2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
8 * Copyright (C) 2012 PetaLogix
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
26 #include "sysemu/block-backend.h"
27 #include "hw/ssi/ssi.h"
28 #include "qemu/bitops.h"
30 #include "qemu/error-report.h"
31 #include "qapi/error.h"
33 #ifndef M25P80_ERR_DEBUG
34 #define M25P80_ERR_DEBUG 0
37 #define DB_PRINT_L(level, ...) do { \
38 if (M25P80_ERR_DEBUG > (level)) { \
39 fprintf(stderr, ": %s: ", __func__); \
40 fprintf(stderr, ## __VA_ARGS__); \
44 /* Fields for FlashPartInfo->flags */
46 /* erase capabilities */
49 /* set to allow the page program command to write 0s back to 1. Useful for
50 * modelling EEPROM with SPI flash command set
54 /* 16 MiB max in 3 byte address mode */
55 #define MAX_3BYTES_SIZE 0x1000000
57 #define SPI_NOR_MAX_ID_LEN 6
59 typedef struct FlashPartInfo {
60 const char *part_name;
62 * This array stores the ID bytes.
63 * The first three bytes are the JEDIC ID.
64 * JEDEC ID zero means "no ID" (mostly older chips).
66 uint8_t id[SPI_NOR_MAX_ID_LEN];
68 /* there is confusion between manufacturers as to what a sector is. In this
69 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
70 * command (opcode 0xd8).
77 * Big sized spi nor are often stacked devices, thus sometime
78 * replace chip erase with die erase.
79 * This field inform how many die is in the chip.
84 /* adapted from linux */
85 /* Used when the "_ext_id" is two bytes at most */
86 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
87 .part_name = _part_name,\
89 ((_jedec_id) >> 16) & 0xff,\
90 ((_jedec_id) >> 8) & 0xff,\
92 ((_ext_id) >> 8) & 0xff,\
95 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
96 .sector_size = (_sector_size),\
97 .n_sectors = (_n_sectors),\
102 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
103 .part_name = _part_name,\
105 ((_jedec_id) >> 16) & 0xff,\
106 ((_jedec_id) >> 8) & 0xff,\
108 ((_ext_id) >> 16) & 0xff,\
109 ((_ext_id) >> 8) & 0xff,\
113 .sector_size = (_sector_size),\
114 .n_sectors = (_n_sectors),\
119 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
121 .part_name = _part_name,\
123 ((_jedec_id) >> 16) & 0xff,\
124 ((_jedec_id) >> 8) & 0xff,\
126 ((_ext_id) >> 8) & 0xff,\
129 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
130 .sector_size = (_sector_size),\
131 .n_sectors = (_n_sectors),\
136 #define JEDEC_NUMONYX 0x20
137 #define JEDEC_WINBOND 0xEF
138 #define JEDEC_SPANSION 0x01
140 /* Numonyx (Micron) Configuration register macros */
141 #define VCFG_DUMMY 0x1
142 #define VCFG_WRAP_SEQUENTIAL 0x2
143 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
144 #define NVCFG_XIP_MODE_MASK (7 << 9)
145 #define VCFG_XIP_MODE_ENABLED (1 << 3)
146 #define CFG_DUMMY_CLK_LEN 4
147 #define NVCFG_DUMMY_CLK_POS 12
148 #define VCFG_DUMMY_CLK_POS 4
149 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
150 #define EVCFG_VPP_ACCELERATOR (1 << 3)
151 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
152 #define NVCFG_DUAL_IO_MASK (1 << 2)
153 #define EVCFG_DUAL_IO_ENABLED (1 << 6)
154 #define NVCFG_QUAD_IO_MASK (1 << 3)
155 #define EVCFG_QUAD_IO_ENABLED (1 << 7)
156 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
157 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
159 /* Numonyx (Micron) Flag Status Register macros */
160 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
161 #define FSR_FLASH_READY (1 << 7)
163 /* Spansion configuration registers macros. */
164 #define SPANSION_QUAD_CFG_POS 0
165 #define SPANSION_QUAD_CFG_LEN 1
166 #define SPANSION_DUMMY_CLK_POS 0
167 #define SPANSION_DUMMY_CLK_LEN 4
168 #define SPANSION_ADDR_LEN_POS 7
169 #define SPANSION_ADDR_LEN_LEN 1
172 * Spansion read mode command length in bytes,
173 * the mode is currently not supported.
176 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
177 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
179 static const FlashPartInfo known_devices[] = {
180 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
181 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) },
182 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) },
184 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) },
185 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) },
186 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) },
188 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) },
189 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) },
190 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) },
191 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) },
193 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K) },
195 /* Atmel EEPROMS - it is assumed, that don't care bit in command
196 * is set to 0. Block protection is not supported.
198 { INFO("at25128a-nonjedec", 0x0, 0, 1, 131072, EEPROM) },
199 { INFO("at25256a-nonjedec", 0x0, 0, 1, 262144, EEPROM) },
202 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) },
203 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
204 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
205 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
206 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K) },
209 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K) },
210 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K) },
212 /* Intel/Numonyx -- xxxs33b */
213 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
214 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
215 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
216 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) },
219 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K) },
220 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) },
221 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
222 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) },
223 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
224 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
225 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
226 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
227 { INFO("mx25l25635e", 0xc22019, 0, 64 << 10, 512, 0) },
228 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
229 { INFO("mx66u51235f", 0xc2253a, 0, 64 << 10, 1024, ER_4K | ER_32K) },
230 { INFO("mx66u1g45g", 0xc2253b, 0, 64 << 10, 2048, ER_4K | ER_32K) },
231 { INFO("mx66l1g45g", 0xc2201b, 0, 64 << 10, 2048, ER_4K | ER_32K) },
234 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K) },
235 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K) },
236 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K) },
237 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K) },
238 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K) },
239 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K) },
240 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K) },
241 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
242 { INFO("n25q512a11", 0x20bb20, 0, 64 << 10, 1024, ER_4K) },
243 { INFO("n25q512a13", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
244 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
245 { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
246 { INFO("n25q512a", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
247 { INFO_STACKED("n25q00", 0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
248 { INFO_STACKED("n25q00a", 0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
249 { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
250 { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
252 /* Spansion -- single (large) sector size only, at least
253 * for the chips listed here (without boot sectors).
255 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) },
256 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K) },
257 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
258 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
259 { INFO6("s25fl512s", 0x010220, 0x4d0080, 256 << 10, 256, 0) },
260 { INFO6("s70fl01gs", 0x010221, 0x4d0080, 256 << 10, 512, 0) },
261 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
262 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
263 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
264 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
265 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
266 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
267 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
268 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
269 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
270 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) },
271 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) },
273 /* Spansion -- boot sectors support */
274 { INFO6("s25fs512s", 0x010220, 0x4d0081, 256 << 10, 256, 0) },
275 { INFO6("s70fs01gs", 0x010221, 0x4d0081, 256 << 10, 512, 0) },
277 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
278 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) },
279 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) },
280 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) },
281 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) },
282 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) },
283 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) },
284 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) },
285 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) },
286 { INFO("sst25wf080", 0xbf2505, 0, 64 << 10, 16, ER_4K) },
288 /* ST Microelectronics -- newer production may have feature updates */
289 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
290 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
291 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
292 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
293 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
294 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
295 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
296 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
297 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
298 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) },
300 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
301 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
302 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
304 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) },
305 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
306 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) },
308 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) },
309 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) },
310 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) },
311 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
313 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
314 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) },
315 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) },
316 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) },
317 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) },
318 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) },
319 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) },
320 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) },
321 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K) },
322 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) },
323 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) },
324 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K) },
325 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K) },
326 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K) },
338 BULK_ERASE_60 = 0x60,
370 ERASE4_SECTOR = 0xdc,
372 EN_4BYTE_ADDR = 0xB7,
373 EX_4BYTE_ADDR = 0xE9,
375 EXTEND_ADDR_READ = 0xC8,
376 EXTEND_ADDR_WRITE = 0xC5,
382 * Micron: 0x35 - enable QPI
383 * Spansion: 0x35 - read control register
404 STATE_COLLECTING_DATA,
405 STATE_COLLECTING_VAR_LEN_DATA,
418 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
420 typedef struct Flash {
430 uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
434 uint8_t needed_bytes;
435 uint8_t cmd_in_progress;
437 uint32_t nonvolatile_cfg;
438 /* Configuration register for Macronix */
439 uint32_t volatile_cfg;
440 uint32_t enh_volatile_cfg;
441 /* Spansion cfg registers. */
442 uint8_t spansion_cr1nv;
443 uint8_t spansion_cr2nv;
444 uint8_t spansion_cr3nv;
445 uint8_t spansion_cr4nv;
446 uint8_t spansion_cr1v;
447 uint8_t spansion_cr2v;
448 uint8_t spansion_cr3v;
449 uint8_t spansion_cr4v;
451 bool four_bytes_address_mode;
458 const FlashPartInfo *pi;
462 typedef struct M25P80Class {
463 SSISlaveClass parent_class;
467 #define TYPE_M25P80 "m25p80-generic"
468 #define M25P80(obj) \
469 OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
470 #define M25P80_CLASS(klass) \
471 OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
472 #define M25P80_GET_CLASS(obj) \
473 OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
475 static inline Manufacturer get_man(Flash *s)
477 switch (s->pi->id[0]) {
493 static void blk_sync_complete(void *opaque, int ret)
495 QEMUIOVector *iov = opaque;
497 qemu_iovec_destroy(iov);
500 /* do nothing. Masters do not directly interact with the backing store,
501 * only the working copy so no mutexing required.
505 static void flash_sync_page(Flash *s, int page)
509 if (!s->blk || blk_is_read_only(s->blk)) {
513 iov = g_new(QEMUIOVector, 1);
514 qemu_iovec_init(iov, 1);
515 qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
517 blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
518 blk_sync_complete, iov);
521 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
525 if (!s->blk || blk_is_read_only(s->blk)) {
529 assert(!(len % BDRV_SECTOR_SIZE));
530 iov = g_new(QEMUIOVector, 1);
531 qemu_iovec_init(iov, 1);
532 qemu_iovec_add(iov, s->storage + off, len);
533 blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
536 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
539 uint8_t capa_to_assert = 0;
545 capa_to_assert = ER_4K;
550 capa_to_assert = ER_32K;
554 len = s->pi->sector_size;
560 if (s->pi->die_cnt) {
561 len = s->size / s->pi->die_cnt;
562 offset = offset & (~(len - 1));
564 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
573 DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
574 if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
575 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
579 if (!s->write_enable) {
580 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
583 memset(s->storage + offset, 0xff, len);
584 flash_sync_area(s, offset, len);
587 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
589 if (s->dirty_page >= 0 && s->dirty_page != newpage) {
590 flash_sync_page(s, s->dirty_page);
591 s->dirty_page = newpage;
596 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
598 uint32_t page = addr / s->pi->page_size;
599 uint8_t prev = s->storage[s->cur_addr];
601 if (!s->write_enable) {
602 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
605 if ((prev ^ data) & data) {
606 DB_PRINT_L(1, "programming zero to one! addr=%" PRIx32 " %" PRIx8
607 " -> %" PRIx8 "\n", addr, prev, data);
610 if (s->pi->flags & EEPROM) {
611 s->storage[s->cur_addr] = data;
613 s->storage[s->cur_addr] &= data;
616 flash_sync_dirty(s, page);
617 s->dirty_page = page;
620 static inline int get_addr_length(Flash *s)
622 /* check if eeprom is in use */
623 if (s->pi->flags == EEPROM) {
627 switch (s->cmd_in_progress) {
642 return s->four_bytes_address_mode ? 4 : 3;
646 static void complete_collecting_data(Flash *s)
650 n = get_addr_length(s);
651 s->cur_addr = (n == 3 ? s->ear : 0);
652 for (i = 0; i < n; ++i) {
654 s->cur_addr |= s->data[i];
657 s->cur_addr &= s->size - 1;
659 s->state = STATE_IDLE;
661 switch (s->cmd_in_progress) {
668 s->state = STATE_PAGE_PROGRAM;
682 s->state = STATE_READ;
691 flash_erase(s, s->cur_addr, s->cmd_in_progress);
694 switch (get_man(s)) {
696 s->quad_enable = !!(s->data[1] & 0x02);
699 s->quad_enable = extract32(s->data[0], 6, 1);
701 s->volatile_cfg = s->data[1];
702 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
708 if (s->write_enable) {
709 s->write_enable = false;
713 case EXTEND_ADDR_WRITE:
717 s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
720 s->volatile_cfg = s->data[0];
723 s->enh_volatile_cfg = s->data[0];
727 if (get_man(s) == MAN_SST) {
728 if (s->cur_addr <= 1) {
730 s->data[0] = s->pi->id[2];
731 s->data[1] = s->pi->id[0];
733 s->data[0] = s->pi->id[0];
734 s->data[1] = s->pi->id[2];
738 s->data_read_loop = true;
739 s->state = STATE_READING_DATA;
741 qemu_log_mask(LOG_GUEST_ERROR,
742 "M25P80: Invalid read id address\n");
745 qemu_log_mask(LOG_GUEST_ERROR,
746 "M25P80: Read id (command 0x90/0xAB) is not supported"
755 static void reset_memory(Flash *s)
757 s->cmd_in_progress = NOP;
760 s->four_bytes_address_mode = false;
764 s->state = STATE_IDLE;
765 s->write_enable = false;
766 s->reset_enable = false;
767 s->quad_enable = false;
769 switch (get_man(s)) {
772 s->volatile_cfg |= VCFG_DUMMY;
773 s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
774 if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
775 != NVCFG_XIP_MODE_DISABLED) {
776 s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
778 s->volatile_cfg |= deposit32(s->volatile_cfg,
781 extract32(s->nonvolatile_cfg,
786 s->enh_volatile_cfg = 0;
787 s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
788 s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
789 s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
790 if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
791 s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
793 if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
794 s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
796 if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
797 s->four_bytes_address_mode = true;
799 if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
800 s->ear = s->size / MAX_3BYTES_SIZE - 1;
804 s->volatile_cfg = 0x7;
807 s->spansion_cr1v = s->spansion_cr1nv;
808 s->spansion_cr2v = s->spansion_cr2nv;
809 s->spansion_cr3v = s->spansion_cr3nv;
810 s->spansion_cr4v = s->spansion_cr4nv;
811 s->quad_enable = extract32(s->spansion_cr1v,
812 SPANSION_QUAD_CFG_POS,
813 SPANSION_QUAD_CFG_LEN
815 s->four_bytes_address_mode = extract32(s->spansion_cr2v,
816 SPANSION_ADDR_LEN_POS,
817 SPANSION_ADDR_LEN_LEN
824 DB_PRINT_L(0, "Reset done.\n");
827 static void decode_fast_read_cmd(Flash *s)
829 s->needed_bytes = get_addr_length(s);
830 switch (get_man(s)) {
831 /* Dummy cycles - modeled with bytes writes instead of bits */
833 s->needed_bytes += 8;
836 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
839 if (extract32(s->volatile_cfg, 6, 2) == 1) {
840 s->needed_bytes += 6;
842 s->needed_bytes += 8;
846 s->needed_bytes += extract32(s->spansion_cr2v,
847 SPANSION_DUMMY_CLK_POS,
848 SPANSION_DUMMY_CLK_LEN
856 s->state = STATE_COLLECTING_DATA;
859 static void decode_dio_read_cmd(Flash *s)
861 s->needed_bytes = get_addr_length(s);
862 /* Dummy cycles modeled with bytes writes instead of bits */
863 switch (get_man(s)) {
865 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
868 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
869 s->needed_bytes += extract32(s->spansion_cr2v,
870 SPANSION_DUMMY_CLK_POS,
871 SPANSION_DUMMY_CLK_LEN
875 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
878 switch (extract32(s->volatile_cfg, 6, 2)) {
880 s->needed_bytes += 6;
883 s->needed_bytes += 8;
886 s->needed_bytes += 4;
895 s->state = STATE_COLLECTING_DATA;
898 static void decode_qio_read_cmd(Flash *s)
900 s->needed_bytes = get_addr_length(s);
901 /* Dummy cycles modeled with bytes writes instead of bits */
902 switch (get_man(s)) {
904 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
905 s->needed_bytes += 4;
908 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
909 s->needed_bytes += extract32(s->spansion_cr2v,
910 SPANSION_DUMMY_CLK_POS,
911 SPANSION_DUMMY_CLK_LEN
915 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
918 switch (extract32(s->volatile_cfg, 6, 2)) {
920 s->needed_bytes += 4;
923 s->needed_bytes += 8;
926 s->needed_bytes += 6;
935 s->state = STATE_COLLECTING_DATA;
938 static void decode_new_cmd(Flash *s, uint32_t value)
940 s->cmd_in_progress = value;
942 DB_PRINT_L(0, "decoded new command:%x\n", value);
944 if (value != RESET_MEMORY) {
945 s->reset_enable = false;
967 s->needed_bytes = get_addr_length(s);
970 s->state = STATE_COLLECTING_DATA;
979 decode_fast_read_cmd(s);
984 decode_dio_read_cmd(s);
989 decode_qio_read_cmd(s);
993 if (s->write_enable) {
994 switch (get_man(s)) {
997 s->state = STATE_COLLECTING_DATA;
1000 s->needed_bytes = 2;
1001 s->state = STATE_COLLECTING_VAR_LEN_DATA;
1004 s->needed_bytes = 1;
1005 s->state = STATE_COLLECTING_DATA;
1012 s->write_enable = false;
1015 s->write_enable = true;
1019 s->data[0] = (!!s->write_enable) << 1;
1020 if (get_man(s) == MAN_MACRONIX) {
1021 s->data[0] |= (!!s->quad_enable) << 6;
1025 s->data_read_loop = true;
1026 s->state = STATE_READING_DATA;
1030 s->data[0] = FSR_FLASH_READY;
1031 if (s->four_bytes_address_mode) {
1032 s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1036 s->data_read_loop = true;
1037 s->state = STATE_READING_DATA;
1041 DB_PRINT_L(0, "populated jedec code\n");
1042 for (i = 0; i < s->pi->id_len; i++) {
1043 s->data[i] = s->pi->id[i];
1046 s->len = s->pi->id_len;
1048 s->state = STATE_READING_DATA;
1052 s->data[0] = s->volatile_cfg & 0xFF;
1053 s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1056 s->state = STATE_READING_DATA;
1061 if (s->write_enable) {
1062 DB_PRINT_L(0, "chip erase\n");
1063 flash_erase(s, 0, BULK_ERASE);
1065 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1072 s->four_bytes_address_mode = true;
1075 s->four_bytes_address_mode = false;
1078 case EXTEND_ADDR_READ:
1079 s->data[0] = s->ear;
1082 s->state = STATE_READING_DATA;
1085 case EXTEND_ADDR_WRITE:
1086 if (s->write_enable) {
1087 s->needed_bytes = 1;
1090 s->state = STATE_COLLECTING_DATA;
1094 s->data[0] = s->nonvolatile_cfg & 0xFF;
1095 s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1098 s->state = STATE_READING_DATA;
1101 if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1102 s->needed_bytes = 2;
1105 s->state = STATE_COLLECTING_DATA;
1109 s->data[0] = s->volatile_cfg & 0xFF;
1112 s->state = STATE_READING_DATA;
1115 if (s->write_enable) {
1116 s->needed_bytes = 1;
1119 s->state = STATE_COLLECTING_DATA;
1123 s->data[0] = s->enh_volatile_cfg & 0xFF;
1126 s->state = STATE_READING_DATA;
1129 if (s->write_enable) {
1130 s->needed_bytes = 1;
1133 s->state = STATE_COLLECTING_DATA;
1137 s->reset_enable = true;
1140 if (s->reset_enable) {
1145 switch (get_man(s)) {
1147 s->data[0] = (!!s->quad_enable) << 1;
1150 s->state = STATE_READING_DATA;
1153 s->quad_enable = true;
1160 s->quad_enable = false;
1163 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1168 static int m25p80_cs(SSISlave *ss, bool select)
1170 Flash *s = M25P80(ss);
1173 if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1174 complete_collecting_data(s);
1178 s->state = STATE_IDLE;
1179 flash_sync_dirty(s, -1);
1180 s->data_read_loop = false;
1183 DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
1188 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
1190 Flash *s = M25P80(ss);
1195 case STATE_PAGE_PROGRAM:
1196 DB_PRINT_L(1, "page program cur_addr=%#" PRIx32 " data=%" PRIx8 "\n",
1197 s->cur_addr, (uint8_t)tx);
1198 flash_write8(s, s->cur_addr, (uint8_t)tx);
1199 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1203 r = s->storage[s->cur_addr];
1204 DB_PRINT_L(1, "READ 0x%" PRIx32 "=%" PRIx8 "\n", s->cur_addr,
1206 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1209 case STATE_COLLECTING_DATA:
1210 case STATE_COLLECTING_VAR_LEN_DATA:
1212 if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1213 qemu_log_mask(LOG_GUEST_ERROR,
1214 "M25P80: Write overrun internal data buffer. "
1215 "SPI controller (QEMU emulator or guest driver) "
1216 "is misbehaving\n");
1217 s->len = s->pos = 0;
1218 s->state = STATE_IDLE;
1222 s->data[s->len] = (uint8_t)tx;
1225 if (s->len == s->needed_bytes) {
1226 complete_collecting_data(s);
1230 case STATE_READING_DATA:
1232 if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1233 qemu_log_mask(LOG_GUEST_ERROR,
1234 "M25P80: Read overrun internal data buffer. "
1235 "SPI controller (QEMU emulator or guest driver) "
1236 "is misbehaving\n");
1237 s->len = s->pos = 0;
1238 s->state = STATE_IDLE;
1242 r = s->data[s->pos];
1244 if (s->pos == s->len) {
1246 if (!s->data_read_loop) {
1247 s->state = STATE_IDLE;
1254 decode_new_cmd(s, (uint8_t)tx);
1261 static void m25p80_realize(SSISlave *ss, Error **errp)
1263 Flash *s = M25P80(ss);
1264 M25P80Class *mc = M25P80_GET_CLASS(s);
1269 s->size = s->pi->sector_size * s->pi->n_sectors;
1273 uint64_t perm = BLK_PERM_CONSISTENT_READ |
1274 (blk_is_read_only(s->blk) ? 0 : BLK_PERM_WRITE);
1275 ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1280 DB_PRINT_L(0, "Binding to IF_MTD drive\n");
1281 s->storage = blk_blockalign(s->blk, s->size);
1283 if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1284 error_setg(errp, "failed to read the initial flash content");
1288 DB_PRINT_L(0, "No BDRV - binding to RAM\n");
1289 s->storage = blk_blockalign(NULL, s->size);
1290 memset(s->storage, 0xFF, s->size);
1294 static void m25p80_reset(DeviceState *d)
1296 Flash *s = M25P80(d);
1301 static int m25p80_pre_save(void *opaque)
1303 flash_sync_dirty((Flash *)opaque, -1);
1308 static Property m25p80_properties[] = {
1309 /* This is default value for Micron flash */
1310 DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1311 DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1312 DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1313 DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1314 DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1315 DEFINE_PROP_DRIVE("drive", Flash, blk),
1316 DEFINE_PROP_END_OF_LIST(),
1319 static int m25p80_pre_load(void *opaque)
1321 Flash *s = (Flash *)opaque;
1323 s->data_read_loop = false;
1327 static bool m25p80_data_read_loop_needed(void *opaque)
1329 Flash *s = (Flash *)opaque;
1331 return s->data_read_loop;
1334 static const VMStateDescription vmstate_m25p80_data_read_loop = {
1335 .name = "m25p80/data_read_loop",
1337 .minimum_version_id = 1,
1338 .needed = m25p80_data_read_loop_needed,
1339 .fields = (VMStateField[]) {
1340 VMSTATE_BOOL(data_read_loop, Flash),
1341 VMSTATE_END_OF_LIST()
1345 static const VMStateDescription vmstate_m25p80 = {
1348 .minimum_version_id = 0,
1349 .pre_save = m25p80_pre_save,
1350 .pre_load = m25p80_pre_load,
1351 .fields = (VMStateField[]) {
1352 VMSTATE_UINT8(state, Flash),
1353 VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1354 VMSTATE_UINT32(len, Flash),
1355 VMSTATE_UINT32(pos, Flash),
1356 VMSTATE_UINT8(needed_bytes, Flash),
1357 VMSTATE_UINT8(cmd_in_progress, Flash),
1358 VMSTATE_UINT32(cur_addr, Flash),
1359 VMSTATE_BOOL(write_enable, Flash),
1360 VMSTATE_BOOL(reset_enable, Flash),
1361 VMSTATE_UINT8(ear, Flash),
1362 VMSTATE_BOOL(four_bytes_address_mode, Flash),
1363 VMSTATE_UINT32(nonvolatile_cfg, Flash),
1364 VMSTATE_UINT32(volatile_cfg, Flash),
1365 VMSTATE_UINT32(enh_volatile_cfg, Flash),
1366 VMSTATE_BOOL(quad_enable, Flash),
1367 VMSTATE_UINT8(spansion_cr1nv, Flash),
1368 VMSTATE_UINT8(spansion_cr2nv, Flash),
1369 VMSTATE_UINT8(spansion_cr3nv, Flash),
1370 VMSTATE_UINT8(spansion_cr4nv, Flash),
1371 VMSTATE_END_OF_LIST()
1373 .subsections = (const VMStateDescription * []) {
1374 &vmstate_m25p80_data_read_loop,
1379 static void m25p80_class_init(ObjectClass *klass, void *data)
1381 DeviceClass *dc = DEVICE_CLASS(klass);
1382 SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
1383 M25P80Class *mc = M25P80_CLASS(klass);
1385 k->realize = m25p80_realize;
1386 k->transfer = m25p80_transfer8;
1387 k->set_cs = m25p80_cs;
1388 k->cs_polarity = SSI_CS_LOW;
1389 dc->vmsd = &vmstate_m25p80;
1390 dc->props = m25p80_properties;
1391 dc->reset = m25p80_reset;
1395 static const TypeInfo m25p80_info = {
1396 .name = TYPE_M25P80,
1397 .parent = TYPE_SSI_SLAVE,
1398 .instance_size = sizeof(Flash),
1399 .class_size = sizeof(M25P80Class),
1403 static void m25p80_register_types(void)
1407 type_register_static(&m25p80_info);
1408 for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1410 .name = known_devices[i].part_name,
1411 .parent = TYPE_M25P80,
1412 .class_init = m25p80_class_init,
1413 .class_data = (void *)&known_devices[i],
1419 type_init(m25p80_register_types)