2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
38 //#define DEBUG_TB_INVALIDATE
41 /* make various TB consistency checks */
42 //#define DEBUG_TB_CHECK
44 /* threshold to flush the translated code buffer */
45 #define CODE_GEN_BUFFER_MAX_SIZE (CODE_GEN_BUFFER_SIZE - CODE_GEN_MAX_SIZE)
47 #define CODE_GEN_MAX_BLOCKS (CODE_GEN_BUFFER_SIZE / 64)
49 TranslationBlock tbs[CODE_GEN_MAX_BLOCKS];
50 TranslationBlock *tb_hash[CODE_GEN_HASH_SIZE];
52 /* any access to the tbs or the page table must use this lock */
53 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
55 uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
56 uint8_t *code_gen_ptr;
58 /* XXX: pack the flags in the low bits of the pointer ? */
59 typedef struct PageDesc {
61 TranslationBlock *first_tb;
65 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
67 #define L1_SIZE (1 << L1_BITS)
68 #define L2_SIZE (1 << L2_BITS)
70 static void tb_invalidate_page(unsigned long address);
71 static void io_mem_init(void);
73 unsigned long real_host_page_size;
74 unsigned long host_page_bits;
75 unsigned long host_page_size;
76 unsigned long host_page_mask;
78 static PageDesc *l1_map[L1_SIZE];
80 /* io memory support */
81 static unsigned long *l1_physmap[L1_SIZE];
82 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
83 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
86 static void page_init(void)
88 /* NOTE: we can always suppose that host_page_size >=
90 real_host_page_size = getpagesize();
91 if (host_page_size == 0)
92 host_page_size = real_host_page_size;
93 if (host_page_size < TARGET_PAGE_SIZE)
94 host_page_size = TARGET_PAGE_SIZE;
96 while ((1 << host_page_bits) < host_page_size)
98 host_page_mask = ~(host_page_size - 1);
101 /* dump memory mappings */
102 void page_dump(FILE *f)
104 unsigned long start, end;
105 int i, j, prot, prot1;
108 fprintf(f, "%-8s %-8s %-8s %s\n",
109 "start", "end", "size", "prot");
113 for(i = 0; i <= L1_SIZE; i++) {
118 for(j = 0;j < L2_SIZE; j++) {
124 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
126 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
127 start, end, end - start,
128 prot & PAGE_READ ? 'r' : '-',
129 prot & PAGE_WRITE ? 'w' : '-',
130 prot & PAGE_EXEC ? 'x' : '-');
144 static inline PageDesc *page_find_alloc(unsigned int index)
148 lp = &l1_map[index >> L2_BITS];
151 /* allocate if not found */
152 p = malloc(sizeof(PageDesc) * L2_SIZE);
153 memset(p, 0, sizeof(PageDesc) * L2_SIZE);
156 return p + (index & (L2_SIZE - 1));
159 static inline PageDesc *page_find(unsigned int index)
163 p = l1_map[index >> L2_BITS];
166 return p + (index & (L2_SIZE - 1));
169 int page_get_flags(unsigned long address)
173 p = page_find(address >> TARGET_PAGE_BITS);
179 /* modify the flags of a page and invalidate the code if
180 necessary. The flag PAGE_WRITE_ORG is positionned automatically
181 depending on PAGE_WRITE */
182 void page_set_flags(unsigned long start, unsigned long end, int flags)
187 start = start & TARGET_PAGE_MASK;
188 end = TARGET_PAGE_ALIGN(end);
189 if (flags & PAGE_WRITE)
190 flags |= PAGE_WRITE_ORG;
192 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
193 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
194 /* if the write protection is set, then we invalidate the code
196 if (!(p->flags & PAGE_WRITE) &&
197 (flags & PAGE_WRITE) &&
199 tb_invalidate_page(addr);
203 spin_unlock(&tb_lock);
206 void cpu_exec_init(void)
209 code_gen_ptr = code_gen_buffer;
215 /* set to NULL all the 'first_tb' fields in all PageDescs */
216 static void page_flush_tb(void)
221 for(i = 0; i < L1_SIZE; i++) {
224 for(j = 0; j < L2_SIZE; j++)
225 p[j].first_tb = NULL;
230 /* flush all the translation blocks */
231 /* XXX: tb_flush is currently not thread safe */
236 printf("qemu: flush code_size=%d nb_tbs=%d avg_tb_size=%d\n",
237 code_gen_ptr - code_gen_buffer,
239 (code_gen_ptr - code_gen_buffer) / nb_tbs);
242 for(i = 0;i < CODE_GEN_HASH_SIZE; i++)
245 code_gen_ptr = code_gen_buffer;
246 /* XXX: flush processor icache at this point if cache flush is
250 #ifdef DEBUG_TB_CHECK
252 static void tb_invalidate_check(unsigned long address)
254 TranslationBlock *tb;
256 address &= TARGET_PAGE_MASK;
257 for(i = 0;i < CODE_GEN_HASH_SIZE; i++) {
258 for(tb = tb_hash[i]; tb != NULL; tb = tb->hash_next) {
259 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
260 address >= tb->pc + tb->size)) {
261 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
262 address, tb->pc, tb->size);
268 /* verify that all the pages have correct rights for code */
269 static void tb_page_check(void)
271 TranslationBlock *tb;
272 int i, flags1, flags2;
274 for(i = 0;i < CODE_GEN_HASH_SIZE; i++) {
275 for(tb = tb_hash[i]; tb != NULL; tb = tb->hash_next) {
276 flags1 = page_get_flags(tb->pc);
277 flags2 = page_get_flags(tb->pc + tb->size - 1);
278 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
279 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
280 tb->pc, tb->size, flags1, flags2);
286 void tb_jmp_check(TranslationBlock *tb)
288 TranslationBlock *tb1;
291 /* suppress any remaining jumps to this TB */
295 tb1 = (TranslationBlock *)((long)tb1 & ~3);
298 tb1 = tb1->jmp_next[n1];
300 /* check end of list */
302 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
308 /* invalidate one TB */
309 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
312 TranslationBlock *tb1;
316 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
319 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
323 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
325 TranslationBlock *tb1, **ptb;
328 ptb = &tb->jmp_next[n];
331 /* find tb(n) in circular list */
335 tb1 = (TranslationBlock *)((long)tb1 & ~3);
336 if (n1 == n && tb1 == tb)
339 ptb = &tb1->jmp_first;
341 ptb = &tb1->jmp_next[n1];
344 /* now we can suppress tb(n) from the list */
345 *ptb = tb->jmp_next[n];
347 tb->jmp_next[n] = NULL;
351 /* reset the jump entry 'n' of a TB so that it is not chained to
353 static inline void tb_reset_jump(TranslationBlock *tb, int n)
355 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
358 static inline void tb_invalidate(TranslationBlock *tb, int parity)
361 unsigned int page_index1, page_index2;
363 TranslationBlock *tb1, *tb2;
365 /* remove the TB from the hash list */
366 h = tb_hash_func(tb->pc);
367 tb_remove(&tb_hash[h], tb,
368 offsetof(TranslationBlock, hash_next));
369 /* remove the TB from the page list */
370 page_index1 = tb->pc >> TARGET_PAGE_BITS;
371 if ((page_index1 & 1) == parity) {
372 p = page_find(page_index1);
373 tb_remove(&p->first_tb, tb,
374 offsetof(TranslationBlock, page_next[page_index1 & 1]));
376 page_index2 = (tb->pc + tb->size - 1) >> TARGET_PAGE_BITS;
377 if ((page_index2 & 1) == parity) {
378 p = page_find(page_index2);
379 tb_remove(&p->first_tb, tb,
380 offsetof(TranslationBlock, page_next[page_index2 & 1]));
383 /* suppress this TB from the two jump lists */
384 tb_jmp_remove(tb, 0);
385 tb_jmp_remove(tb, 1);
387 /* suppress any remaining jumps to this TB */
393 tb1 = (TranslationBlock *)((long)tb1 & ~3);
394 tb2 = tb1->jmp_next[n1];
395 tb_reset_jump(tb1, n1);
396 tb1->jmp_next[n1] = NULL;
399 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
402 /* invalidate all TBs which intersect with the target page starting at addr */
403 static void tb_invalidate_page(unsigned long address)
405 TranslationBlock *tb_next, *tb;
406 unsigned int page_index;
407 int parity1, parity2;
409 #ifdef DEBUG_TB_INVALIDATE
410 printf("tb_invalidate_page: %lx\n", address);
413 page_index = address >> TARGET_PAGE_BITS;
414 p = page_find(page_index);
418 parity1 = page_index & 1;
419 parity2 = parity1 ^ 1;
421 tb_next = tb->page_next[parity1];
422 tb_invalidate(tb, parity2);
428 /* add the tb in the target page and protect it if necessary */
429 static inline void tb_alloc_page(TranslationBlock *tb, unsigned int page_index)
432 unsigned long host_start, host_end, addr, page_addr;
435 p = page_find_alloc(page_index);
436 tb->page_next[page_index & 1] = p->first_tb;
438 if (p->flags & PAGE_WRITE) {
439 /* force the host page as non writable (writes will have a
440 page fault + mprotect overhead) */
441 page_addr = (page_index << TARGET_PAGE_BITS);
442 host_start = page_addr & host_page_mask;
443 host_end = host_start + host_page_size;
445 for(addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE)
446 prot |= page_get_flags(addr);
447 mprotect((void *)host_start, host_page_size,
448 (prot & PAGE_BITS) & ~PAGE_WRITE);
449 #ifdef DEBUG_TB_INVALIDATE
450 printf("protecting code page: 0x%08lx\n",
453 p->flags &= ~PAGE_WRITE;
454 #ifdef DEBUG_TB_CHECK
460 /* Allocate a new translation block. Flush the translation buffer if
461 too many translation blocks or too much generated code. */
462 TranslationBlock *tb_alloc(unsigned long pc)
464 TranslationBlock *tb;
466 if (nb_tbs >= CODE_GEN_MAX_BLOCKS ||
467 (code_gen_ptr - code_gen_buffer) >= CODE_GEN_BUFFER_MAX_SIZE)
474 /* link the tb with the other TBs */
475 void tb_link(TranslationBlock *tb)
477 unsigned int page_index1, page_index2;
479 /* add in the page list */
480 page_index1 = tb->pc >> TARGET_PAGE_BITS;
481 tb_alloc_page(tb, page_index1);
482 page_index2 = (tb->pc + tb->size - 1) >> TARGET_PAGE_BITS;
483 if (page_index2 != page_index1) {
484 tb_alloc_page(tb, page_index2);
486 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
487 tb->jmp_next[0] = NULL;
488 tb->jmp_next[1] = NULL;
490 /* init original jump addresses */
491 if (tb->tb_next_offset[0] != 0xffff)
492 tb_reset_jump(tb, 0);
493 if (tb->tb_next_offset[1] != 0xffff)
494 tb_reset_jump(tb, 1);
497 /* called from signal handler: invalidate the code and unprotect the
498 page. Return TRUE if the fault was succesfully handled. */
499 int page_unprotect(unsigned long address)
501 unsigned int page_index, prot, pindex;
503 unsigned long host_start, host_end, addr;
505 host_start = address & host_page_mask;
506 page_index = host_start >> TARGET_PAGE_BITS;
507 p1 = page_find(page_index);
510 host_end = host_start + host_page_size;
513 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
517 /* if the page was really writable, then we change its
518 protection back to writable */
519 if (prot & PAGE_WRITE_ORG) {
520 mprotect((void *)host_start, host_page_size,
521 (prot & PAGE_BITS) | PAGE_WRITE);
522 pindex = (address - host_start) >> TARGET_PAGE_BITS;
523 p1[pindex].flags |= PAGE_WRITE;
524 /* and since the content will be modified, we must invalidate
525 the corresponding translated code. */
526 tb_invalidate_page(address);
527 #ifdef DEBUG_TB_CHECK
528 tb_invalidate_check(address);
536 /* call this function when system calls directly modify a memory area */
537 void page_unprotect_range(uint8_t *data, unsigned long data_size)
539 unsigned long start, end, addr;
541 start = (unsigned long)data;
542 end = start + data_size;
543 start &= TARGET_PAGE_MASK;
544 end = TARGET_PAGE_ALIGN(end);
545 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
546 page_unprotect(addr);
550 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
551 tb[1].tc_ptr. Return NULL if not found */
552 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
556 TranslationBlock *tb;
560 if (tc_ptr < (unsigned long)code_gen_buffer ||
561 tc_ptr >= (unsigned long)code_gen_ptr)
563 /* binary search (cf Knuth) */
566 while (m_min <= m_max) {
567 m = (m_min + m_max) >> 1;
569 v = (unsigned long)tb->tc_ptr;
572 else if (tc_ptr < v) {
581 static void tb_reset_jump_recursive(TranslationBlock *tb);
583 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
585 TranslationBlock *tb1, *tb_next, **ptb;
588 tb1 = tb->jmp_next[n];
590 /* find head of list */
593 tb1 = (TranslationBlock *)((long)tb1 & ~3);
596 tb1 = tb1->jmp_next[n1];
598 /* we are now sure now that tb jumps to tb1 */
601 /* remove tb from the jmp_first list */
602 ptb = &tb_next->jmp_first;
606 tb1 = (TranslationBlock *)((long)tb1 & ~3);
607 if (n1 == n && tb1 == tb)
609 ptb = &tb1->jmp_next[n1];
611 *ptb = tb->jmp_next[n];
612 tb->jmp_next[n] = NULL;
614 /* suppress the jump to next tb in generated code */
615 tb_reset_jump(tb, n);
617 /* suppress jumps in the tb on which we could have jump */
618 tb_reset_jump_recursive(tb_next);
622 static void tb_reset_jump_recursive(TranslationBlock *tb)
624 tb_reset_jump_recursive2(tb, 0);
625 tb_reset_jump_recursive2(tb, 1);
628 /* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
629 breakpoint is reached */
630 int cpu_breakpoint_insert(CPUState *env, uint32_t pc)
632 #if defined(TARGET_I386)
635 for(i = 0; i < env->nb_breakpoints; i++) {
636 if (env->breakpoints[i] == pc)
640 if (env->nb_breakpoints >= MAX_BREAKPOINTS)
642 env->breakpoints[env->nb_breakpoints++] = pc;
643 tb_invalidate_page(pc);
650 /* remove a breakpoint */
651 int cpu_breakpoint_remove(CPUState *env, uint32_t pc)
653 #if defined(TARGET_I386)
655 for(i = 0; i < env->nb_breakpoints; i++) {
656 if (env->breakpoints[i] == pc)
661 memmove(&env->breakpoints[i], &env->breakpoints[i + 1],
662 (env->nb_breakpoints - (i + 1)) * sizeof(env->breakpoints[0]));
663 env->nb_breakpoints--;
664 tb_invalidate_page(pc);
671 /* enable or disable single step mode. EXCP_DEBUG is returned by the
672 CPU loop after each instruction */
673 void cpu_single_step(CPUState *env, int enabled)
675 #if defined(TARGET_I386)
676 if (env->singlestep_enabled != enabled) {
677 env->singlestep_enabled = enabled;
678 /* must flush all the translated code to avoid inconsistancies */
685 /* mask must never be zero */
686 void cpu_interrupt(CPUState *env, int mask)
688 TranslationBlock *tb;
690 env->interrupt_request |= mask;
691 /* if the cpu is currently executing code, we must unlink it and
692 all the potentially executing TB */
693 tb = env->current_tb;
695 tb_reset_jump_recursive(tb);
700 void cpu_abort(CPUState *env, const char *fmt, ...)
705 fprintf(stderr, "qemu: fatal: ");
706 vfprintf(stderr, fmt, ap);
707 fprintf(stderr, "\n");
709 cpu_x86_dump_state(env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
716 /* unmap all maped pages and flush all associated code */
717 void page_unmap(void)
723 for(i = 0; i < L1_SIZE; i++) {
727 for(j = 0;j < L2_SIZE;) {
728 if (p->flags & PAGE_VALID) {
729 addr = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
730 /* we try to find a range to make less syscalls */
734 while (j < L2_SIZE && (p->flags & PAGE_VALID)) {
738 ret = munmap((void *)addr, (j - j1) << TARGET_PAGE_BITS);
740 fprintf(stderr, "Could not unmap page 0x%08lx\n", addr);
756 void tlb_flush(CPUState *env)
758 #if defined(TARGET_I386)
760 for(i = 0; i < CPU_TLB_SIZE; i++) {
761 env->tlb_read[0][i].address = -1;
762 env->tlb_write[0][i].address = -1;
763 env->tlb_read[1][i].address = -1;
764 env->tlb_write[1][i].address = -1;
769 void tlb_flush_page(CPUState *env, uint32_t addr)
771 #if defined(TARGET_I386)
774 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
775 env->tlb_read[0][i].address = -1;
776 env->tlb_write[0][i].address = -1;
777 env->tlb_read[1][i].address = -1;
778 env->tlb_write[1][i].address = -1;
782 static inline unsigned long *physpage_find_alloc(unsigned int page)
784 unsigned long **lp, *p;
785 unsigned int index, i;
787 index = page >> TARGET_PAGE_BITS;
788 lp = &l1_physmap[index >> L2_BITS];
791 /* allocate if not found */
792 p = malloc(sizeof(unsigned long) * L2_SIZE);
793 for(i = 0; i < L2_SIZE; i++)
794 p[i] = IO_MEM_UNASSIGNED;
797 return p + (index & (L2_SIZE - 1));
800 /* return NULL if no page defined (unused memory) */
801 unsigned long physpage_find(unsigned long page)
805 index = page >> TARGET_PAGE_BITS;
806 p = l1_physmap[index >> L2_BITS];
808 return IO_MEM_UNASSIGNED;
809 return p[index & (L2_SIZE - 1)];
812 /* register physical memory. 'size' must be a multiple of the target
813 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
815 void cpu_register_physical_memory(unsigned long start_addr, unsigned long size,
818 unsigned long addr, end_addr;
821 end_addr = start_addr + size;
822 for(addr = start_addr; addr < end_addr; addr += TARGET_PAGE_SIZE) {
823 p = physpage_find_alloc(addr);
825 if ((phys_offset & ~TARGET_PAGE_MASK) == 0)
826 phys_offset += TARGET_PAGE_SIZE;
830 static uint32_t unassigned_mem_readb(uint32_t addr)
835 static void unassigned_mem_writeb(uint32_t addr, uint32_t val)
839 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
840 unassigned_mem_readb,
841 unassigned_mem_readb,
842 unassigned_mem_readb,
845 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
846 unassigned_mem_writeb,
847 unassigned_mem_writeb,
848 unassigned_mem_writeb,
852 static void io_mem_init(void)
855 cpu_register_io_memory(0, unassigned_mem_read, unassigned_mem_write);
858 /* mem_read and mem_write are arrays of functions containing the
859 function to access byte (index 0), word (index 1) and dword (index
860 2). All functions must be supplied. If io_index is non zero, the
861 corresponding io zone is modified. If it is zero, a new io zone is
862 allocated. The return value can be used with
863 cpu_register_physical_memory(). (-1) is returned if error. */
864 int cpu_register_io_memory(int io_index,
865 CPUReadMemoryFunc **mem_read,
866 CPUWriteMemoryFunc **mem_write)
871 if (io_index >= IO_MEM_NB_ENTRIES)
873 io_index = io_mem_nb++;
875 if (io_index >= IO_MEM_NB_ENTRIES)
879 for(i = 0;i < 3; i++) {
880 io_mem_read[io_index][i] = mem_read[i];
881 io_mem_write[io_index][i] = mem_write[i];
883 return io_index << IO_MEM_SHIFT;