4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
29 #include "host-utils.h"
39 #define DPRINTF(fmt, ...) \
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #define DPRINTF(fmt, ...) \
46 #define MSR_KVM_WALL_CLOCK 0x11
47 #define MSR_KVM_SYSTEM_TIME 0x12
50 #define BUS_MCEERR_AR 4
53 #define BUS_MCEERR_AO 5
56 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57 KVM_CAP_INFO(SET_TSS_ADDR),
58 KVM_CAP_INFO(EXT_CPUID),
59 KVM_CAP_INFO(MP_STATE),
63 static bool has_msr_star;
64 static bool has_msr_hsave_pa;
65 static bool has_msr_tsc_deadline;
66 static bool has_msr_async_pf_en;
67 static bool has_msr_pv_eoi_en;
68 static bool has_msr_misc_enable;
69 static int lm_capable_kernel;
71 bool kvm_allows_irq0_override(void)
73 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
76 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
78 struct kvm_cpuid2 *cpuid;
81 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
82 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
84 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
85 if (r == 0 && cpuid->nent >= max) {
93 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
101 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
104 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
106 struct kvm_cpuid2 *cpuid;
108 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
114 struct kvm_para_features {
117 } para_features[] = {
118 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
119 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
120 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
121 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
125 static int get_para_features(KVMState *s)
129 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
130 if (kvm_check_extension(s, para_features[i].cap)) {
131 features |= (1 << para_features[i].feature);
139 /* Returns the value for a specific register on the cpuid entry
141 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
161 /* Find matching entry for function/index on kvm_cpuid2 struct
163 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
168 for (i = 0; i < cpuid->nent; ++i) {
169 if (cpuid->entries[i].function == function &&
170 cpuid->entries[i].index == index) {
171 return &cpuid->entries[i];
178 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
179 uint32_t index, int reg)
181 struct kvm_cpuid2 *cpuid;
183 uint32_t cpuid_1_edx;
186 cpuid = get_supported_cpuid(s);
188 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
191 ret = cpuid_entry_get_reg(entry, reg);
194 /* Fixups for the data returned by KVM, below */
196 if (function == 1 && reg == R_EDX) {
197 /* KVM before 2.6.30 misreports the following features */
198 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
199 } else if (function == 1 && reg == R_ECX) {
200 /* We can set the hypervisor flag, even if KVM does not return it on
201 * GET_SUPPORTED_CPUID
203 ret |= CPUID_EXT_HYPERVISOR;
204 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
205 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
206 * and the irqchip is in the kernel.
208 if (kvm_irqchip_in_kernel() &&
209 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
210 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
213 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
214 * without the in-kernel irqchip
216 if (!kvm_irqchip_in_kernel()) {
217 ret &= ~CPUID_EXT_X2APIC;
219 } else if (function == 0x80000001 && reg == R_EDX) {
220 /* On Intel, kvm returns cpuid according to the Intel spec,
221 * so add missing bits according to the AMD spec:
223 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
224 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
229 /* fallback for older kernels */
230 if ((function == KVM_CPUID_FEATURES) && !found) {
231 ret = get_para_features(s);
237 typedef struct HWPoisonPage {
239 QLIST_ENTRY(HWPoisonPage) list;
242 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
243 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
245 static void kvm_unpoison_all(void *param)
247 HWPoisonPage *page, *next_page;
249 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
250 QLIST_REMOVE(page, list);
251 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
256 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
260 QLIST_FOREACH(page, &hwpoison_page_list, list) {
261 if (page->ram_addr == ram_addr) {
265 page = g_malloc(sizeof(HWPoisonPage));
266 page->ram_addr = ram_addr;
267 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
270 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
275 r = kvm_check_extension(s, KVM_CAP_MCE);
278 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
283 static void kvm_mce_inject(CPUX86State *env, hwaddr paddr, int code)
285 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
286 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
287 uint64_t mcg_status = MCG_STATUS_MCIP;
289 if (code == BUS_MCEERR_AR) {
290 status |= MCI_STATUS_AR | 0x134;
291 mcg_status |= MCG_STATUS_EIPV;
294 mcg_status |= MCG_STATUS_RIPV;
296 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
297 (MCM_ADDR_PHYS << 6) | 0xc,
298 cpu_x86_support_mca_broadcast(env) ?
299 MCE_INJECT_BROADCAST : 0);
302 static void hardware_memory_error(void)
304 fprintf(stderr, "Hardware memory error!\n");
308 int kvm_arch_on_sigbus_vcpu(CPUX86State *env, int code, void *addr)
313 if ((env->mcg_cap & MCG_SER_P) && addr
314 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
315 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
316 !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
317 fprintf(stderr, "Hardware memory error for memory used by "
318 "QEMU itself instead of guest system!\n");
319 /* Hope we are lucky for AO MCE */
320 if (code == BUS_MCEERR_AO) {
323 hardware_memory_error();
326 kvm_hwpoison_page_add(ram_addr);
327 kvm_mce_inject(env, paddr, code);
329 if (code == BUS_MCEERR_AO) {
331 } else if (code == BUS_MCEERR_AR) {
332 hardware_memory_error();
340 int kvm_arch_on_sigbus(int code, void *addr)
342 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
346 /* Hope we are lucky for AO MCE */
347 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
348 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
350 fprintf(stderr, "Hardware memory error for memory used by "
351 "QEMU itself instead of guest system!: %p\n", addr);
354 kvm_hwpoison_page_add(ram_addr);
355 kvm_mce_inject(first_cpu, paddr, code);
357 if (code == BUS_MCEERR_AO) {
359 } else if (code == BUS_MCEERR_AR) {
360 hardware_memory_error();
368 static int kvm_inject_mce_oldstyle(CPUX86State *env)
370 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
371 unsigned int bank, bank_num = env->mcg_cap & 0xff;
372 struct kvm_x86_mce mce;
374 env->exception_injected = -1;
377 * There must be at least one bank in use if an MCE is pending.
378 * Find it and use its values for the event injection.
380 for (bank = 0; bank < bank_num; bank++) {
381 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
385 assert(bank < bank_num);
388 mce.status = env->mce_banks[bank * 4 + 1];
389 mce.mcg_status = env->mcg_status;
390 mce.addr = env->mce_banks[bank * 4 + 2];
391 mce.misc = env->mce_banks[bank * 4 + 3];
393 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
398 static void cpu_update_state(void *opaque, int running, RunState state)
400 CPUX86State *env = opaque;
403 env->tsc_valid = false;
407 int kvm_arch_init_vcpu(CPUX86State *env)
410 struct kvm_cpuid2 cpuid;
411 struct kvm_cpuid_entry2 entries[100];
412 } QEMU_PACKED cpuid_data;
413 KVMState *s = env->kvm_state;
414 uint32_t limit, i, j, cpuid_i;
416 struct kvm_cpuid_entry2 *c;
417 uint32_t signature[3];
420 env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
422 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
424 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
426 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
428 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
433 /* Paravirtualization CPUIDs */
434 c = &cpuid_data.entries[cpuid_i++];
435 memset(c, 0, sizeof(*c));
436 c->function = KVM_CPUID_SIGNATURE;
437 if (!hyperv_enabled()) {
438 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
441 memcpy(signature, "Microsoft Hv", 12);
442 c->eax = HYPERV_CPUID_MIN;
444 c->ebx = signature[0];
445 c->ecx = signature[1];
446 c->edx = signature[2];
448 c = &cpuid_data.entries[cpuid_i++];
449 memset(c, 0, sizeof(*c));
450 c->function = KVM_CPUID_FEATURES;
451 c->eax = env->cpuid_kvm_features &
452 kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
454 if (hyperv_enabled()) {
455 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
456 c->eax = signature[0];
458 c = &cpuid_data.entries[cpuid_i++];
459 memset(c, 0, sizeof(*c));
460 c->function = HYPERV_CPUID_VERSION;
464 c = &cpuid_data.entries[cpuid_i++];
465 memset(c, 0, sizeof(*c));
466 c->function = HYPERV_CPUID_FEATURES;
467 if (hyperv_relaxed_timing_enabled()) {
468 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
470 if (hyperv_vapic_recommended()) {
471 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
472 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
475 c = &cpuid_data.entries[cpuid_i++];
476 memset(c, 0, sizeof(*c));
477 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
478 if (hyperv_relaxed_timing_enabled()) {
479 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
481 if (hyperv_vapic_recommended()) {
482 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
484 c->ebx = hyperv_get_spinlock_retries();
486 c = &cpuid_data.entries[cpuid_i++];
487 memset(c, 0, sizeof(*c));
488 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
492 c = &cpuid_data.entries[cpuid_i++];
493 memset(c, 0, sizeof(*c));
494 c->function = KVM_CPUID_SIGNATURE_NEXT;
495 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
497 c->ebx = signature[0];
498 c->ecx = signature[1];
499 c->edx = signature[2];
502 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
504 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
506 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
508 for (i = 0; i <= limit; i++) {
509 c = &cpuid_data.entries[cpuid_i++];
513 /* Keep reading function 2 till all the input is received */
517 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
518 KVM_CPUID_FLAG_STATE_READ_NEXT;
519 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
520 times = c->eax & 0xff;
522 for (j = 1; j < times; ++j) {
523 c = &cpuid_data.entries[cpuid_i++];
525 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
526 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
534 if (i == 0xd && j == 64) {
538 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
540 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
542 if (i == 4 && c->eax == 0) {
545 if (i == 0xb && !(c->ecx & 0xff00)) {
548 if (i == 0xd && c->eax == 0) {
551 c = &cpuid_data.entries[cpuid_i++];
557 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
561 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
563 for (i = 0x80000000; i <= limit; i++) {
564 c = &cpuid_data.entries[cpuid_i++];
568 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
571 /* Call Centaur's CPUID instructions they are supported. */
572 if (env->cpuid_xlevel2 > 0) {
573 env->cpuid_ext4_features &=
574 kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
575 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
577 for (i = 0xC0000000; i <= limit; i++) {
578 c = &cpuid_data.entries[cpuid_i++];
582 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
586 cpuid_data.cpuid.nent = cpuid_i;
588 if (((env->cpuid_version >> 8)&0xF) >= 6
589 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
590 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
595 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
597 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
601 if (banks > MCE_BANKS_DEF) {
602 banks = MCE_BANKS_DEF;
604 mcg_cap &= MCE_CAP_DEF;
606 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
608 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
612 env->mcg_cap = mcg_cap;
615 qemu_add_vm_change_state_handler(cpu_update_state, env);
617 cpuid_data.cpuid.padding = 0;
618 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
623 r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
624 if (r && env->tsc_khz) {
625 r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
627 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
632 if (kvm_has_xsave()) {
633 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
639 void kvm_arch_reset_vcpu(CPUX86State *env)
641 X86CPU *cpu = x86_env_get_cpu(env);
643 env->exception_injected = -1;
644 env->interrupt_injected = -1;
646 if (kvm_irqchip_in_kernel()) {
647 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
648 KVM_MP_STATE_UNINITIALIZED;
650 env->mp_state = KVM_MP_STATE_RUNNABLE;
654 static int kvm_get_supported_msrs(KVMState *s)
656 static int kvm_supported_msrs;
660 if (kvm_supported_msrs == 0) {
661 struct kvm_msr_list msr_list, *kvm_msr_list;
663 kvm_supported_msrs = -1;
665 /* Obtain MSR list from KVM. These are the MSRs that we must
668 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
669 if (ret < 0 && ret != -E2BIG) {
672 /* Old kernel modules had a bug and could write beyond the provided
673 memory. Allocate at least a safe amount of 1K. */
674 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
676 sizeof(msr_list.indices[0])));
678 kvm_msr_list->nmsrs = msr_list.nmsrs;
679 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
683 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
684 if (kvm_msr_list->indices[i] == MSR_STAR) {
688 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
689 has_msr_hsave_pa = true;
692 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
693 has_msr_tsc_deadline = true;
696 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
697 has_msr_misc_enable = true;
703 g_free(kvm_msr_list);
709 int kvm_arch_init(KVMState *s)
711 QemuOptsList *list = qemu_find_opts("machine");
712 uint64_t identity_base = 0xfffbc000;
715 struct utsname utsname;
717 ret = kvm_get_supported_msrs(s);
723 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
726 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
727 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
728 * Since these must be part of guest physical memory, we need to allocate
729 * them, both by setting their start addresses in the kernel and by
730 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
732 * Older KVM versions may not support setting the identity map base. In
733 * that case we need to stick with the default, i.e. a 256K maximum BIOS
736 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
737 /* Allows up to 16M BIOSes. */
738 identity_base = 0xfeffc000;
740 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
746 /* Set TSS base one page after EPT identity map. */
747 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
752 /* Tell fw_cfg to notify the BIOS to reserve the range. */
753 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
755 fprintf(stderr, "e820_add_entry() table is full\n");
758 qemu_register_reset(kvm_unpoison_all, NULL);
760 if (!QTAILQ_EMPTY(&list->head)) {
761 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
762 "kvm_shadow_mem", -1);
763 if (shadow_mem != -1) {
765 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
774 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
776 lhs->selector = rhs->selector;
777 lhs->base = rhs->base;
778 lhs->limit = rhs->limit;
790 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
792 unsigned flags = rhs->flags;
793 lhs->selector = rhs->selector;
794 lhs->base = rhs->base;
795 lhs->limit = rhs->limit;
796 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
797 lhs->present = (flags & DESC_P_MASK) != 0;
798 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
799 lhs->db = (flags >> DESC_B_SHIFT) & 1;
800 lhs->s = (flags & DESC_S_MASK) != 0;
801 lhs->l = (flags >> DESC_L_SHIFT) & 1;
802 lhs->g = (flags & DESC_G_MASK) != 0;
803 lhs->avl = (flags & DESC_AVL_MASK) != 0;
808 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
810 lhs->selector = rhs->selector;
811 lhs->base = rhs->base;
812 lhs->limit = rhs->limit;
813 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
814 (rhs->present * DESC_P_MASK) |
815 (rhs->dpl << DESC_DPL_SHIFT) |
816 (rhs->db << DESC_B_SHIFT) |
817 (rhs->s * DESC_S_MASK) |
818 (rhs->l << DESC_L_SHIFT) |
819 (rhs->g * DESC_G_MASK) |
820 (rhs->avl * DESC_AVL_MASK);
823 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
826 *kvm_reg = *qemu_reg;
828 *qemu_reg = *kvm_reg;
832 static int kvm_getput_regs(CPUX86State *env, int set)
834 struct kvm_regs regs;
838 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s);
844 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set);
845 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set);
846 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set);
847 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set);
848 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set);
849 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set);
850 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set);
851 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set);
853 kvm_getput_reg(®s.r8, &env->regs[8], set);
854 kvm_getput_reg(®s.r9, &env->regs[9], set);
855 kvm_getput_reg(®s.r10, &env->regs[10], set);
856 kvm_getput_reg(®s.r11, &env->regs[11], set);
857 kvm_getput_reg(®s.r12, &env->regs[12], set);
858 kvm_getput_reg(®s.r13, &env->regs[13], set);
859 kvm_getput_reg(®s.r14, &env->regs[14], set);
860 kvm_getput_reg(®s.r15, &env->regs[15], set);
863 kvm_getput_reg(®s.rflags, &env->eflags, set);
864 kvm_getput_reg(®s.rip, &env->eip, set);
867 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s);
873 static int kvm_put_fpu(CPUX86State *env)
878 memset(&fpu, 0, sizeof fpu);
879 fpu.fsw = env->fpus & ~(7 << 11);
880 fpu.fsw |= (env->fpstt & 7) << 11;
882 fpu.last_opcode = env->fpop;
883 fpu.last_ip = env->fpip;
884 fpu.last_dp = env->fpdp;
885 for (i = 0; i < 8; ++i) {
886 fpu.ftwx |= (!env->fptags[i]) << i;
888 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
889 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
890 fpu.mxcsr = env->mxcsr;
892 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
895 #define XSAVE_FCW_FSW 0
896 #define XSAVE_FTW_FOP 1
897 #define XSAVE_CWD_RIP 2
898 #define XSAVE_CWD_RDP 4
899 #define XSAVE_MXCSR 6
900 #define XSAVE_ST_SPACE 8
901 #define XSAVE_XMM_SPACE 40
902 #define XSAVE_XSTATE_BV 128
903 #define XSAVE_YMMH_SPACE 144
905 static int kvm_put_xsave(CPUX86State *env)
907 struct kvm_xsave* xsave = env->kvm_xsave_buf;
908 uint16_t cwd, swd, twd;
911 if (!kvm_has_xsave()) {
912 return kvm_put_fpu(env);
915 memset(xsave, 0, sizeof(struct kvm_xsave));
917 swd = env->fpus & ~(7 << 11);
918 swd |= (env->fpstt & 7) << 11;
920 for (i = 0; i < 8; ++i) {
921 twd |= (!env->fptags[i]) << i;
923 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
924 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
925 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
926 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
927 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
929 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
930 sizeof env->xmm_regs);
931 xsave->region[XSAVE_MXCSR] = env->mxcsr;
932 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
933 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
934 sizeof env->ymmh_regs);
935 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
939 static int kvm_put_xcrs(CPUX86State *env)
941 struct kvm_xcrs xcrs;
943 if (!kvm_has_xcrs()) {
949 xcrs.xcrs[0].xcr = 0;
950 xcrs.xcrs[0].value = env->xcr0;
951 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
954 static int kvm_put_sregs(CPUX86State *env)
956 struct kvm_sregs sregs;
958 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
959 if (env->interrupt_injected >= 0) {
960 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
961 (uint64_t)1 << (env->interrupt_injected % 64);
964 if ((env->eflags & VM_MASK)) {
965 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
966 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
967 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
968 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
969 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
970 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
972 set_seg(&sregs.cs, &env->segs[R_CS]);
973 set_seg(&sregs.ds, &env->segs[R_DS]);
974 set_seg(&sregs.es, &env->segs[R_ES]);
975 set_seg(&sregs.fs, &env->segs[R_FS]);
976 set_seg(&sregs.gs, &env->segs[R_GS]);
977 set_seg(&sregs.ss, &env->segs[R_SS]);
980 set_seg(&sregs.tr, &env->tr);
981 set_seg(&sregs.ldt, &env->ldt);
983 sregs.idt.limit = env->idt.limit;
984 sregs.idt.base = env->idt.base;
985 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
986 sregs.gdt.limit = env->gdt.limit;
987 sregs.gdt.base = env->gdt.base;
988 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
990 sregs.cr0 = env->cr[0];
991 sregs.cr2 = env->cr[2];
992 sregs.cr3 = env->cr[3];
993 sregs.cr4 = env->cr[4];
995 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
996 sregs.apic_base = cpu_get_apic_base(env->apic_state);
998 sregs.efer = env->efer;
1000 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
1003 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1004 uint32_t index, uint64_t value)
1006 entry->index = index;
1007 entry->data = value;
1010 static int kvm_put_msrs(CPUX86State *env, int level)
1013 struct kvm_msrs info;
1014 struct kvm_msr_entry entries[100];
1016 struct kvm_msr_entry *msrs = msr_data.entries;
1019 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1020 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1021 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1022 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1024 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1026 if (has_msr_hsave_pa) {
1027 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1029 if (has_msr_tsc_deadline) {
1030 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1032 if (has_msr_misc_enable) {
1033 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1034 env->msr_ia32_misc_enable);
1036 #ifdef TARGET_X86_64
1037 if (lm_capable_kernel) {
1038 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1039 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1040 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1041 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1044 if (level == KVM_PUT_FULL_STATE) {
1046 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1047 * writeback. Until this is fixed, we only write the offset to SMP
1048 * guests after migration, desynchronizing the VCPUs, but avoiding
1049 * huge jump-backs that would occur without any writeback at all.
1051 if (smp_cpus == 1 || env->tsc != 0) {
1052 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1056 * The following paravirtual MSRs have side effects on the guest or are
1057 * too heavy for normal writeback. Limit them to reset or full state
1060 if (level >= KVM_PUT_RESET_STATE) {
1061 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1062 env->system_time_msr);
1063 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1064 if (has_msr_async_pf_en) {
1065 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1066 env->async_pf_en_msr);
1068 if (has_msr_pv_eoi_en) {
1069 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1070 env->pv_eoi_en_msr);
1072 if (hyperv_hypercall_available()) {
1073 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1074 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1076 if (hyperv_vapic_recommended()) {
1077 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1083 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1084 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1085 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1086 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1090 msr_data.info.nmsrs = n;
1092 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1097 static int kvm_get_fpu(CPUX86State *env)
1102 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
1107 env->fpstt = (fpu.fsw >> 11) & 7;
1108 env->fpus = fpu.fsw;
1109 env->fpuc = fpu.fcw;
1110 env->fpop = fpu.last_opcode;
1111 env->fpip = fpu.last_ip;
1112 env->fpdp = fpu.last_dp;
1113 for (i = 0; i < 8; ++i) {
1114 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1116 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1117 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1118 env->mxcsr = fpu.mxcsr;
1123 static int kvm_get_xsave(CPUX86State *env)
1125 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1127 uint16_t cwd, swd, twd;
1129 if (!kvm_has_xsave()) {
1130 return kvm_get_fpu(env);
1133 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
1138 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1139 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1140 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1141 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1142 env->fpstt = (swd >> 11) & 7;
1145 for (i = 0; i < 8; ++i) {
1146 env->fptags[i] = !((twd >> i) & 1);
1148 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1149 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1150 env->mxcsr = xsave->region[XSAVE_MXCSR];
1151 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1152 sizeof env->fpregs);
1153 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1154 sizeof env->xmm_regs);
1155 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1156 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1157 sizeof env->ymmh_regs);
1161 static int kvm_get_xcrs(CPUX86State *env)
1164 struct kvm_xcrs xcrs;
1166 if (!kvm_has_xcrs()) {
1170 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1175 for (i = 0; i < xcrs.nr_xcrs; i++) {
1176 /* Only support xcr0 now */
1177 if (xcrs.xcrs[0].xcr == 0) {
1178 env->xcr0 = xcrs.xcrs[0].value;
1185 static int kvm_get_sregs(CPUX86State *env)
1187 struct kvm_sregs sregs;
1191 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1196 /* There can only be one pending IRQ set in the bitmap at a time, so try
1197 to find it and save its number instead (-1 for none). */
1198 env->interrupt_injected = -1;
1199 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1200 if (sregs.interrupt_bitmap[i]) {
1201 bit = ctz64(sregs.interrupt_bitmap[i]);
1202 env->interrupt_injected = i * 64 + bit;
1207 get_seg(&env->segs[R_CS], &sregs.cs);
1208 get_seg(&env->segs[R_DS], &sregs.ds);
1209 get_seg(&env->segs[R_ES], &sregs.es);
1210 get_seg(&env->segs[R_FS], &sregs.fs);
1211 get_seg(&env->segs[R_GS], &sregs.gs);
1212 get_seg(&env->segs[R_SS], &sregs.ss);
1214 get_seg(&env->tr, &sregs.tr);
1215 get_seg(&env->ldt, &sregs.ldt);
1217 env->idt.limit = sregs.idt.limit;
1218 env->idt.base = sregs.idt.base;
1219 env->gdt.limit = sregs.gdt.limit;
1220 env->gdt.base = sregs.gdt.base;
1222 env->cr[0] = sregs.cr0;
1223 env->cr[2] = sregs.cr2;
1224 env->cr[3] = sregs.cr3;
1225 env->cr[4] = sregs.cr4;
1227 env->efer = sregs.efer;
1229 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1231 #define HFLAG_COPY_MASK \
1232 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1233 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1234 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1235 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1237 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1238 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1239 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1240 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1241 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1242 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1243 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1245 if (env->efer & MSR_EFER_LMA) {
1246 hflags |= HF_LMA_MASK;
1249 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1250 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1252 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1253 (DESC_B_SHIFT - HF_CS32_SHIFT);
1254 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1255 (DESC_B_SHIFT - HF_SS32_SHIFT);
1256 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1257 !(hflags & HF_CS32_MASK)) {
1258 hflags |= HF_ADDSEG_MASK;
1260 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1261 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1264 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1269 static int kvm_get_msrs(CPUX86State *env)
1272 struct kvm_msrs info;
1273 struct kvm_msr_entry entries[100];
1275 struct kvm_msr_entry *msrs = msr_data.entries;
1279 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1280 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1281 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1282 msrs[n++].index = MSR_PAT;
1284 msrs[n++].index = MSR_STAR;
1286 if (has_msr_hsave_pa) {
1287 msrs[n++].index = MSR_VM_HSAVE_PA;
1289 if (has_msr_tsc_deadline) {
1290 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1292 if (has_msr_misc_enable) {
1293 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1296 if (!env->tsc_valid) {
1297 msrs[n++].index = MSR_IA32_TSC;
1298 env->tsc_valid = !runstate_is_running();
1301 #ifdef TARGET_X86_64
1302 if (lm_capable_kernel) {
1303 msrs[n++].index = MSR_CSTAR;
1304 msrs[n++].index = MSR_KERNELGSBASE;
1305 msrs[n++].index = MSR_FMASK;
1306 msrs[n++].index = MSR_LSTAR;
1309 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1310 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1311 if (has_msr_async_pf_en) {
1312 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1314 if (has_msr_pv_eoi_en) {
1315 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1319 msrs[n++].index = MSR_MCG_STATUS;
1320 msrs[n++].index = MSR_MCG_CTL;
1321 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1322 msrs[n++].index = MSR_MC0_CTL + i;
1326 msr_data.info.nmsrs = n;
1327 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1332 for (i = 0; i < ret; i++) {
1333 switch (msrs[i].index) {
1334 case MSR_IA32_SYSENTER_CS:
1335 env->sysenter_cs = msrs[i].data;
1337 case MSR_IA32_SYSENTER_ESP:
1338 env->sysenter_esp = msrs[i].data;
1340 case MSR_IA32_SYSENTER_EIP:
1341 env->sysenter_eip = msrs[i].data;
1344 env->pat = msrs[i].data;
1347 env->star = msrs[i].data;
1349 #ifdef TARGET_X86_64
1351 env->cstar = msrs[i].data;
1353 case MSR_KERNELGSBASE:
1354 env->kernelgsbase = msrs[i].data;
1357 env->fmask = msrs[i].data;
1360 env->lstar = msrs[i].data;
1364 env->tsc = msrs[i].data;
1366 case MSR_IA32_TSCDEADLINE:
1367 env->tsc_deadline = msrs[i].data;
1369 case MSR_VM_HSAVE_PA:
1370 env->vm_hsave = msrs[i].data;
1372 case MSR_KVM_SYSTEM_TIME:
1373 env->system_time_msr = msrs[i].data;
1375 case MSR_KVM_WALL_CLOCK:
1376 env->wall_clock_msr = msrs[i].data;
1378 case MSR_MCG_STATUS:
1379 env->mcg_status = msrs[i].data;
1382 env->mcg_ctl = msrs[i].data;
1384 case MSR_IA32_MISC_ENABLE:
1385 env->msr_ia32_misc_enable = msrs[i].data;
1388 if (msrs[i].index >= MSR_MC0_CTL &&
1389 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1390 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1393 case MSR_KVM_ASYNC_PF_EN:
1394 env->async_pf_en_msr = msrs[i].data;
1396 case MSR_KVM_PV_EOI_EN:
1397 env->pv_eoi_en_msr = msrs[i].data;
1405 static int kvm_put_mp_state(CPUX86State *env)
1407 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1409 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1412 static int kvm_get_mp_state(CPUX86State *env)
1414 struct kvm_mp_state mp_state;
1417 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1421 env->mp_state = mp_state.mp_state;
1422 if (kvm_irqchip_in_kernel()) {
1423 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1428 static int kvm_get_apic(CPUX86State *env)
1430 DeviceState *apic = env->apic_state;
1431 struct kvm_lapic_state kapic;
1434 if (apic && kvm_irqchip_in_kernel()) {
1435 ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic);
1440 kvm_get_apic_state(apic, &kapic);
1445 static int kvm_put_apic(CPUX86State *env)
1447 DeviceState *apic = env->apic_state;
1448 struct kvm_lapic_state kapic;
1450 if (apic && kvm_irqchip_in_kernel()) {
1451 kvm_put_apic_state(apic, &kapic);
1453 return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic);
1458 static int kvm_put_vcpu_events(CPUX86State *env, int level)
1460 struct kvm_vcpu_events events;
1462 if (!kvm_has_vcpu_events()) {
1466 events.exception.injected = (env->exception_injected >= 0);
1467 events.exception.nr = env->exception_injected;
1468 events.exception.has_error_code = env->has_error_code;
1469 events.exception.error_code = env->error_code;
1470 events.exception.pad = 0;
1472 events.interrupt.injected = (env->interrupt_injected >= 0);
1473 events.interrupt.nr = env->interrupt_injected;
1474 events.interrupt.soft = env->soft_interrupt;
1476 events.nmi.injected = env->nmi_injected;
1477 events.nmi.pending = env->nmi_pending;
1478 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1481 events.sipi_vector = env->sipi_vector;
1484 if (level >= KVM_PUT_RESET_STATE) {
1486 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1489 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1492 static int kvm_get_vcpu_events(CPUX86State *env)
1494 struct kvm_vcpu_events events;
1497 if (!kvm_has_vcpu_events()) {
1501 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1505 env->exception_injected =
1506 events.exception.injected ? events.exception.nr : -1;
1507 env->has_error_code = events.exception.has_error_code;
1508 env->error_code = events.exception.error_code;
1510 env->interrupt_injected =
1511 events.interrupt.injected ? events.interrupt.nr : -1;
1512 env->soft_interrupt = events.interrupt.soft;
1514 env->nmi_injected = events.nmi.injected;
1515 env->nmi_pending = events.nmi.pending;
1516 if (events.nmi.masked) {
1517 env->hflags2 |= HF2_NMI_MASK;
1519 env->hflags2 &= ~HF2_NMI_MASK;
1522 env->sipi_vector = events.sipi_vector;
1527 static int kvm_guest_debug_workarounds(CPUX86State *env)
1530 unsigned long reinject_trap = 0;
1532 if (!kvm_has_vcpu_events()) {
1533 if (env->exception_injected == 1) {
1534 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1535 } else if (env->exception_injected == 3) {
1536 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1538 env->exception_injected = -1;
1542 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1543 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1544 * by updating the debug state once again if single-stepping is on.
1545 * Another reason to call kvm_update_guest_debug here is a pending debug
1546 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1547 * reinject them via SET_GUEST_DEBUG.
1549 if (reinject_trap ||
1550 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1551 ret = kvm_update_guest_debug(env, reinject_trap);
1556 static int kvm_put_debugregs(CPUX86State *env)
1558 struct kvm_debugregs dbgregs;
1561 if (!kvm_has_debugregs()) {
1565 for (i = 0; i < 4; i++) {
1566 dbgregs.db[i] = env->dr[i];
1568 dbgregs.dr6 = env->dr[6];
1569 dbgregs.dr7 = env->dr[7];
1572 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1575 static int kvm_get_debugregs(CPUX86State *env)
1577 struct kvm_debugregs dbgregs;
1580 if (!kvm_has_debugregs()) {
1584 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1588 for (i = 0; i < 4; i++) {
1589 env->dr[i] = dbgregs.db[i];
1591 env->dr[4] = env->dr[6] = dbgregs.dr6;
1592 env->dr[5] = env->dr[7] = dbgregs.dr7;
1597 int kvm_arch_put_registers(CPUX86State *env, int level)
1601 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1603 ret = kvm_getput_regs(env, 1);
1607 ret = kvm_put_xsave(env);
1611 ret = kvm_put_xcrs(env);
1615 ret = kvm_put_sregs(env);
1619 /* must be before kvm_put_msrs */
1620 ret = kvm_inject_mce_oldstyle(env);
1624 ret = kvm_put_msrs(env, level);
1628 if (level >= KVM_PUT_RESET_STATE) {
1629 ret = kvm_put_mp_state(env);
1633 ret = kvm_put_apic(env);
1638 ret = kvm_put_vcpu_events(env, level);
1642 ret = kvm_put_debugregs(env);
1647 ret = kvm_guest_debug_workarounds(env);
1654 int kvm_arch_get_registers(CPUX86State *env)
1658 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1660 ret = kvm_getput_regs(env, 0);
1664 ret = kvm_get_xsave(env);
1668 ret = kvm_get_xcrs(env);
1672 ret = kvm_get_sregs(env);
1676 ret = kvm_get_msrs(env);
1680 ret = kvm_get_mp_state(env);
1684 ret = kvm_get_apic(env);
1688 ret = kvm_get_vcpu_events(env);
1692 ret = kvm_get_debugregs(env);
1699 void kvm_arch_pre_run(CPUX86State *env, struct kvm_run *run)
1704 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1705 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1706 DPRINTF("injected NMI\n");
1707 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1709 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1714 if (!kvm_irqchip_in_kernel()) {
1715 /* Force the VCPU out of its inner loop to process any INIT requests
1716 * or pending TPR access reports. */
1717 if (env->interrupt_request &
1718 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1719 env->exit_request = 1;
1722 /* Try to inject an interrupt if the guest can accept it */
1723 if (run->ready_for_interrupt_injection &&
1724 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1725 (env->eflags & IF_MASK)) {
1728 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1729 irq = cpu_get_pic_interrupt(env);
1731 struct kvm_interrupt intr;
1734 DPRINTF("injected interrupt %d\n", irq);
1735 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1738 "KVM: injection failed, interrupt lost (%s)\n",
1744 /* If we have an interrupt but the guest is not ready to receive an
1745 * interrupt, request an interrupt window exit. This will
1746 * cause a return to userspace as soon as the guest is ready to
1747 * receive interrupts. */
1748 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1749 run->request_interrupt_window = 1;
1751 run->request_interrupt_window = 0;
1754 DPRINTF("setting tpr\n");
1755 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1759 void kvm_arch_post_run(CPUX86State *env, struct kvm_run *run)
1762 env->eflags |= IF_MASK;
1764 env->eflags &= ~IF_MASK;
1766 cpu_set_apic_tpr(env->apic_state, run->cr8);
1767 cpu_set_apic_base(env->apic_state, run->apic_base);
1770 int kvm_arch_process_async_events(CPUX86State *env)
1772 X86CPU *cpu = x86_env_get_cpu(env);
1774 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1775 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1776 assert(env->mcg_cap);
1778 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1780 kvm_cpu_synchronize_state(env);
1782 if (env->exception_injected == EXCP08_DBLE) {
1783 /* this means triple fault */
1784 qemu_system_reset_request();
1785 env->exit_request = 1;
1788 env->exception_injected = EXCP12_MCHK;
1789 env->has_error_code = 0;
1792 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1793 env->mp_state = KVM_MP_STATE_RUNNABLE;
1797 if (kvm_irqchip_in_kernel()) {
1801 if (env->interrupt_request & CPU_INTERRUPT_POLL) {
1802 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
1803 apic_poll_irq(env->apic_state);
1805 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1806 (env->eflags & IF_MASK)) ||
1807 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1810 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1811 kvm_cpu_synchronize_state(env);
1814 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1815 kvm_cpu_synchronize_state(env);
1818 if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1819 env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1820 kvm_cpu_synchronize_state(env);
1821 apic_handle_tpr_access_report(env->apic_state, env->eip,
1822 env->tpr_access_type);
1828 static int kvm_handle_halt(CPUX86State *env)
1830 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1831 (env->eflags & IF_MASK)) &&
1832 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1840 static int kvm_handle_tpr_access(CPUX86State *env)
1842 struct kvm_run *run = env->kvm_run;
1844 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1845 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1850 int kvm_arch_insert_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1852 static const uint8_t int3 = 0xcc;
1854 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1855 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1861 int kvm_arch_remove_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1865 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1866 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1878 static int nb_hw_breakpoint;
1880 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1884 for (n = 0; n < nb_hw_breakpoint; n++) {
1885 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1886 (hw_breakpoint[n].len == len || len == -1)) {
1893 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1894 target_ulong len, int type)
1897 case GDB_BREAKPOINT_HW:
1900 case GDB_WATCHPOINT_WRITE:
1901 case GDB_WATCHPOINT_ACCESS:
1908 if (addr & (len - 1)) {
1920 if (nb_hw_breakpoint == 4) {
1923 if (find_hw_breakpoint(addr, len, type) >= 0) {
1926 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1927 hw_breakpoint[nb_hw_breakpoint].len = len;
1928 hw_breakpoint[nb_hw_breakpoint].type = type;
1934 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1935 target_ulong len, int type)
1939 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1944 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1949 void kvm_arch_remove_all_hw_breakpoints(void)
1951 nb_hw_breakpoint = 0;
1954 static CPUWatchpoint hw_watchpoint;
1956 static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
1961 if (arch_info->exception == 1) {
1962 if (arch_info->dr6 & (1 << 14)) {
1963 if (cpu_single_env->singlestep_enabled) {
1967 for (n = 0; n < 4; n++) {
1968 if (arch_info->dr6 & (1 << n)) {
1969 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1975 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1976 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1977 hw_watchpoint.flags = BP_MEM_WRITE;
1981 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1982 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1983 hw_watchpoint.flags = BP_MEM_ACCESS;
1989 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1993 cpu_synchronize_state(cpu_single_env);
1994 assert(cpu_single_env->exception_injected == -1);
1997 cpu_single_env->exception_injected = arch_info->exception;
1998 cpu_single_env->has_error_code = 0;
2004 void kvm_arch_update_guest_debug(CPUX86State *env, struct kvm_guest_debug *dbg)
2006 const uint8_t type_code[] = {
2007 [GDB_BREAKPOINT_HW] = 0x0,
2008 [GDB_WATCHPOINT_WRITE] = 0x1,
2009 [GDB_WATCHPOINT_ACCESS] = 0x3
2011 const uint8_t len_code[] = {
2012 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2016 if (kvm_sw_breakpoints_active(env)) {
2017 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
2019 if (nb_hw_breakpoint > 0) {
2020 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2021 dbg->arch.debugreg[7] = 0x0600;
2022 for (n = 0; n < nb_hw_breakpoint; n++) {
2023 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2024 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2025 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2026 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2031 static bool host_supports_vmx(void)
2033 uint32_t ecx, unused;
2035 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2036 return ecx & CPUID_EXT_VMX;
2039 #define VMX_INVALID_GUEST_STATE 0x80000021
2041 int kvm_arch_handle_exit(CPUX86State *env, struct kvm_run *run)
2046 switch (run->exit_reason) {
2048 DPRINTF("handle_hlt\n");
2049 ret = kvm_handle_halt(env);
2051 case KVM_EXIT_SET_TPR:
2054 case KVM_EXIT_TPR_ACCESS:
2055 ret = kvm_handle_tpr_access(env);
2057 case KVM_EXIT_FAIL_ENTRY:
2058 code = run->fail_entry.hardware_entry_failure_reason;
2059 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2061 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2063 "\nIf you're running a guest on an Intel machine without "
2064 "unrestricted mode\n"
2065 "support, the failure can be most likely due to the guest "
2066 "entering an invalid\n"
2067 "state for Intel VT. For example, the guest maybe running "
2068 "in big real mode\n"
2069 "which is not supported on less recent Intel processors."
2074 case KVM_EXIT_EXCEPTION:
2075 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2076 run->ex.exception, run->ex.error_code);
2079 case KVM_EXIT_DEBUG:
2080 DPRINTF("kvm_exit_debug\n");
2081 ret = kvm_handle_debug(&run->debug.arch);
2084 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2092 bool kvm_arch_stop_on_emulation_error(CPUX86State *env)
2094 kvm_cpu_synchronize_state(env);
2095 return !(env->cr[0] & CR0_PE_MASK) ||
2096 ((env->segs[R_CS].selector & 3) != 3);
2099 void kvm_arch_init_irq_routing(KVMState *s)
2101 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2102 /* If kernel can't do irq routing, interrupt source
2103 * override 0->2 cannot be set up as required by HPET.
2104 * So we have to disable it.
2108 /* We know at this point that we're using the in-kernel
2109 * irqchip, so we can use irqfds, and on x86 we know
2110 * we can use msi via irqfd and GSI routing.
2112 kvm_irqfds_allowed = true;
2113 kvm_msi_via_irqfd_allowed = true;
2114 kvm_gsi_routing_allowed = true;
2117 /* Classic KVM device assignment interface. Will remain x86 only. */
2118 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2119 uint32_t flags, uint32_t *dev_id)
2121 struct kvm_assigned_pci_dev dev_data = {
2122 .segnr = dev_addr->domain,
2123 .busnr = dev_addr->bus,
2124 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2129 dev_data.assigned_dev_id =
2130 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2132 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2137 *dev_id = dev_data.assigned_dev_id;
2142 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2144 struct kvm_assigned_pci_dev dev_data = {
2145 .assigned_dev_id = dev_id,
2148 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2151 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2152 uint32_t irq_type, uint32_t guest_irq)
2154 struct kvm_assigned_irq assigned_irq = {
2155 .assigned_dev_id = dev_id,
2156 .guest_irq = guest_irq,
2160 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2161 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2163 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2167 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2170 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2171 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2173 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2176 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2178 struct kvm_assigned_pci_dev dev_data = {
2179 .assigned_dev_id = dev_id,
2180 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2183 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2186 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2189 struct kvm_assigned_irq assigned_irq = {
2190 .assigned_dev_id = dev_id,
2194 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2197 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2199 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2200 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2203 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2205 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2206 KVM_DEV_IRQ_GUEST_MSI, virq);
2209 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2211 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2212 KVM_DEV_IRQ_HOST_MSI);
2215 bool kvm_device_msix_supported(KVMState *s)
2217 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2218 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2219 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2222 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2223 uint32_t nr_vectors)
2225 struct kvm_assigned_msix_nr msix_nr = {
2226 .assigned_dev_id = dev_id,
2227 .entry_nr = nr_vectors,
2230 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2233 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2236 struct kvm_assigned_msix_entry msix_entry = {
2237 .assigned_dev_id = dev_id,
2242 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2245 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2247 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2248 KVM_DEV_IRQ_GUEST_MSIX, 0);
2251 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2253 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2254 KVM_DEV_IRQ_HOST_MSIX);