers are assumed to be read-only. */
738 /* set rounding mode */
739 RESTORE_ROUNDING_MODE;
741 #ifndef CONFIG_SOFTFLOAT
742 /* no floating point exception for native float */
743 SET_FP_ENABLE(env->fcr31, 0);
747 #elif defined (TARGET_SH4)
749 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
751 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
753 uint32_t *ptr = (uint32_t *)mem_buf;
756 #define SAVE(x) *ptr++=tswapl(x)
757 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
758 for (i = 0; i < 8; i++) SAVE(env->gregs[i + 16]);
760 for (i = 0; i < 8; i++) SAVE(env->gregs[i]);
762 for (i = 8; i < 16; i++) SAVE(env->gregs[i]);
772 for (i = 0; i < 16; i++)
773 SAVE(env->fregs[i + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
776 for (i = 0; i < 8; i++) SAVE(env->gregs[i]);
777 for (i = 0; i < 8; i++) SAVE(env->gregs[i + 16]);
778 return ((uint8_t *)ptr - mem_buf);
781 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
783 uint32_t *ptr = (uint32_t *)mem_buf;
786 #define LOAD(x) (x)=*ptr++;
787 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
788 for (i = 0; i < 8; i++) LOAD(env->gregs[i + 16]);
790 for (i = 0; i < 8; i++) LOAD(env->gregs[i]);
792 for (i = 8; i < 16; i++) LOAD(env->gregs[i]);
802 for (i = 0; i < 16; i++)
803 LOAD(env->fregs[i + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
806 for (i = 0; i < 8; i++) LOAD(env->gregs[i]);
807 for (i = 0; i < 8; i++) LOAD(env->gregs[i + 16]);
809 #elif defined (TARGET_CRIS)
811 static int cris_save_32 (unsigned char *d, uint32_t value)
814 *d++ = (value >>= 8);
815 *d++ = (value >>= 8);
816 *d++ = (value >>= 8);
819 static int cris_save_16 (unsigned char *d, uint32_t value)
822 *d++ = (value >>= 8);
825 static int cris_save_8 (unsigned char *d, uint32_t value)
831 /* FIXME: this will bug on archs not supporting unaligned word accesses. */
832 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
834 uint8_t *ptr = mem_buf;
838 for (i = 0; i < 16; i++)
839 ptr += cris_save_32 (ptr, env->regs[i]);
841 srs = env->pregs[PR_SRS];
843 ptr += cris_save_8 (ptr, env->pregs[0]);
844 ptr += cris_save_8 (ptr, env->pregs[1]);
845 ptr += cris_save_32 (ptr, env->pregs[2]);
846 ptr += cris_save_8 (ptr, srs);
847 ptr += cris_save_16 (ptr, env->pregs[4]);
849 for (i = 5; i < 16; i++)
850 ptr += cris_save_32 (ptr, env->pregs[i]);
852 ptr += cris_save_32 (ptr, env->pc);
854 for (i = 0; i < 16; i++)
855 ptr += cris_save_32 (ptr, env->sregs[srs][i]);
857 return ((uint8_t *)ptr - mem_buf);
860 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
862 uint32_t *ptr = (uint32_t *)mem_buf;
865 #define LOAD(x) (x)=*ptr++;
866 for (i = 0; i < 16; i++) LOAD(env->regs[i]);
870 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
875 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
881 static int gdb_handle_packet(GDBState *s, CPUState *env, const char *line_buf)
884 int ch, reg_size, type;
886 uint8_t mem_buf[4096];
888 target_ulong addr, len;
891 printf("command='%s'\n", line_buf);
897 /* TODO: Make this return the correct value for user-mode. */
898 snprintf(buf, sizeof(buf), "S%02x", SIGTRAP);
903 addr = strtoull(p, (char **)&p, 16);
904 #if defined(TARGET_I386)
906 #elif defined (TARGET_PPC)
908 #elif defined (TARGET_SPARC)
911 #elif defined (TARGET_ARM)
912 env->regs[15] = addr;
913 #elif defined (TARGET_SH4)
915 #elif defined (TARGET_MIPS)
916 env->PC[env->current_tc] = addr;
917 #elif defined (TARGET_CRIS)
925 addr = strtoull(p, (char **)&p, 16);
926 #if defined(TARGET_I386)
928 #elif defined (TARGET_PPC)
930 #elif defined (TARGET_SPARC)
933 #elif defined (TARGET_ARM)
934 env->regs[15] = addr;
935 #elif defined (TARGET_SH4)
937 #elif defined (TARGET_MIPS)
938 env->PC[env->current_tc] = addr;
939 #elif defined (TARGET_CRIS)
943 cpu_single_step(env, 1);
951 ret = strtoull(p, (char **)&p, 16);
954 err = strtoull(p, (char **)&p, 16);
961 if (gdb_current_syscall_cb)
962 gdb_current_syscall_cb(s->env, ret, err);
964 put_packet(s, "T02");
971 reg_size = cpu_gdb_read_registers(env, mem_buf);
972 memtohex(buf, mem_buf, reg_size);
976 registers = (void *)mem_buf;
978 hextomem((uint8_t *)registers, p, len);
979 cpu_gdb_write_registers(env, mem_buf, len);
983 addr = strtoull(p, (char **)&p, 16);
986 len = strtoull(p, NULL, 16);
987 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 0) != 0) {
988 put_packet (s, "E14");
990 memtohex(buf, mem_buf, len);
995 addr = strtoull(p, (char **)&p, 16);
998 len = strtoull(p, (char **)&p, 16);
1001 hextomem(mem_buf, p, len);
1002 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 1) != 0)
1003 put_packet(s, "E14");
1005 put_packet(s, "OK");
1008 type = strtoul(p, (char **)&p, 16);
1011 addr = strtoull(p, (char **)&p, 16);
1014 len = strtoull(p, (char **)&p, 16);
1015 if (type == 0 || type == 1) {
1016 if (cpu_breakpoint_insert(env, addr) < 0)
1017 goto breakpoint_error;
1018 put_packet(s, "OK");
1019 #ifndef CONFIG_USER_ONLY
1020 } else if (type == 2) {
1021 if (cpu_watchpoint_insert(env, addr) < 0)
1022 goto breakpoint_error;
1023 put_packet(s, "OK");
1027 put_packet(s, "E22");
1031 type = strtoul(p, (char **)&p, 16);
1034 addr = strtoull(p, (char **)&p, 16);
1037 len = strtoull(p, (char **)&p, 16);
1038 if (type == 0 || type == 1) {
1039 cpu_breakpoint_remove(env, addr);
1040 put_packet(s, "OK");
1041 #ifndef CONFIG_USER_ONLY
1042 } else if (type == 2) {
1043 cpu_watchpoint_remove(env, addr);
1044 put_packet(s, "OK");
1047 goto breakpoint_error;
1050 #ifdef CONFIG_LINUX_USER
1052 if (strncmp(p, "Offsets", 7) == 0) {
1053 TaskState *ts = env->opaque;
1056 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1057 ";Bss=" TARGET_ABI_FMT_lx,
1058 ts->info->code_offset,
1059 ts->info->data_offset,
1060 ts->info->data_offset);
1068 /* put empty packet */
1076 extern void tb_flush(CPUState *env);
1078 #ifndef CONFIG_USER_ONLY
1079 static void gdb_vm_stopped(void *opaque, int reason)
1081 GDBState *s = opaque;
1085 if (s->state == RS_SYSCALL)
1088 /* disable single step if it was enable */
1089 cpu_single_step(s->env, 0);
1091 if (reason == EXCP_DEBUG) {
1092 if (s->env->watchpoint_hit) {
1093 snprintf(buf, sizeof(buf), "T%02xwatch:" TARGET_FMT_lx ";",
1095 s->env->watchpoint[s->env->watchpoint_hit - 1].vaddr);
1097 s->env->watchpoint_hit = 0;
1102 } else if (reason == EXCP_INTERRUPT) {
1107 snprintf(buf, sizeof(buf), "S%02x", ret);
1112 /* Send a gdb syscall request.
1113 This accepts limited printf-style format specifiers, specifically:
1114 %x - target_ulong argument printed in hex.
1115 %lx - 64-bit argument printed in hex.
1116 %s - string pointer (target_ulong) and length (int) pair. */
1117 void gdb_do_syscall(gdb_syscall_complete_cb cb, char *fmt, ...)
1126 s = gdb_syscall_state;
1129 gdb_current_syscall_cb = cb;
1130 s->state = RS_SYSCALL;
1131 #ifndef CONFIG_USER_ONLY
1132 vm_stop(EXCP_DEBUG);
1143 addr = va_arg(va, target_ulong);
1144 p += sprintf(p, TARGET_FMT_lx, addr);
1147 if (*(fmt++) != 'x')
1149 i64 = va_arg(va, uint64_t);
1150 p += sprintf(p, "%" PRIx64, i64);
1153 addr = va_arg(va, target_ulong);
1154 p += sprintf(p, TARGET_FMT_lx "/%x", addr, va_arg(va, int));
1158 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
1169 #ifdef CONFIG_USER_ONLY
1170 gdb_handlesig(s->env, 0);
1172 cpu_interrupt(s->env, CPU_INTERRUPT_EXIT);
1176 static void gdb_read_byte(GDBState *s, int ch)
1178 CPUState *env = s->env;
1182 #ifndef CONFIG_USER_ONLY
1183 if (s->last_packet_len) {
1184 /* Waiting for a response to the last packet. If we see the start
1185 of a new command then abandon the previous response. */
1188 printf("Got NACK, retransmitting\n");
1190 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
1194 printf("Got ACK\n");
1196 printf("Got '%c' when expecting ACK/NACK\n", ch);
1198 if (ch == '+' || ch == '$')
1199 s->last_packet_len = 0;
1204 /* when the CPU is running, we cannot do anything except stop
1205 it when receiving a char */
1206 vm_stop(EXCP_INTERRUPT);
1213 s->line_buf_index = 0;
1214 s->state = RS_GETLINE;
1219 s->state = RS_CHKSUM1;
1220 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
1223 s->line_buf[s->line_buf_index++] = ch;
1227 s->line_buf[s->line_buf_index] = '\0';
1228 s->line_csum = fromhex(ch) << 4;
1229 s->state = RS_CHKSUM2;
1232 s->line_csum |= fromhex(ch);
1234 for(i = 0; i < s->line_buf_index; i++) {
1235 csum += s->line_buf[i];
1237 if (s->line_csum != (csum & 0xff)) {
1239 put_buffer(s, &reply, 1);
1243 put_buffer(s, &reply, 1);
1244 s->state = gdb_handle_packet(s, env, s->line_buf);
1253 #ifdef CONFIG_USER_ONLY
1255 gdb_handlesig (CPUState *env, int sig)
1261 if (gdbserver_fd < 0)
1264 s = &gdbserver_state;
1266 /* disable single step if it was enabled */
1267 cpu_single_step(env, 0);
1272 snprintf(buf, sizeof(buf), "S%02x", sig);
1278 s->running_state = 0;
1279 while (s->running_state == 0) {
1280 n = read (s->fd, buf, 256);
1285 for (i = 0; i < n; i++)
1286 gdb_read_byte (s, buf[i]);
1288 else if (n == 0 || errno != EAGAIN)
1290 /* XXX: Connection closed. Should probably wait for annother
1291 connection before continuing. */
1298 /* Tell the remote gdb that the process has exited. */
1299 void gdb_exit(CPUState *env, int code)
1304 if (gdbserver_fd < 0)
1307 s = &gdbserver_state;
1309 snprintf(buf, sizeof(buf), "W%02x", code);
1314 static void gdb_accept(void *opaque)
1317 struct sockaddr_in sockaddr;
1322 len = sizeof(sockaddr);
1323 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
1324 if (fd < 0 && errno != EINTR) {
1327 } else if (fd >= 0) {
1332 /* set short latency */
1334 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
1336 s = &gdbserver_state;
1337 memset (s, 0, sizeof (GDBState));
1338 s->env = first_cpu; /* XXX: allow to change CPU */
1341 gdb_syscall_state = s;
1343 fcntl(fd, F_SETFL, O_NONBLOCK);
1346 static int gdbserver_open(int port)
1348 struct sockaddr_in sockaddr;
1351 fd = socket(PF_INET, SOCK_STREAM, 0);
1357 /* allow fast reuse */
1359 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
1361 sockaddr.sin_family = AF_INET;
1362 sockaddr.sin_port = htons(port);
1363 sockaddr.sin_addr.s_addr = 0;
1364 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
1369 ret = listen(fd, 0);
1377 int gdbserver_start(int port)
1379 gdbserver_fd = gdbserver_open(port);
1380 if (gdbserver_fd < 0)
1382 /* accept connections */
1387 static int gdb_chr_can_receive(void *opaque)
1392 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
1394 GDBState *s = opaque;
1397 for (i = 0; i < size; i++) {
1398 gdb_read_byte(s, buf[i]);
1402 static void gdb_chr_event(void *opaque, int event)
1405 case CHR_EVENT_RESET:
1406 vm_stop(EXCP_INTERRUPT);
1407 gdb_syscall_state = opaque;
1414 int gdbserver_start(const char *port)
1417 char gdbstub_port_name[128];
1420 CharDriverState *chr;
1422 if (!port || !*port)
1425 port_num = strtol(port, &p, 10);
1427 /* A numeric value is interpreted as a port number. */
1428 snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
1429 "tcp::%d,nowait,nodelay,server", port_num);
1430 port = gdbstub_port_name;
1433 chr = qemu_chr_open(port);
1437 s = qemu_mallocz(sizeof(GDBState));
1441 s->env = first_cpu; /* XXX: allow to change CPU */
1443 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
1445 qemu_add_vm_stop_handler(gdb_vm_stopped, s);