2 * PowerPC emulation helpers for qemu.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #include "host-utils.h"
23 #include "helper_regs.h"
24 #include "op_helper.h"
26 #define MEMSUFFIX _raw
27 #include "op_helper.h"
28 #include "op_helper_mem.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #define MEMSUFFIX _user
31 #include "op_helper.h"
32 #include "op_helper_mem.h"
33 #define MEMSUFFIX _kernel
34 #include "op_helper.h"
35 #include "op_helper_mem.h"
36 #if defined(TARGET_PPC64H)
37 #define MEMSUFFIX _hypv
38 #include "op_helper.h"
39 #include "op_helper_mem.h"
44 //#define DEBUG_EXCEPTIONS
45 //#define DEBUG_SOFTWARE_TLB
47 /*****************************************************************************/
48 /* Exceptions processing helpers */
50 void do_raise_exception_err (uint32_t exception, int error_code)
53 printf("Raise exception %3x code : %d\n", exception, error_code);
55 env->exception_index = exception;
56 env->error_code = error_code;
60 void do_raise_exception (uint32_t exception)
62 do_raise_exception_err(exception, 0);
65 void cpu_dump_EA (target_ulong EA);
66 void do_print_mem_EA (target_ulong EA)
71 /*****************************************************************************/
72 /* Registers load and stores */
73 void do_load_cr (void)
75 T0 = (env->crf[0] << 28) |
85 void do_store_cr (uint32_t mask)
89 for (i = 0, sh = 7; i < 8; i++, sh--) {
91 env->crf[i] = (T0 >> (sh * 4)) & 0xFUL;
95 #if defined(TARGET_PPC64)
96 void do_store_pri (int prio)
98 env->spr[SPR_PPR] &= ~0x001C000000000000ULL;
99 env->spr[SPR_PPR] |= ((uint64_t)prio & 0x7) << 50;
103 target_ulong ppc_load_dump_spr (int sprn)
106 fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n",
107 sprn, sprn, env->spr[sprn]);
110 return env->spr[sprn];
113 void ppc_store_dump_spr (int sprn, target_ulong val)
116 fprintf(logfile, "Write SPR %d %03x => " ADDRX " <= " ADDRX "\n",
117 sprn, sprn, env->spr[sprn], val);
119 env->spr[sprn] = val;
122 /*****************************************************************************/
123 /* Fixed point operations helpers */
128 if (likely(!((uint32_t)T0 < (uint32_t)T2 ||
129 (xer_ca == 1 && (uint32_t)T0 == (uint32_t)T2)))) {
136 #if defined(TARGET_PPC64)
137 void do_adde_64 (void)
141 if (likely(!((uint64_t)T0 < (uint64_t)T2 ||
142 (xer_ca == 1 && (uint64_t)T0 == (uint64_t)T2)))) {
150 void do_addmeo (void)
154 xer_ov = ((uint32_t)T1 & ((uint32_t)T1 ^ (uint32_t)T0)) >> 31;
162 #if defined(TARGET_PPC64)
163 void do_addmeo_64 (void)
167 xer_ov = ((uint64_t)T1 & ((uint64_t)T1 ^ (uint64_t)T0)) >> 63;
178 if (likely(!(((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
179 (int32_t)T1 == 0))) {
181 T0 = (int32_t)T0 / (int32_t)T1;
184 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
189 #if defined(TARGET_PPC64)
192 if (likely(!(((int64_t)T0 == INT64_MIN && (int64_t)T1 == (int64_t)-1LL) ||
193 (int64_t)T1 == 0))) {
195 T0 = (int64_t)T0 / (int64_t)T1;
198 T0 = UINT64_MAX * ((uint64_t)T0 >> 63);
204 void do_divwuo (void)
206 if (likely((uint32_t)T1 != 0)) {
208 T0 = (uint32_t)T0 / (uint32_t)T1;
216 #if defined(TARGET_PPC64)
217 void do_divduo (void)
219 if (likely((uint64_t)T1 != 0)) {
221 T0 = (uint64_t)T0 / (uint64_t)T1;
230 void do_mullwo (void)
232 int64_t res = (int64_t)T0 * (int64_t)T1;
234 if (likely((int32_t)res == res)) {
243 #if defined(TARGET_PPC64)
244 void do_mulldo (void)
249 muls64(&tl, &th, T0, T1);
251 /* If th != 0 && th != -1, then we had an overflow */
252 if (likely((uint64_t)(th + 1) <= 1)) {
263 if (likely((int32_t)T0 != INT32_MIN)) {
272 #if defined(TARGET_PPC64)
273 void do_nego_64 (void)
275 if (likely((int64_t)T0 != INT64_MIN)) {
287 T0 = T1 + ~T0 + xer_ca;
288 if (likely((uint32_t)T0 >= (uint32_t)T1 &&
289 (xer_ca == 0 || (uint32_t)T0 != (uint32_t)T1))) {
296 #if defined(TARGET_PPC64)
297 void do_subfe_64 (void)
299 T0 = T1 + ~T0 + xer_ca;
300 if (likely((uint64_t)T0 >= (uint64_t)T1 &&
301 (xer_ca == 0 || (uint64_t)T0 != (uint64_t)T1))) {
309 void do_subfmeo (void)
312 T0 = ~T0 + xer_ca - 1;
313 xer_ov = ((uint32_t)~T1 & ((uint32_t)~T1 ^ (uint32_t)T0)) >> 31;
315 if (likely((uint32_t)T1 != UINT32_MAX))
321 #if defined(TARGET_PPC64)
322 void do_subfmeo_64 (void)
325 T0 = ~T0 + xer_ca - 1;
326 xer_ov = ((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0)) >> 63;
328 if (likely((uint64_t)T1 != UINT64_MAX))
335 void do_subfzeo (void)
339 xer_ov = (((uint32_t)~T1 ^ UINT32_MAX) &
340 ((uint32_t)(~T1) ^ (uint32_t)T0)) >> 31;
342 if (likely((uint32_t)T0 >= (uint32_t)~T1)) {
349 #if defined(TARGET_PPC64)
350 void do_subfzeo_64 (void)
354 xer_ov = (((uint64_t)~T1 ^ UINT64_MAX) &
355 ((uint64_t)(~T1) ^ (uint64_t)T0)) >> 63;
357 if (likely((uint64_t)T0 >= (uint64_t)~T1)) {
365 void do_cntlzw (void)
370 #if defined(TARGET_PPC64)
371 void do_cntlzd (void)
377 /* shift right arithmetic helper */
382 if (likely(!(T1 & 0x20UL))) {
383 if (likely((uint32_t)T1 != 0)) {
384 ret = (int32_t)T0 >> (T1 & 0x1fUL);
385 if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) {
395 ret = UINT32_MAX * ((uint32_t)T0 >> 31);
396 if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) {
405 #if defined(TARGET_PPC64)
410 if (likely(!(T1 & 0x40UL))) {
411 if (likely((uint64_t)T1 != 0)) {
412 ret = (int64_t)T0 >> (T1 & 0x3FUL);
413 if (likely(ret >= 0 || ((int64_t)T0 & ((1 << T1) - 1)) == 0)) {
423 ret = UINT64_MAX * ((uint64_t)T0 >> 63);
424 if (likely(ret >= 0 || ((uint64_t)T0 & ~0x8000000000000000ULL) == 0)) {
434 void do_popcntb (void)
440 for (i = 0; i < 32; i += 8)
441 ret |= ctpop8((T0 >> i) & 0xFF) << i;
445 #if defined(TARGET_PPC64)
446 void do_popcntb_64 (void)
452 for (i = 0; i < 64; i += 8)
453 ret |= ctpop8((T0 >> i) & 0xFF) << i;
458 /*****************************************************************************/
459 /* Floating point operations helpers */
460 static always_inline int fpisneg (float64 f)
469 return u.u >> 63 != 0;
472 static always_inline int isden (float f)
481 return ((u.u >> 52) & 0x7FF) == 0;
484 static always_inline int iszero (float64 f)
493 return (u.u & ~0x8000000000000000ULL) == 0;
496 static always_inline int isinfinity (float64 f)
505 return ((u.u >> 52) & 0x7FF) == 0x7FF &&
506 (u.u & 0x000FFFFFFFFFFFFFULL) == 0;
509 void do_compute_fprf (int set_fprf)
513 isneg = fpisneg(FT0);
514 if (unlikely(float64_is_nan(FT0))) {
515 if (float64_is_signaling_nan(FT0)) {
516 /* Signaling NaN: flags are undefined */
522 } else if (unlikely(isinfinity(FT0))) {
537 /* Denormalized numbers */
540 /* Normalized numbers */
551 /* We update FPSCR_FPRF */
552 env->fpscr &= ~(0x1F << FPSCR_FPRF);
553 env->fpscr |= T0 << FPSCR_FPRF;
555 /* We just need fpcc to update Rc1 */
559 /* Floating-point invalid operations exception */
560 static always_inline void fload_invalid_op_excp (int op)
565 if (op & POWERPC_EXCP_FP_VXSNAN) {
566 /* Operation on signaling NaN */
567 env->fpscr |= 1 << FPSCR_VXSNAN;
569 if (op & POWERPC_EXCP_FP_VXSOFT) {
570 /* Software-defined condition */
571 env->fpscr |= 1 << FPSCR_VXSOFT;
573 switch (op & ~(POWERPC_EXCP_FP_VXSOFT | POWERPC_EXCP_FP_VXSNAN)) {
574 case POWERPC_EXCP_FP_VXISI:
575 /* Magnitude subtraction of infinities */
576 env->fpscr |= 1 << FPSCR_VXISI;
578 case POWERPC_EXCP_FP_VXIDI:
579 /* Division of infinity by infinity */
580 env->fpscr |= 1 << FPSCR_VXIDI;
582 case POWERPC_EXCP_FP_VXZDZ:
583 /* Division of zero by zero */
584 env->fpscr |= 1 << FPSCR_VXZDZ;
586 case POWERPC_EXCP_FP_VXIMZ:
587 /* Multiplication of zero by infinity */
588 env->fpscr |= 1 << FPSCR_VXIMZ;
590 case POWERPC_EXCP_FP_VXVC:
591 /* Ordered comparison of NaN */
592 env->fpscr |= 1 << FPSCR_VXVC;
593 env->fpscr &= ~(0xF << FPSCR_FPCC);
594 env->fpscr |= 0x11 << FPSCR_FPCC;
595 /* We must update the target FPR before raising the exception */
597 env->exception_index = POWERPC_EXCP_PROGRAM;
598 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
599 /* Update the floating-point enabled exception summary */
600 env->fpscr |= 1 << FPSCR_FEX;
601 /* Exception is differed */
605 case POWERPC_EXCP_FP_VXSQRT:
606 /* Square root of a negative number */
607 env->fpscr |= 1 << FPSCR_VXSQRT;
609 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
611 /* Set the result to quiet NaN */
613 env->fpscr &= ~(0xF << FPSCR_FPCC);
614 env->fpscr |= 0x11 << FPSCR_FPCC;
617 case POWERPC_EXCP_FP_VXCVI:
618 /* Invalid conversion */
619 env->fpscr |= 1 << FPSCR_VXCVI;
620 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
622 /* Set the result to quiet NaN */
624 env->fpscr &= ~(0xF << FPSCR_FPCC);
625 env->fpscr |= 0x11 << FPSCR_FPCC;
629 /* Update the floating-point invalid operation summary */
630 env->fpscr |= 1 << FPSCR_VX;
631 /* Update the floating-point exception summary */
632 env->fpscr |= 1 << FPSCR_FX;
634 /* Update the floating-point enabled exception summary */
635 env->fpscr |= 1 << FPSCR_FEX;
636 if (msr_fe0 != 0 || msr_fe1 != 0)
637 do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op);
641 static always_inline void float_zero_divide_excp (void)
648 env->fpscr |= 1 << FPSCR_ZX;
649 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
650 /* Update the floating-point exception summary */
651 env->fpscr |= 1 << FPSCR_FX;
653 /* Update the floating-point enabled exception summary */
654 env->fpscr |= 1 << FPSCR_FEX;
655 if (msr_fe0 != 0 || msr_fe1 != 0) {
656 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
657 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
660 /* Set the result to infinity */
663 u0.u = ((u0.u ^ u1.u) & 0x8000000000000000ULL);
664 u0.u |= 0x7FFULL << 52;
669 static always_inline void float_overflow_excp (void)
671 env->fpscr |= 1 << FPSCR_OX;
672 /* Update the floating-point exception summary */
673 env->fpscr |= 1 << FPSCR_FX;
675 /* XXX: should adjust the result */
676 /* Update the floating-point enabled exception summary */
677 env->fpscr |= 1 << FPSCR_FEX;
678 /* We must update the target FPR before raising the exception */
679 env->exception_index = POWERPC_EXCP_PROGRAM;
680 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
682 env->fpscr |= 1 << FPSCR_XX;
683 env->fpscr |= 1 << FPSCR_FI;
687 static always_inline void float_underflow_excp (void)
689 env->fpscr |= 1 << FPSCR_UX;
690 /* Update the floating-point exception summary */
691 env->fpscr |= 1 << FPSCR_FX;
693 /* XXX: should adjust the result */
694 /* Update the floating-point enabled exception summary */
695 env->fpscr |= 1 << FPSCR_FEX;
696 /* We must update the target FPR before raising the exception */
697 env->exception_index = POWERPC_EXCP_PROGRAM;
698 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
702 static always_inline void float_inexact_excp (void)
704 env->fpscr |= 1 << FPSCR_XX;
705 /* Update the floating-point exception summary */
706 env->fpscr |= 1 << FPSCR_FX;
708 /* Update the floating-point enabled exception summary */
709 env->fpscr |= 1 << FPSCR_FEX;
710 /* We must update the target FPR before raising the exception */
711 env->exception_index = POWERPC_EXCP_PROGRAM;
712 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
716 static always_inline void fpscr_set_rounding_mode (void)
720 /* Set rounding mode */
723 /* Best approximation (round to nearest) */
724 rnd_type = float_round_nearest_even;
727 /* Smaller magnitude (round toward zero) */
728 rnd_type = float_round_to_zero;
731 /* Round toward +infinite */
732 rnd_type = float_round_up;
736 /* Round toward -infinite */
737 rnd_type = float_round_down;
740 set_float_rounding_mode(rnd_type, &env->fp_status);
743 void do_fpscr_setbit (int bit)
747 prev = (env->fpscr >> bit) & 1;
748 env->fpscr |= 1 << bit;
752 env->fpscr |= 1 << FPSCR_FX;
756 env->fpscr |= 1 << FPSCR_FX;
761 env->fpscr |= 1 << FPSCR_FX;
766 env->fpscr |= 1 << FPSCR_FX;
771 env->fpscr |= 1 << FPSCR_FX;
784 env->fpscr |= 1 << FPSCR_VX;
785 env->fpscr |= 1 << FPSCR_FX;
792 env->error_code = POWERPC_EXCP_FP;
794 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
796 env->error_code |= POWERPC_EXCP_FP_VXISI;
798 env->error_code |= POWERPC_EXCP_FP_VXIDI;
800 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
802 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
804 env->error_code |= POWERPC_EXCP_FP_VXVC;
806 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
808 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
810 env->error_code |= POWERPC_EXCP_FP_VXCVI;
817 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
824 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
831 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
838 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
844 fpscr_set_rounding_mode();
849 /* Update the floating-point enabled exception summary */
850 env->fpscr |= 1 << FPSCR_FEX;
851 /* We have to update Rc1 before raising the exception */
852 env->exception_index = POWERPC_EXCP_PROGRAM;
858 #if defined(WORDS_BIGENDIAN)
865 void do_store_fpscr (uint32_t mask)
868 * We use only the 32 LSB of the incoming fpr
883 new |= prev & 0x90000000;
884 for (i = 0; i < 7; i++) {
885 if (mask & (1 << i)) {
886 env->fpscr &= ~(0xF << (4 * i));
887 env->fpscr |= new & (0xF << (4 * i));
890 /* Update VX and FEX */
892 env->fpscr |= 1 << FPSCR_VX;
893 if ((fpscr_ex & fpscr_eex) != 0) {
894 env->fpscr |= 1 << FPSCR_FEX;
895 env->exception_index = POWERPC_EXCP_PROGRAM;
896 /* XXX: we should compute it properly */
897 env->error_code = POWERPC_EXCP_FP;
899 fpscr_set_rounding_mode();
904 #ifdef CONFIG_SOFTFLOAT
905 void do_float_check_status (void)
907 if (env->exception_index == POWERPC_EXCP_PROGRAM &&
908 (env->error_code & POWERPC_EXCP_FP)) {
909 /* Differred floating-point exception after target FPR update */
910 if (msr_fe0 != 0 || msr_fe1 != 0)
911 do_raise_exception_err(env->exception_index, env->error_code);
912 } else if (env->fp_status.float_exception_flags & float_flag_overflow) {
913 float_overflow_excp();
914 } else if (env->fp_status.float_exception_flags & float_flag_underflow) {
915 float_underflow_excp();
916 } else if (env->fp_status.float_exception_flags & float_flag_inexact) {
917 float_inexact_excp();
922 #if USE_PRECISE_EMULATION
925 if (unlikely(float64_is_signaling_nan(FT0) ||
926 float64_is_signaling_nan(FT1))) {
928 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
929 } else if (likely(isfinite(FT0) || isfinite(FT1) ||
930 fpisneg(FT0) == fpisneg(FT1))) {
931 FT0 = float64_add(FT0, FT1, &env->fp_status);
933 /* Magnitude subtraction of infinities */
934 fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
940 if (unlikely(float64_is_signaling_nan(FT0) ||
941 float64_is_signaling_nan(FT1))) {
942 /* sNaN subtraction */
943 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
944 } else if (likely(isfinite(FT0) || isfinite(FT1) ||
945 fpisneg(FT0) != fpisneg(FT1))) {
946 FT0 = float64_sub(FT0, FT1, &env->fp_status);
948 /* Magnitude subtraction of infinities */
949 fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
955 if (unlikely(float64_is_signaling_nan(FT0) ||
956 float64_is_signaling_nan(FT1))) {
957 /* sNaN multiplication */
958 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
959 } else if (unlikely((isinfinity(FT0) && iszero(FT1)) ||
960 (iszero(FT0) && isinfinity(FT1)))) {
961 /* Multiplication of zero by infinity */
962 fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
964 FT0 = float64_mul(FT0, FT1, &env->fp_status);
970 if (unlikely(float64_is_signaling_nan(FT0) ||
971 float64_is_signaling_nan(FT1))) {
973 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
974 } else if (unlikely(isinfinity(FT0) && isinfinity(FT1))) {
975 /* Division of infinity by infinity */
976 fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI);
977 } else if (unlikely(iszero(FT1))) {
979 /* Division of zero by zero */
980 fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ);
982 /* Division by zero */
983 float_zero_divide_excp();
986 FT0 = float64_div(FT0, FT1, &env->fp_status);
989 #endif /* USE_PRECISE_EMULATION */
998 if (unlikely(float64_is_signaling_nan(FT0))) {
999 /* sNaN conversion */
1000 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1001 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1002 /* qNan / infinity conversion */
1003 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1005 p.i = float64_to_int32(FT0, &env->fp_status);
1006 #if USE_PRECISE_EMULATION
1007 /* XXX: higher bits are not supposed to be significant.
1008 * to make tests easier, return the same as a real PowerPC 750
1010 p.i |= 0xFFF80000ULL << 32;
1016 void do_fctiwz (void)
1023 if (unlikely(float64_is_signaling_nan(FT0))) {
1024 /* sNaN conversion */
1025 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1026 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1027 /* qNan / infinity conversion */
1028 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1030 p.i = float64_to_int32_round_to_zero(FT0, &env->fp_status);
1031 #if USE_PRECISE_EMULATION
1032 /* XXX: higher bits are not supposed to be significant.
1033 * to make tests easier, return the same as a real PowerPC 750
1035 p.i |= 0xFFF80000ULL << 32;
1041 #if defined(TARGET_PPC64)
1042 void do_fcfid (void)
1050 FT0 = int64_to_float64(p.i, &env->fp_status);
1053 void do_fctid (void)
1060 if (unlikely(float64_is_signaling_nan(FT0))) {
1061 /* sNaN conversion */
1062 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1063 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1064 /* qNan / infinity conversion */
1065 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1067 p.i = float64_to_int64(FT0, &env->fp_status);
1072 void do_fctidz (void)
1079 if (unlikely(float64_is_signaling_nan(FT0))) {
1080 /* sNaN conversion */
1081 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1082 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1083 /* qNan / infinity conversion */
1084 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1086 p.i = float64_to_int64_round_to_zero(FT0, &env->fp_status);
1093 static always_inline void do_fri (int rounding_mode)
1095 if (unlikely(float64_is_signaling_nan(FT0))) {
1097 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1098 } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1099 /* qNan / infinity round */
1100 fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1102 set_float_rounding_mode(rounding_mode, &env->fp_status);
1103 FT0 = float64_round_to_int(FT0, &env->fp_status);
1104 /* Restore rounding mode from FPSCR */
1105 fpscr_set_rounding_mode();
1111 do_fri(float_round_nearest_even);
1116 do_fri(float_round_to_zero);
1121 do_fri(float_round_up);
1126 do_fri(float_round_down);
1129 #if USE_PRECISE_EMULATION
1130 void do_fmadd (void)
1132 if (unlikely(float64_is_signaling_nan(FT0) ||
1133 float64_is_signaling_nan(FT1) ||
1134 float64_is_signaling_nan(FT2))) {
1135 /* sNaN operation */
1136 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1139 /* This is the way the PowerPC specification defines it */
1140 float128 ft0_128, ft1_128;
1142 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1143 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1144 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1145 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1146 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1147 FT0 = float128_to_float64(ft0_128, &env->fp_status);
1149 /* This is OK on x86 hosts */
1150 FT0 = (FT0 * FT1) + FT2;
1155 void do_fmsub (void)
1157 if (unlikely(float64_is_signaling_nan(FT0) ||
1158 float64_is_signaling_nan(FT1) ||
1159 float64_is_signaling_nan(FT2))) {
1160 /* sNaN operation */
1161 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1164 /* This is the way the PowerPC specification defines it */
1165 float128 ft0_128, ft1_128;
1167 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1168 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1169 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1170 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1171 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1172 FT0 = float128_to_float64(ft0_128, &env->fp_status);
1174 /* This is OK on x86 hosts */
1175 FT0 = (FT0 * FT1) - FT2;
1179 #endif /* USE_PRECISE_EMULATION */
1181 void do_fnmadd (void)
1183 if (unlikely(float64_is_signaling_nan(FT0) ||
1184 float64_is_signaling_nan(FT1) ||
1185 float64_is_signaling_nan(FT2))) {
1186 /* sNaN operation */
1187 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1189 #if USE_PRECISE_EMULATION
1191 /* This is the way the PowerPC specification defines it */
1192 float128 ft0_128, ft1_128;
1194 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1195 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1196 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1197 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1198 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1199 FT0 = float128_to_float64(ft0_128, &env->fp_status);
1201 /* This is OK on x86 hosts */
1202 FT0 = (FT0 * FT1) + FT2;
1205 FT0 = float64_mul(FT0, FT1, &env->fp_status);
1206 FT0 = float64_add(FT0, FT2, &env->fp_status);
1208 if (likely(!isnan(FT0)))
1209 FT0 = float64_chs(FT0);
1213 void do_fnmsub (void)
1215 if (unlikely(float64_is_signaling_nan(FT0) ||
1216 float64_is_signaling_nan(FT1) ||
1217 float64_is_signaling_nan(FT2))) {
1218 /* sNaN operation */
1219 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1221 #if USE_PRECISE_EMULATION
1223 /* This is the way the PowerPC specification defines it */
1224 float128 ft0_128, ft1_128;
1226 ft0_128 = float64_to_float128(FT0, &env->fp_status);
1227 ft1_128 = float64_to_float128(FT1, &env->fp_status);
1228 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1229 ft1_128 = float64_to_float128(FT2, &env->fp_status);
1230 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1231 FT0 = float128_to_float64(ft0_128, &env->fp_status);
1233 /* This is OK on x86 hosts */
1234 FT0 = (FT0 * FT1) - FT2;
1237 FT0 = float64_mul(FT0, FT1, &env->fp_status);
1238 FT0 = float64_sub(FT0, FT2, &env->fp_status);
1240 if (likely(!isnan(FT0)))
1241 FT0 = float64_chs(FT0);
1245 #if USE_PRECISE_EMULATION
1248 if (unlikely(float64_is_signaling_nan(FT0))) {
1249 /* sNaN square root */
1250 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1252 FT0 = float64_to_float32(FT0, &env->fp_status);
1255 #endif /* USE_PRECISE_EMULATION */
1257 void do_fsqrt (void)
1259 if (unlikely(float64_is_signaling_nan(FT0))) {
1260 /* sNaN square root */
1261 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1262 } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) {
1263 /* Square root of a negative nonzero number */
1264 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1266 FT0 = float64_sqrt(FT0, &env->fp_status);
1277 if (unlikely(float64_is_signaling_nan(FT0))) {
1278 /* sNaN reciprocal */
1279 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1280 } else if (unlikely(iszero(FT0))) {
1281 /* Zero reciprocal */
1282 float_zero_divide_excp();
1283 } else if (likely(isnormal(FT0))) {
1284 FT0 = float64_div(1.0, FT0, &env->fp_status);
1287 if (p.i == 0x8000000000000000ULL) {
1288 p.i = 0xFFF0000000000000ULL;
1289 } else if (p.i == 0x0000000000000000ULL) {
1290 p.i = 0x7FF0000000000000ULL;
1291 } else if (isnan(FT0)) {
1292 p.i = 0x7FF8000000000000ULL;
1293 } else if (fpisneg(FT0)) {
1294 p.i = 0x8000000000000000ULL;
1296 p.i = 0x0000000000000000ULL;
1309 if (unlikely(float64_is_signaling_nan(FT0))) {
1310 /* sNaN reciprocal */
1311 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1312 } else if (unlikely(iszero(FT0))) {
1313 /* Zero reciprocal */
1314 float_zero_divide_excp();
1315 } else if (likely(isnormal(FT0))) {
1316 #if USE_PRECISE_EMULATION
1317 FT0 = float64_div(1.0, FT0, &env->fp_status);
1318 FT0 = float64_to_float32(FT0, &env->fp_status);
1320 FT0 = float32_div(1.0, FT0, &env->fp_status);
1324 if (p.i == 0x8000000000000000ULL) {
1325 p.i = 0xFFF0000000000000ULL;
1326 } else if (p.i == 0x0000000000000000ULL) {
1327 p.i = 0x7FF0000000000000ULL;
1328 } else if (isnan(FT0)) {
1329 p.i = 0x7FF8000000000000ULL;
1330 } else if (fpisneg(FT0)) {
1331 p.i = 0x8000000000000000ULL;
1333 p.i = 0x0000000000000000ULL;
1339 void do_frsqrte (void)
1346 if (unlikely(float64_is_signaling_nan(FT0))) {
1347 /* sNaN reciprocal square root */
1348 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1349 } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) {
1350 /* Reciprocal square root of a negative nonzero number */
1351 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1352 } else if (likely(isnormal(FT0))) {
1353 FT0 = float64_sqrt(FT0, &env->fp_status);
1354 FT0 = float32_div(1.0, FT0, &env->fp_status);
1357 if (p.i == 0x8000000000000000ULL) {
1358 p.i = 0xFFF0000000000000ULL;
1359 } else if (p.i == 0x0000000000000000ULL) {
1360 p.i = 0x7FF0000000000000ULL;
1361 } else if (isnan(FT0)) {
1362 p.i |= 0x000FFFFFFFFFFFFFULL;
1363 } else if (fpisneg(FT0)) {
1364 p.i = 0x7FF8000000000000ULL;
1366 p.i = 0x0000000000000000ULL;
1374 if (!fpisneg(FT0) || iszero(FT0))
1380 void do_fcmpu (void)
1382 if (unlikely(float64_is_signaling_nan(FT0) ||
1383 float64_is_signaling_nan(FT1))) {
1384 /* sNaN comparison */
1385 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1387 if (float64_lt(FT0, FT1, &env->fp_status)) {
1389 } else if (!float64_le(FT0, FT1, &env->fp_status)) {
1395 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1396 env->fpscr |= T0 << FPSCR_FPRF;
1399 void do_fcmpo (void)
1401 if (unlikely(float64_is_nan(FT0) ||
1402 float64_is_nan(FT1))) {
1403 if (float64_is_signaling_nan(FT0) ||
1404 float64_is_signaling_nan(FT1)) {
1405 /* sNaN comparison */
1406 fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN |
1407 POWERPC_EXCP_FP_VXVC);
1409 /* qNaN comparison */
1410 fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC);
1413 if (float64_lt(FT0, FT1, &env->fp_status)) {
1415 } else if (!float64_le(FT0, FT1, &env->fp_status)) {
1421 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1422 env->fpscr |= T0 << FPSCR_FPRF;
1425 #if !defined (CONFIG_USER_ONLY)
1426 void cpu_dump_rfi (target_ulong RA, target_ulong msr);
1428 void do_store_msr (void)
1430 T0 = hreg_store_msr(env, T0);
1432 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1433 do_raise_exception(T0);
1437 static always_inline void __do_rfi (target_ulong nip, target_ulong msr,
1438 target_ulong msrm, int keep_msrh)
1440 #if defined(TARGET_PPC64)
1441 if (msr & (1ULL << MSR_SF)) {
1442 nip = (uint64_t)nip;
1443 msr &= (uint64_t)msrm;
1445 nip = (uint32_t)nip;
1446 msr = (uint32_t)(msr & msrm);
1448 msr |= env->msr & ~((uint64_t)0xFFFFFFFF);
1451 nip = (uint32_t)nip;
1452 msr &= (uint32_t)msrm;
1454 /* XXX: beware: this is false if VLE is supported */
1455 env->nip = nip & ~((target_ulong)0x00000003);
1456 hreg_store_msr(env, msr);
1457 #if defined (DEBUG_OP)
1458 cpu_dump_rfi(env->nip, env->msr);
1460 /* No need to raise an exception here,
1461 * as rfi is always the last insn of a TB
1463 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1468 __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1469 ~((target_ulong)0xFFFF0000), 1);
1472 #if defined(TARGET_PPC64)
1475 __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1476 ~((target_ulong)0xFFFF0000), 0);
1479 #if defined(TARGET_PPC64H)
1480 void do_hrfid (void)
1482 __do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1],
1483 ~((target_ulong)0xFFFF0000), 0);
1488 void do_tw (int flags)
1490 if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) ||
1491 ((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) ||
1492 ((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) ||
1493 ((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) ||
1494 ((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01))))) {
1495 do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1499 #if defined(TARGET_PPC64)
1500 void do_td (int flags)
1502 if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) ||
1503 ((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) ||
1504 ((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) ||
1505 ((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) ||
1506 ((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01)))))
1507 do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1511 /*****************************************************************************/
1512 /* PowerPC 601 specific instructions (POWER bridge) */
1513 void do_POWER_abso (void)
1515 if ((int32_t)T0 == INT32_MIN) {
1518 } else if ((int32_t)T0 < 0) {
1527 void do_POWER_clcs (void)
1531 /* Instruction cache line size */
1532 T0 = env->icache_line_size;
1535 /* Data cache line size */
1536 T0 = env->dcache_line_size;
1539 /* Minimum cache line size */
1540 T0 = env->icache_line_size < env->dcache_line_size ?
1541 env->icache_line_size : env->dcache_line_size;
1544 /* Maximum cache line size */
1545 T0 = env->icache_line_size > env->dcache_line_size ?
1546 env->icache_line_size : env->dcache_line_size;
1554 void do_POWER_div (void)
1558 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1560 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
1561 env->spr[SPR_MQ] = 0;
1563 tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1564 env->spr[SPR_MQ] = tmp % T1;
1565 T0 = tmp / (int32_t)T1;
1569 void do_POWER_divo (void)
1573 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1575 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
1576 env->spr[SPR_MQ] = 0;
1579 tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1580 env->spr[SPR_MQ] = tmp % T1;
1582 if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) {
1592 void do_POWER_divs (void)
1594 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1596 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
1597 env->spr[SPR_MQ] = 0;
1599 env->spr[SPR_MQ] = T0 % T1;
1600 T0 = (int32_t)T0 / (int32_t)T1;
1604 void do_POWER_divso (void)
1606 if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1608 T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
1609 env->spr[SPR_MQ] = 0;
1612 T0 = (int32_t)T0 / (int32_t)T1;
1613 env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1;
1619 void do_POWER_dozo (void)
1621 if ((int32_t)T1 > (int32_t)T0) {
1624 if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) &
1625 ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) {
1637 void do_POWER_maskg (void)
1641 if ((uint32_t)T0 == (uint32_t)(T1 + 1)) {
1644 ret = (UINT32_MAX >> ((uint32_t)T0)) ^
1645 ((UINT32_MAX >> ((uint32_t)T1)) >> 1);
1646 if ((uint32_t)T0 > (uint32_t)T1)
1652 void do_POWER_mulo (void)
1656 tmp = (uint64_t)T0 * (uint64_t)T1;
1657 env->spr[SPR_MQ] = tmp >> 32;
1659 if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) {
1667 #if !defined (CONFIG_USER_ONLY)
1668 void do_POWER_rac (void)
1673 /* We don't have to generate many instances of this instruction,
1674 * as rac is supervisor only.
1676 /* XXX: FIX THIS: Pretend we have no BAT */
1677 nb_BATs = env->nb_BATs;
1679 if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT) == 0)
1681 env->nb_BATs = nb_BATs;
1684 void do_POWER_rfsvc (void)
1686 __do_rfi(env->lr, env->ctr, 0x0000FFFF, 0);
1689 void do_store_hid0_601 (void)
1693 hid0 = env->spr[SPR_HID0];
1694 if ((T0 ^ hid0) & 0x00000008) {
1695 /* Change current endianness */
1696 env->hflags &= ~(1 << MSR_LE);
1697 env->hflags_nmsr &= ~(1 << MSR_LE);
1698 env->hflags_nmsr |= (1 << MSR_LE) & (((T0 >> 3) & 1) << MSR_LE);
1699 env->hflags |= env->hflags_nmsr;
1700 if (loglevel != 0) {
1701 fprintf(logfile, "%s: set endianness to %c => " ADDRX "\n",
1702 __func__, T0 & 0x8 ? 'l' : 'b', env->hflags);
1705 env->spr[SPR_HID0] = T0;
1709 /*****************************************************************************/
1710 /* 602 specific instructions */
1711 /* mfrom is the most crazy instruction ever seen, imho ! */
1712 /* Real implementation uses a ROM table. Do the same */
1713 #define USE_MFROM_ROM_TABLE
1714 void do_op_602_mfrom (void)
1716 if (likely(T0 < 602)) {
1717 #if defined(USE_MFROM_ROM_TABLE)
1718 #include "mfrom_table.c"
1719 T0 = mfrom_ROM_table[T0];
1722 /* Extremly decomposed:
1724 * T0 = 256 * log10(10 + 1.0) + 0.5
1727 d = float64_div(d, 256, &env->fp_status);
1729 d = exp10(d); // XXX: use float emulation function
1730 d = float64_add(d, 1.0, &env->fp_status);
1731 d = log10(d); // XXX: use float emulation function
1732 d = float64_mul(d, 256, &env->fp_status);
1733 d = float64_add(d, 0.5, &env->fp_status);
1734 T0 = float64_round_to_int(d, &env->fp_status);
1741 /*****************************************************************************/
1742 /* Embedded PowerPC specific helpers */
1743 void do_405_check_sat (void)
1745 if (!likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
1746 !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
1747 /* Saturate result */
1756 /* XXX: to be improved to check access rights when in user-mode */
1757 void do_load_dcr (void)
1761 if (unlikely(env->dcr_env == NULL)) {
1762 if (loglevel != 0) {
1763 fprintf(logfile, "No DCR environment\n");
1765 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1766 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1767 } else if (unlikely(ppc_dcr_read(env->dcr_env, T0, &val) != 0)) {
1768 if (loglevel != 0) {
1769 fprintf(logfile, "DCR read error %d %03x\n", (int)T0, (int)T0);
1771 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1772 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1778 void do_store_dcr (void)
1780 if (unlikely(env->dcr_env == NULL)) {
1781 if (loglevel != 0) {
1782 fprintf(logfile, "No DCR environment\n");
1784 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1785 POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1786 } else if (unlikely(ppc_dcr_write(env->dcr_env, T0, T1) != 0)) {
1787 if (loglevel != 0) {
1788 fprintf(logfile, "DCR write error %d %03x\n", (int)T0, (int)T0);
1790 do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1791 POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1795 #if !defined(CONFIG_USER_ONLY)
1796 void do_40x_rfci (void)
1798 __do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3],
1799 ~((target_ulong)0xFFFF0000), 0);
1804 __do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1,
1805 ~((target_ulong)0x3FFF0000), 0);
1810 __do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1,
1811 ~((target_ulong)0x3FFF0000), 0);
1814 void do_rfmci (void)
1816 __do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1,
1817 ~((target_ulong)0x3FFF0000), 0);
1820 void do_load_403_pb (int num)
1825 void do_store_403_pb (int num)
1827 if (likely(env->pb[num] != T0)) {
1829 /* Should be optimized */
1836 void do_440_dlmzb (void)
1842 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1843 if ((T0 & mask) == 0)
1847 for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1848 if ((T1 & mask) == 0)
1856 /* SPE extension helpers */
1857 /* Use a table to make this quicker */
1858 static uint8_t hbrev[16] = {
1859 0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
1860 0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
1863 static always_inline uint8_t byte_reverse (uint8_t val)
1865 return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
1868 static always_inline uint32_t word_reverse (uint32_t val)
1870 return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
1871 (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
1874 #define MASKBITS 16 // Random value - to be fixed (implementation dependant)
1875 void do_brinc (void)
1877 uint32_t a, b, d, mask;
1879 mask = UINT32_MAX >> (32 - MASKBITS);
1882 d = word_reverse(1 + word_reverse(a | ~b));
1883 T0 = (T0 & ~mask) | (d & b);
1886 #define DO_SPE_OP2(name) \
1887 void do_ev##name (void) \
1889 T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) | \
1890 (uint64_t)_do_e##name(T0_64, T1_64); \
1893 #define DO_SPE_OP1(name) \
1894 void do_ev##name (void) \
1896 T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) | \
1897 (uint64_t)_do_e##name(T0_64); \
1900 /* Fixed-point vector arithmetic */
1901 static always_inline uint32_t _do_eabs (uint32_t val)
1903 if ((val & 0x80000000) && val != 0x80000000)
1909 static always_inline uint32_t _do_eaddw (uint32_t op1, uint32_t op2)
1914 static always_inline int _do_ecntlsw (uint32_t val)
1916 if (val & 0x80000000)
1922 static always_inline int _do_ecntlzw (uint32_t val)
1927 static always_inline uint32_t _do_eneg (uint32_t val)
1929 if (val != 0x80000000)
1935 static always_inline uint32_t _do_erlw (uint32_t op1, uint32_t op2)
1937 return rotl32(op1, op2);
1940 static always_inline uint32_t _do_erndw (uint32_t val)
1942 return (val + 0x000080000000) & 0xFFFF0000;
1945 static always_inline uint32_t _do_eslw (uint32_t op1, uint32_t op2)
1947 /* No error here: 6 bits are used */
1948 return op1 << (op2 & 0x3F);
1951 static always_inline int32_t _do_esrws (int32_t op1, uint32_t op2)
1953 /* No error here: 6 bits are used */
1954 return op1 >> (op2 & 0x3F);
1957 static always_inline uint32_t _do_esrwu (uint32_t op1, uint32_t op2)
1959 /* No error here: 6 bits are used */
1960 return op1 >> (op2 & 0x3F);
1963 static always_inline uint32_t _do_esubfw (uint32_t op1, uint32_t op2)
1991 /* evsel is a little bit more complicated... */
1992 static always_inline uint32_t _do_esel (uint32_t op1, uint32_t op2, int n)
2000 void do_evsel (void)
2002 T0_64 = ((uint64_t)_do_esel(T0_64 >> 32, T1_64 >> 32, T0 >> 3) << 32) |
2003 (uint64_t)_do_esel(T0_64, T1_64, (T0 >> 2) & 1);
2006 /* Fixed-point vector comparisons */
2007 #define DO_SPE_CMP(name) \
2008 void do_ev##name (void) \
2010 T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32, \
2011 T1_64 >> 32) << 32, \
2012 _do_e##name(T0_64, T1_64)); \
2015 static always_inline uint32_t _do_evcmp_merge (int t0, int t1)
2017 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
2019 static always_inline int _do_ecmpeq (uint32_t op1, uint32_t op2)
2021 return op1 == op2 ? 1 : 0;
2024 static always_inline int _do_ecmpgts (int32_t op1, int32_t op2)
2026 return op1 > op2 ? 1 : 0;
2029 static always_inline int _do_ecmpgtu (uint32_t op1, uint32_t op2)
2031 return op1 > op2 ? 1 : 0;
2034 static always_inline int _do_ecmplts (int32_t op1, int32_t op2)
2036 return op1 < op2 ? 1 : 0;
2039 static always_inline int _do_ecmpltu (uint32_t op1, uint32_t op2)
2041 return op1 < op2 ? 1 : 0;
2055 /* Single precision floating-point conversions from/to integer */
2056 static always_inline uint32_t _do_efscfsi (int32_t val)
2063 u.f = int32_to_float32(val, &env->spe_status);
2068 static always_inline uint32_t _do_efscfui (uint32_t val)
2075 u.f = uint32_to_float32(val, &env->spe_status);
2080 static always_inline int32_t _do_efsctsi (uint32_t val)
2088 /* NaN are not treated the same way IEEE 754 does */
2089 if (unlikely(isnan(u.f)))
2092 return float32_to_int32(u.f, &env->spe_status);
2095 static always_inline uint32_t _do_efsctui (uint32_t val)
2103 /* NaN are not treated the same way IEEE 754 does */
2104 if (unlikely(isnan(u.f)))
2107 return float32_to_uint32(u.f, &env->spe_status);
2110 static always_inline int32_t _do_efsctsiz (uint32_t val)
2118 /* NaN are not treated the same way IEEE 754 does */
2119 if (unlikely(isnan(u.f)))
2122 return float32_to_int32_round_to_zero(u.f, &env->spe_status);
2125 static always_inline uint32_t _do_efsctuiz (uint32_t val)
2133 /* NaN are not treated the same way IEEE 754 does */
2134 if (unlikely(isnan(u.f)))
2137 return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
2140 void do_efscfsi (void)
2142 T0_64 = _do_efscfsi(T0_64);
2145 void do_efscfui (void)
2147 T0_64 = _do_efscfui(T0_64);
2150 void do_efsctsi (void)
2152 T0_64 = _do_efsctsi(T0_64);
2155 void do_efsctui (void)
2157 T0_64 = _do_efsctui(T0_64);
2160 void do_efsctsiz (void)
2162 T0_64 = _do_efsctsiz(T0_64);
2165 void do_efsctuiz (void)
2167 T0_64 = _do_efsctuiz(T0_64);
2170 /* Single precision floating-point conversion to/from fractional */
2171 static always_inline uint32_t _do_efscfsf (uint32_t val)
2179 u.f = int32_to_float32(val, &env->spe_status);
2180 tmp = int64_to_float32(1ULL << 32, &env->spe_status);
2181 u.f = float32_div(u.f, tmp, &env->spe_status);
2186 static always_inline uint32_t _do_efscfuf (uint32_t val)
2194 u.f = uint32_to_float32(val, &env->spe_status);
2195 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2196 u.f = float32_div(u.f, tmp, &env->spe_status);
2201 static always_inline int32_t _do_efsctsf (uint32_t val)
2210 /* NaN are not treated the same way IEEE 754 does */
2211 if (unlikely(isnan(u.f)))
2213 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2214 u.f = float32_mul(u.f, tmp, &env->spe_status);
2216 return float32_to_int32(u.f, &env->spe_status);
2219 static always_inline uint32_t _do_efsctuf (uint32_t val)
2228 /* NaN are not treated the same way IEEE 754 does */
2229 if (unlikely(isnan(u.f)))
2231 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2232 u.f = float32_mul(u.f, tmp, &env->spe_status);
2234 return float32_to_uint32(u.f, &env->spe_status);
2237 static always_inline int32_t _do_efsctsfz (uint32_t val)
2246 /* NaN are not treated the same way IEEE 754 does */
2247 if (unlikely(isnan(u.f)))
2249 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2250 u.f = float32_mul(u.f, tmp, &env->spe_status);
2252 return float32_to_int32_round_to_zero(u.f, &env->spe_status);
2255 static always_inline uint32_t _do_efsctufz (uint32_t val)
2264 /* NaN are not treated the same way IEEE 754 does */
2265 if (unlikely(isnan(u.f)))
2267 tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2268 u.f = float32_mul(u.f, tmp, &env->spe_status);
2270 return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
2273 void do_efscfsf (void)
2275 T0_64 = _do_efscfsf(T0_64);
2278 void do_efscfuf (void)
2280 T0_64 = _do_efscfuf(T0_64);
2283 void do_efsctsf (void)
2285 T0_64 = _do_efsctsf(T0_64);
2288 void do_efsctuf (void)
2290 T0_64 = _do_efsctuf(T0_64);
2293 void do_efsctsfz (void)
2295 T0_64 = _do_efsctsfz(T0_64);
2298 void do_efsctufz (void)
2300 T0_64 = _do_efsctufz(T0_64);
2303 /* Double precision floating point helpers */
2304 static always_inline int _do_efdcmplt (uint64_t op1, uint64_t op2)
2306 /* XXX: TODO: test special values (NaN, infinites, ...) */
2307 return _do_efdtstlt(op1, op2);
2310 static always_inline int _do_efdcmpgt (uint64_t op1, uint64_t op2)
2312 /* XXX: TODO: test special values (NaN, infinites, ...) */
2313 return _do_efdtstgt(op1, op2);
2316 static always_inline int _do_efdcmpeq (uint64_t op1, uint64_t op2)
2318 /* XXX: TODO: test special values (NaN, infinites, ...) */
2319 return _do_efdtsteq(op1, op2);
2322 void do_efdcmplt (void)
2324 T0 = _do_efdcmplt(T0_64, T1_64);
2327 void do_efdcmpgt (void)
2329 T0 = _do_efdcmpgt(T0_64, T1_64);
2332 void do_efdcmpeq (void)
2334 T0 = _do_efdcmpeq(T0_64, T1_64);
2337 /* Double precision floating-point conversion to/from integer */
2338 static always_inline uint64_t _do_efdcfsi (int64_t val)
2345 u.f = int64_to_float64(val, &env->spe_status);
2350 static always_inline uint64_t _do_efdcfui (uint64_t val)
2357 u.f = uint64_to_float64(val, &env->spe_status);
2362 static always_inline int64_t _do_efdctsi (uint64_t val)
2370 /* NaN are not treated the same way IEEE 754 does */
2371 if (unlikely(isnan(u.f)))
2374 return float64_to_int64(u.f, &env->spe_status);
2377 static always_inline uint64_t _do_efdctui (uint64_t val)
2385 /* NaN are not treated the same way IEEE 754 does */
2386 if (unlikely(isnan(u.f)))
2389 return float64_to_uint64(u.f, &env->spe_status);
2392 static always_inline int64_t _do_efdctsiz (uint64_t val)
2400 /* NaN are not treated the same way IEEE 754 does */
2401 if (unlikely(isnan(u.f)))
2404 return float64_to_int64_round_to_zero(u.f, &env->spe_status);
2407 static always_inline uint64_t _do_efdctuiz (uint64_t val)
2415 /* NaN are not treated the same way IEEE 754 does */
2416 if (unlikely(isnan(u.f)))
2419 return float64_to_uint64_round_to_zero(u.f, &env->spe_status);
2422 void do_efdcfsi (void)
2424 T0_64 = _do_efdcfsi(T0_64);
2427 void do_efdcfui (void)
2429 T0_64 = _do_efdcfui(T0_64);
2432 void do_efdctsi (void)
2434 T0_64 = _do_efdctsi(T0_64);
2437 void do_efdctui (void)
2439 T0_64 = _do_efdctui(T0_64);
2442 void do_efdctsiz (void)
2444 T0_64 = _do_efdctsiz(T0_64);
2447 void do_efdctuiz (void)
2449 T0_64 = _do_efdctuiz(T0_64);
2452 /* Double precision floating-point conversion to/from fractional */
2453 static always_inline uint64_t _do_efdcfsf (int64_t val)
2461 u.f = int32_to_float64(val, &env->spe_status);
2462 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
2463 u.f = float64_div(u.f, tmp, &env->spe_status);
2468 static always_inline uint64_t _do_efdcfuf (uint64_t val)
2476 u.f = uint32_to_float64(val, &env->spe_status);
2477 tmp = int64_to_float64(1ULL << 32, &env->spe_status);
2478 u.f = float64_div(u.f, tmp, &env->spe_status);
2483 static always_inline int64_t _do_efdctsf (uint64_t val)
2492 /* NaN are not treated the same way IEEE 754 does */
2493 if (unlikely(isnan(u.f)))
2495 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2496 u.f = float64_mul(u.f, tmp, &env->spe_status);
2498 return float64_to_int32(u.f, &env->spe_status);
2501 static always_inline uint64_t _do_efdctuf (uint64_t val)
2510 /* NaN are not treated the same way IEEE 754 does */
2511 if (unlikely(isnan(u.f)))
2513 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2514 u.f = float64_mul(u.f, tmp, &env->spe_status);
2516 return float64_to_uint32(u.f, &env->spe_status);
2519 static always_inline int64_t _do_efdctsfz (uint64_t val)
2528 /* NaN are not treated the same way IEEE 754 does */
2529 if (unlikely(isnan(u.f)))
2531 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2532 u.f = float64_mul(u.f, tmp, &env->spe_status);
2534 return float64_to_int32_round_to_zero(u.f, &env->spe_status);
2537 static always_inline uint64_t _do_efdctufz (uint64_t val)
2546 /* NaN are not treated the same way IEEE 754 does */
2547 if (unlikely(isnan(u.f)))
2549 tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2550 u.f = float64_mul(u.f, tmp, &env->spe_status);
2552 return float64_to_uint32_round_to_zero(u.f, &env->spe_status);
2555 void do_efdcfsf (void)
2557 T0_64 = _do_efdcfsf(T0_64);
2560 void do_efdcfuf (void)
2562 T0_64 = _do_efdcfuf(T0_64);
2565 void do_efdctsf (void)
2567 T0_64 = _do_efdctsf(T0_64);
2570 void do_efdctuf (void)
2572 T0_64 = _do_efdctuf(T0_64);
2575 void do_efdctsfz (void)
2577 T0_64 = _do_efdctsfz(T0_64);
2580 void do_efdctufz (void)
2582 T0_64 = _do_efdctufz(T0_64);
2585 /* Floating point conversion between single and double precision */
2586 static always_inline uint32_t _do_efscfd (uint64_t val)
2598 u2.f = float64_to_float32(u1.f, &env->spe_status);
2603 static always_inline uint64_t _do_efdcfs (uint32_t val)
2615 u2.f = float32_to_float64(u1.f, &env->spe_status);
2620 void do_efscfd (void)
2622 T0_64 = _do_efscfd(T0_64);
2625 void do_efdcfs (void)
2627 T0_64 = _do_efdcfs(T0_64);
2630 /* Single precision fixed-point vector arithmetic */
2646 /* Single-precision floating-point comparisons */
2647 static always_inline int _do_efscmplt (uint32_t op1, uint32_t op2)
2649 /* XXX: TODO: test special values (NaN, infinites, ...) */
2650 return _do_efststlt(op1, op2);
2653 static always_inline int _do_efscmpgt (uint32_t op1, uint32_t op2)
2655 /* XXX: TODO: test special values (NaN, infinites, ...) */
2656 return _do_efststgt(op1, op2);
2659 static always_inline int _do_efscmpeq (uint32_t op1, uint32_t op2)
2661 /* XXX: TODO: test special values (NaN, infinites, ...) */
2662 return _do_efststeq(op1, op2);
2665 void do_efscmplt (void)
2667 T0 = _do_efscmplt(T0_64, T1_64);
2670 void do_efscmpgt (void)
2672 T0 = _do_efscmpgt(T0_64, T1_64);
2675 void do_efscmpeq (void)
2677 T0 = _do_efscmpeq(T0_64, T1_64);
2680 /* Single-precision floating-point vector comparisons */
2682 DO_SPE_CMP(fscmplt);
2684 DO_SPE_CMP(fscmpgt);
2686 DO_SPE_CMP(fscmpeq);
2688 DO_SPE_CMP(fststlt);
2690 DO_SPE_CMP(fststgt);
2692 DO_SPE_CMP(fststeq);
2694 /* Single-precision floating-point vector conversions */
2708 DO_SPE_OP1(fsctsiz);
2710 DO_SPE_OP1(fsctuiz);
2716 /*****************************************************************************/
2717 /* Softmmu support */
2718 #if !defined (CONFIG_USER_ONLY)
2720 #define MMUSUFFIX _mmu
2722 # define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL))
2724 # define GETPC() (__builtin_return_address(0))
2728 #include "softmmu_template.h"
2731 #include "softmmu_template.h"
2734 #include "softmmu_template.h"
2737 #include "softmmu_template.h"
2739 /* try to fill the TLB and return an exception if error. If retaddr is
2740 NULL, it means that the function was called in C code (i.e. not
2741 from generated code or from helper.c) */
2742 /* XXX: fix it to restore all registers */
2743 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
2745 TranslationBlock *tb;
2746 CPUState *saved_env;
2750 /* XXX: hack to restore env in all cases, even if not called from
2753 env = cpu_single_env;
2754 ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
2755 if (unlikely(ret != 0)) {
2756 if (likely(retaddr)) {
2757 /* now we have a real cpu fault */
2758 pc = (unsigned long)retaddr;
2759 tb = tb_find_pc(pc);
2761 /* the PC is inside the translated code. It means that we have
2762 a virtual CPU fault */
2763 cpu_restore_state(tb, env, pc, NULL);
2766 do_raise_exception_err(env->exception_index, env->error_code);
2771 /* Software driven TLBs management */
2772 /* PowerPC 602/603 software TLB load instructions helpers */
2773 void do_load_6xx_tlb (int is_code)
2775 target_ulong RPN, CMP, EPN;
2778 RPN = env->spr[SPR_RPA];
2780 CMP = env->spr[SPR_ICMP];
2781 EPN = env->spr[SPR_IMISS];
2783 CMP = env->spr[SPR_DCMP];
2784 EPN = env->spr[SPR_DMISS];
2786 way = (env->spr[SPR_SRR1] >> 17) & 1;
2787 #if defined (DEBUG_SOFTWARE_TLB)
2788 if (loglevel != 0) {
2789 fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n",
2790 __func__, (unsigned long)T0, (unsigned long)EPN,
2791 (unsigned long)CMP, (unsigned long)RPN, way);
2794 /* Store this TLB */
2795 ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
2796 way, is_code, CMP, RPN);
2799 void do_load_74xx_tlb (int is_code)
2801 target_ulong RPN, CMP, EPN;
2804 RPN = env->spr[SPR_PTELO];
2805 CMP = env->spr[SPR_PTEHI];
2806 EPN = env->spr[SPR_TLBMISS] & ~0x3;
2807 way = env->spr[SPR_TLBMISS] & 0x3;
2808 #if defined (DEBUG_SOFTWARE_TLB)
2809 if (loglevel != 0) {
2810 fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n",
2811 __func__, (unsigned long)T0, (unsigned long)EPN,
2812 (unsigned long)CMP, (unsigned long)RPN, way);
2815 /* Store this TLB */
2816 ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
2817 way, is_code, CMP, RPN);
2820 static always_inline target_ulong booke_tlb_to_page_size (int size)
2822 return 1024 << (2 * size);
2825 static always_inline int booke_page_size_to_tlb (target_ulong page_size)
2829 switch (page_size) {
2863 #if defined (TARGET_PPC64)
2864 case 0x000100000000ULL:
2867 case 0x000400000000ULL:
2870 case 0x001000000000ULL:
2873 case 0x004000000000ULL:
2876 case 0x010000000000ULL:
2888 /* Helpers for 4xx TLB management */
2889 void do_4xx_tlbre_lo (void)
2895 tlb = &env->tlb[T0].tlbe;
2897 if (tlb->prot & PAGE_VALID)
2899 size = booke_page_size_to_tlb(tlb->size);
2900 if (size < 0 || size > 0x7)
2903 env->spr[SPR_40x_PID] = tlb->PID;
2906 void do_4xx_tlbre_hi (void)
2911 tlb = &env->tlb[T0].tlbe;
2913 if (tlb->prot & PAGE_EXEC)
2915 if (tlb->prot & PAGE_WRITE)
2919 void do_4xx_tlbwe_hi (void)
2922 target_ulong page, end;
2924 #if defined (DEBUG_SOFTWARE_TLB)
2925 if (loglevel != 0) {
2926 fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, T0, T1);
2930 tlb = &env->tlb[T0].tlbe;
2931 /* Invalidate previous TLB (if it's valid) */
2932 if (tlb->prot & PAGE_VALID) {
2933 end = tlb->EPN + tlb->size;
2934 #if defined (DEBUG_SOFTWARE_TLB)
2935 if (loglevel != 0) {
2936 fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX
2937 " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2940 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2941 tlb_flush_page(env, page);
2943 tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7);
2944 /* We cannot handle TLB size < TARGET_PAGE_SIZE.
2945 * If this ever occurs, one should use the ppcemb target instead
2946 * of the ppc or ppc64 one
2948 if ((T1 & 0x40) && tlb->size < TARGET_PAGE_SIZE) {
2949 cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u "
2950 "are not supported (%d)\n",
2951 tlb->size, TARGET_PAGE_SIZE, (int)((T1 >> 7) & 0x7));
2953 tlb->EPN = T1 & ~(tlb->size - 1);
2955 tlb->prot |= PAGE_VALID;
2957 tlb->prot &= ~PAGE_VALID;
2959 /* XXX: TO BE FIXED */
2960 cpu_abort(env, "Little-endian TLB entries are not supported by now\n");
2962 tlb->PID = env->spr[SPR_40x_PID]; /* PID */
2963 tlb->attr = T1 & 0xFF;
2964 #if defined (DEBUG_SOFTWARE_TLB)
2965 if (loglevel != 0) {
2966 fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
2967 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
2968 (int)T0, tlb->RPN, tlb->EPN, tlb->size,
2969 tlb->prot & PAGE_READ ? 'r' : '-',
2970 tlb->prot & PAGE_WRITE ? 'w' : '-',
2971 tlb->prot & PAGE_EXEC ? 'x' : '-',
2972 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
2975 /* Invalidate new TLB (if valid) */
2976 if (tlb->prot & PAGE_VALID) {
2977 end = tlb->EPN + tlb->size;
2978 #if defined (DEBUG_SOFTWARE_TLB)
2979 if (loglevel != 0) {
2980 fprintf(logfile, "%s: invalidate TLB %d start " ADDRX
2981 " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2984 for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2985 tlb_flush_page(env, page);
2989 void do_4xx_tlbwe_lo (void)
2993 #if defined (DEBUG_SOFTWARE_TLB)
2994 if (loglevel != 0) {
2995 fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, T0, T1);
2999 tlb = &env->tlb[T0].tlbe;
3000 tlb->RPN = T1 & 0xFFFFFC00;
3001 tlb->prot = PAGE_READ;
3003 tlb->prot |= PAGE_EXEC;
3005 tlb->prot |= PAGE_WRITE;
3006 #if defined (DEBUG_SOFTWARE_TLB)
3007 if (loglevel != 0) {
3008 fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
3009 " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
3010 (int)T0, tlb->RPN, tlb->EPN, tlb->size,
3011 tlb->prot & PAGE_READ ? 'r' : '-',
3012 tlb->prot & PAGE_WRITE ? 'w' : '-',
3013 tlb->prot & PAGE_EXEC ? 'x' : '-',
3014 tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
3019 /* PowerPC 440 TLB management */
3020 void do_440_tlbwe (int word)
3023 target_ulong EPN, RPN, size;
3026 #if defined (DEBUG_SOFTWARE_TLB)
3027 if (loglevel != 0) {
3028 fprintf(logfile, "%s word %d T0 " REGX " T1 " REGX "\n",
3029 __func__, word, T0, T1);
3034 tlb = &env->tlb[T0].tlbe;
3037 /* Just here to please gcc */
3039 EPN = T1 & 0xFFFFFC00;
3040 if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN)
3043 size = booke_tlb_to_page_size((T1 >> 4) & 0xF);
3044 if ((tlb->prot & PAGE_VALID) && tlb->size < size)
3048 tlb->attr |= (T1 >> 8) & 1;
3050 tlb->prot |= PAGE_VALID;
3052 if (tlb->prot & PAGE_VALID) {
3053 tlb->prot &= ~PAGE_VALID;
3057 tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF;
3062 RPN = T1 & 0xFFFFFC0F;
3063 if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN)
3068 tlb->attr = (tlb->attr & 0x1) | (T1 & 0x0000FF00);
3069 tlb->prot = tlb->prot & PAGE_VALID;
3071 tlb->prot |= PAGE_READ << 4;
3073 tlb->prot |= PAGE_WRITE << 4;
3075 tlb->prot |= PAGE_EXEC << 4;
3077 tlb->prot |= PAGE_READ;
3079 tlb->prot |= PAGE_WRITE;
3081 tlb->prot |= PAGE_EXEC;
3086 void do_440_tlbre (int word)
3092 tlb = &env->tlb[T0].tlbe;
3095 /* Just here to please gcc */
3098 size = booke_page_size_to_tlb(tlb->size);
3099 if (size < 0 || size > 0xF)
3102 if (tlb->attr & 0x1)
3104 if (tlb->prot & PAGE_VALID)
3106 env->spr[SPR_440_MMUCR] &= ~0x000000FF;
3107 env->spr[SPR_440_MMUCR] |= tlb->PID;
3113 T0 = tlb->attr & ~0x1;
3114 if (tlb->prot & (PAGE_READ << 4))
3116 if (tlb->prot & (PAGE_WRITE << 4))
3118 if (tlb->prot & (PAGE_EXEC << 4))
3120 if (tlb->prot & PAGE_READ)
3122 if (tlb->prot & PAGE_WRITE)
3124 if (tlb->prot & PAGE_EXEC)
3129 #endif /* !CONFIG_USER_ONLY */