2 * Intel XScale PXA255/270 processor support.
4 * Copyright (c) 2006 Openedhand Ltd.
7 * This code is licenced under the GPL.
13 target_phys_addr_t io_base;
16 { 0x40100000, PXA2XX_PIC_FFUART },
17 { 0x40200000, PXA2XX_PIC_BTUART },
18 { 0x40700000, PXA2XX_PIC_STUART },
19 { 0x41600000, PXA25X_PIC_HWUART },
21 }, pxa270_serial[] = {
22 { 0x40100000, PXA2XX_PIC_FFUART },
23 { 0x40200000, PXA2XX_PIC_BTUART },
24 { 0x40700000, PXA2XX_PIC_STUART },
29 target_phys_addr_t io_base;
32 { 0x41000000, PXA2XX_PIC_SSP },
35 { 0x41000000, PXA2XX_PIC_SSP },
36 { 0x41400000, PXA25X_PIC_NSSP },
39 { 0x41000000, PXA2XX_PIC_SSP },
40 { 0x41400000, PXA25X_PIC_NSSP },
41 { 0x41500000, PXA26X_PIC_ASSP },
44 { 0x41000000, PXA2XX_PIC_SSP },
45 { 0x41700000, PXA27X_PIC_SSP2 },
46 { 0x41900000, PXA2XX_PIC_SSP3 },
50 #define PMCR 0x00 /* Power Manager Control register */
51 #define PSSR 0x04 /* Power Manager Sleep Status register */
52 #define PSPR 0x08 /* Power Manager Scratch-Pad register */
53 #define PWER 0x0c /* Power Manager Wake-Up Enable register */
54 #define PRER 0x10 /* Power Manager Rising-Edge Detect Enable register */
55 #define PFER 0x14 /* Power Manager Falling-Edge Detect Enable register */
56 #define PEDR 0x18 /* Power Manager Edge-Detect Status register */
57 #define PCFR 0x1c /* Power Manager General Configuration register */
58 #define PGSR0 0x20 /* Power Manager GPIO Sleep-State register 0 */
59 #define PGSR1 0x24 /* Power Manager GPIO Sleep-State register 1 */
60 #define PGSR2 0x28 /* Power Manager GPIO Sleep-State register 2 */
61 #define PGSR3 0x2c /* Power Manager GPIO Sleep-State register 3 */
62 #define RCSR 0x30 /* Reset Controller Status register */
63 #define PSLR 0x34 /* Power Manager Sleep Configuration register */
64 #define PTSR 0x38 /* Power Manager Standby Configuration register */
65 #define PVCR 0x40 /* Power Manager Voltage Change Control register */
66 #define PUCR 0x4c /* Power Manager USIM Card Control/Status register */
67 #define PKWR 0x50 /* Power Manager Keyboard Wake-Up Enable register */
68 #define PKSR 0x54 /* Power Manager Keyboard Level-Detect Status */
69 #define PCMD0 0x80 /* Power Manager I2C Command register File 0 */
70 #define PCMD31 0xfc /* Power Manager I2C Command register File 31 */
72 static uint32_t pxa2xx_pm_read(void *opaque, target_phys_addr_t addr)
74 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
82 return s->pm_regs[addr >> 2];
85 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
91 static void pxa2xx_pm_write(void *opaque, target_phys_addr_t addr,
94 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
99 s->pm_regs[addr >> 2] &= 0x15 & ~(value & 0x2a);
100 s->pm_regs[addr >> 2] |= value & 0x15;
103 case PSSR: /* Read-clean registers */
106 s->pm_regs[addr >> 2] &= ~value;
109 default: /* Read-write registers */
110 if (addr >= PMCR && addr <= PCMD31 && !(addr & 3)) {
111 s->pm_regs[addr >> 2] = value;
115 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
120 static CPUReadMemoryFunc *pxa2xx_pm_readfn[] = {
126 static CPUWriteMemoryFunc *pxa2xx_pm_writefn[] = {
132 #define CCCR 0x00 /* Core Clock Configuration register */
133 #define CKEN 0x04 /* Clock Enable register */
134 #define OSCC 0x08 /* Oscillator Configuration register */
135 #define CCSR 0x0c /* Core Clock Status register */
137 static uint32_t pxa2xx_cm_read(void *opaque, target_phys_addr_t addr)
139 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
146 return s->cm_regs[addr >> 2];
149 return s->cm_regs[CCCR >> 2] | (3 << 28);
152 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
158 static void pxa2xx_cm_write(void *opaque, target_phys_addr_t addr,
161 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
167 s->cm_regs[addr >> 2] = value;
171 s->cm_regs[addr >> 2] &= ~0x6c;
172 s->cm_regs[addr >> 2] |= value & 0x6e;
173 if ((value >> 1) & 1) /* OON */
174 s->cm_regs[addr >> 2] |= 1 << 0; /* Oscillator is now stable */
178 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
183 static CPUReadMemoryFunc *pxa2xx_cm_readfn[] = {
189 static CPUWriteMemoryFunc *pxa2xx_cm_writefn[] = {
195 static uint32_t pxa2xx_clkpwr_read(void *opaque, int op2, int reg, int crm)
197 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
200 case 6: /* Clock Configuration register */
203 case 7: /* Power Mode register */
207 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
213 static void pxa2xx_clkpwr_write(void *opaque, int op2, int reg, int crm,
216 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
217 static const char *pwrmode[8] = {
218 "Normal", "Idle", "Deep-idle", "Standby",
219 "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep",
223 case 6: /* Clock Configuration register */
224 s->clkcfg = value & 0xf;
226 printf("%s: CPU frequency change attempt\n", __FUNCTION__);
229 case 7: /* Power Mode register */
231 printf("%s: CPU voltage change attempt\n", __FUNCTION__);
239 if (!(s->cm_regs[CCCR] & (1 << 31))) { /* CPDIS */
240 cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
247 cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
248 s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
252 s->env->uncached_cpsr =
253 ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
254 s->env->cp15.c1_sys = 0;
255 s->env->cp15.c1_coproc = 0;
256 s->env->cp15.c2_base = 0;
258 s->pm_regs[PSSR >> 2] |= 0x8; /* Set STS */
259 s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
262 * The scratch-pad register is almost universally used
263 * for storing the return address on suspend. For the
264 * lack of a resuming bootloader, perform a jump
265 * directly to that address.
267 memset(s->env->regs, 0, 4 * 15);
268 s->env->regs[15] = s->pm_regs[PSPR >> 2];
271 buffer = 0xe59ff000; /* ldr pc, [pc, #0] */
272 cpu_physical_memory_write(0, &buffer, 4);
273 buffer = s->pm_regs[PSPR >> 2];
274 cpu_physical_memory_write(8, &buffer, 4);
278 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HALT);
284 printf("%s: machine entered %s mode\n", __FUNCTION__,
290 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
295 /* Performace Monitoring Registers */
296 #define CPPMNC 0 /* Performance Monitor Control register */
297 #define CPCCNT 1 /* Clock Counter register */
298 #define CPINTEN 4 /* Interrupt Enable register */
299 #define CPFLAG 5 /* Overflow Flag register */
300 #define CPEVTSEL 8 /* Event Selection register */
302 #define CPPMN0 0 /* Performance Count register 0 */
303 #define CPPMN1 1 /* Performance Count register 1 */
304 #define CPPMN2 2 /* Performance Count register 2 */
305 #define CPPMN3 3 /* Performance Count register 3 */
307 static uint32_t pxa2xx_perf_read(void *opaque, int op2, int reg, int crm)
309 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
316 return qemu_get_clock(vm_clock);
325 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
331 static void pxa2xx_perf_write(void *opaque, int op2, int reg, int crm,
334 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
348 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
353 static uint32_t pxa2xx_cp14_read(void *opaque, int op2, int reg, int crm)
357 return pxa2xx_clkpwr_read(opaque, op2, reg, crm);
359 return pxa2xx_perf_read(opaque, op2, reg, crm);
370 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
376 static void pxa2xx_cp14_write(void *opaque, int op2, int reg, int crm,
381 pxa2xx_clkpwr_write(opaque, op2, reg, crm, value);
384 pxa2xx_perf_write(opaque, op2, reg, crm, value);
396 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
401 #define MDCNFG 0x00 /* SDRAM Configuration register */
402 #define MDREFR 0x04 /* SDRAM Refresh Control register */
403 #define MSC0 0x08 /* Static Memory Control register 0 */
404 #define MSC1 0x0c /* Static Memory Control register 1 */
405 #define MSC2 0x10 /* Static Memory Control register 2 */
406 #define MECR 0x14 /* Expansion Memory Bus Config register */
407 #define SXCNFG 0x1c /* Synchronous Static Memory Config register */
408 #define MCMEM0 0x28 /* PC Card Memory Socket 0 Timing register */
409 #define MCMEM1 0x2c /* PC Card Memory Socket 1 Timing register */
410 #define MCATT0 0x30 /* PC Card Attribute Socket 0 register */
411 #define MCATT1 0x34 /* PC Card Attribute Socket 1 register */
412 #define MCIO0 0x38 /* PC Card I/O Socket 0 Timing register */
413 #define MCIO1 0x3c /* PC Card I/O Socket 1 Timing register */
414 #define MDMRS 0x40 /* SDRAM Mode Register Set Config register */
415 #define BOOT_DEF 0x44 /* Boot-time Default Configuration register */
416 #define ARB_CNTL 0x48 /* Arbiter Control register */
417 #define BSCNTR0 0x4c /* Memory Buffer Strength Control register 0 */
418 #define BSCNTR1 0x50 /* Memory Buffer Strength Control register 1 */
419 #define LCDBSCNTR 0x54 /* LCD Buffer Strength Control register */
420 #define MDMRSLP 0x58 /* Low Power SDRAM Mode Set Config register */
421 #define BSCNTR2 0x5c /* Memory Buffer Strength Control register 2 */
422 #define BSCNTR3 0x60 /* Memory Buffer Strength Control register 3 */
423 #define SA1110 0x64 /* SA-1110 Memory Compatibility register */
425 static uint32_t pxa2xx_mm_read(void *opaque, target_phys_addr_t addr)
427 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
431 case MDCNFG ... SA1110:
433 return s->mm_regs[addr >> 2];
436 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
442 static void pxa2xx_mm_write(void *opaque, target_phys_addr_t addr,
445 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
449 case MDCNFG ... SA1110:
450 if ((addr & 3) == 0) {
451 s->mm_regs[addr >> 2] = value;
456 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
461 static CPUReadMemoryFunc *pxa2xx_mm_readfn[] = {
467 static CPUWriteMemoryFunc *pxa2xx_mm_writefn[] = {
473 /* Synchronous Serial Ports */
474 struct pxa2xx_ssp_s {
475 target_phys_addr_t base;
488 uint32_t rx_fifo[16];
492 uint32_t (*readfn)(void *opaque);
493 void (*writefn)(void *opaque, uint32_t value);
497 #define SSCR0 0x00 /* SSP Control register 0 */
498 #define SSCR1 0x04 /* SSP Control register 1 */
499 #define SSSR 0x08 /* SSP Status register */
500 #define SSITR 0x0c /* SSP Interrupt Test register */
501 #define SSDR 0x10 /* SSP Data register */
502 #define SSTO 0x28 /* SSP Time-Out register */
503 #define SSPSP 0x2c /* SSP Programmable Serial Protocol register */
504 #define SSTSA 0x30 /* SSP TX Time Slot Active register */
505 #define SSRSA 0x34 /* SSP RX Time Slot Active register */
506 #define SSTSS 0x38 /* SSP Time Slot Status register */
507 #define SSACD 0x3c /* SSP Audio Clock Divider register */
509 /* Bitfields for above registers */
510 #define SSCR0_SPI(x) (((x) & 0x30) == 0x00)
511 #define SSCR0_SSP(x) (((x) & 0x30) == 0x10)
512 #define SSCR0_UWIRE(x) (((x) & 0x30) == 0x20)
513 #define SSCR0_PSP(x) (((x) & 0x30) == 0x30)
514 #define SSCR0_SSE (1 << 7)
515 #define SSCR0_RIM (1 << 22)
516 #define SSCR0_TIM (1 << 23)
517 #define SSCR0_MOD (1 << 31)
518 #define SSCR0_DSS(x) (((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1)
519 #define SSCR1_RIE (1 << 0)
520 #define SSCR1_TIE (1 << 1)
521 #define SSCR1_LBM (1 << 2)
522 #define SSCR1_MWDS (1 << 5)
523 #define SSCR1_TFT(x) ((((x) >> 6) & 0xf) + 1)
524 #define SSCR1_RFT(x) ((((x) >> 10) & 0xf) + 1)
525 #define SSCR1_EFWR (1 << 14)
526 #define SSCR1_PINTE (1 << 18)
527 #define SSCR1_TINTE (1 << 19)
528 #define SSCR1_RSRE (1 << 20)
529 #define SSCR1_TSRE (1 << 21)
530 #define SSCR1_EBCEI (1 << 29)
531 #define SSITR_INT (7 << 5)
532 #define SSSR_TNF (1 << 2)
533 #define SSSR_RNE (1 << 3)
534 #define SSSR_TFS (1 << 5)
535 #define SSSR_RFS (1 << 6)
536 #define SSSR_ROR (1 << 7)
537 #define SSSR_PINT (1 << 18)
538 #define SSSR_TINT (1 << 19)
539 #define SSSR_EOC (1 << 20)
540 #define SSSR_TUR (1 << 21)
541 #define SSSR_BCE (1 << 23)
542 #define SSSR_RW 0x00bc0080
544 static void pxa2xx_ssp_int_update(struct pxa2xx_ssp_s *s)
548 level |= s->ssitr & SSITR_INT;
549 level |= (s->sssr & SSSR_BCE) && (s->sscr[1] & SSCR1_EBCEI);
550 level |= (s->sssr & SSSR_TUR) && !(s->sscr[0] & SSCR0_TIM);
551 level |= (s->sssr & SSSR_EOC) && (s->sssr & (SSSR_TINT | SSSR_PINT));
552 level |= (s->sssr & SSSR_TINT) && (s->sscr[1] & SSCR1_TINTE);
553 level |= (s->sssr & SSSR_PINT) && (s->sscr[1] & SSCR1_PINTE);
554 level |= (s->sssr & SSSR_ROR) && !(s->sscr[0] & SSCR0_RIM);
555 level |= (s->sssr & SSSR_RFS) && (s->sscr[1] & SSCR1_RIE);
556 level |= (s->sssr & SSSR_TFS) && (s->sscr[1] & SSCR1_TIE);
557 qemu_set_irq(s->irq, !!level);
560 static void pxa2xx_ssp_fifo_update(struct pxa2xx_ssp_s *s)
562 s->sssr &= ~(0xf << 12); /* Clear RFL */
563 s->sssr &= ~(0xf << 8); /* Clear TFL */
564 s->sssr &= ~SSSR_TNF;
566 s->sssr |= ((s->rx_level - 1) & 0xf) << 12;
567 if (s->rx_level >= SSCR1_RFT(s->sscr[1]))
570 s->sssr &= ~SSSR_RFS;
571 if (0 <= SSCR1_TFT(s->sscr[1]))
574 s->sssr &= ~SSSR_TFS;
578 s->sssr &= ~SSSR_RNE;
582 pxa2xx_ssp_int_update(s);
585 static uint32_t pxa2xx_ssp_read(void *opaque, target_phys_addr_t addr)
587 struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
603 return s->sssr | s->ssitr;
607 if (s->rx_level < 1) {
608 printf("%s: SSP Rx Underrun\n", __FUNCTION__);
612 retval = s->rx_fifo[s->rx_start ++];
614 pxa2xx_ssp_fifo_update(s);
625 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
631 static void pxa2xx_ssp_write(void *opaque, target_phys_addr_t addr,
634 struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
639 s->sscr[0] = value & 0xc7ffffff;
640 s->enable = value & SSCR0_SSE;
641 if (value & SSCR0_MOD)
642 printf("%s: Attempt to use network mode\n", __FUNCTION__);
643 if (s->enable && SSCR0_DSS(value) < 4)
644 printf("%s: Wrong data size: %i bits\n", __FUNCTION__,
646 if (!(value & SSCR0_SSE)) {
651 pxa2xx_ssp_fifo_update(s);
656 if (value & (SSCR1_LBM | SSCR1_EFWR))
657 printf("%s: Attempt to use SSP test mode\n", __FUNCTION__);
658 pxa2xx_ssp_fifo_update(s);
670 s->ssitr = value & SSITR_INT;
671 pxa2xx_ssp_int_update(s);
675 s->sssr &= ~(value & SSSR_RW);
676 pxa2xx_ssp_int_update(s);
680 if (SSCR0_UWIRE(s->sscr[0])) {
681 if (s->sscr[1] & SSCR1_MWDS)
686 /* Note how 32bits overflow does no harm here */
687 value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
689 /* Data goes from here to the Tx FIFO and is shifted out from
690 * there directly to the slave, no need to buffer it.
694 s->writefn(s->opaque, value);
696 if (s->rx_level < 0x10) {
698 s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] =
699 s->readfn(s->opaque);
701 s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = 0x0;
705 pxa2xx_ssp_fifo_update(s);
721 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
726 void pxa2xx_ssp_attach(struct pxa2xx_ssp_s *port,
727 uint32_t (*readfn)(void *opaque),
728 void (*writefn)(void *opaque, uint32_t value), void *opaque)
731 printf("%s: no such SSP\n", __FUNCTION__);
735 port->opaque = opaque;
736 port->readfn = readfn;
737 port->writefn = writefn;
740 static CPUReadMemoryFunc *pxa2xx_ssp_readfn[] = {
746 static CPUWriteMemoryFunc *pxa2xx_ssp_writefn[] = {
752 /* Real-Time Clock */
753 #define RCNR 0x00 /* RTC Counter register */
754 #define RTAR 0x04 /* RTC Alarm register */
755 #define RTSR 0x08 /* RTC Status register */
756 #define RTTR 0x0c /* RTC Timer Trim register */
757 #define RDCR 0x10 /* RTC Day Counter register */
758 #define RYCR 0x14 /* RTC Year Counter register */
759 #define RDAR1 0x18 /* RTC Wristwatch Day Alarm register 1 */
760 #define RYAR1 0x1c /* RTC Wristwatch Year Alarm register 1 */
761 #define RDAR2 0x20 /* RTC Wristwatch Day Alarm register 2 */
762 #define RYAR2 0x24 /* RTC Wristwatch Year Alarm register 2 */
763 #define SWCR 0x28 /* RTC Stopwatch Counter register */
764 #define SWAR1 0x2c /* RTC Stopwatch Alarm register 1 */
765 #define SWAR2 0x30 /* RTC Stopwatch Alarm register 2 */
766 #define RTCPICR 0x34 /* RTC Periodic Interrupt Counter register */
767 #define PIAR 0x38 /* RTC Periodic Interrupt Alarm register */
769 static inline void pxa2xx_rtc_int_update(struct pxa2xx_state_s *s)
771 qemu_set_irq(s->pic[PXA2XX_PIC_RTCALARM], !!(s->rtsr & 0x2553));
774 static void pxa2xx_rtc_hzupdate(struct pxa2xx_state_s *s)
776 int64_t rt = qemu_get_clock(rt_clock);
777 s->last_rcnr += ((rt - s->last_hz) << 15) /
778 (1000 * ((s->rttr & 0xffff) + 1));
779 s->last_rdcr += ((rt - s->last_hz) << 15) /
780 (1000 * ((s->rttr & 0xffff) + 1));
784 static void pxa2xx_rtc_swupdate(struct pxa2xx_state_s *s)
786 int64_t rt = qemu_get_clock(rt_clock);
787 if (s->rtsr & (1 << 12))
788 s->last_swcr += (rt - s->last_sw) / 10;
792 static void pxa2xx_rtc_piupdate(struct pxa2xx_state_s *s)
794 int64_t rt = qemu_get_clock(rt_clock);
795 if (s->rtsr & (1 << 15))
796 s->last_swcr += rt - s->last_pi;
800 static inline void pxa2xx_rtc_alarm_update(struct pxa2xx_state_s *s,
803 if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0)))
804 qemu_mod_timer(s->rtc_hz, s->last_hz +
805 (((s->rtar - s->last_rcnr) * 1000 *
806 ((s->rttr & 0xffff) + 1)) >> 15));
808 qemu_del_timer(s->rtc_hz);
810 if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4)))
811 qemu_mod_timer(s->rtc_rdal1, s->last_hz +
812 (((s->rdar1 - s->last_rdcr) * 1000 *
813 ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
815 qemu_del_timer(s->rtc_rdal1);
817 if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6)))
818 qemu_mod_timer(s->rtc_rdal2, s->last_hz +
819 (((s->rdar2 - s->last_rdcr) * 1000 *
820 ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
822 qemu_del_timer(s->rtc_rdal2);
824 if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8)))
825 qemu_mod_timer(s->rtc_swal1, s->last_sw +
826 (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */
828 qemu_del_timer(s->rtc_swal1);
830 if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10)))
831 qemu_mod_timer(s->rtc_swal2, s->last_sw +
832 (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */
834 qemu_del_timer(s->rtc_swal2);
836 if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13)))
837 qemu_mod_timer(s->rtc_pi, s->last_pi +
838 (s->piar & 0xffff) - s->last_rtcpicr);
840 qemu_del_timer(s->rtc_pi);
843 static inline void pxa2xx_rtc_hz_tick(void *opaque)
845 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
847 pxa2xx_rtc_alarm_update(s, s->rtsr);
848 pxa2xx_rtc_int_update(s);
851 static inline void pxa2xx_rtc_rdal1_tick(void *opaque)
853 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
855 pxa2xx_rtc_alarm_update(s, s->rtsr);
856 pxa2xx_rtc_int_update(s);
859 static inline void pxa2xx_rtc_rdal2_tick(void *opaque)
861 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
863 pxa2xx_rtc_alarm_update(s, s->rtsr);
864 pxa2xx_rtc_int_update(s);
867 static inline void pxa2xx_rtc_swal1_tick(void *opaque)
869 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
871 pxa2xx_rtc_alarm_update(s, s->rtsr);
872 pxa2xx_rtc_int_update(s);
875 static inline void pxa2xx_rtc_swal2_tick(void *opaque)
877 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
878 s->rtsr |= (1 << 10);
879 pxa2xx_rtc_alarm_update(s, s->rtsr);
880 pxa2xx_rtc_int_update(s);
883 static inline void pxa2xx_rtc_pi_tick(void *opaque)
885 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
886 s->rtsr |= (1 << 13);
887 pxa2xx_rtc_piupdate(s);
889 pxa2xx_rtc_alarm_update(s, s->rtsr);
890 pxa2xx_rtc_int_update(s);
893 static uint32_t pxa2xx_rtc_read(void *opaque, target_phys_addr_t addr)
895 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
920 return s->last_rcnr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) /
921 (1000 * ((s->rttr & 0xffff) + 1));
923 return s->last_rdcr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) /
924 (1000 * ((s->rttr & 0xffff) + 1));
928 if (s->rtsr & (1 << 12))
929 return s->last_swcr + (qemu_get_clock(rt_clock) - s->last_sw) / 10;
933 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
939 static void pxa2xx_rtc_write(void *opaque, target_phys_addr_t addr,
942 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
947 if (!(s->rttr & (1 << 31))) {
948 pxa2xx_rtc_hzupdate(s);
950 pxa2xx_rtc_alarm_update(s, s->rtsr);
955 if ((s->rtsr ^ value) & (1 << 15))
956 pxa2xx_rtc_piupdate(s);
958 if ((s->rtsr ^ value) & (1 << 12))
959 pxa2xx_rtc_swupdate(s);
961 if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac))
962 pxa2xx_rtc_alarm_update(s, value);
964 s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac));
965 pxa2xx_rtc_int_update(s);
970 pxa2xx_rtc_alarm_update(s, s->rtsr);
975 pxa2xx_rtc_alarm_update(s, s->rtsr);
980 pxa2xx_rtc_alarm_update(s, s->rtsr);
985 pxa2xx_rtc_alarm_update(s, s->rtsr);
990 pxa2xx_rtc_alarm_update(s, s->rtsr);
994 pxa2xx_rtc_swupdate(s);
997 pxa2xx_rtc_alarm_update(s, s->rtsr);
1002 pxa2xx_rtc_alarm_update(s, s->rtsr);
1007 pxa2xx_rtc_alarm_update(s, s->rtsr);
1011 pxa2xx_rtc_hzupdate(s);
1012 s->last_rcnr = value;
1013 pxa2xx_rtc_alarm_update(s, s->rtsr);
1017 pxa2xx_rtc_hzupdate(s);
1018 s->last_rdcr = value;
1019 pxa2xx_rtc_alarm_update(s, s->rtsr);
1023 s->last_rycr = value;
1027 pxa2xx_rtc_swupdate(s);
1028 s->last_swcr = value;
1029 pxa2xx_rtc_alarm_update(s, s->rtsr);
1033 pxa2xx_rtc_piupdate(s);
1034 s->last_rtcpicr = value & 0xffff;
1035 pxa2xx_rtc_alarm_update(s, s->rtsr);
1039 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1043 static void pxa2xx_rtc_reset(struct pxa2xx_state_s *s)
1056 tm = localtime(&ti);
1057 wom = ((tm->tm_mday - 1) / 7) + 1;
1059 s->last_rcnr = (uint32_t) ti;
1060 s->last_rdcr = (wom << 20) | ((tm->tm_wday + 1) << 17) |
1061 (tm->tm_hour << 12) | (tm->tm_min << 6) | tm->tm_sec;
1062 s->last_rycr = ((tm->tm_year + 1900) << 9) |
1063 ((tm->tm_mon + 1) << 5) | tm->tm_mday;
1064 s->last_swcr = (tm->tm_hour << 19) |
1065 (tm->tm_min << 13) | (tm->tm_sec << 7);
1066 s->last_rtcpicr = 0;
1067 s->last_hz = s->last_sw = s->last_pi = qemu_get_clock(rt_clock);
1069 s->rtc_hz = qemu_new_timer(rt_clock, pxa2xx_rtc_hz_tick, s);
1070 s->rtc_rdal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal1_tick, s);
1071 s->rtc_rdal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal2_tick, s);
1072 s->rtc_swal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal1_tick, s);
1073 s->rtc_swal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal2_tick, s);
1074 s->rtc_pi = qemu_new_timer(rt_clock, pxa2xx_rtc_pi_tick, s);
1077 static CPUReadMemoryFunc *pxa2xx_rtc_readfn[] = {
1083 static CPUWriteMemoryFunc *pxa2xx_rtc_writefn[] = {
1089 /* PXA Inter-IC Sound Controller */
1090 static void pxa2xx_i2s_reset(struct pxa2xx_i2s_s *i2s)
1096 i2s->control[0] = 0x00;
1097 i2s->control[1] = 0x00;
1102 #define SACR_TFTH(val) ((val >> 8) & 0xf)
1103 #define SACR_RFTH(val) ((val >> 12) & 0xf)
1104 #define SACR_DREC(val) (val & (1 << 3))
1105 #define SACR_DPRL(val) (val & (1 << 4))
1107 static inline void pxa2xx_i2s_update(struct pxa2xx_i2s_s *i2s)
1110 rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len &&
1111 !SACR_DREC(i2s->control[1]);
1112 tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) &&
1113 i2s->enable && !SACR_DPRL(i2s->control[1]);
1115 pxa2xx_dma_request(i2s->dma, PXA2XX_RX_RQ_I2S, rfs);
1116 pxa2xx_dma_request(i2s->dma, PXA2XX_TX_RQ_I2S, tfs);
1118 i2s->status &= 0xe0;
1120 i2s->status |= 1 << 1; /* RNE */
1122 i2s->status |= 1 << 2; /* BSY */
1124 i2s->status |= 1 << 3; /* TFS */
1126 i2s->status |= 1 << 4; /* RFS */
1127 if (!(i2s->tx_len && i2s->enable))
1128 i2s->status |= i2s->fifo_len << 8; /* TFL */
1129 i2s->status |= MAX(i2s->rx_len, 0xf) << 12; /* RFL */
1131 qemu_set_irq(i2s->irq, i2s->status & i2s->mask);
1134 #define SACR0 0x00 /* Serial Audio Global Control register */
1135 #define SACR1 0x04 /* Serial Audio I2S/MSB-Justified Control register */
1136 #define SASR0 0x0c /* Serial Audio Interface and FIFO Status register */
1137 #define SAIMR 0x14 /* Serial Audio Interrupt Mask register */
1138 #define SAICR 0x18 /* Serial Audio Interrupt Clear register */
1139 #define SADIV 0x60 /* Serial Audio Clock Divider register */
1140 #define SADR 0x80 /* Serial Audio Data register */
1142 static uint32_t pxa2xx_i2s_read(void *opaque, target_phys_addr_t addr)
1144 struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
1149 return s->control[0];
1151 return s->control[1];
1161 if (s->rx_len > 0) {
1163 pxa2xx_i2s_update(s);
1164 return s->codec_in(s->opaque);
1168 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1174 static void pxa2xx_i2s_write(void *opaque, target_phys_addr_t addr,
1177 struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
1183 if (value & (1 << 3)) /* RST */
1184 pxa2xx_i2s_reset(s);
1185 s->control[0] = value & 0xff3d;
1186 if (!s->enable && (value & 1) && s->tx_len) { /* ENB */
1187 for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++)
1188 s->codec_out(s->opaque, *sample);
1189 s->status &= ~(1 << 7); /* I2SOFF */
1191 if (value & (1 << 4)) /* EFWR */
1192 printf("%s: Attempt to use special function\n", __FUNCTION__);
1193 s->enable = ((value ^ 4) & 5) == 5; /* ENB && !RST*/
1194 pxa2xx_i2s_update(s);
1197 s->control[1] = value & 0x0039;
1198 if (value & (1 << 5)) /* ENLBF */
1199 printf("%s: Attempt to use loopback function\n", __FUNCTION__);
1200 if (value & (1 << 4)) /* DPRL */
1202 pxa2xx_i2s_update(s);
1205 s->mask = value & 0x0078;
1206 pxa2xx_i2s_update(s);
1209 s->status &= ~(value & (3 << 5));
1210 pxa2xx_i2s_update(s);
1213 s->clk = value & 0x007f;
1216 if (s->tx_len && s->enable) {
1218 pxa2xx_i2s_update(s);
1219 s->codec_out(s->opaque, value);
1220 } else if (s->fifo_len < 16) {
1221 s->fifo[s->fifo_len ++] = value;
1222 pxa2xx_i2s_update(s);
1226 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1230 static CPUReadMemoryFunc *pxa2xx_i2s_readfn[] = {
1236 static CPUWriteMemoryFunc *pxa2xx_i2s_writefn[] = {
1242 static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx)
1244 struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
1247 /* Signal FIFO errors */
1248 if (s->enable && s->tx_len)
1249 s->status |= 1 << 5; /* TUR */
1250 if (s->enable && s->rx_len)
1251 s->status |= 1 << 6; /* ROR */
1253 /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to
1254 * handle the cases where it makes a difference. */
1255 s->tx_len = tx - s->fifo_len;
1257 /* Note that is s->codec_out wasn't set, we wouldn't get called. */
1259 for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++)
1260 s->codec_out(s->opaque, *sample);
1261 pxa2xx_i2s_update(s);
1264 static struct pxa2xx_i2s_s *pxa2xx_i2s_init(target_phys_addr_t base,
1265 qemu_irq irq, struct pxa2xx_dma_state_s *dma)
1268 struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *)
1269 qemu_mallocz(sizeof(struct pxa2xx_i2s_s));
1274 s->data_req = pxa2xx_i2s_data_req;
1276 pxa2xx_i2s_reset(s);
1278 iomemtype = cpu_register_io_memory(0, pxa2xx_i2s_readfn,
1279 pxa2xx_i2s_writefn, s);
1280 cpu_register_physical_memory(s->base & 0xfff00000, 0xfffff, iomemtype);
1285 /* PXA Fast Infra-red Communications Port */
1286 struct pxa2xx_fir_s {
1287 target_phys_addr_t base;
1289 struct pxa2xx_dma_state_s *dma;
1291 CharDriverState *chr;
1298 uint8_t rx_fifo[64];
1301 static void pxa2xx_fir_reset(struct pxa2xx_fir_s *s)
1303 s->control[0] = 0x00;
1304 s->control[1] = 0x00;
1305 s->control[2] = 0x00;
1306 s->status[0] = 0x00;
1307 s->status[1] = 0x00;
1311 static inline void pxa2xx_fir_update(struct pxa2xx_fir_s *s)
1313 static const int tresh[4] = { 8, 16, 32, 0 };
1315 if ((s->control[0] & (1 << 4)) && /* RXE */
1316 s->rx_len >= tresh[s->control[2] & 3]) /* TRIG */
1317 s->status[0] |= 1 << 4; /* RFS */
1319 s->status[0] &= ~(1 << 4); /* RFS */
1320 if (s->control[0] & (1 << 3)) /* TXE */
1321 s->status[0] |= 1 << 3; /* TFS */
1323 s->status[0] &= ~(1 << 3); /* TFS */
1325 s->status[1] |= 1 << 2; /* RNE */
1327 s->status[1] &= ~(1 << 2); /* RNE */
1328 if (s->control[0] & (1 << 4)) /* RXE */
1329 s->status[1] |= 1 << 0; /* RSY */
1331 s->status[1] &= ~(1 << 0); /* RSY */
1333 intr |= (s->control[0] & (1 << 5)) && /* RIE */
1334 (s->status[0] & (1 << 4)); /* RFS */
1335 intr |= (s->control[0] & (1 << 6)) && /* TIE */
1336 (s->status[0] & (1 << 3)); /* TFS */
1337 intr |= (s->control[2] & (1 << 4)) && /* TRAIL */
1338 (s->status[0] & (1 << 6)); /* EOC */
1339 intr |= (s->control[0] & (1 << 2)) && /* TUS */
1340 (s->status[0] & (1 << 1)); /* TUR */
1341 intr |= s->status[0] & 0x25; /* FRE, RAB, EIF */
1343 pxa2xx_dma_request(s->dma, PXA2XX_RX_RQ_ICP, (s->status[0] >> 4) & 1);
1344 pxa2xx_dma_request(s->dma, PXA2XX_TX_RQ_ICP, (s->status[0] >> 3) & 1);
1346 qemu_set_irq(s->irq, intr && s->enable);
1349 #define ICCR0 0x00 /* FICP Control register 0 */
1350 #define ICCR1 0x04 /* FICP Control register 1 */
1351 #define ICCR2 0x08 /* FICP Control register 2 */
1352 #define ICDR 0x0c /* FICP Data register */
1353 #define ICSR0 0x14 /* FICP Status register 0 */
1354 #define ICSR1 0x18 /* FICP Status register 1 */
1355 #define ICFOR 0x1c /* FICP FIFO Occupancy Status register */
1357 static uint32_t pxa2xx_fir_read(void *opaque, target_phys_addr_t addr)
1359 struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
1365 return s->control[0];
1367 return s->control[1];
1369 return s->control[2];
1371 s->status[0] &= ~0x01;
1372 s->status[1] &= ~0x72;
1375 ret = s->rx_fifo[s->rx_start ++];
1377 pxa2xx_fir_update(s);
1380 printf("%s: Rx FIFO underrun.\n", __FUNCTION__);
1383 return s->status[0];
1385 return s->status[1] | (1 << 3); /* TNF */
1389 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1395 static void pxa2xx_fir_write(void *opaque, target_phys_addr_t addr,
1398 struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
1404 s->control[0] = value;
1405 if (!(value & (1 << 4))) /* RXE */
1406 s->rx_len = s->rx_start = 0;
1407 if (!(value & (1 << 3))) /* TXE */
1409 s->enable = value & 1; /* ITR */
1412 pxa2xx_fir_update(s);
1415 s->control[1] = value;
1418 s->control[2] = value & 0x3f;
1419 pxa2xx_fir_update(s);
1422 if (s->control[2] & (1 << 2)) /* TXP */
1426 if (s->chr && s->enable && (s->control[0] & (1 << 3))) /* TXE */
1427 qemu_chr_write(s->chr, &ch, 1);
1430 s->status[0] &= ~(value & 0x66);
1431 pxa2xx_fir_update(s);
1436 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1440 static CPUReadMemoryFunc *pxa2xx_fir_readfn[] = {
1446 static CPUWriteMemoryFunc *pxa2xx_fir_writefn[] = {
1452 static int pxa2xx_fir_is_empty(void *opaque)
1454 struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
1455 return (s->rx_len < 64);
1458 static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size)
1460 struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
1461 if (!(s->control[0] & (1 << 4))) /* RXE */
1465 s->status[1] |= 1 << 4; /* EOF */
1466 if (s->rx_len >= 64) {
1467 s->status[1] |= 1 << 6; /* ROR */
1471 if (s->control[2] & (1 << 3)) /* RXP */
1472 s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++);
1474 s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++);
1477 pxa2xx_fir_update(s);
1480 static void pxa2xx_fir_event(void *opaque, int event)
1484 static struct pxa2xx_fir_s *pxa2xx_fir_init(target_phys_addr_t base,
1485 qemu_irq irq, struct pxa2xx_dma_state_s *dma,
1486 CharDriverState *chr)
1489 struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *)
1490 qemu_mallocz(sizeof(struct pxa2xx_fir_s));
1497 pxa2xx_fir_reset(s);
1499 iomemtype = cpu_register_io_memory(0, pxa2xx_fir_readfn,
1500 pxa2xx_fir_writefn, s);
1501 cpu_register_physical_memory(s->base, 0xfff, iomemtype);
1504 qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty,
1505 pxa2xx_fir_rx, pxa2xx_fir_event, s);
1510 void pxa2xx_reset(int line, int level, void *opaque)
1512 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
1513 if (level && (s->pm_regs[PCFR >> 2] & 0x10)) { /* GPR_EN */
1515 /* TODO: reset peripherals */
1519 /* Initialise a PXA270 integrated chip (ARM based core). */
1520 struct pxa2xx_state_s *pxa270_init(unsigned int sdram_size,
1521 DisplayState *ds, const char *revision)
1523 struct pxa2xx_state_s *s;
1524 struct pxa2xx_ssp_s *ssp;
1526 s = (struct pxa2xx_state_s *) qemu_mallocz(sizeof(struct pxa2xx_state_s));
1528 if (revision && strncmp(revision, "pxa27", 5)) {
1529 fprintf(stderr, "Machine requires a PXA27x processor.\n");
1533 s->env = cpu_init();
1534 cpu_arm_set_model(s->env, revision ?: "pxa270");
1536 /* SDRAM & Internal Memory Storage */
1537 cpu_register_physical_memory(PXA2XX_SDRAM_BASE,
1538 sdram_size, qemu_ram_alloc(sdram_size) | IO_MEM_RAM);
1539 cpu_register_physical_memory(PXA2XX_INTERNAL_BASE,
1540 0x40000, qemu_ram_alloc(0x40000) | IO_MEM_RAM);
1542 s->pic = pxa2xx_pic_init(0x40d00000, s->env);
1544 s->dma = pxa27x_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]);
1546 pxa27x_timer_init(0x40a00000, &s->pic[PXA2XX_PIC_OST_0],
1547 s->pic[PXA27X_PIC_OST_4_11], s->env);
1549 s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 121);
1551 s->mmc = pxa2xx_mmci_init(0x41100000, s->pic[PXA2XX_PIC_MMC], s->dma);
1553 for (i = 0; pxa270_serial[i].io_base; i ++)
1555 serial_mm_init(pxa270_serial[i].io_base, 2,
1556 s->pic[pxa270_serial[i].irqn], serial_hds[i], 1);
1560 s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP],
1561 s->dma, serial_hds[i]);
1564 s->lcd = pxa2xx_lcdc_init(0x44000000, s->pic[PXA2XX_PIC_LCD], ds);
1566 s->cm_base = 0x41300000;
1567 s->cm_regs[CCCR >> 4] = 0x02000210; /* 416.0 MHz */
1568 s->clkcfg = 0x00000009; /* Turbo mode active */
1569 iomemtype = cpu_register_io_memory(0, pxa2xx_cm_readfn,
1570 pxa2xx_cm_writefn, s);
1571 cpu_register_physical_memory(s->cm_base, 0xfff, iomemtype);
1573 cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
1575 s->mm_base = 0x48000000;
1576 s->mm_regs[MDMRS >> 2] = 0x00020002;
1577 s->mm_regs[MDREFR >> 2] = 0x03ca4000;
1578 s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
1579 iomemtype = cpu_register_io_memory(0, pxa2xx_mm_readfn,
1580 pxa2xx_mm_writefn, s);
1581 cpu_register_physical_memory(s->mm_base, 0xfff, iomemtype);
1583 for (i = 0; pxa27x_ssp[i].io_base; i ++);
1584 s->ssp = (struct pxa2xx_ssp_s **)
1585 qemu_mallocz(sizeof(struct pxa2xx_ssp_s *) * i);
1586 ssp = (struct pxa2xx_ssp_s *)
1587 qemu_mallocz(sizeof(struct pxa2xx_ssp_s) * i);
1588 for (i = 0; pxa27x_ssp[i].io_base; i ++) {
1589 s->ssp[i] = &ssp[i];
1590 ssp[i].base = pxa27x_ssp[i].io_base;
1591 ssp[i].irq = s->pic[pxa27x_ssp[i].irqn];
1593 iomemtype = cpu_register_io_memory(0, pxa2xx_ssp_readfn,
1594 pxa2xx_ssp_writefn, &ssp[i]);
1595 cpu_register_physical_memory(ssp[i].base, 0xfff, iomemtype);
1599 usb_ohci_init_pxa(0x4c000000, 3, -1, s->pic[PXA2XX_PIC_USBH1]);
1602 s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000);
1603 s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000);
1605 s->rtc_base = 0x40900000;
1606 iomemtype = cpu_register_io_memory(0, pxa2xx_rtc_readfn,
1607 pxa2xx_rtc_writefn, s);
1608 cpu_register_physical_memory(s->rtc_base, 0xfff, iomemtype);
1609 pxa2xx_rtc_reset(s);
1611 s->pm_base = 0x40f00000;
1612 iomemtype = cpu_register_io_memory(0, pxa2xx_pm_readfn,
1613 pxa2xx_pm_writefn, s);
1614 cpu_register_physical_memory(s->pm_base, 0xfff, iomemtype);
1616 s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma);
1618 /* GPIO1 resets the processor */
1619 /* The handler can be overriden by board-specific code */
1620 pxa2xx_gpio_handler_set(s->gpio, 1, pxa2xx_reset, s);
1624 /* Initialise a PXA255 integrated chip (ARM based core). */
1625 struct pxa2xx_state_s *pxa255_init(unsigned int sdram_size,
1628 struct pxa2xx_state_s *s;
1629 struct pxa2xx_ssp_s *ssp;
1631 s = (struct pxa2xx_state_s *) qemu_mallocz(sizeof(struct pxa2xx_state_s));
1633 s->env = cpu_init();
1634 cpu_arm_set_model(s->env, "pxa255");
1636 /* SDRAM & Internal Memory Storage */
1637 cpu_register_physical_memory(PXA2XX_SDRAM_BASE,
1638 sdram_size, qemu_ram_alloc(sdram_size) | IO_MEM_RAM);
1639 cpu_register_physical_memory(PXA2XX_INTERNAL_BASE,
1640 0x40000, qemu_ram_alloc(0x40000) | IO_MEM_RAM);
1642 s->pic = pxa2xx_pic_init(0x40d00000, s->env);
1644 s->dma = pxa255_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]);
1646 pxa25x_timer_init(0x40a00000, &s->pic[PXA2XX_PIC_OST_0], s->env);
1648 s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 85);
1650 s->mmc = pxa2xx_mmci_init(0x41100000, s->pic[PXA2XX_PIC_MMC], s->dma);
1652 for (i = 0; pxa255_serial[i].io_base; i ++)
1654 serial_mm_init(pxa255_serial[i].io_base, 2,
1655 s->pic[pxa255_serial[i].irqn], serial_hds[i], 1);
1659 s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP],
1660 s->dma, serial_hds[i]);
1663 s->lcd = pxa2xx_lcdc_init(0x44000000, s->pic[PXA2XX_PIC_LCD], ds);
1665 s->cm_base = 0x41300000;
1666 s->cm_regs[CCCR >> 4] = 0x02000210; /* 416.0 MHz */
1667 s->clkcfg = 0x00000009; /* Turbo mode active */
1668 iomemtype = cpu_register_io_memory(0, pxa2xx_cm_readfn,
1669 pxa2xx_cm_writefn, s);
1670 cpu_register_physical_memory(s->cm_base, 0xfff, iomemtype);
1672 cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
1674 s->mm_base = 0x48000000;
1675 s->mm_regs[MDMRS >> 2] = 0x00020002;
1676 s->mm_regs[MDREFR >> 2] = 0x03ca4000;
1677 s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
1678 iomemtype = cpu_register_io_memory(0, pxa2xx_mm_readfn,
1679 pxa2xx_mm_writefn, s);
1680 cpu_register_physical_memory(s->mm_base, 0xfff, iomemtype);
1682 for (i = 0; pxa255_ssp[i].io_base; i ++);
1683 s->ssp = (struct pxa2xx_ssp_s **)
1684 qemu_mallocz(sizeof(struct pxa2xx_ssp_s *) * i);
1685 ssp = (struct pxa2xx_ssp_s *)
1686 qemu_mallocz(sizeof(struct pxa2xx_ssp_s) * i);
1687 for (i = 0; pxa255_ssp[i].io_base; i ++) {
1688 s->ssp[i] = &ssp[i];
1689 ssp[i].base = pxa255_ssp[i].io_base;
1690 ssp[i].irq = s->pic[pxa255_ssp[i].irqn];
1692 iomemtype = cpu_register_io_memory(0, pxa2xx_ssp_readfn,
1693 pxa2xx_ssp_writefn, &ssp[i]);
1694 cpu_register_physical_memory(ssp[i].base, 0xfff, iomemtype);
1698 usb_ohci_init_pxa(0x4c000000, 3, -1, s->pic[PXA2XX_PIC_USBH1]);
1701 s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000);
1702 s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000);
1704 s->rtc_base = 0x40900000;
1705 iomemtype = cpu_register_io_memory(0, pxa2xx_rtc_readfn,
1706 pxa2xx_rtc_writefn, s);
1707 cpu_register_physical_memory(s->rtc_base, 0xfff, iomemtype);
1708 pxa2xx_rtc_reset(s);
1710 s->pm_base = 0x40f00000;
1711 iomemtype = cpu_register_io_memory(0, pxa2xx_pm_readfn,
1712 pxa2xx_pm_writefn, s);
1713 cpu_register_physical_memory(s->pm_base, 0xfff, iomemtype);
1715 s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma);
1717 /* GPIO1 resets the processor */
1718 /* The handler can be overriden by board-specific code */
1719 pxa2xx_gpio_handler_set(s->gpio, 1, pxa2xx_reset, s);