4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
29 #include <sys/types.h>
33 #include "monitor/monitor.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/bitops.h"
36 #include "qemu/bitmap.h"
37 #include "sysemu/arch_init.h"
38 #include "audio/audio.h"
39 #include "hw/i386/pc.h"
40 #include "hw/pci/pci.h"
41 #include "hw/audio/audio.h"
42 #include "sysemu/kvm.h"
43 #include "migration/migration.h"
44 #include "hw/i386/smbios.h"
45 #include "exec/address-spaces.h"
46 #include "hw/audio/pcspk.h"
47 #include "migration/page_cache.h"
48 #include "qemu/config-file.h"
49 #include "qemu/error-report.h"
50 #include "qmp-commands.h"
52 #include "exec/cpu-all.h"
53 #include "exec/ram_addr.h"
54 #include "hw/acpi/acpi.h"
55 #include "qemu/host-utils.h"
56 #include "qemu/rcu_queue.h"
58 #ifdef DEBUG_ARCH_INIT
59 #define DPRINTF(fmt, ...) \
60 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
62 #define DPRINTF(fmt, ...) \
67 int graphic_width = 1024;
68 int graphic_height = 768;
69 int graphic_depth = 8;
71 int graphic_width = 800;
72 int graphic_height = 600;
73 int graphic_depth = 32;
77 #if defined(TARGET_ALPHA)
78 #define QEMU_ARCH QEMU_ARCH_ALPHA
79 #elif defined(TARGET_ARM)
80 #define QEMU_ARCH QEMU_ARCH_ARM
81 #elif defined(TARGET_CRIS)
82 #define QEMU_ARCH QEMU_ARCH_CRIS
83 #elif defined(TARGET_I386)
84 #define QEMU_ARCH QEMU_ARCH_I386
85 #elif defined(TARGET_M68K)
86 #define QEMU_ARCH QEMU_ARCH_M68K
87 #elif defined(TARGET_LM32)
88 #define QEMU_ARCH QEMU_ARCH_LM32
89 #elif defined(TARGET_MICROBLAZE)
90 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
91 #elif defined(TARGET_MIPS)
92 #define QEMU_ARCH QEMU_ARCH_MIPS
93 #elif defined(TARGET_MOXIE)
94 #define QEMU_ARCH QEMU_ARCH_MOXIE
95 #elif defined(TARGET_OPENRISC)
96 #define QEMU_ARCH QEMU_ARCH_OPENRISC
97 #elif defined(TARGET_PPC)
98 #define QEMU_ARCH QEMU_ARCH_PPC
99 #elif defined(TARGET_S390X)
100 #define QEMU_ARCH QEMU_ARCH_S390X
101 #elif defined(TARGET_SH4)
102 #define QEMU_ARCH QEMU_ARCH_SH4
103 #elif defined(TARGET_SPARC)
104 #define QEMU_ARCH QEMU_ARCH_SPARC
105 #elif defined(TARGET_XTENSA)
106 #define QEMU_ARCH QEMU_ARCH_XTENSA
107 #elif defined(TARGET_UNICORE32)
108 #define QEMU_ARCH QEMU_ARCH_UNICORE32
109 #elif defined(TARGET_TRICORE)
110 #define QEMU_ARCH QEMU_ARCH_TRICORE
113 const uint32_t arch_type = QEMU_ARCH;
114 static bool mig_throttle_on;
115 static int dirty_rate_high_cnt;
116 static void check_guest_throttling(void);
118 static uint64_t bitmap_sync_count;
120 /***********************************************************/
121 /* ram save/restore */
123 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
124 #define RAM_SAVE_FLAG_COMPRESS 0x02
125 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
126 #define RAM_SAVE_FLAG_PAGE 0x08
127 #define RAM_SAVE_FLAG_EOS 0x10
128 #define RAM_SAVE_FLAG_CONTINUE 0x20
129 #define RAM_SAVE_FLAG_XBZRLE 0x40
130 /* 0x80 is reserved in migration.h start with 0x100 next */
131 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
133 static struct defconfig_file {
134 const char *filename;
135 /* Indicates it is an user config file (disabled by -no-user-config) */
137 } default_config_files[] = {
138 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
139 { CONFIG_QEMU_CONFDIR "/target-" TARGET_NAME ".conf", true },
140 { NULL }, /* end of list */
143 static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE];
145 int qemu_read_default_config_files(bool userconfig)
148 struct defconfig_file *f;
150 for (f = default_config_files; f->filename; f++) {
151 if (!userconfig && f->userconfig) {
154 ret = qemu_read_config_file(f->filename);
155 if (ret < 0 && ret != -ENOENT) {
163 static inline bool is_zero_range(uint8_t *p, uint64_t size)
165 return buffer_find_nonzero_offset(p, size) == size;
168 /* struct contains XBZRLE cache and a static page
169 used by the compression */
171 /* buffer used for XBZRLE encoding */
172 uint8_t *encoded_buf;
173 /* buffer for storing page content */
174 uint8_t *current_buf;
175 /* Cache for XBZRLE, Protected by lock. */
180 /* buffer used for XBZRLE decoding */
181 static uint8_t *xbzrle_decoded_buf;
183 static void XBZRLE_cache_lock(void)
185 if (migrate_use_xbzrle())
186 qemu_mutex_lock(&XBZRLE.lock);
189 static void XBZRLE_cache_unlock(void)
191 if (migrate_use_xbzrle())
192 qemu_mutex_unlock(&XBZRLE.lock);
196 * called from qmp_migrate_set_cache_size in main thread, possibly while
197 * a migration is in progress.
198 * A running migration maybe using the cache and might finish during this
199 * call, hence changes to the cache are protected by XBZRLE.lock().
201 int64_t xbzrle_cache_resize(int64_t new_size)
203 PageCache *new_cache;
206 if (new_size < TARGET_PAGE_SIZE) {
212 if (XBZRLE.cache != NULL) {
213 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
216 new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
219 error_report("Error creating cache");
224 cache_fini(XBZRLE.cache);
225 XBZRLE.cache = new_cache;
229 ret = pow2floor(new_size);
231 XBZRLE_cache_unlock();
235 /* accounting for migration statistics */
236 typedef struct AccountingInfo {
238 uint64_t skipped_pages;
241 uint64_t xbzrle_bytes;
242 uint64_t xbzrle_pages;
243 uint64_t xbzrle_cache_miss;
244 double xbzrle_cache_miss_rate;
245 uint64_t xbzrle_overflows;
248 static AccountingInfo acct_info;
250 static void acct_clear(void)
252 memset(&acct_info, 0, sizeof(acct_info));
255 uint64_t dup_mig_bytes_transferred(void)
257 return acct_info.dup_pages * TARGET_PAGE_SIZE;
260 uint64_t dup_mig_pages_transferred(void)
262 return acct_info.dup_pages;
265 uint64_t skipped_mig_bytes_transferred(void)
267 return acct_info.skipped_pages * TARGET_PAGE_SIZE;
270 uint64_t skipped_mig_pages_transferred(void)
272 return acct_info.skipped_pages;
275 uint64_t norm_mig_bytes_transferred(void)
277 return acct_info.norm_pages * TARGET_PAGE_SIZE;
280 uint64_t norm_mig_pages_transferred(void)
282 return acct_info.norm_pages;
285 uint64_t xbzrle_mig_bytes_transferred(void)
287 return acct_info.xbzrle_bytes;
290 uint64_t xbzrle_mig_pages_transferred(void)
292 return acct_info.xbzrle_pages;
295 uint64_t xbzrle_mig_pages_cache_miss(void)
297 return acct_info.xbzrle_cache_miss;
300 double xbzrle_mig_cache_miss_rate(void)
302 return acct_info.xbzrle_cache_miss_rate;
305 uint64_t xbzrle_mig_pages_overflow(void)
307 return acct_info.xbzrle_overflows;
310 /* This is the last block that we have visited serching for dirty pages
312 static RAMBlock *last_seen_block;
313 /* This is the last block from where we have sent data */
314 static RAMBlock *last_sent_block;
315 static ram_addr_t last_offset;
316 static unsigned long *migration_bitmap;
317 static uint64_t migration_dirty_pages;
318 static uint32_t last_version;
319 static bool ram_bulk_stage;
321 struct CompressParam {
330 typedef struct CompressParam CompressParam;
332 struct DecompressParam {
340 typedef struct DecompressParam DecompressParam;
342 static CompressParam *comp_param;
343 static QemuThread *compress_threads;
344 /* comp_done_cond is used to wake up the migration thread when
345 * one of the compression threads has finished the compression.
346 * comp_done_lock is used to co-work with comp_done_cond.
348 static QemuMutex *comp_done_lock;
349 static QemuCond *comp_done_cond;
350 /* The empty QEMUFileOps will be used by file in CompressParam */
351 static const QEMUFileOps empty_ops = { };
352 static bool quit_comp_thread;
353 static bool quit_decomp_thread;
354 static DecompressParam *decomp_param;
355 static QemuThread *decompress_threads;
356 static uint8_t *compressed_data_buf;
358 static void *do_data_compress(void *opaque)
360 while (!quit_comp_thread) {
369 static inline void terminate_compression_threads(void)
371 quit_comp_thread = true;
376 void migrate_compress_threads_join(void)
380 if (!migrate_use_compression()) {
383 terminate_compression_threads();
384 thread_count = migrate_compress_threads();
385 for (i = 0; i < thread_count; i++) {
386 qemu_thread_join(compress_threads + i);
387 qemu_fclose(comp_param[i].file);
388 qemu_mutex_destroy(&comp_param[i].mutex);
389 qemu_cond_destroy(&comp_param[i].cond);
391 qemu_mutex_destroy(comp_done_lock);
392 qemu_cond_destroy(comp_done_cond);
393 g_free(compress_threads);
395 g_free(comp_done_cond);
396 g_free(comp_done_lock);
397 compress_threads = NULL;
399 comp_done_cond = NULL;
400 comp_done_lock = NULL;
403 void migrate_compress_threads_create(void)
407 if (!migrate_use_compression()) {
410 quit_comp_thread = false;
411 thread_count = migrate_compress_threads();
412 compress_threads = g_new0(QemuThread, thread_count);
413 comp_param = g_new0(CompressParam, thread_count);
414 comp_done_cond = g_new0(QemuCond, 1);
415 comp_done_lock = g_new0(QemuMutex, 1);
416 qemu_cond_init(comp_done_cond);
417 qemu_mutex_init(comp_done_lock);
418 for (i = 0; i < thread_count; i++) {
419 /* com_param[i].file is just used as a dummy buffer to save data, set
422 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
423 qemu_mutex_init(&comp_param[i].mutex);
424 qemu_cond_init(&comp_param[i].cond);
425 qemu_thread_create(compress_threads + i, "compress",
426 do_data_compress, comp_param + i,
427 QEMU_THREAD_JOINABLE);
432 * save_page_header: Write page header to wire
434 * If this is the 1st block, it also writes the block identification
436 * Returns: Number of bytes written
438 * @f: QEMUFile where to send the data
439 * @block: block that contains the page we want to send
440 * @offset: offset inside the block for the page
441 * in the lower bits, it contains flags
443 static size_t save_page_header(QEMUFile *f, RAMBlock *block, ram_addr_t offset)
447 qemu_put_be64(f, offset);
450 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
451 qemu_put_byte(f, strlen(block->idstr));
452 qemu_put_buffer(f, (uint8_t *)block->idstr,
453 strlen(block->idstr));
454 size += 1 + strlen(block->idstr);
459 /* Update the xbzrle cache to reflect a page that's been sent as all 0.
460 * The important thing is that a stale (not-yet-0'd) page be replaced
462 * As a bonus, if the page wasn't in the cache it gets added so that
463 * when a small write is made into the 0'd page it gets XBZRLE sent
465 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
467 if (ram_bulk_stage || !migrate_use_xbzrle()) {
471 /* We don't care if this fails to allocate a new cache page
472 * as long as it updated an old one */
473 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE,
477 #define ENCODING_FLAG_XBZRLE 0x1
480 * save_xbzrle_page: compress and send current page
482 * Returns: 1 means that we wrote the page
483 * 0 means that page is identical to the one already sent
484 * -1 means that xbzrle would be longer than normal
486 * @f: QEMUFile where to send the data
489 * @block: block that contains the page we want to send
490 * @offset: offset inside the block for the page
491 * @last_stage: if we are at the completion stage
492 * @bytes_transferred: increase it with the number of transferred bytes
494 static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data,
495 ram_addr_t current_addr, RAMBlock *block,
496 ram_addr_t offset, bool last_stage,
497 uint64_t *bytes_transferred)
499 int encoded_len = 0, bytes_xbzrle;
500 uint8_t *prev_cached_page;
502 if (!cache_is_cached(XBZRLE.cache, current_addr, bitmap_sync_count)) {
503 acct_info.xbzrle_cache_miss++;
505 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
506 bitmap_sync_count) == -1) {
509 /* update *current_data when the page has been
510 inserted into cache */
511 *current_data = get_cached_data(XBZRLE.cache, current_addr);
517 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
519 /* save current buffer into memory */
520 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
522 /* XBZRLE encoding (if there is no overflow) */
523 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
524 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
526 if (encoded_len == 0) {
527 DPRINTF("Skipping unmodified page\n");
529 } else if (encoded_len == -1) {
530 DPRINTF("Overflow\n");
531 acct_info.xbzrle_overflows++;
532 /* update data in the cache */
534 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
535 *current_data = prev_cached_page;
540 /* we need to update the data in the cache, in order to get the same data */
542 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
545 /* Send XBZRLE based compressed page */
546 bytes_xbzrle = save_page_header(f, block, offset | RAM_SAVE_FLAG_XBZRLE);
547 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
548 qemu_put_be16(f, encoded_len);
549 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
550 bytes_xbzrle += encoded_len + 1 + 2;
551 acct_info.xbzrle_pages++;
552 acct_info.xbzrle_bytes += bytes_xbzrle;
553 *bytes_transferred += bytes_xbzrle;
559 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
562 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
563 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
564 uint64_t mr_size = TARGET_PAGE_ALIGN(memory_region_size(mr));
565 unsigned long size = base + (mr_size >> TARGET_PAGE_BITS);
569 if (ram_bulk_stage && nr > base) {
572 next = find_next_bit(migration_bitmap, size, nr);
576 clear_bit(next, migration_bitmap);
577 migration_dirty_pages--;
579 return (next - base) << TARGET_PAGE_BITS;
582 static inline bool migration_bitmap_set_dirty(ram_addr_t addr)
585 int nr = addr >> TARGET_PAGE_BITS;
587 ret = test_and_set_bit(nr, migration_bitmap);
590 migration_dirty_pages++;
595 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length)
598 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
600 /* start address is aligned at the start of a word? */
601 if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
603 int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
604 unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION];
606 for (k = page; k < page + nr; k++) {
608 unsigned long new_dirty;
609 new_dirty = ~migration_bitmap[k];
610 migration_bitmap[k] |= src[k];
612 migration_dirty_pages += ctpopl(new_dirty);
617 for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
618 if (cpu_physical_memory_get_dirty(start + addr,
620 DIRTY_MEMORY_MIGRATION)) {
621 cpu_physical_memory_reset_dirty(start + addr,
623 DIRTY_MEMORY_MIGRATION);
624 migration_bitmap_set_dirty(start + addr);
631 /* Fix me: there are too many global variables used in migration process. */
632 static int64_t start_time;
633 static int64_t bytes_xfer_prev;
634 static int64_t num_dirty_pages_period;
636 static void migration_bitmap_sync_init(void)
640 num_dirty_pages_period = 0;
643 /* Called with iothread lock held, to protect ram_list.dirty_memory[] */
644 static void migration_bitmap_sync(void)
647 uint64_t num_dirty_pages_init = migration_dirty_pages;
648 MigrationState *s = migrate_get_current();
650 int64_t bytes_xfer_now;
651 static uint64_t xbzrle_cache_miss_prev;
652 static uint64_t iterations_prev;
656 if (!bytes_xfer_prev) {
657 bytes_xfer_prev = ram_bytes_transferred();
661 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
664 trace_migration_bitmap_sync_start();
665 address_space_sync_dirty_bitmap(&address_space_memory);
668 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
669 migration_bitmap_sync_range(block->mr->ram_addr, block->used_length);
673 trace_migration_bitmap_sync_end(migration_dirty_pages
674 - num_dirty_pages_init);
675 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
676 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
678 /* more than 1 second = 1000 millisecons */
679 if (end_time > start_time + 1000) {
680 if (migrate_auto_converge()) {
681 /* The following detection logic can be refined later. For now:
682 Check to see if the dirtied bytes is 50% more than the approx.
683 amount of bytes that just got transferred since the last time we
684 were in this routine. If that happens >N times (for now N==4)
685 we turn on the throttle down logic */
686 bytes_xfer_now = ram_bytes_transferred();
687 if (s->dirty_pages_rate &&
688 (num_dirty_pages_period * TARGET_PAGE_SIZE >
689 (bytes_xfer_now - bytes_xfer_prev)/2) &&
690 (dirty_rate_high_cnt++ > 4)) {
691 trace_migration_throttle();
692 mig_throttle_on = true;
693 dirty_rate_high_cnt = 0;
695 bytes_xfer_prev = bytes_xfer_now;
697 mig_throttle_on = false;
699 if (migrate_use_xbzrle()) {
700 if (iterations_prev != 0) {
701 acct_info.xbzrle_cache_miss_rate =
702 (double)(acct_info.xbzrle_cache_miss -
703 xbzrle_cache_miss_prev) /
704 (acct_info.iterations - iterations_prev);
706 iterations_prev = acct_info.iterations;
707 xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss;
709 s->dirty_pages_rate = num_dirty_pages_period * 1000
710 / (end_time - start_time);
711 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
712 start_time = end_time;
713 num_dirty_pages_period = 0;
714 s->dirty_sync_count = bitmap_sync_count;
719 * ram_save_page: Send the given page to the stream
721 * Returns: Number of pages written.
723 * @f: QEMUFile where to send the data
724 * @block: block that contains the page we want to send
725 * @offset: offset inside the block for the page
726 * @last_stage: if we are at the completion stage
727 * @bytes_transferred: increase it with the number of transferred bytes
729 static int ram_save_page(QEMUFile *f, RAMBlock* block, ram_addr_t offset,
730 bool last_stage, uint64_t *bytes_transferred)
734 ram_addr_t current_addr;
735 MemoryRegion *mr = block->mr;
738 bool send_async = true;
740 p = memory_region_get_ram_ptr(mr) + offset;
742 /* In doubt sent page as normal */
744 ret = ram_control_save_page(f, block->offset,
745 offset, TARGET_PAGE_SIZE, &bytes_xmit);
747 *bytes_transferred += bytes_xmit;
753 current_addr = block->offset + offset;
755 if (block == last_sent_block) {
756 offset |= RAM_SAVE_FLAG_CONTINUE;
758 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
759 if (ret != RAM_SAVE_CONTROL_DELAYED) {
760 if (bytes_xmit > 0) {
761 acct_info.norm_pages++;
762 } else if (bytes_xmit == 0) {
763 acct_info.dup_pages++;
766 } else if (is_zero_range(p, TARGET_PAGE_SIZE)) {
767 acct_info.dup_pages++;
768 *bytes_transferred += save_page_header(f, block,
769 offset | RAM_SAVE_FLAG_COMPRESS);
771 *bytes_transferred += 1;
773 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
774 * page would be stale
776 xbzrle_cache_zero_page(current_addr);
777 } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
778 pages = save_xbzrle_page(f, &p, current_addr, block,
779 offset, last_stage, bytes_transferred);
781 /* Can't send this cached data async, since the cache page
782 * might get updated before it gets to the wire
788 /* XBZRLE overflow or normal page */
790 *bytes_transferred += save_page_header(f, block,
791 offset | RAM_SAVE_FLAG_PAGE);
793 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
795 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
797 *bytes_transferred += TARGET_PAGE_SIZE;
799 acct_info.norm_pages++;
802 XBZRLE_cache_unlock();
808 * ram_save_compressed_page: compress the given page and send it to the stream
810 * Returns: Number of pages written.
812 * @f: QEMUFile where to send the data
813 * @block: block that contains the page we want to send
814 * @offset: offset inside the block for the page
815 * @last_stage: if we are at the completion stage
816 * @bytes_transferred: increase it with the number of transferred bytes
818 static int ram_save_compressed_page(QEMUFile *f, RAMBlock *block,
819 ram_addr_t offset, bool last_stage,
820 uint64_t *bytes_transferred)
830 * ram_find_and_save_block: Finds a dirty page and sends it to f
832 * Called within an RCU critical section.
834 * Returns: The number of pages written
835 * 0 means no dirty pages
837 * @f: QEMUFile where to send the data
838 * @last_stage: if we are at the completion stage
839 * @bytes_transferred: increase it with the number of transferred bytes
842 static int ram_find_and_save_block(QEMUFile *f, bool last_stage,
843 uint64_t *bytes_transferred)
845 RAMBlock *block = last_seen_block;
846 ram_addr_t offset = last_offset;
847 bool complete_round = false;
852 block = QLIST_FIRST_RCU(&ram_list.blocks);
856 offset = migration_bitmap_find_and_reset_dirty(mr, offset);
857 if (complete_round && block == last_seen_block &&
858 offset >= last_offset) {
861 if (offset >= block->used_length) {
863 block = QLIST_NEXT_RCU(block, next);
865 block = QLIST_FIRST_RCU(&ram_list.blocks);
866 complete_round = true;
867 ram_bulk_stage = false;
870 if (migrate_use_compression()) {
871 pages = ram_save_compressed_page(f, block, offset, last_stage,
874 pages = ram_save_page(f, block, offset, last_stage,
878 /* if page is unmodified, continue to the next */
880 last_sent_block = block;
886 last_seen_block = block;
887 last_offset = offset;
892 static uint64_t bytes_transferred;
894 void acct_update_position(QEMUFile *f, size_t size, bool zero)
896 uint64_t pages = size / TARGET_PAGE_SIZE;
898 acct_info.dup_pages += pages;
900 acct_info.norm_pages += pages;
901 bytes_transferred += size;
902 qemu_update_position(f, size);
906 static ram_addr_t ram_save_remaining(void)
908 return migration_dirty_pages;
911 uint64_t ram_bytes_remaining(void)
913 return ram_save_remaining() * TARGET_PAGE_SIZE;
916 uint64_t ram_bytes_transferred(void)
918 return bytes_transferred;
921 uint64_t ram_bytes_total(void)
927 QLIST_FOREACH_RCU(block, &ram_list.blocks, next)
928 total += block->used_length;
933 void free_xbzrle_decoded_buf(void)
935 g_free(xbzrle_decoded_buf);
936 xbzrle_decoded_buf = NULL;
939 static void migration_end(void)
941 if (migration_bitmap) {
942 memory_global_dirty_log_stop();
943 g_free(migration_bitmap);
944 migration_bitmap = NULL;
949 cache_fini(XBZRLE.cache);
950 g_free(XBZRLE.encoded_buf);
951 g_free(XBZRLE.current_buf);
953 XBZRLE.encoded_buf = NULL;
954 XBZRLE.current_buf = NULL;
956 XBZRLE_cache_unlock();
959 static void ram_migration_cancel(void *opaque)
964 static void reset_ram_globals(void)
966 last_seen_block = NULL;
967 last_sent_block = NULL;
969 last_version = ram_list.version;
970 ram_bulk_stage = true;
973 #define MAX_WAIT 50 /* ms, half buffered_file limit */
976 /* Each of ram_save_setup, ram_save_iterate and ram_save_complete has
977 * long-running RCU critical section. When rcu-reclaims in the code
978 * start to become numerous it will be necessary to reduce the
979 * granularity of these critical sections.
982 static int ram_save_setup(QEMUFile *f, void *opaque)
985 int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */
987 mig_throttle_on = false;
988 dirty_rate_high_cnt = 0;
989 bitmap_sync_count = 0;
990 migration_bitmap_sync_init();
992 if (migrate_use_xbzrle()) {
994 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
998 XBZRLE_cache_unlock();
999 error_report("Error creating cache");
1002 XBZRLE_cache_unlock();
1004 /* We prefer not to abort if there is no memory */
1005 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
1006 if (!XBZRLE.encoded_buf) {
1007 error_report("Error allocating encoded_buf");
1011 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
1012 if (!XBZRLE.current_buf) {
1013 error_report("Error allocating current_buf");
1014 g_free(XBZRLE.encoded_buf);
1015 XBZRLE.encoded_buf = NULL;
1022 /* iothread lock needed for ram_list.dirty_memory[] */
1023 qemu_mutex_lock_iothread();
1024 qemu_mutex_lock_ramlist();
1026 bytes_transferred = 0;
1027 reset_ram_globals();
1029 ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS;
1030 migration_bitmap = bitmap_new(ram_bitmap_pages);
1031 bitmap_set(migration_bitmap, 0, ram_bitmap_pages);
1034 * Count the total number of pages used by ram blocks not including any
1035 * gaps due to alignment or unplugs.
1037 migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
1039 memory_global_dirty_log_start();
1040 migration_bitmap_sync();
1041 qemu_mutex_unlock_ramlist();
1042 qemu_mutex_unlock_iothread();
1044 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
1046 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1047 qemu_put_byte(f, strlen(block->idstr));
1048 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
1049 qemu_put_be64(f, block->used_length);
1054 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
1055 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
1057 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1062 static int ram_save_iterate(QEMUFile *f, void *opaque)
1070 if (ram_list.version != last_version) {
1071 reset_ram_globals();
1074 /* Read version before ram_list.blocks */
1077 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
1079 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1081 while ((ret = qemu_file_rate_limit(f)) == 0) {
1084 pages = ram_find_and_save_block(f, false, &bytes_transferred);
1085 /* no more pages to sent */
1089 pages_sent += pages;
1090 acct_info.iterations++;
1091 check_guest_throttling();
1092 /* we want to check in the 1st loop, just in case it was the 1st time
1093 and we had to sync the dirty bitmap.
1094 qemu_get_clock_ns() is a bit expensive, so we only check each some
1097 if ((i & 63) == 0) {
1098 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
1099 if (t1 > MAX_WAIT) {
1100 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
1110 * Must occur before EOS (or any QEMUFile operation)
1111 * because of RDMA protocol.
1113 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
1115 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1116 bytes_transferred += 8;
1118 ret = qemu_file_get_error(f);
1126 /* Called with iothread lock */
1127 static int ram_save_complete(QEMUFile *f, void *opaque)
1131 migration_bitmap_sync();
1133 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
1135 /* try transferring iterative blocks of memory */
1137 /* flush all remaining blocks regardless of rate limiting */
1141 pages = ram_find_and_save_block(f, true, &bytes_transferred);
1142 /* no more blocks to sent */
1148 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
1152 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1157 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
1159 uint64_t remaining_size;
1161 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
1163 if (remaining_size < max_size) {
1164 qemu_mutex_lock_iothread();
1166 migration_bitmap_sync();
1168 qemu_mutex_unlock_iothread();
1169 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
1171 return remaining_size;
1174 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
1176 unsigned int xh_len;
1179 if (!xbzrle_decoded_buf) {
1180 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
1183 /* extract RLE header */
1184 xh_flags = qemu_get_byte(f);
1185 xh_len = qemu_get_be16(f);
1187 if (xh_flags != ENCODING_FLAG_XBZRLE) {
1188 error_report("Failed to load XBZRLE page - wrong compression!");
1192 if (xh_len > TARGET_PAGE_SIZE) {
1193 error_report("Failed to load XBZRLE page - len overflow!");
1196 /* load data and decode */
1197 qemu_get_buffer(f, xbzrle_decoded_buf, xh_len);
1200 if (xbzrle_decode_buffer(xbzrle_decoded_buf, xh_len, host,
1201 TARGET_PAGE_SIZE) == -1) {
1202 error_report("Failed to load XBZRLE page - decode error!");
1209 /* Must be called from within a rcu critical section.
1210 * Returns a pointer from within the RCU-protected ram_list.
1212 static inline void *host_from_stream_offset(QEMUFile *f,
1216 static RAMBlock *block = NULL;
1220 if (flags & RAM_SAVE_FLAG_CONTINUE) {
1221 if (!block || block->max_length <= offset) {
1222 error_report("Ack, bad migration stream!");
1226 return memory_region_get_ram_ptr(block->mr) + offset;
1229 len = qemu_get_byte(f);
1230 qemu_get_buffer(f, (uint8_t *)id, len);
1233 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1234 if (!strncmp(id, block->idstr, sizeof(id)) &&
1235 block->max_length > offset) {
1236 return memory_region_get_ram_ptr(block->mr) + offset;
1240 error_report("Can't find block %s!", id);
1245 * If a page (or a whole RDMA chunk) has been
1246 * determined to be zero, then zap it.
1248 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
1250 if (ch != 0 || !is_zero_range(host, size)) {
1251 memset(host, ch, size);
1255 static void *do_data_decompress(void *opaque)
1257 while (!quit_decomp_thread) {
1264 void migrate_decompress_threads_create(void)
1266 int i, thread_count;
1268 thread_count = migrate_decompress_threads();
1269 decompress_threads = g_new0(QemuThread, thread_count);
1270 decomp_param = g_new0(DecompressParam, thread_count);
1271 compressed_data_buf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
1272 quit_decomp_thread = false;
1273 for (i = 0; i < thread_count; i++) {
1274 qemu_mutex_init(&decomp_param[i].mutex);
1275 qemu_cond_init(&decomp_param[i].cond);
1276 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
1277 qemu_thread_create(decompress_threads + i, "decompress",
1278 do_data_decompress, decomp_param + i,
1279 QEMU_THREAD_JOINABLE);
1283 void migrate_decompress_threads_join(void)
1285 int i, thread_count;
1287 quit_decomp_thread = true;
1288 thread_count = migrate_decompress_threads();
1289 for (i = 0; i < thread_count; i++) {
1290 qemu_thread_join(decompress_threads + i);
1291 qemu_mutex_destroy(&decomp_param[i].mutex);
1292 qemu_cond_destroy(&decomp_param[i].cond);
1293 g_free(decomp_param[i].compbuf);
1295 g_free(decompress_threads);
1296 g_free(decomp_param);
1297 g_free(compressed_data_buf);
1298 decompress_threads = NULL;
1299 decomp_param = NULL;
1300 compressed_data_buf = NULL;
1303 static void decompress_data_with_multi_threads(uint8_t *compbuf,
1304 void *host, int len)
1309 static int ram_load(QEMUFile *f, void *opaque, int version_id)
1311 int flags = 0, ret = 0;
1312 static uint64_t seq_iter;
1317 if (version_id != 4) {
1321 /* This RCU critical section can be very long running.
1322 * When RCU reclaims in the code start to become numerous,
1323 * it will be necessary to reduce the granularity of this
1327 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
1328 ram_addr_t addr, total_ram_bytes;
1332 addr = qemu_get_be64(f);
1333 flags = addr & ~TARGET_PAGE_MASK;
1334 addr &= TARGET_PAGE_MASK;
1336 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
1337 case RAM_SAVE_FLAG_MEM_SIZE:
1338 /* Synchronize RAM block list */
1339 total_ram_bytes = addr;
1340 while (!ret && total_ram_bytes) {
1346 len = qemu_get_byte(f);
1347 qemu_get_buffer(f, (uint8_t *)id, len);
1349 length = qemu_get_be64(f);
1351 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1352 if (!strncmp(id, block->idstr, sizeof(id))) {
1353 if (length != block->used_length) {
1354 Error *local_err = NULL;
1356 ret = qemu_ram_resize(block->offset, length, &local_err);
1358 error_report_err(local_err);
1366 error_report("Unknown ramblock \"%s\", cannot "
1367 "accept migration", id);
1371 total_ram_bytes -= length;
1374 case RAM_SAVE_FLAG_COMPRESS:
1375 host = host_from_stream_offset(f, addr, flags);
1377 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1381 ch = qemu_get_byte(f);
1382 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
1384 case RAM_SAVE_FLAG_PAGE:
1385 host = host_from_stream_offset(f, addr, flags);
1387 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1391 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
1393 case RAM_SAVE_FLAG_COMPRESS_PAGE:
1394 host = host_from_stream_offset(f, addr, flags);
1396 error_report("Invalid RAM offset " RAM_ADDR_FMT, addr);
1401 len = qemu_get_be32(f);
1402 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
1403 error_report("Invalid compressed data length: %d", len);
1407 qemu_get_buffer(f, compressed_data_buf, len);
1408 decompress_data_with_multi_threads(compressed_data_buf, host, len);
1410 case RAM_SAVE_FLAG_XBZRLE:
1411 host = host_from_stream_offset(f, addr, flags);
1413 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
1417 if (load_xbzrle(f, addr, host) < 0) {
1418 error_report("Failed to decompress XBZRLE page at "
1419 RAM_ADDR_FMT, addr);
1424 case RAM_SAVE_FLAG_EOS:
1428 if (flags & RAM_SAVE_FLAG_HOOK) {
1429 ram_control_load_hook(f, flags);
1431 error_report("Unknown combination of migration flags: %#x",
1437 ret = qemu_file_get_error(f);
1442 DPRINTF("Completed load of VM with exit code %d seq iteration "
1443 "%" PRIu64 "\n", ret, seq_iter);
1447 static SaveVMHandlers savevm_ram_handlers = {
1448 .save_live_setup = ram_save_setup,
1449 .save_live_iterate = ram_save_iterate,
1450 .save_live_complete = ram_save_complete,
1451 .save_live_pending = ram_save_pending,
1452 .load_state = ram_load,
1453 .cancel = ram_migration_cancel,
1456 void ram_mig_init(void)
1458 qemu_mutex_init(&XBZRLE.lock);
1459 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL);
1468 int (*init_isa) (ISABus *bus);
1469 int (*init_pci) (PCIBus *bus);
1473 static struct soundhw soundhw[9];
1474 static int soundhw_count;
1476 void isa_register_soundhw(const char *name, const char *descr,
1477 int (*init_isa)(ISABus *bus))
1479 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1480 soundhw[soundhw_count].name = name;
1481 soundhw[soundhw_count].descr = descr;
1482 soundhw[soundhw_count].isa = 1;
1483 soundhw[soundhw_count].init.init_isa = init_isa;
1487 void pci_register_soundhw(const char *name, const char *descr,
1488 int (*init_pci)(PCIBus *bus))
1490 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1491 soundhw[soundhw_count].name = name;
1492 soundhw[soundhw_count].descr = descr;
1493 soundhw[soundhw_count].isa = 0;
1494 soundhw[soundhw_count].init.init_pci = init_pci;
1498 void select_soundhw(const char *optarg)
1502 if (is_help_option(optarg)) {
1505 if (soundhw_count) {
1506 printf("Valid sound card names (comma separated):\n");
1507 for (c = soundhw; c->name; ++c) {
1508 printf ("%-11s %s\n", c->name, c->descr);
1510 printf("\n-soundhw all will enable all of the above\n");
1512 printf("Machine has no user-selectable audio hardware "
1513 "(it may or may not have always-present audio hardware).\n");
1515 exit(!is_help_option(optarg));
1523 if (!strcmp(optarg, "all")) {
1524 for (c = soundhw; c->name; ++c) {
1533 l = !e ? strlen(p) : (size_t) (e - p);
1535 for (c = soundhw; c->name; ++c) {
1536 if (!strncmp(c->name, p, l) && !c->name[l]) {
1544 error_report("Unknown sound card name (too big to show)");
1547 error_report("Unknown sound card name `%.*s'",
1552 p += l + (e != NULL);
1556 goto show_valid_cards;
1561 void audio_init(void)
1564 ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL);
1565 PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL);
1567 for (c = soundhw; c->name; ++c) {
1571 error_report("ISA bus not available for %s", c->name);
1574 c->init.init_isa(isa_bus);
1577 error_report("PCI bus not available for %s", c->name);
1580 c->init.init_pci(pci_bus);
1586 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1590 if (strlen(str) != 36) {
1594 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1595 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1596 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1605 void do_acpitable_option(const QemuOpts *opts)
1610 acpi_table_add(opts, &err);
1612 error_report("Wrong acpi table provided: %s",
1613 error_get_pretty(err));
1620 void do_smbios_option(QemuOpts *opts)
1623 smbios_entry_add(opts);
1627 void cpudef_init(void)
1629 #if defined(cpudef_setup)
1630 cpudef_setup(); /* parse cpu definitions in target config file */
1634 int kvm_available(void)
1643 int xen_available(void)
1653 TargetInfo *qmp_query_target(Error **errp)
1655 TargetInfo *info = g_malloc0(sizeof(*info));
1657 info->arch = g_strdup(TARGET_NAME);
1662 /* Stub function that's gets run on the vcpu when its brought out of the
1663 VM to run inside qemu via async_run_on_cpu()*/
1664 static void mig_sleep_cpu(void *opq)
1666 qemu_mutex_unlock_iothread();
1668 qemu_mutex_lock_iothread();
1671 /* To reduce the dirty rate explicitly disallow the VCPUs from spending
1672 much time in the VM. The migration thread will try to catchup.
1673 Workload will experience a performance drop.
1675 static void mig_throttle_guest_down(void)
1679 qemu_mutex_lock_iothread();
1681 async_run_on_cpu(cpu, mig_sleep_cpu, NULL);
1683 qemu_mutex_unlock_iothread();
1686 static void check_guest_throttling(void)
1691 if (!mig_throttle_on) {
1696 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1700 t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1702 /* If it has been more than 40 ms since the last time the guest
1703 * was throttled then do it again.
1705 if (40 < (t1-t0)/1000000) {
1706 mig_throttle_guest_down();