4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
38 #include <sys/times.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
47 #if defined(__NetBSD__)
48 #include <net/if_tap.h>
51 #include <linux/if_tun.h>
53 #include <arpa/inet.h>
56 #include <sys/select.h>
59 #if defined(__FreeBSD__) || defined(__DragonFly__)
64 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
65 #include <freebsd/stdlib.h>
70 #include <linux/rtc.h>
72 /* For the benefit of older linux systems which don't supply it,
73 we use a local copy of hpet.h. */
74 /* #include <linux/hpet.h> */
77 #include <linux/ppdev.h>
78 #include <linux/parport.h>
82 #include <sys/ethernet.h>
83 #include <sys/sockio.h>
84 #include <netinet/arp.h>
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/ip.h>
88 #include <netinet/ip_icmp.h> // must come after ip.h
89 #include <netinet/udp.h>
90 #include <netinet/tcp.h>
98 #if defined(__OpenBSD__)
102 #if defined(CONFIG_VDE)
103 #include <libvdeplug.h>
109 #include <sys/timeb.h>
110 #include <mmsystem.h>
111 #define getopt_long_only getopt_long
112 #define memalign(align, size) malloc(size)
118 int qemu_main(int argc, char **argv, char **envp);
119 int main(int argc, char **argv)
121 qemu_main(argc, argv, NULL);
124 #define main qemu_main
126 #endif /* CONFIG_SDL */
130 #define main qemu_main
131 #endif /* CONFIG_COCOA */
134 #include "hw/boards.h"
136 #include "hw/pcmcia.h"
138 #include "hw/audiodev.h"
142 #include "hw/watchdog.h"
143 #include "hw/smbios.h"
151 #include "qemu-timer.h"
152 #include "qemu-char.h"
153 #include "cache-utils.h"
156 #include "audio/audio.h"
157 #include "migration.h"
160 #include "qemu-option.h"
164 #include "exec-all.h"
166 #include "qemu_socket.h"
168 #if defined(CONFIG_SLIRP)
169 #include "libslirp.h"
172 //#define DEBUG_UNUSED_IOPORT
173 //#define DEBUG_IOPORT
175 //#define DEBUG_SLIRP
179 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
181 # define LOG_IOPORT(...) do { } while (0)
184 #define DEFAULT_RAM_SIZE 128
186 /* Max number of USB devices that can be specified on the commandline. */
187 #define MAX_USB_CMDLINE 8
189 /* Max number of bluetooth switches on the commandline. */
190 #define MAX_BT_CMDLINE 10
192 /* XXX: use a two level table to limit memory usage */
193 #define MAX_IOPORTS 65536
195 static const char *data_dir;
196 const char *bios_name = NULL;
197 static void *ioport_opaque[MAX_IOPORTS];
198 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
199 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
200 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
201 to store the VM snapshots */
202 DriveInfo drives_table[MAX_DRIVES+1];
204 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
205 static DisplayState *display_state;
206 DisplayType display_type = DT_DEFAULT;
207 const char* keyboard_layout = NULL;
208 int64_t ticks_per_sec;
211 NICInfo nd_table[MAX_NICS];
213 static int autostart;
214 static int rtc_utc = 1;
215 static int rtc_date_offset = -1; /* -1 means no change */
216 int cirrus_vga_enabled = 1;
217 int std_vga_enabled = 0;
218 int vmsvga_enabled = 0;
219 int xenfb_enabled = 0;
221 int graphic_width = 1024;
222 int graphic_height = 768;
223 int graphic_depth = 8;
225 int graphic_width = 800;
226 int graphic_height = 600;
227 int graphic_depth = 15;
229 static int full_screen = 0;
231 static int no_frame = 0;
234 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
235 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
236 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
238 int win2k_install_hack = 0;
244 const char *vnc_display;
245 int acpi_enabled = 1;
251 int graphic_rotate = 0;
255 WatchdogTimerModel *watchdog = NULL;
256 int watchdog_action = WDT_RESET;
257 const char *option_rom[MAX_OPTION_ROMS];
259 int semihosting_enabled = 0;
263 const char *qemu_name;
265 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
266 unsigned int nb_prom_envs = 0;
267 const char *prom_envs[MAX_PROM_ENVS];
270 struct drive_opt drives_opt[MAX_DRIVES];
273 uint64_t node_mem[MAX_NODES];
274 uint64_t node_cpumask[MAX_NODES];
276 static CPUState *cur_cpu;
277 static CPUState *next_cpu;
278 static int timer_alarm_pending = 1;
279 /* Conversion factor from emulated instructions to virtual clock ticks. */
280 static int icount_time_shift;
281 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
282 #define MAX_ICOUNT_SHIFT 10
283 /* Compensate for varying guest execution speed. */
284 static int64_t qemu_icount_bias;
285 static QEMUTimer *icount_rt_timer;
286 static QEMUTimer *icount_vm_timer;
287 static QEMUTimer *nographic_timer;
289 uint8_t qemu_uuid[16];
291 /***********************************************************/
292 /* x86 ISA bus support */
294 target_phys_addr_t isa_mem_base = 0;
297 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
298 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
300 static uint32_t ioport_read(int index, uint32_t address)
302 static IOPortReadFunc *default_func[3] = {
303 default_ioport_readb,
304 default_ioport_readw,
307 IOPortReadFunc *func = ioport_read_table[index][address];
309 func = default_func[index];
310 return func(ioport_opaque[address], address);
313 static void ioport_write(int index, uint32_t address, uint32_t data)
315 static IOPortWriteFunc *default_func[3] = {
316 default_ioport_writeb,
317 default_ioport_writew,
318 default_ioport_writel
320 IOPortWriteFunc *func = ioport_write_table[index][address];
322 func = default_func[index];
323 func(ioport_opaque[address], address, data);
326 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
328 #ifdef DEBUG_UNUSED_IOPORT
329 fprintf(stderr, "unused inb: port=0x%04x\n", address);
334 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
336 #ifdef DEBUG_UNUSED_IOPORT
337 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
341 /* default is to make two byte accesses */
342 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
345 data = ioport_read(0, address);
346 address = (address + 1) & (MAX_IOPORTS - 1);
347 data |= ioport_read(0, address) << 8;
351 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
353 ioport_write(0, address, data & 0xff);
354 address = (address + 1) & (MAX_IOPORTS - 1);
355 ioport_write(0, address, (data >> 8) & 0xff);
358 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
360 #ifdef DEBUG_UNUSED_IOPORT
361 fprintf(stderr, "unused inl: port=0x%04x\n", address);
366 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
368 #ifdef DEBUG_UNUSED_IOPORT
369 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
373 /* size is the word size in byte */
374 int register_ioport_read(int start, int length, int size,
375 IOPortReadFunc *func, void *opaque)
381 } else if (size == 2) {
383 } else if (size == 4) {
386 hw_error("register_ioport_read: invalid size");
389 for(i = start; i < start + length; i += size) {
390 ioport_read_table[bsize][i] = func;
391 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
392 hw_error("register_ioport_read: invalid opaque");
393 ioport_opaque[i] = opaque;
398 /* size is the word size in byte */
399 int register_ioport_write(int start, int length, int size,
400 IOPortWriteFunc *func, void *opaque)
406 } else if (size == 2) {
408 } else if (size == 4) {
411 hw_error("register_ioport_write: invalid size");
414 for(i = start; i < start + length; i += size) {
415 ioport_write_table[bsize][i] = func;
416 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
417 hw_error("register_ioport_write: invalid opaque");
418 ioport_opaque[i] = opaque;
423 void isa_unassign_ioport(int start, int length)
427 for(i = start; i < start + length; i++) {
428 ioport_read_table[0][i] = default_ioport_readb;
429 ioport_read_table[1][i] = default_ioport_readw;
430 ioport_read_table[2][i] = default_ioport_readl;
432 ioport_write_table[0][i] = default_ioport_writeb;
433 ioport_write_table[1][i] = default_ioport_writew;
434 ioport_write_table[2][i] = default_ioport_writel;
436 ioport_opaque[i] = NULL;
440 /***********************************************************/
442 void cpu_outb(CPUState *env, int addr, int val)
444 LOG_IOPORT("outb: %04x %02x\n", addr, val);
445 ioport_write(0, addr, val);
448 env->last_io_time = cpu_get_time_fast();
452 void cpu_outw(CPUState *env, int addr, int val)
454 LOG_IOPORT("outw: %04x %04x\n", addr, val);
455 ioport_write(1, addr, val);
458 env->last_io_time = cpu_get_time_fast();
462 void cpu_outl(CPUState *env, int addr, int val)
464 LOG_IOPORT("outl: %04x %08x\n", addr, val);
465 ioport_write(2, addr, val);
468 env->last_io_time = cpu_get_time_fast();
472 int cpu_inb(CPUState *env, int addr)
475 val = ioport_read(0, addr);
476 LOG_IOPORT("inb : %04x %02x\n", addr, val);
479 env->last_io_time = cpu_get_time_fast();
484 int cpu_inw(CPUState *env, int addr)
487 val = ioport_read(1, addr);
488 LOG_IOPORT("inw : %04x %04x\n", addr, val);
491 env->last_io_time = cpu_get_time_fast();
496 int cpu_inl(CPUState *env, int addr)
499 val = ioport_read(2, addr);
500 LOG_IOPORT("inl : %04x %08x\n", addr, val);
503 env->last_io_time = cpu_get_time_fast();
508 /***********************************************************/
509 void hw_error(const char *fmt, ...)
515 fprintf(stderr, "qemu: hardware error: ");
516 vfprintf(stderr, fmt, ap);
517 fprintf(stderr, "\n");
518 for(env = first_cpu; env != NULL; env = env->next_cpu) {
519 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
521 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
523 cpu_dump_state(env, stderr, fprintf, 0);
533 static QEMUBalloonEvent *qemu_balloon_event;
534 void *qemu_balloon_event_opaque;
536 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
538 qemu_balloon_event = func;
539 qemu_balloon_event_opaque = opaque;
542 void qemu_balloon(ram_addr_t target)
544 if (qemu_balloon_event)
545 qemu_balloon_event(qemu_balloon_event_opaque, target);
548 ram_addr_t qemu_balloon_status(void)
550 if (qemu_balloon_event)
551 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
555 /***********************************************************/
558 static QEMUPutKBDEvent *qemu_put_kbd_event;
559 static void *qemu_put_kbd_event_opaque;
560 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
561 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
563 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
565 qemu_put_kbd_event_opaque = opaque;
566 qemu_put_kbd_event = func;
569 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
570 void *opaque, int absolute,
573 QEMUPutMouseEntry *s, *cursor;
575 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
577 s->qemu_put_mouse_event = func;
578 s->qemu_put_mouse_event_opaque = opaque;
579 s->qemu_put_mouse_event_absolute = absolute;
580 s->qemu_put_mouse_event_name = qemu_strdup(name);
583 if (!qemu_put_mouse_event_head) {
584 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
588 cursor = qemu_put_mouse_event_head;
589 while (cursor->next != NULL)
590 cursor = cursor->next;
593 qemu_put_mouse_event_current = s;
598 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
600 QEMUPutMouseEntry *prev = NULL, *cursor;
602 if (!qemu_put_mouse_event_head || entry == NULL)
605 cursor = qemu_put_mouse_event_head;
606 while (cursor != NULL && cursor != entry) {
608 cursor = cursor->next;
611 if (cursor == NULL) // does not exist or list empty
613 else if (prev == NULL) { // entry is head
614 qemu_put_mouse_event_head = cursor->next;
615 if (qemu_put_mouse_event_current == entry)
616 qemu_put_mouse_event_current = cursor->next;
617 qemu_free(entry->qemu_put_mouse_event_name);
622 prev->next = entry->next;
624 if (qemu_put_mouse_event_current == entry)
625 qemu_put_mouse_event_current = prev;
627 qemu_free(entry->qemu_put_mouse_event_name);
631 void kbd_put_keycode(int keycode)
633 if (qemu_put_kbd_event) {
634 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
638 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
640 QEMUPutMouseEvent *mouse_event;
641 void *mouse_event_opaque;
644 if (!qemu_put_mouse_event_current) {
649 qemu_put_mouse_event_current->qemu_put_mouse_event;
651 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
654 if (graphic_rotate) {
655 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
658 width = graphic_width - 1;
659 mouse_event(mouse_event_opaque,
660 width - dy, dx, dz, buttons_state);
662 mouse_event(mouse_event_opaque,
663 dx, dy, dz, buttons_state);
667 int kbd_mouse_is_absolute(void)
669 if (!qemu_put_mouse_event_current)
672 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
675 void do_info_mice(Monitor *mon)
677 QEMUPutMouseEntry *cursor;
680 if (!qemu_put_mouse_event_head) {
681 monitor_printf(mon, "No mouse devices connected\n");
685 monitor_printf(mon, "Mouse devices available:\n");
686 cursor = qemu_put_mouse_event_head;
687 while (cursor != NULL) {
688 monitor_printf(mon, "%c Mouse #%d: %s\n",
689 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
690 index, cursor->qemu_put_mouse_event_name);
692 cursor = cursor->next;
696 void do_mouse_set(Monitor *mon, int index)
698 QEMUPutMouseEntry *cursor;
701 if (!qemu_put_mouse_event_head) {
702 monitor_printf(mon, "No mouse devices connected\n");
706 cursor = qemu_put_mouse_event_head;
707 while (cursor != NULL && index != i) {
709 cursor = cursor->next;
713 qemu_put_mouse_event_current = cursor;
715 monitor_printf(mon, "Mouse at given index not found\n");
718 /* compute with 96 bit intermediate result: (a*b)/c */
719 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
724 #ifdef WORDS_BIGENDIAN
734 rl = (uint64_t)u.l.low * (uint64_t)b;
735 rh = (uint64_t)u.l.high * (uint64_t)b;
738 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
742 /***********************************************************/
743 /* real time host monotonic timer */
745 #define QEMU_TIMER_BASE 1000000000LL
749 static int64_t clock_freq;
751 static void init_get_clock(void)
755 ret = QueryPerformanceFrequency(&freq);
757 fprintf(stderr, "Could not calibrate ticks\n");
760 clock_freq = freq.QuadPart;
763 static int64_t get_clock(void)
766 QueryPerformanceCounter(&ti);
767 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
772 static int use_rt_clock;
774 static void init_get_clock(void)
777 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
778 || defined(__DragonFly__)
781 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
788 static int64_t get_clock(void)
790 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
791 || defined(__DragonFly__)
794 clock_gettime(CLOCK_MONOTONIC, &ts);
795 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
799 /* XXX: using gettimeofday leads to problems if the date
800 changes, so it should be avoided. */
802 gettimeofday(&tv, NULL);
803 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
808 /* Return the virtual CPU time, based on the instruction counter. */
809 static int64_t cpu_get_icount(void)
812 CPUState *env = cpu_single_env;;
813 icount = qemu_icount;
816 fprintf(stderr, "Bad clock read\n");
817 icount -= (env->icount_decr.u16.low + env->icount_extra);
819 return qemu_icount_bias + (icount << icount_time_shift);
822 /***********************************************************/
823 /* guest cycle counter */
825 static int64_t cpu_ticks_prev;
826 static int64_t cpu_ticks_offset;
827 static int64_t cpu_clock_offset;
828 static int cpu_ticks_enabled;
830 /* return the host CPU cycle counter and handle stop/restart */
831 int64_t cpu_get_ticks(void)
834 return cpu_get_icount();
836 if (!cpu_ticks_enabled) {
837 return cpu_ticks_offset;
840 ticks = cpu_get_real_ticks();
841 if (cpu_ticks_prev > ticks) {
842 /* Note: non increasing ticks may happen if the host uses
844 cpu_ticks_offset += cpu_ticks_prev - ticks;
846 cpu_ticks_prev = ticks;
847 return ticks + cpu_ticks_offset;
851 /* return the host CPU monotonic timer and handle stop/restart */
852 static int64_t cpu_get_clock(void)
855 if (!cpu_ticks_enabled) {
856 return cpu_clock_offset;
859 return ti + cpu_clock_offset;
863 /* enable cpu_get_ticks() */
864 void cpu_enable_ticks(void)
866 if (!cpu_ticks_enabled) {
867 cpu_ticks_offset -= cpu_get_real_ticks();
868 cpu_clock_offset -= get_clock();
869 cpu_ticks_enabled = 1;
873 /* disable cpu_get_ticks() : the clock is stopped. You must not call
874 cpu_get_ticks() after that. */
875 void cpu_disable_ticks(void)
877 if (cpu_ticks_enabled) {
878 cpu_ticks_offset = cpu_get_ticks();
879 cpu_clock_offset = cpu_get_clock();
880 cpu_ticks_enabled = 0;
884 /***********************************************************/
887 #define QEMU_TIMER_REALTIME 0
888 #define QEMU_TIMER_VIRTUAL 1
892 /* XXX: add frequency */
900 struct QEMUTimer *next;
903 struct qemu_alarm_timer {
907 int (*start)(struct qemu_alarm_timer *t);
908 void (*stop)(struct qemu_alarm_timer *t);
909 void (*rearm)(struct qemu_alarm_timer *t);
913 #define ALARM_FLAG_DYNTICKS 0x1
914 #define ALARM_FLAG_EXPIRED 0x2
916 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
918 return t && (t->flags & ALARM_FLAG_DYNTICKS);
921 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
923 if (!alarm_has_dynticks(t))
929 /* TODO: MIN_TIMER_REARM_US should be optimized */
930 #define MIN_TIMER_REARM_US 250
932 static struct qemu_alarm_timer *alarm_timer;
936 struct qemu_alarm_win32 {
939 } alarm_win32_data = {0, -1};
941 static int win32_start_timer(struct qemu_alarm_timer *t);
942 static void win32_stop_timer(struct qemu_alarm_timer *t);
943 static void win32_rearm_timer(struct qemu_alarm_timer *t);
947 static int unix_start_timer(struct qemu_alarm_timer *t);
948 static void unix_stop_timer(struct qemu_alarm_timer *t);
952 static int dynticks_start_timer(struct qemu_alarm_timer *t);
953 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
954 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
956 static int hpet_start_timer(struct qemu_alarm_timer *t);
957 static void hpet_stop_timer(struct qemu_alarm_timer *t);
959 static int rtc_start_timer(struct qemu_alarm_timer *t);
960 static void rtc_stop_timer(struct qemu_alarm_timer *t);
962 #endif /* __linux__ */
966 /* Correlation between real and virtual time is always going to be
967 fairly approximate, so ignore small variation.
968 When the guest is idle real and virtual time will be aligned in
970 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
972 static void icount_adjust(void)
977 static int64_t last_delta;
978 /* If the VM is not running, then do nothing. */
982 cur_time = cpu_get_clock();
983 cur_icount = qemu_get_clock(vm_clock);
984 delta = cur_icount - cur_time;
985 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
987 && last_delta + ICOUNT_WOBBLE < delta * 2
988 && icount_time_shift > 0) {
989 /* The guest is getting too far ahead. Slow time down. */
993 && last_delta - ICOUNT_WOBBLE > delta * 2
994 && icount_time_shift < MAX_ICOUNT_SHIFT) {
995 /* The guest is getting too far behind. Speed time up. */
999 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
1002 static void icount_adjust_rt(void * opaque)
1004 qemu_mod_timer(icount_rt_timer,
1005 qemu_get_clock(rt_clock) + 1000);
1009 static void icount_adjust_vm(void * opaque)
1011 qemu_mod_timer(icount_vm_timer,
1012 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1016 static void init_icount_adjust(void)
1018 /* Have both realtime and virtual time triggers for speed adjustment.
1019 The realtime trigger catches emulated time passing too slowly,
1020 the virtual time trigger catches emulated time passing too fast.
1021 Realtime triggers occur even when idle, so use them less frequently
1022 than VM triggers. */
1023 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1024 qemu_mod_timer(icount_rt_timer,
1025 qemu_get_clock(rt_clock) + 1000);
1026 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1027 qemu_mod_timer(icount_vm_timer,
1028 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1031 static struct qemu_alarm_timer alarm_timers[] = {
1034 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1035 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1036 /* HPET - if available - is preferred */
1037 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1038 /* ...otherwise try RTC */
1039 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1041 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1043 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1044 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1045 {"win32", 0, win32_start_timer,
1046 win32_stop_timer, NULL, &alarm_win32_data},
1051 static void show_available_alarms(void)
1055 printf("Available alarm timers, in order of precedence:\n");
1056 for (i = 0; alarm_timers[i].name; i++)
1057 printf("%s\n", alarm_timers[i].name);
1060 static void configure_alarms(char const *opt)
1064 int count = ARRAY_SIZE(alarm_timers) - 1;
1067 struct qemu_alarm_timer tmp;
1069 if (!strcmp(opt, "?")) {
1070 show_available_alarms();
1076 /* Reorder the array */
1077 name = strtok(arg, ",");
1079 for (i = 0; i < count && alarm_timers[i].name; i++) {
1080 if (!strcmp(alarm_timers[i].name, name))
1085 fprintf(stderr, "Unknown clock %s\n", name);
1094 tmp = alarm_timers[i];
1095 alarm_timers[i] = alarm_timers[cur];
1096 alarm_timers[cur] = tmp;
1100 name = strtok(NULL, ",");
1106 /* Disable remaining timers */
1107 for (i = cur; i < count; i++)
1108 alarm_timers[i].name = NULL;
1110 show_available_alarms();
1115 QEMUClock *rt_clock;
1116 QEMUClock *vm_clock;
1118 static QEMUTimer *active_timers[2];
1120 static QEMUClock *qemu_new_clock(int type)
1123 clock = qemu_mallocz(sizeof(QEMUClock));
1128 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1132 ts = qemu_mallocz(sizeof(QEMUTimer));
1135 ts->opaque = opaque;
1139 void qemu_free_timer(QEMUTimer *ts)
1144 /* stop a timer, but do not dealloc it */
1145 void qemu_del_timer(QEMUTimer *ts)
1149 /* NOTE: this code must be signal safe because
1150 qemu_timer_expired() can be called from a signal. */
1151 pt = &active_timers[ts->clock->type];
1164 /* modify the current timer so that it will be fired when current_time
1165 >= expire_time. The corresponding callback will be called. */
1166 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1172 /* add the timer in the sorted list */
1173 /* NOTE: this code must be signal safe because
1174 qemu_timer_expired() can be called from a signal. */
1175 pt = &active_timers[ts->clock->type];
1180 if (t->expire_time > expire_time)
1184 ts->expire_time = expire_time;
1188 /* Rearm if necessary */
1189 if (pt == &active_timers[ts->clock->type]) {
1190 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1191 qemu_rearm_alarm_timer(alarm_timer);
1193 /* Interrupt execution to force deadline recalculation. */
1195 qemu_notify_event();
1199 int qemu_timer_pending(QEMUTimer *ts)
1202 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1209 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1213 return (timer_head->expire_time <= current_time);
1216 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1222 if (!ts || ts->expire_time > current_time)
1224 /* remove timer from the list before calling the callback */
1225 *ptimer_head = ts->next;
1228 /* run the callback (the timer list can be modified) */
1233 int64_t qemu_get_clock(QEMUClock *clock)
1235 switch(clock->type) {
1236 case QEMU_TIMER_REALTIME:
1237 return get_clock() / 1000000;
1239 case QEMU_TIMER_VIRTUAL:
1241 return cpu_get_icount();
1243 return cpu_get_clock();
1248 static void init_timers(void)
1251 ticks_per_sec = QEMU_TIMER_BASE;
1252 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1253 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1257 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1259 uint64_t expire_time;
1261 if (qemu_timer_pending(ts)) {
1262 expire_time = ts->expire_time;
1266 qemu_put_be64(f, expire_time);
1269 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1271 uint64_t expire_time;
1273 expire_time = qemu_get_be64(f);
1274 if (expire_time != -1) {
1275 qemu_mod_timer(ts, expire_time);
1281 static void timer_save(QEMUFile *f, void *opaque)
1283 if (cpu_ticks_enabled) {
1284 hw_error("cannot save state if virtual timers are running");
1286 qemu_put_be64(f, cpu_ticks_offset);
1287 qemu_put_be64(f, ticks_per_sec);
1288 qemu_put_be64(f, cpu_clock_offset);
1291 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1293 if (version_id != 1 && version_id != 2)
1295 if (cpu_ticks_enabled) {
1298 cpu_ticks_offset=qemu_get_be64(f);
1299 ticks_per_sec=qemu_get_be64(f);
1300 if (version_id == 2) {
1301 cpu_clock_offset=qemu_get_be64(f);
1306 static void qemu_event_increment(void);
1309 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1310 DWORD_PTR dwUser, DWORD_PTR dw1,
1313 static void host_alarm_handler(int host_signum)
1317 #define DISP_FREQ 1000
1319 static int64_t delta_min = INT64_MAX;
1320 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1322 ti = qemu_get_clock(vm_clock);
1323 if (last_clock != 0) {
1324 delta = ti - last_clock;
1325 if (delta < delta_min)
1327 if (delta > delta_max)
1330 if (++count == DISP_FREQ) {
1331 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1332 muldiv64(delta_min, 1000000, ticks_per_sec),
1333 muldiv64(delta_max, 1000000, ticks_per_sec),
1334 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1335 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1337 delta_min = INT64_MAX;
1345 if (alarm_has_dynticks(alarm_timer) ||
1347 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1348 qemu_get_clock(vm_clock))) ||
1349 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1350 qemu_get_clock(rt_clock))) {
1351 qemu_event_increment();
1352 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1354 #ifndef CONFIG_IOTHREAD
1356 /* stop the currently executing cpu because a timer occured */
1359 if (next_cpu->kqemu_enabled) {
1360 kqemu_cpu_interrupt(next_cpu);
1365 timer_alarm_pending = 1;
1366 qemu_notify_event();
1370 static int64_t qemu_next_deadline(void)
1374 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1375 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1376 qemu_get_clock(vm_clock);
1378 /* To avoid problems with overflow limit this to 2^32. */
1388 #if defined(__linux__) || defined(_WIN32)
1389 static uint64_t qemu_next_deadline_dyntick(void)
1397 delta = (qemu_next_deadline() + 999) / 1000;
1399 if (active_timers[QEMU_TIMER_REALTIME]) {
1400 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1401 qemu_get_clock(rt_clock))*1000;
1402 if (rtdelta < delta)
1406 if (delta < MIN_TIMER_REARM_US)
1407 delta = MIN_TIMER_REARM_US;
1415 /* Sets a specific flag */
1416 static int fcntl_setfl(int fd, int flag)
1420 flags = fcntl(fd, F_GETFL);
1424 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1430 #if defined(__linux__)
1432 #define RTC_FREQ 1024
1434 static void enable_sigio_timer(int fd)
1436 struct sigaction act;
1439 sigfillset(&act.sa_mask);
1441 act.sa_handler = host_alarm_handler;
1443 sigaction(SIGIO, &act, NULL);
1444 fcntl_setfl(fd, O_ASYNC);
1445 fcntl(fd, F_SETOWN, getpid());
1448 static int hpet_start_timer(struct qemu_alarm_timer *t)
1450 struct hpet_info info;
1453 fd = open("/dev/hpet", O_RDONLY);
1458 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1460 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1461 "error, but for better emulation accuracy type:\n"
1462 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1466 /* Check capabilities */
1467 r = ioctl(fd, HPET_INFO, &info);
1471 /* Enable periodic mode */
1472 r = ioctl(fd, HPET_EPI, 0);
1473 if (info.hi_flags && (r < 0))
1476 /* Enable interrupt */
1477 r = ioctl(fd, HPET_IE_ON, 0);
1481 enable_sigio_timer(fd);
1482 t->priv = (void *)(long)fd;
1490 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1492 int fd = (long)t->priv;
1497 static int rtc_start_timer(struct qemu_alarm_timer *t)
1500 unsigned long current_rtc_freq = 0;
1502 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1505 ioctl(rtc_fd, RTC_IRQP_READ, ¤t_rtc_freq);
1506 if (current_rtc_freq != RTC_FREQ &&
1507 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1508 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1509 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1510 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1513 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1519 enable_sigio_timer(rtc_fd);
1521 t->priv = (void *)(long)rtc_fd;
1526 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1528 int rtc_fd = (long)t->priv;
1533 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1537 struct sigaction act;
1539 sigfillset(&act.sa_mask);
1541 act.sa_handler = host_alarm_handler;
1543 sigaction(SIGALRM, &act, NULL);
1546 * Initialize ev struct to 0 to avoid valgrind complaining
1547 * about uninitialized data in timer_create call
1549 memset(&ev, 0, sizeof(ev));
1550 ev.sigev_value.sival_int = 0;
1551 ev.sigev_notify = SIGEV_SIGNAL;
1552 ev.sigev_signo = SIGALRM;
1554 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1555 perror("timer_create");
1557 /* disable dynticks */
1558 fprintf(stderr, "Dynamic Ticks disabled\n");
1563 t->priv = (void *)(long)host_timer;
1568 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1570 timer_t host_timer = (timer_t)(long)t->priv;
1572 timer_delete(host_timer);
1575 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1577 timer_t host_timer = (timer_t)(long)t->priv;
1578 struct itimerspec timeout;
1579 int64_t nearest_delta_us = INT64_MAX;
1582 if (!active_timers[QEMU_TIMER_REALTIME] &&
1583 !active_timers[QEMU_TIMER_VIRTUAL])
1586 nearest_delta_us = qemu_next_deadline_dyntick();
1588 /* check whether a timer is already running */
1589 if (timer_gettime(host_timer, &timeout)) {
1591 fprintf(stderr, "Internal timer error: aborting\n");
1594 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1595 if (current_us && current_us <= nearest_delta_us)
1598 timeout.it_interval.tv_sec = 0;
1599 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1600 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1601 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1602 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1604 fprintf(stderr, "Internal timer error: aborting\n");
1609 #endif /* defined(__linux__) */
1611 static int unix_start_timer(struct qemu_alarm_timer *t)
1613 struct sigaction act;
1614 struct itimerval itv;
1618 sigfillset(&act.sa_mask);
1620 act.sa_handler = host_alarm_handler;
1622 sigaction(SIGALRM, &act, NULL);
1624 itv.it_interval.tv_sec = 0;
1625 /* for i386 kernel 2.6 to get 1 ms */
1626 itv.it_interval.tv_usec = 999;
1627 itv.it_value.tv_sec = 0;
1628 itv.it_value.tv_usec = 10 * 1000;
1630 err = setitimer(ITIMER_REAL, &itv, NULL);
1637 static void unix_stop_timer(struct qemu_alarm_timer *t)
1639 struct itimerval itv;
1641 memset(&itv, 0, sizeof(itv));
1642 setitimer(ITIMER_REAL, &itv, NULL);
1645 #endif /* !defined(_WIN32) */
1650 static int win32_start_timer(struct qemu_alarm_timer *t)
1653 struct qemu_alarm_win32 *data = t->priv;
1656 memset(&tc, 0, sizeof(tc));
1657 timeGetDevCaps(&tc, sizeof(tc));
1659 if (data->period < tc.wPeriodMin)
1660 data->period = tc.wPeriodMin;
1662 timeBeginPeriod(data->period);
1664 flags = TIME_CALLBACK_FUNCTION;
1665 if (alarm_has_dynticks(t))
1666 flags |= TIME_ONESHOT;
1668 flags |= TIME_PERIODIC;
1670 data->timerId = timeSetEvent(1, // interval (ms)
1671 data->period, // resolution
1672 host_alarm_handler, // function
1673 (DWORD)t, // parameter
1676 if (!data->timerId) {
1677 perror("Failed to initialize win32 alarm timer");
1678 timeEndPeriod(data->period);
1685 static void win32_stop_timer(struct qemu_alarm_timer *t)
1687 struct qemu_alarm_win32 *data = t->priv;
1689 timeKillEvent(data->timerId);
1690 timeEndPeriod(data->period);
1693 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1695 struct qemu_alarm_win32 *data = t->priv;
1696 uint64_t nearest_delta_us;
1698 if (!active_timers[QEMU_TIMER_REALTIME] &&
1699 !active_timers[QEMU_TIMER_VIRTUAL])
1702 nearest_delta_us = qemu_next_deadline_dyntick();
1703 nearest_delta_us /= 1000;
1705 timeKillEvent(data->timerId);
1707 data->timerId = timeSetEvent(1,
1711 TIME_ONESHOT | TIME_PERIODIC);
1713 if (!data->timerId) {
1714 perror("Failed to re-arm win32 alarm timer");
1716 timeEndPeriod(data->period);
1723 static int init_timer_alarm(void)
1725 struct qemu_alarm_timer *t = NULL;
1728 for (i = 0; alarm_timers[i].name; i++) {
1729 t = &alarm_timers[i];
1749 static void quit_timers(void)
1751 alarm_timer->stop(alarm_timer);
1755 /***********************************************************/
1756 /* host time/date access */
1757 void qemu_get_timedate(struct tm *tm, int offset)
1764 if (rtc_date_offset == -1) {
1768 ret = localtime(&ti);
1770 ti -= rtc_date_offset;
1774 memcpy(tm, ret, sizeof(struct tm));
1777 int qemu_timedate_diff(struct tm *tm)
1781 if (rtc_date_offset == -1)
1783 seconds = mktimegm(tm);
1785 seconds = mktime(tm);
1787 seconds = mktimegm(tm) + rtc_date_offset;
1789 return seconds - time(NULL);
1793 static void socket_cleanup(void)
1798 static int socket_init(void)
1803 ret = WSAStartup(MAKEWORD(2,2), &Data);
1805 err = WSAGetLastError();
1806 fprintf(stderr, "WSAStartup: %d\n", err);
1809 atexit(socket_cleanup);
1814 int get_param_value(char *buf, int buf_size,
1815 const char *tag, const char *str)
1822 p = get_opt_name(option, sizeof(option), p, '=');
1826 if (!strcmp(tag, option)) {
1827 (void)get_opt_value(buf, buf_size, p);
1830 p = get_opt_value(NULL, 0, p);
1839 int check_params(const char * const *params, const char *str)
1841 int name_buf_size = 1;
1847 for (i = 0; params[i] != NULL; i++) {
1848 len = strlen(params[i]) + 1;
1849 if (len > name_buf_size) {
1850 name_buf_size = len;
1853 name_buf = qemu_malloc(name_buf_size);
1856 while (*p != '\0') {
1857 p = get_opt_name(name_buf, name_buf_size, p, '=');
1863 for(i = 0; params[i] != NULL; i++)
1864 if (!strcmp(params[i], name_buf))
1866 if (params[i] == NULL) {
1870 p = get_opt_value(NULL, 0, p);
1876 qemu_free(name_buf);
1880 /***********************************************************/
1881 /* Bluetooth support */
1884 static struct HCIInfo *hci_table[MAX_NICS];
1886 static struct bt_vlan_s {
1887 struct bt_scatternet_s net;
1889 struct bt_vlan_s *next;
1892 /* find or alloc a new bluetooth "VLAN" */
1893 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1895 struct bt_vlan_s **pvlan, *vlan;
1896 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1900 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1902 pvlan = &first_bt_vlan;
1903 while (*pvlan != NULL)
1904 pvlan = &(*pvlan)->next;
1909 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1913 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1918 static struct HCIInfo null_hci = {
1919 .cmd_send = null_hci_send,
1920 .sco_send = null_hci_send,
1921 .acl_send = null_hci_send,
1922 .bdaddr_set = null_hci_addr_set,
1925 struct HCIInfo *qemu_next_hci(void)
1927 if (cur_hci == nb_hcis)
1930 return hci_table[cur_hci++];
1933 static struct HCIInfo *hci_init(const char *str)
1936 struct bt_scatternet_s *vlan = 0;
1938 if (!strcmp(str, "null"))
1941 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1943 return bt_host_hci(str[4] ? str + 5 : "hci0");
1944 else if (!strncmp(str, "hci", 3)) {
1947 if (!strncmp(str + 3, ",vlan=", 6)) {
1948 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1953 vlan = qemu_find_bt_vlan(0);
1955 return bt_new_hci(vlan);
1958 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1963 static int bt_hci_parse(const char *str)
1965 struct HCIInfo *hci;
1968 if (nb_hcis >= MAX_NICS) {
1969 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1973 hci = hci_init(str);
1982 bdaddr.b[5] = 0x56 + nb_hcis;
1983 hci->bdaddr_set(hci, bdaddr.b);
1985 hci_table[nb_hcis++] = hci;
1990 static void bt_vhci_add(int vlan_id)
1992 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1995 fprintf(stderr, "qemu: warning: adding a VHCI to "
1996 "an empty scatternet %i\n", vlan_id);
1998 bt_vhci_init(bt_new_hci(vlan));
2001 static struct bt_device_s *bt_device_add(const char *opt)
2003 struct bt_scatternet_s *vlan;
2005 char *endp = strstr(opt, ",vlan=");
2006 int len = (endp ? endp - opt : strlen(opt)) + 1;
2009 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2012 vlan_id = strtol(endp + 6, &endp, 0);
2014 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2019 vlan = qemu_find_bt_vlan(vlan_id);
2022 fprintf(stderr, "qemu: warning: adding a slave device to "
2023 "an empty scatternet %i\n", vlan_id);
2025 if (!strcmp(devname, "keyboard"))
2026 return bt_keyboard_init(vlan);
2028 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2032 static int bt_parse(const char *opt)
2034 const char *endp, *p;
2037 if (strstart(opt, "hci", &endp)) {
2038 if (!*endp || *endp == ',') {
2040 if (!strstart(endp, ",vlan=", 0))
2043 return bt_hci_parse(opt);
2045 } else if (strstart(opt, "vhci", &endp)) {
2046 if (!*endp || *endp == ',') {
2048 if (strstart(endp, ",vlan=", &p)) {
2049 vlan = strtol(p, (char **) &endp, 0);
2051 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2055 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2064 } else if (strstart(opt, "device:", &endp))
2065 return !bt_device_add(endp);
2067 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2071 /***********************************************************/
2072 /* QEMU Block devices */
2074 #define HD_ALIAS "index=%d,media=disk"
2075 #define CDROM_ALIAS "index=2,media=cdrom"
2076 #define FD_ALIAS "index=%d,if=floppy"
2077 #define PFLASH_ALIAS "if=pflash"
2078 #define MTD_ALIAS "if=mtd"
2079 #define SD_ALIAS "index=0,if=sd"
2081 static int drive_opt_get_free_idx(void)
2085 for (index = 0; index < MAX_DRIVES; index++)
2086 if (!drives_opt[index].used) {
2087 drives_opt[index].used = 1;
2094 static int drive_get_free_idx(void)
2098 for (index = 0; index < MAX_DRIVES; index++)
2099 if (!drives_table[index].used) {
2100 drives_table[index].used = 1;
2107 int drive_add(const char *file, const char *fmt, ...)
2110 int index = drive_opt_get_free_idx();
2112 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2113 fprintf(stderr, "qemu: too many drives\n");
2117 drives_opt[index].file = file;
2119 vsnprintf(drives_opt[index].opt,
2120 sizeof(drives_opt[0].opt), fmt, ap);
2127 void drive_remove(int index)
2129 drives_opt[index].used = 0;
2133 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2137 /* seek interface, bus and unit */
2139 for (index = 0; index < MAX_DRIVES; index++)
2140 if (drives_table[index].type == type &&
2141 drives_table[index].bus == bus &&
2142 drives_table[index].unit == unit &&
2143 drives_table[index].used)
2149 int drive_get_max_bus(BlockInterfaceType type)
2155 for (index = 0; index < nb_drives; index++) {
2156 if(drives_table[index].type == type &&
2157 drives_table[index].bus > max_bus)
2158 max_bus = drives_table[index].bus;
2163 const char *drive_get_serial(BlockDriverState *bdrv)
2167 for (index = 0; index < nb_drives; index++)
2168 if (drives_table[index].bdrv == bdrv)
2169 return drives_table[index].serial;
2174 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2178 for (index = 0; index < nb_drives; index++)
2179 if (drives_table[index].bdrv == bdrv)
2180 return drives_table[index].onerror;
2182 return BLOCK_ERR_STOP_ENOSPC;
2185 static void bdrv_format_print(void *opaque, const char *name)
2187 fprintf(stderr, " %s", name);
2190 void drive_uninit(BlockDriverState *bdrv)
2194 for (i = 0; i < MAX_DRIVES; i++)
2195 if (drives_table[i].bdrv == bdrv) {
2196 drives_table[i].bdrv = NULL;
2197 drives_table[i].used = 0;
2198 drive_remove(drives_table[i].drive_opt_idx);
2204 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2210 const char *mediastr = "";
2211 BlockInterfaceType type;
2212 enum { MEDIA_DISK, MEDIA_CDROM } media;
2213 int bus_id, unit_id;
2214 int cyls, heads, secs, translation;
2215 BlockDriverState *bdrv;
2216 BlockDriver *drv = NULL;
2217 QEMUMachine *machine = opaque;
2221 int bdrv_flags, onerror;
2222 int drives_table_idx;
2223 char *str = arg->opt;
2224 static const char * const params[] = { "bus", "unit", "if", "index",
2225 "cyls", "heads", "secs", "trans",
2226 "media", "snapshot", "file",
2227 "cache", "format", "serial", "werror",
2230 if (check_params(params, str) < 0) {
2231 fprintf(stderr, "qemu: unknown parameter in '%s'\n", str);
2236 cyls = heads = secs = 0;
2239 translation = BIOS_ATA_TRANSLATION_AUTO;
2243 if (machine->use_scsi) {
2245 max_devs = MAX_SCSI_DEVS;
2246 pstrcpy(devname, sizeof(devname), "scsi");
2249 max_devs = MAX_IDE_DEVS;
2250 pstrcpy(devname, sizeof(devname), "ide");
2254 /* extract parameters */
2256 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2257 bus_id = strtol(buf, NULL, 0);
2259 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2264 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2265 unit_id = strtol(buf, NULL, 0);
2267 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2272 if (get_param_value(buf, sizeof(buf), "if", str)) {
2273 pstrcpy(devname, sizeof(devname), buf);
2274 if (!strcmp(buf, "ide")) {
2276 max_devs = MAX_IDE_DEVS;
2277 } else if (!strcmp(buf, "scsi")) {
2279 max_devs = MAX_SCSI_DEVS;
2280 } else if (!strcmp(buf, "floppy")) {
2283 } else if (!strcmp(buf, "pflash")) {
2286 } else if (!strcmp(buf, "mtd")) {
2289 } else if (!strcmp(buf, "sd")) {
2292 } else if (!strcmp(buf, "virtio")) {
2295 } else if (!strcmp(buf, "xen")) {
2299 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2304 if (get_param_value(buf, sizeof(buf), "index", str)) {
2305 index = strtol(buf, NULL, 0);
2307 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2312 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2313 cyls = strtol(buf, NULL, 0);
2316 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2317 heads = strtol(buf, NULL, 0);
2320 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2321 secs = strtol(buf, NULL, 0);
2324 if (cyls || heads || secs) {
2325 if (cyls < 1 || cyls > 16383) {
2326 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2329 if (heads < 1 || heads > 16) {
2330 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2333 if (secs < 1 || secs > 63) {
2334 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2339 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2342 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2346 if (!strcmp(buf, "none"))
2347 translation = BIOS_ATA_TRANSLATION_NONE;
2348 else if (!strcmp(buf, "lba"))
2349 translation = BIOS_ATA_TRANSLATION_LBA;
2350 else if (!strcmp(buf, "auto"))
2351 translation = BIOS_ATA_TRANSLATION_AUTO;
2353 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2358 if (get_param_value(buf, sizeof(buf), "media", str)) {
2359 if (!strcmp(buf, "disk")) {
2361 } else if (!strcmp(buf, "cdrom")) {
2362 if (cyls || secs || heads) {
2364 "qemu: '%s' invalid physical CHS format\n", str);
2367 media = MEDIA_CDROM;
2369 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2374 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2375 if (!strcmp(buf, "on"))
2377 else if (!strcmp(buf, "off"))
2380 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2385 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2386 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2388 else if (!strcmp(buf, "writethrough"))
2390 else if (!strcmp(buf, "writeback"))
2393 fprintf(stderr, "qemu: invalid cache option\n");
2398 if (get_param_value(buf, sizeof(buf), "format", str)) {
2399 if (strcmp(buf, "?") == 0) {
2400 fprintf(stderr, "qemu: Supported formats:");
2401 bdrv_iterate_format(bdrv_format_print, NULL);
2402 fprintf(stderr, "\n");
2405 drv = bdrv_find_format(buf);
2407 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2412 if (arg->file == NULL)
2413 get_param_value(file, sizeof(file), "file", str);
2415 pstrcpy(file, sizeof(file), arg->file);
2417 if (!get_param_value(serial, sizeof(serial), "serial", str))
2418 memset(serial, 0, sizeof(serial));
2420 onerror = BLOCK_ERR_STOP_ENOSPC;
2421 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2422 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2423 fprintf(stderr, "werror is no supported by this format\n");
2426 if (!strcmp(buf, "ignore"))
2427 onerror = BLOCK_ERR_IGNORE;
2428 else if (!strcmp(buf, "enospc"))
2429 onerror = BLOCK_ERR_STOP_ENOSPC;
2430 else if (!strcmp(buf, "stop"))
2431 onerror = BLOCK_ERR_STOP_ANY;
2432 else if (!strcmp(buf, "report"))
2433 onerror = BLOCK_ERR_REPORT;
2435 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2440 /* compute bus and unit according index */
2443 if (bus_id != 0 || unit_id != -1) {
2445 "qemu: '%s' index cannot be used with bus and unit\n", str);
2453 unit_id = index % max_devs;
2454 bus_id = index / max_devs;
2458 /* if user doesn't specify a unit_id,
2459 * try to find the first free
2462 if (unit_id == -1) {
2464 while (drive_get_index(type, bus_id, unit_id) != -1) {
2466 if (max_devs && unit_id >= max_devs) {
2467 unit_id -= max_devs;
2475 if (max_devs && unit_id >= max_devs) {
2476 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2477 str, unit_id, max_devs - 1);
2482 * ignore multiple definitions
2485 if (drive_get_index(type, bus_id, unit_id) != -1)
2490 if (type == IF_IDE || type == IF_SCSI)
2491 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2493 snprintf(buf, sizeof(buf), "%s%i%s%i",
2494 devname, bus_id, mediastr, unit_id);
2496 snprintf(buf, sizeof(buf), "%s%s%i",
2497 devname, mediastr, unit_id);
2498 bdrv = bdrv_new(buf);
2499 drives_table_idx = drive_get_free_idx();
2500 drives_table[drives_table_idx].bdrv = bdrv;
2501 drives_table[drives_table_idx].type = type;
2502 drives_table[drives_table_idx].bus = bus_id;
2503 drives_table[drives_table_idx].unit = unit_id;
2504 drives_table[drives_table_idx].onerror = onerror;
2505 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2506 strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial));
2516 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2517 bdrv_set_translation_hint(bdrv, translation);
2521 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2526 /* FIXME: This isn't really a floppy, but it's a reasonable
2529 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2542 bdrv_flags |= BDRV_O_SNAPSHOT;
2543 cache = 2; /* always use write-back with snapshot */
2545 if (cache == 0) /* no caching */
2546 bdrv_flags |= BDRV_O_NOCACHE;
2547 else if (cache == 2) /* write-back */
2548 bdrv_flags |= BDRV_O_CACHE_WB;
2549 else if (cache == 3) /* not specified */
2550 bdrv_flags |= BDRV_O_CACHE_DEF;
2551 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2552 fprintf(stderr, "qemu: could not open disk image %s\n",
2556 if (bdrv_key_required(bdrv))
2558 return drives_table_idx;
2561 static void numa_add(const char *optarg)
2565 unsigned long long value, endvalue;
2568 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2569 if (!strcmp(option, "node")) {
2570 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2571 nodenr = nb_numa_nodes;
2573 nodenr = strtoull(option, NULL, 10);
2576 if (get_param_value(option, 128, "mem", optarg) == 0) {
2577 node_mem[nodenr] = 0;
2579 value = strtoull(option, &endptr, 0);
2581 case 0: case 'M': case 'm':
2588 node_mem[nodenr] = value;
2590 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2591 node_cpumask[nodenr] = 0;
2593 value = strtoull(option, &endptr, 10);
2596 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2598 if (*endptr == '-') {
2599 endvalue = strtoull(endptr+1, &endptr, 10);
2600 if (endvalue >= 63) {
2603 "only 63 CPUs in NUMA mode supported.\n");
2605 value = (1 << (endvalue + 1)) - (1 << value);
2610 node_cpumask[nodenr] = value;
2617 /***********************************************************/
2620 static USBPort *used_usb_ports;
2621 static USBPort *free_usb_ports;
2623 /* ??? Maybe change this to register a hub to keep track of the topology. */
2624 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2625 usb_attachfn attach)
2627 port->opaque = opaque;
2628 port->index = index;
2629 port->attach = attach;
2630 port->next = free_usb_ports;
2631 free_usb_ports = port;
2634 int usb_device_add_dev(USBDevice *dev)
2638 /* Find a USB port to add the device to. */
2639 port = free_usb_ports;
2643 /* Create a new hub and chain it on. */
2644 free_usb_ports = NULL;
2645 port->next = used_usb_ports;
2646 used_usb_ports = port;
2648 hub = usb_hub_init(VM_USB_HUB_SIZE);
2649 usb_attach(port, hub);
2650 port = free_usb_ports;
2653 free_usb_ports = port->next;
2654 port->next = used_usb_ports;
2655 used_usb_ports = port;
2656 usb_attach(port, dev);
2660 static void usb_msd_password_cb(void *opaque, int err)
2662 USBDevice *dev = opaque;
2665 usb_device_add_dev(dev);
2667 dev->handle_destroy(dev);
2670 static int usb_device_add(const char *devname, int is_hotplug)
2675 if (!free_usb_ports)
2678 if (strstart(devname, "host:", &p)) {
2679 dev = usb_host_device_open(p);
2680 } else if (!strcmp(devname, "mouse")) {
2681 dev = usb_mouse_init();
2682 } else if (!strcmp(devname, "tablet")) {
2683 dev = usb_tablet_init();
2684 } else if (!strcmp(devname, "keyboard")) {
2685 dev = usb_keyboard_init();
2686 } else if (strstart(devname, "disk:", &p)) {
2687 BlockDriverState *bs;
2689 dev = usb_msd_init(p);
2692 bs = usb_msd_get_bdrv(dev);
2693 if (bdrv_key_required(bs)) {
2696 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2701 } else if (!strcmp(devname, "wacom-tablet")) {
2702 dev = usb_wacom_init();
2703 } else if (strstart(devname, "serial:", &p)) {
2704 dev = usb_serial_init(p);
2705 #ifdef CONFIG_BRLAPI
2706 } else if (!strcmp(devname, "braille")) {
2707 dev = usb_baum_init();
2709 } else if (strstart(devname, "net:", &p)) {
2712 if (net_client_init("nic", p) < 0)
2714 nd_table[nic].model = "usb";
2715 dev = usb_net_init(&nd_table[nic]);
2716 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2717 dev = usb_bt_init(devname[2] ? hci_init(p) :
2718 bt_new_hci(qemu_find_bt_vlan(0)));
2725 return usb_device_add_dev(dev);
2728 int usb_device_del_addr(int bus_num, int addr)
2734 if (!used_usb_ports)
2740 lastp = &used_usb_ports;
2741 port = used_usb_ports;
2742 while (port && port->dev->addr != addr) {
2743 lastp = &port->next;
2751 *lastp = port->next;
2752 usb_attach(port, NULL);
2753 dev->handle_destroy(dev);
2754 port->next = free_usb_ports;
2755 free_usb_ports = port;
2759 static int usb_device_del(const char *devname)
2764 if (strstart(devname, "host:", &p))
2765 return usb_host_device_close(p);
2767 if (!used_usb_ports)
2770 p = strchr(devname, '.');
2773 bus_num = strtoul(devname, NULL, 0);
2774 addr = strtoul(p + 1, NULL, 0);
2776 return usb_device_del_addr(bus_num, addr);
2779 void do_usb_add(Monitor *mon, const char *devname)
2781 usb_device_add(devname, 1);
2784 void do_usb_del(Monitor *mon, const char *devname)
2786 usb_device_del(devname);
2789 void usb_info(Monitor *mon)
2793 const char *speed_str;
2796 monitor_printf(mon, "USB support not enabled\n");
2800 for (port = used_usb_ports; port; port = port->next) {
2804 switch(dev->speed) {
2808 case USB_SPEED_FULL:
2811 case USB_SPEED_HIGH:
2818 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2819 0, dev->addr, speed_str, dev->devname);
2823 /***********************************************************/
2824 /* PCMCIA/Cardbus */
2826 static struct pcmcia_socket_entry_s {
2827 PCMCIASocket *socket;
2828 struct pcmcia_socket_entry_s *next;
2829 } *pcmcia_sockets = 0;
2831 void pcmcia_socket_register(PCMCIASocket *socket)
2833 struct pcmcia_socket_entry_s *entry;
2835 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2836 entry->socket = socket;
2837 entry->next = pcmcia_sockets;
2838 pcmcia_sockets = entry;
2841 void pcmcia_socket_unregister(PCMCIASocket *socket)
2843 struct pcmcia_socket_entry_s *entry, **ptr;
2845 ptr = &pcmcia_sockets;
2846 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2847 if (entry->socket == socket) {
2853 void pcmcia_info(Monitor *mon)
2855 struct pcmcia_socket_entry_s *iter;
2857 if (!pcmcia_sockets)
2858 monitor_printf(mon, "No PCMCIA sockets\n");
2860 for (iter = pcmcia_sockets; iter; iter = iter->next)
2861 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2862 iter->socket->attached ? iter->socket->card_string :
2866 /***********************************************************/
2867 /* register display */
2869 struct DisplayAllocator default_allocator = {
2870 defaultallocator_create_displaysurface,
2871 defaultallocator_resize_displaysurface,
2872 defaultallocator_free_displaysurface
2875 void register_displaystate(DisplayState *ds)
2885 DisplayState *get_displaystate(void)
2887 return display_state;
2890 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2892 if(ds->allocator == &default_allocator) ds->allocator = da;
2893 return ds->allocator;
2898 static void dumb_display_init(void)
2900 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2901 ds->allocator = &default_allocator;
2902 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2903 register_displaystate(ds);
2906 /***********************************************************/
2909 typedef struct IOHandlerRecord {
2911 IOCanRWHandler *fd_read_poll;
2913 IOHandler *fd_write;
2916 /* temporary data */
2918 struct IOHandlerRecord *next;
2921 static IOHandlerRecord *first_io_handler;
2923 /* XXX: fd_read_poll should be suppressed, but an API change is
2924 necessary in the character devices to suppress fd_can_read(). */
2925 int qemu_set_fd_handler2(int fd,
2926 IOCanRWHandler *fd_read_poll,
2928 IOHandler *fd_write,
2931 IOHandlerRecord **pioh, *ioh;
2933 if (!fd_read && !fd_write) {
2934 pioh = &first_io_handler;
2939 if (ioh->fd == fd) {
2946 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2950 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2951 ioh->next = first_io_handler;
2952 first_io_handler = ioh;
2955 ioh->fd_read_poll = fd_read_poll;
2956 ioh->fd_read = fd_read;
2957 ioh->fd_write = fd_write;
2958 ioh->opaque = opaque;
2964 int qemu_set_fd_handler(int fd,
2966 IOHandler *fd_write,
2969 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2973 /***********************************************************/
2974 /* Polling handling */
2976 typedef struct PollingEntry {
2979 struct PollingEntry *next;
2982 static PollingEntry *first_polling_entry;
2984 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2986 PollingEntry **ppe, *pe;
2987 pe = qemu_mallocz(sizeof(PollingEntry));
2989 pe->opaque = opaque;
2990 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2995 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2997 PollingEntry **ppe, *pe;
2998 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
3000 if (pe->func == func && pe->opaque == opaque) {
3008 /***********************************************************/
3009 /* Wait objects support */
3010 typedef struct WaitObjects {
3012 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3013 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3014 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3017 static WaitObjects wait_objects = {0};
3019 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3021 WaitObjects *w = &wait_objects;
3023 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3025 w->events[w->num] = handle;
3026 w->func[w->num] = func;
3027 w->opaque[w->num] = opaque;
3032 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3035 WaitObjects *w = &wait_objects;
3038 for (i = 0; i < w->num; i++) {
3039 if (w->events[i] == handle)
3042 w->events[i] = w->events[i + 1];
3043 w->func[i] = w->func[i + 1];
3044 w->opaque[i] = w->opaque[i + 1];
3052 /***********************************************************/
3053 /* ram save/restore */
3055 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3059 v = qemu_get_byte(f);
3062 if (qemu_get_buffer(f, buf, len) != len)
3066 v = qemu_get_byte(f);
3067 memset(buf, v, len);
3073 if (qemu_file_has_error(f))
3079 static int ram_load_v1(QEMUFile *f, void *opaque)
3084 if (qemu_get_be32(f) != last_ram_offset)
3086 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3087 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3094 #define BDRV_HASH_BLOCK_SIZE 1024
3095 #define IOBUF_SIZE 4096
3096 #define RAM_CBLOCK_MAGIC 0xfabe
3098 typedef struct RamDecompressState {
3101 uint8_t buf[IOBUF_SIZE];
3102 } RamDecompressState;
3104 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3107 memset(s, 0, sizeof(*s));
3109 ret = inflateInit(&s->zstream);
3115 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3119 s->zstream.avail_out = len;
3120 s->zstream.next_out = buf;
3121 while (s->zstream.avail_out > 0) {
3122 if (s->zstream.avail_in == 0) {
3123 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3125 clen = qemu_get_be16(s->f);
3126 if (clen > IOBUF_SIZE)
3128 qemu_get_buffer(s->f, s->buf, clen);
3129 s->zstream.avail_in = clen;
3130 s->zstream.next_in = s->buf;
3132 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3133 if (ret != Z_OK && ret != Z_STREAM_END) {
3140 static void ram_decompress_close(RamDecompressState *s)
3142 inflateEnd(&s->zstream);
3145 #define RAM_SAVE_FLAG_FULL 0x01
3146 #define RAM_SAVE_FLAG_COMPRESS 0x02
3147 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3148 #define RAM_SAVE_FLAG_PAGE 0x08
3149 #define RAM_SAVE_FLAG_EOS 0x10
3151 static int is_dup_page(uint8_t *page, uint8_t ch)
3153 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3154 uint32_t *array = (uint32_t *)page;
3157 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3158 if (array[i] != val)
3165 static int ram_save_block(QEMUFile *f)
3167 static ram_addr_t current_addr = 0;
3168 ram_addr_t saved_addr = current_addr;
3169 ram_addr_t addr = 0;
3172 while (addr < last_ram_offset) {
3173 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3176 cpu_physical_memory_reset_dirty(current_addr,
3177 current_addr + TARGET_PAGE_SIZE,
3178 MIGRATION_DIRTY_FLAG);
3180 p = qemu_get_ram_ptr(current_addr);
3182 if (is_dup_page(p, *p)) {
3183 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3184 qemu_put_byte(f, *p);
3186 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3187 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3193 addr += TARGET_PAGE_SIZE;
3194 current_addr = (saved_addr + addr) % last_ram_offset;
3200 static ram_addr_t ram_save_threshold = 10;
3201 static uint64_t bytes_transferred = 0;
3203 static ram_addr_t ram_save_remaining(void)
3206 ram_addr_t count = 0;
3208 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3209 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3216 uint64_t ram_bytes_remaining(void)
3218 return ram_save_remaining() * TARGET_PAGE_SIZE;
3221 uint64_t ram_bytes_transferred(void)
3223 return bytes_transferred;
3226 uint64_t ram_bytes_total(void)
3228 return last_ram_offset;
3231 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3235 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
3236 qemu_file_set_error(f);
3241 /* Make sure all dirty bits are set */
3242 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3243 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3244 cpu_physical_memory_set_dirty(addr);
3247 /* Enable dirty memory tracking */
3248 cpu_physical_memory_set_dirty_tracking(1);
3250 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3253 while (!qemu_file_rate_limit(f)) {
3256 ret = ram_save_block(f);
3257 bytes_transferred += ret * TARGET_PAGE_SIZE;
3258 if (ret == 0) /* no more blocks */
3262 /* try transferring iterative blocks of memory */
3266 /* flush all remaining blocks regardless of rate limiting */
3267 while (ram_save_block(f) != 0) {
3268 bytes_transferred += TARGET_PAGE_SIZE;
3270 cpu_physical_memory_set_dirty_tracking(0);
3273 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3275 return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3278 static int ram_load_dead(QEMUFile *f, void *opaque)
3280 RamDecompressState s1, *s = &s1;
3284 if (ram_decompress_open(s, f) < 0)
3286 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3287 if (ram_decompress_buf(s, buf, 1) < 0) {
3288 fprintf(stderr, "Error while reading ram block header\n");
3292 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3293 BDRV_HASH_BLOCK_SIZE) < 0) {
3294 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3299 printf("Error block header\n");
3303 ram_decompress_close(s);
3308 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3313 if (version_id == 1)
3314 return ram_load_v1(f, opaque);
3316 if (version_id == 2) {
3317 if (qemu_get_be32(f) != last_ram_offset)
3319 return ram_load_dead(f, opaque);
3322 if (version_id != 3)
3326 addr = qemu_get_be64(f);
3328 flags = addr & ~TARGET_PAGE_MASK;
3329 addr &= TARGET_PAGE_MASK;
3331 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3332 if (addr != last_ram_offset)
3336 if (flags & RAM_SAVE_FLAG_FULL) {
3337 if (ram_load_dead(f, opaque) < 0)
3341 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3342 uint8_t ch = qemu_get_byte(f);
3343 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3344 } else if (flags & RAM_SAVE_FLAG_PAGE)
3345 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3346 } while (!(flags & RAM_SAVE_FLAG_EOS));
3351 void qemu_service_io(void)
3353 qemu_notify_event();
3356 /***********************************************************/
3357 /* bottom halves (can be seen as timers which expire ASAP) */
3368 static QEMUBH *first_bh = NULL;
3370 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3373 bh = qemu_mallocz(sizeof(QEMUBH));
3375 bh->opaque = opaque;
3376 bh->next = first_bh;
3381 int qemu_bh_poll(void)
3387 for (bh = first_bh; bh; bh = bh->next) {
3388 if (!bh->deleted && bh->scheduled) {
3397 /* remove deleted bhs */
3411 void qemu_bh_schedule_idle(QEMUBH *bh)
3419 void qemu_bh_schedule(QEMUBH *bh)
3425 /* stop the currently executing CPU to execute the BH ASAP */
3426 qemu_notify_event();
3429 void qemu_bh_cancel(QEMUBH *bh)
3434 void qemu_bh_delete(QEMUBH *bh)
3440 static void qemu_bh_update_timeout(int *timeout)
3444 for (bh = first_bh; bh; bh = bh->next) {
3445 if (!bh->deleted && bh->scheduled) {
3447 /* idle bottom halves will be polled at least
3449 *timeout = MIN(10, *timeout);
3451 /* non-idle bottom halves will be executed
3460 /***********************************************************/
3461 /* machine registration */
3463 static QEMUMachine *first_machine = NULL;
3464 QEMUMachine *current_machine = NULL;
3466 int qemu_register_machine(QEMUMachine *m)
3469 pm = &first_machine;
3477 static QEMUMachine *find_machine(const char *name)
3481 for(m = first_machine; m != NULL; m = m->next) {
3482 if (!strcmp(m->name, name))
3488 static QEMUMachine *find_default_machine(void)
3492 for(m = first_machine; m != NULL; m = m->next) {
3493 if (m->is_default) {
3500 /***********************************************************/
3501 /* main execution loop */
3503 static void gui_update(void *opaque)
3505 uint64_t interval = GUI_REFRESH_INTERVAL;
3506 DisplayState *ds = opaque;
3507 DisplayChangeListener *dcl = ds->listeners;
3511 while (dcl != NULL) {
3512 if (dcl->gui_timer_interval &&
3513 dcl->gui_timer_interval < interval)
3514 interval = dcl->gui_timer_interval;
3517 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3520 static void nographic_update(void *opaque)
3522 uint64_t interval = GUI_REFRESH_INTERVAL;
3524 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3527 struct vm_change_state_entry {
3528 VMChangeStateHandler *cb;
3530 LIST_ENTRY (vm_change_state_entry) entries;
3533 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3535 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3538 VMChangeStateEntry *e;
3540 e = qemu_mallocz(sizeof (*e));
3544 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3548 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3550 LIST_REMOVE (e, entries);
3554 static void vm_state_notify(int running, int reason)
3556 VMChangeStateEntry *e;
3558 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3559 e->cb(e->opaque, running, reason);
3563 static void resume_all_vcpus(void);
3564 static void pause_all_vcpus(void);
3571 vm_state_notify(1, 0);
3572 qemu_rearm_alarm_timer(alarm_timer);
3577 /* reset/shutdown handler */
3579 typedef struct QEMUResetEntry {
3580 QEMUResetHandler *func;
3583 struct QEMUResetEntry *next;
3586 static QEMUResetEntry *first_reset_entry;
3587 static int reset_requested;
3588 static int shutdown_requested;
3589 static int powerdown_requested;
3590 static int debug_requested;
3591 static int vmstop_requested;
3593 int qemu_shutdown_requested(void)
3595 int r = shutdown_requested;
3596 shutdown_requested = 0;
3600 int qemu_reset_requested(void)
3602 int r = reset_requested;
3603 reset_requested = 0;
3607 int qemu_powerdown_requested(void)
3609 int r = powerdown_requested;
3610 powerdown_requested = 0;
3614 static int qemu_debug_requested(void)
3616 int r = debug_requested;
3617 debug_requested = 0;
3621 static int qemu_vmstop_requested(void)
3623 int r = vmstop_requested;
3624 vmstop_requested = 0;
3628 static void do_vm_stop(int reason)
3631 cpu_disable_ticks();
3634 vm_state_notify(0, reason);
3638 void qemu_register_reset(QEMUResetHandler *func, int order, void *opaque)
3640 QEMUResetEntry **pre, *re;
3642 pre = &first_reset_entry;
3643 while (*pre != NULL && (*pre)->order >= order) {
3644 pre = &(*pre)->next;
3646 re = qemu_mallocz(sizeof(QEMUResetEntry));
3648 re->opaque = opaque;
3654 void qemu_system_reset(void)
3658 /* reset all devices */
3659 for(re = first_reset_entry; re != NULL; re = re->next) {
3660 re->func(re->opaque);
3664 void qemu_system_reset_request(void)
3667 shutdown_requested = 1;
3669 reset_requested = 1;
3671 qemu_notify_event();
3674 void qemu_system_shutdown_request(void)
3676 shutdown_requested = 1;
3677 qemu_notify_event();
3680 void qemu_system_powerdown_request(void)
3682 powerdown_requested = 1;
3683 qemu_notify_event();
3686 #ifdef CONFIG_IOTHREAD
3687 static void qemu_system_vmstop_request(int reason)
3689 vmstop_requested = reason;
3690 qemu_notify_event();
3695 static int io_thread_fd = -1;
3697 static void qemu_event_increment(void)
3699 static const char byte = 0;
3701 if (io_thread_fd == -1)
3704 write(io_thread_fd, &byte, sizeof(byte));
3707 static void qemu_event_read(void *opaque)
3709 int fd = (unsigned long)opaque;
3712 /* Drain the notify pipe */
3715 len = read(fd, buffer, sizeof(buffer));
3716 } while ((len == -1 && errno == EINTR) || len > 0);
3719 static int qemu_event_init(void)
3728 err = fcntl_setfl(fds[0], O_NONBLOCK);
3732 err = fcntl_setfl(fds[1], O_NONBLOCK);
3736 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3737 (void *)(unsigned long)fds[0]);
3739 io_thread_fd = fds[1];
3748 HANDLE qemu_event_handle;
3750 static void dummy_event_handler(void *opaque)
3754 static int qemu_event_init(void)
3756 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3757 if (!qemu_event_handle) {
3758 perror("Failed CreateEvent");
3761 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3765 static void qemu_event_increment(void)
3767 SetEvent(qemu_event_handle);
3771 static int cpu_can_run(CPUState *env)
3780 #ifndef CONFIG_IOTHREAD
3781 static int qemu_init_main_loop(void)
3783 return qemu_event_init();
3786 void qemu_init_vcpu(void *_env)
3788 CPUState *env = _env;
3795 int qemu_cpu_self(void *env)
3800 static void resume_all_vcpus(void)
3804 static void pause_all_vcpus(void)
3808 void qemu_cpu_kick(void *env)
3813 void qemu_notify_event(void)
3815 CPUState *env = cpu_single_env;
3820 if (env->kqemu_enabled)
3821 kqemu_cpu_interrupt(env);
3826 #define qemu_mutex_lock_iothread() do { } while (0)
3827 #define qemu_mutex_unlock_iothread() do { } while (0)
3829 void vm_stop(int reason)
3834 #else /* CONFIG_IOTHREAD */
3836 #include "qemu-thread.h"
3838 QemuMutex qemu_global_mutex;
3839 static QemuMutex qemu_fair_mutex;
3841 static QemuThread io_thread;
3843 static QemuThread *tcg_cpu_thread;
3844 static QemuCond *tcg_halt_cond;
3846 static int qemu_system_ready;
3848 static QemuCond qemu_cpu_cond;
3850 static QemuCond qemu_system_cond;
3851 static QemuCond qemu_pause_cond;
3853 static void block_io_signals(void);
3854 static void unblock_io_signals(void);
3855 static int tcg_has_work(void);
3857 static int qemu_init_main_loop(void)
3861 ret = qemu_event_init();
3865 qemu_cond_init(&qemu_pause_cond);
3866 qemu_mutex_init(&qemu_fair_mutex);
3867 qemu_mutex_init(&qemu_global_mutex);
3868 qemu_mutex_lock(&qemu_global_mutex);
3870 unblock_io_signals();
3871 qemu_thread_self(&io_thread);
3876 static void qemu_wait_io_event(CPUState *env)
3878 while (!tcg_has_work())
3879 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3881 qemu_mutex_unlock(&qemu_global_mutex);
3884 * Users of qemu_global_mutex can be starved, having no chance
3885 * to acquire it since this path will get to it first.
3886 * So use another lock to provide fairness.
3888 qemu_mutex_lock(&qemu_fair_mutex);
3889 qemu_mutex_unlock(&qemu_fair_mutex);
3891 qemu_mutex_lock(&qemu_global_mutex);
3895 qemu_cond_signal(&qemu_pause_cond);
3899 static int qemu_cpu_exec(CPUState *env);
3901 static void *kvm_cpu_thread_fn(void *arg)
3903 CPUState *env = arg;
3906 qemu_thread_self(env->thread);
3908 /* signal CPU creation */
3909 qemu_mutex_lock(&qemu_global_mutex);
3911 qemu_cond_signal(&qemu_cpu_cond);
3913 /* and wait for machine initialization */
3914 while (!qemu_system_ready)
3915 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3918 if (cpu_can_run(env))
3920 qemu_wait_io_event(env);
3926 static void tcg_cpu_exec(void);
3928 static void *tcg_cpu_thread_fn(void *arg)
3930 CPUState *env = arg;
3933 qemu_thread_self(env->thread);
3935 /* signal CPU creation */
3936 qemu_mutex_lock(&qemu_global_mutex);
3937 for (env = first_cpu; env != NULL; env = env->next_cpu)
3939 qemu_cond_signal(&qemu_cpu_cond);
3941 /* and wait for machine initialization */
3942 while (!qemu_system_ready)
3943 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3947 qemu_wait_io_event(cur_cpu);
3953 void qemu_cpu_kick(void *_env)
3955 CPUState *env = _env;
3956 qemu_cond_broadcast(env->halt_cond);
3958 qemu_thread_signal(env->thread, SIGUSR1);
3961 int qemu_cpu_self(void *env)
3963 return (cpu_single_env != NULL);
3966 static void cpu_signal(int sig)
3969 cpu_exit(cpu_single_env);
3972 static void block_io_signals(void)
3975 struct sigaction sigact;
3978 sigaddset(&set, SIGUSR2);
3979 sigaddset(&set, SIGIO);
3980 sigaddset(&set, SIGALRM);
3981 pthread_sigmask(SIG_BLOCK, &set, NULL);
3984 sigaddset(&set, SIGUSR1);
3985 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3987 memset(&sigact, 0, sizeof(sigact));
3988 sigact.sa_handler = cpu_signal;
3989 sigaction(SIGUSR1, &sigact, NULL);
3992 static void unblock_io_signals(void)
3997 sigaddset(&set, SIGUSR2);
3998 sigaddset(&set, SIGIO);
3999 sigaddset(&set, SIGALRM);
4000 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
4003 sigaddset(&set, SIGUSR1);
4004 pthread_sigmask(SIG_BLOCK, &set, NULL);
4007 static void qemu_signal_lock(unsigned int msecs)
4009 qemu_mutex_lock(&qemu_fair_mutex);
4011 while (qemu_mutex_trylock(&qemu_global_mutex)) {
4012 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
4013 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
4016 qemu_mutex_unlock(&qemu_fair_mutex);
4019 static void qemu_mutex_lock_iothread(void)
4021 if (kvm_enabled()) {
4022 qemu_mutex_lock(&qemu_fair_mutex);
4023 qemu_mutex_lock(&qemu_global_mutex);
4024 qemu_mutex_unlock(&qemu_fair_mutex);
4026 qemu_signal_lock(100);
4029 static void qemu_mutex_unlock_iothread(void)
4031 qemu_mutex_unlock(&qemu_global_mutex);
4034 static int all_vcpus_paused(void)
4036 CPUState *penv = first_cpu;
4041 penv = (CPUState *)penv->next_cpu;
4047 static void pause_all_vcpus(void)
4049 CPUState *penv = first_cpu;
4053 qemu_thread_signal(penv->thread, SIGUSR1);
4054 qemu_cpu_kick(penv);
4055 penv = (CPUState *)penv->next_cpu;
4058 while (!all_vcpus_paused()) {
4059 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
4062 qemu_thread_signal(penv->thread, SIGUSR1);
4063 penv = (CPUState *)penv->next_cpu;
4068 static void resume_all_vcpus(void)
4070 CPUState *penv = first_cpu;
4075 qemu_thread_signal(penv->thread, SIGUSR1);
4076 qemu_cpu_kick(penv);
4077 penv = (CPUState *)penv->next_cpu;
4081 static void tcg_init_vcpu(void *_env)
4083 CPUState *env = _env;
4084 /* share a single thread for all cpus with TCG */
4085 if (!tcg_cpu_thread) {
4086 env->thread = qemu_mallocz(sizeof(QemuThread));
4087 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4088 qemu_cond_init(env->halt_cond);
4089 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
4090 while (env->created == 0)
4091 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4092 tcg_cpu_thread = env->thread;
4093 tcg_halt_cond = env->halt_cond;
4095 env->thread = tcg_cpu_thread;
4096 env->halt_cond = tcg_halt_cond;
4100 static void kvm_start_vcpu(CPUState *env)
4103 env->thread = qemu_mallocz(sizeof(QemuThread));
4104 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4105 qemu_cond_init(env->halt_cond);
4106 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
4107 while (env->created == 0)
4108 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4111 void qemu_init_vcpu(void *_env)
4113 CPUState *env = _env;
4116 kvm_start_vcpu(env);
4121 void qemu_notify_event(void)
4123 qemu_event_increment();
4126 void vm_stop(int reason)
4129 qemu_thread_self(&me);
4131 if (!qemu_thread_equal(&me, &io_thread)) {
4132 qemu_system_vmstop_request(reason);
4134 * FIXME: should not return to device code in case
4135 * vm_stop() has been requested.
4137 if (cpu_single_env) {
4138 cpu_exit(cpu_single_env);
4139 cpu_single_env->stop = 1;
4150 static void host_main_loop_wait(int *timeout)
4156 /* XXX: need to suppress polling by better using win32 events */
4158 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4159 ret |= pe->func(pe->opaque);
4163 WaitObjects *w = &wait_objects;
4165 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4166 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4167 if (w->func[ret - WAIT_OBJECT_0])
4168 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4170 /* Check for additional signaled events */
4171 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4173 /* Check if event is signaled */
4174 ret2 = WaitForSingleObject(w->events[i], 0);
4175 if(ret2 == WAIT_OBJECT_0) {
4177 w->func[i](w->opaque[i]);
4178 } else if (ret2 == WAIT_TIMEOUT) {
4180 err = GetLastError();
4181 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4184 } else if (ret == WAIT_TIMEOUT) {
4186 err = GetLastError();
4187 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4194 static void host_main_loop_wait(int *timeout)
4199 void main_loop_wait(int timeout)
4201 IOHandlerRecord *ioh;
4202 fd_set rfds, wfds, xfds;
4206 qemu_bh_update_timeout(&timeout);
4208 host_main_loop_wait(&timeout);
4210 /* poll any events */
4211 /* XXX: separate device handlers from system ones */
4216 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4220 (!ioh->fd_read_poll ||
4221 ioh->fd_read_poll(ioh->opaque) != 0)) {
4222 FD_SET(ioh->fd, &rfds);
4226 if (ioh->fd_write) {
4227 FD_SET(ioh->fd, &wfds);
4233 tv.tv_sec = timeout / 1000;
4234 tv.tv_usec = (timeout % 1000) * 1000;
4236 #if defined(CONFIG_SLIRP)
4237 if (slirp_is_inited()) {
4238 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4241 qemu_mutex_unlock_iothread();
4242 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4243 qemu_mutex_lock_iothread();
4245 IOHandlerRecord **pioh;
4247 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4248 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4249 ioh->fd_read(ioh->opaque);
4251 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4252 ioh->fd_write(ioh->opaque);
4256 /* remove deleted IO handlers */
4257 pioh = &first_io_handler;
4267 #if defined(CONFIG_SLIRP)
4268 if (slirp_is_inited()) {
4274 slirp_select_poll(&rfds, &wfds, &xfds);
4278 /* rearm timer, if not periodic */
4279 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4280 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4281 qemu_rearm_alarm_timer(alarm_timer);
4284 /* vm time timers */
4286 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4287 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4288 qemu_get_clock(vm_clock));
4291 /* real time timers */
4292 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4293 qemu_get_clock(rt_clock));
4295 /* Check bottom-halves last in case any of the earlier events triggered
4301 static int qemu_cpu_exec(CPUState *env)
4304 #ifdef CONFIG_PROFILER
4308 #ifdef CONFIG_PROFILER
4309 ti = profile_getclock();
4314 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4315 env->icount_decr.u16.low = 0;
4316 env->icount_extra = 0;
4317 count = qemu_next_deadline();
4318 count = (count + (1 << icount_time_shift) - 1)
4319 >> icount_time_shift;
4320 qemu_icount += count;
4321 decr = (count > 0xffff) ? 0xffff : count;
4323 env->icount_decr.u16.low = decr;
4324 env->icount_extra = count;
4326 ret = cpu_exec(env);
4327 #ifdef CONFIG_PROFILER
4328 qemu_time += profile_getclock() - ti;
4331 /* Fold pending instructions back into the
4332 instruction counter, and clear the interrupt flag. */
4333 qemu_icount -= (env->icount_decr.u16.low
4334 + env->icount_extra);
4335 env->icount_decr.u32 = 0;
4336 env->icount_extra = 0;
4341 static void tcg_cpu_exec(void)
4345 if (next_cpu == NULL)
4346 next_cpu = first_cpu;
4347 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4348 CPUState *env = cur_cpu = next_cpu;
4352 if (timer_alarm_pending) {
4353 timer_alarm_pending = 0;
4356 if (cpu_can_run(env))
4357 ret = qemu_cpu_exec(env);
4358 if (ret == EXCP_DEBUG) {
4359 gdb_set_stop_cpu(env);
4360 debug_requested = 1;
4366 static int cpu_has_work(CPUState *env)
4374 if (qemu_cpu_has_work(env))
4379 static int tcg_has_work(void)
4383 for (env = first_cpu; env != NULL; env = env->next_cpu)
4384 if (cpu_has_work(env))
4389 static int qemu_calculate_timeout(void)
4395 else if (tcg_has_work())
4397 else if (!use_icount)
4400 /* XXX: use timeout computed from timers */
4403 /* Advance virtual time to the next event. */
4404 if (use_icount == 1) {
4405 /* When not using an adaptive execution frequency
4406 we tend to get badly out of sync with real time,
4407 so just delay for a reasonable amount of time. */
4410 delta = cpu_get_icount() - cpu_get_clock();
4413 /* If virtual time is ahead of real time then just
4415 timeout = (delta / 1000000) + 1;
4417 /* Wait for either IO to occur or the next
4419 add = qemu_next_deadline();
4420 /* We advance the timer before checking for IO.
4421 Limit the amount we advance so that early IO
4422 activity won't get the guest too far ahead. */
4426 add = (add + (1 << icount_time_shift) - 1)
4427 >> icount_time_shift;
4429 timeout = delta / 1000000;
4438 static int vm_can_run(void)
4440 if (powerdown_requested)
4442 if (reset_requested)
4444 if (shutdown_requested)
4446 if (debug_requested)
4451 static void main_loop(void)
4455 #ifdef CONFIG_IOTHREAD
4456 qemu_system_ready = 1;
4457 qemu_cond_broadcast(&qemu_system_cond);
4462 #ifdef CONFIG_PROFILER
4465 #ifndef CONFIG_IOTHREAD
4468 #ifdef CONFIG_PROFILER
4469 ti = profile_getclock();
4471 #ifdef CONFIG_IOTHREAD
4472 main_loop_wait(1000);
4474 main_loop_wait(qemu_calculate_timeout());
4476 #ifdef CONFIG_PROFILER
4477 dev_time += profile_getclock() - ti;
4479 } while (vm_can_run());
4481 if (qemu_debug_requested())
4482 vm_stop(EXCP_DEBUG);
4483 if (qemu_shutdown_requested()) {
4490 if (qemu_reset_requested()) {
4492 qemu_system_reset();
4495 if (qemu_powerdown_requested())
4496 qemu_system_powerdown();
4497 if ((r = qemu_vmstop_requested()))
4503 static void version(void)
4505 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4508 static void help(int exitcode)
4511 printf("usage: %s [options] [disk_image]\n"
4513 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4515 #define DEF(option, opt_arg, opt_enum, opt_help) \
4517 #define DEFHEADING(text) stringify(text) "\n"
4518 #include "qemu-options.h"
4523 "During emulation, the following keys are useful:\n"
4524 "ctrl-alt-f toggle full screen\n"
4525 "ctrl-alt-n switch to virtual console 'n'\n"
4526 "ctrl-alt toggle mouse and keyboard grab\n"
4528 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4533 DEFAULT_NETWORK_SCRIPT,
4534 DEFAULT_NETWORK_DOWN_SCRIPT,
4536 DEFAULT_GDBSTUB_PORT,
4541 #define HAS_ARG 0x0001
4544 #define DEF(option, opt_arg, opt_enum, opt_help) \
4546 #define DEFHEADING(text)
4547 #include "qemu-options.h"
4553 typedef struct QEMUOption {
4559 static const QEMUOption qemu_options[] = {
4560 { "h", 0, QEMU_OPTION_h },
4561 #define DEF(option, opt_arg, opt_enum, opt_help) \
4562 { option, opt_arg, opt_enum },
4563 #define DEFHEADING(text)
4564 #include "qemu-options.h"
4572 struct soundhw soundhw[] = {
4573 #ifdef HAS_AUDIO_CHOICE
4574 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4580 { .init_isa = pcspk_audio_init }
4587 "Creative Sound Blaster 16",
4590 { .init_isa = SB16_init }
4594 #ifdef CONFIG_CS4231A
4600 { .init_isa = cs4231a_init }
4608 "Yamaha YMF262 (OPL3)",
4610 "Yamaha YM3812 (OPL2)",
4614 { .init_isa = Adlib_init }
4621 "Gravis Ultrasound GF1",
4624 { .init_isa = GUS_init }
4631 "Intel 82801AA AC97 Audio",
4634 { .init_pci = ac97_init }
4638 #ifdef CONFIG_ES1370
4641 "ENSONIQ AudioPCI ES1370",
4644 { .init_pci = es1370_init }
4648 #endif /* HAS_AUDIO_CHOICE */
4650 { NULL, NULL, 0, 0, { NULL } }
4653 static void select_soundhw (const char *optarg)
4657 if (*optarg == '?') {
4660 printf ("Valid sound card names (comma separated):\n");
4661 for (c = soundhw; c->name; ++c) {
4662 printf ("%-11s %s\n", c->name, c->descr);
4664 printf ("\n-soundhw all will enable all of the above\n");
4665 exit (*optarg != '?');
4673 if (!strcmp (optarg, "all")) {
4674 for (c = soundhw; c->name; ++c) {
4682 e = strchr (p, ',');
4683 l = !e ? strlen (p) : (size_t) (e - p);
4685 for (c = soundhw; c->name; ++c) {
4686 if (!strncmp (c->name, p, l)) {
4695 "Unknown sound card name (too big to show)\n");
4698 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4703 p += l + (e != NULL);
4707 goto show_valid_cards;
4712 static void select_vgahw (const char *p)
4716 cirrus_vga_enabled = 0;
4717 std_vga_enabled = 0;
4720 if (strstart(p, "std", &opts)) {
4721 std_vga_enabled = 1;
4722 } else if (strstart(p, "cirrus", &opts)) {
4723 cirrus_vga_enabled = 1;
4724 } else if (strstart(p, "vmware", &opts)) {
4726 } else if (strstart(p, "xenfb", &opts)) {
4728 } else if (!strstart(p, "none", &opts)) {
4730 fprintf(stderr, "Unknown vga type: %s\n", p);
4734 const char *nextopt;
4736 if (strstart(opts, ",retrace=", &nextopt)) {
4738 if (strstart(opts, "dumb", &nextopt))
4739 vga_retrace_method = VGA_RETRACE_DUMB;
4740 else if (strstart(opts, "precise", &nextopt))
4741 vga_retrace_method = VGA_RETRACE_PRECISE;
4742 else goto invalid_vga;
4743 } else goto invalid_vga;
4749 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4751 exit(STATUS_CONTROL_C_EXIT);
4756 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4760 if(strlen(str) != 36)
4763 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4764 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4765 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4771 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4777 #define MAX_NET_CLIENTS 32
4781 static void termsig_handler(int signal)
4783 qemu_system_shutdown_request();
4786 static void termsig_setup(void)
4788 struct sigaction act;
4790 memset(&act, 0, sizeof(act));
4791 act.sa_handler = termsig_handler;
4792 sigaction(SIGINT, &act, NULL);
4793 sigaction(SIGHUP, &act, NULL);
4794 sigaction(SIGTERM, &act, NULL);
4800 /* Look for support files in the same directory as the executable. */
4801 static char *find_datadir(const char *argv0)
4807 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4814 while (p != buf && *p != '\\')
4817 if (access(buf, R_OK) == 0) {
4818 return qemu_strdup(buf);
4824 /* Find a likely location for support files using the location of the binary.
4825 For installed binaries this will be "$bindir/../share/qemu". When
4826 running from the build tree this will be "$bindir/../pc-bios". */
4827 #define SHARE_SUFFIX "/share/qemu"
4828 #define BUILD_SUFFIX "/pc-bios"
4829 static char *find_datadir(const char *argv0)
4839 #if defined(__linux__)
4842 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4848 #elif defined(__FreeBSD__)
4851 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4858 /* If we don't have any way of figuring out the actual executable
4859 location then try argv[0]. */
4864 p = realpath(argv0, p);
4872 max_len = strlen(dir) +
4873 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4874 res = qemu_mallocz(max_len);
4875 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4876 if (access(res, R_OK)) {
4877 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4878 if (access(res, R_OK)) {
4892 char *qemu_find_file(int type, const char *name)
4898 /* If name contains path separators then try it as a straight path. */
4899 if ((strchr(name, '/') || strchr(name, '\\'))
4900 && access(name, R_OK) == 0) {
4901 return strdup(name);
4904 case QEMU_FILE_TYPE_BIOS:
4907 case QEMU_FILE_TYPE_KEYMAP:
4908 subdir = "keymaps/";
4913 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4914 buf = qemu_mallocz(len);
4915 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4916 if (access(buf, R_OK)) {
4923 int main(int argc, char **argv, char **envp)
4925 const char *gdbstub_dev = NULL;
4926 uint32_t boot_devices_bitmap = 0;
4928 int snapshot, linux_boot, net_boot;
4929 const char *initrd_filename;
4930 const char *kernel_filename, *kernel_cmdline;
4931 const char *boot_devices = "";
4933 DisplayChangeListener *dcl;
4934 int cyls, heads, secs, translation;
4935 const char *net_clients[MAX_NET_CLIENTS];
4937 const char *bt_opts[MAX_BT_CMDLINE];
4941 const char *r, *optarg;
4942 CharDriverState *monitor_hd = NULL;
4943 const char *monitor_device;
4944 const char *serial_devices[MAX_SERIAL_PORTS];
4945 int serial_device_index;
4946 const char *parallel_devices[MAX_PARALLEL_PORTS];
4947 int parallel_device_index;
4948 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4949 int virtio_console_index;
4950 const char *loadvm = NULL;
4951 QEMUMachine *machine;
4952 const char *cpu_model;
4953 const char *usb_devices[MAX_USB_CMDLINE];
4954 int usb_devices_index;
4959 const char *pid_file = NULL;
4960 const char *incoming = NULL;
4963 struct passwd *pwd = NULL;
4964 const char *chroot_dir = NULL;
4965 const char *run_as = NULL;
4968 int show_vnc_port = 0;
4970 qemu_cache_utils_init(envp);
4972 LIST_INIT (&vm_change_state_head);
4975 struct sigaction act;
4976 sigfillset(&act.sa_mask);
4978 act.sa_handler = SIG_IGN;
4979 sigaction(SIGPIPE, &act, NULL);
4982 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4983 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4984 QEMU to run on a single CPU */
4989 h = GetCurrentProcess();
4990 if (GetProcessAffinityMask(h, &mask, &smask)) {
4991 for(i = 0; i < 32; i++) {
4992 if (mask & (1 << i))
4997 SetProcessAffinityMask(h, mask);
5003 module_call_init(MODULE_INIT_MACHINE);
5004 machine = find_default_machine();
5006 initrd_filename = NULL;
5009 kernel_filename = NULL;
5010 kernel_cmdline = "";
5011 cyls = heads = secs = 0;
5012 translation = BIOS_ATA_TRANSLATION_AUTO;
5013 monitor_device = "vc:80Cx24C";
5015 serial_devices[0] = "vc:80Cx24C";
5016 for(i = 1; i < MAX_SERIAL_PORTS; i++)
5017 serial_devices[i] = NULL;
5018 serial_device_index = 0;
5020 parallel_devices[0] = "vc:80Cx24C";
5021 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
5022 parallel_devices[i] = NULL;
5023 parallel_device_index = 0;
5025 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
5026 virtio_consoles[i] = NULL;
5027 virtio_console_index = 0;
5029 for (i = 0; i < MAX_NODES; i++) {
5031 node_cpumask[i] = 0;
5034 usb_devices_index = 0;
5048 register_watchdogs();
5056 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
5058 const QEMUOption *popt;
5061 /* Treat --foo the same as -foo. */
5064 popt = qemu_options;
5067 fprintf(stderr, "%s: invalid option -- '%s'\n",
5071 if (!strcmp(popt->name, r + 1))
5075 if (popt->flags & HAS_ARG) {
5076 if (optind >= argc) {
5077 fprintf(stderr, "%s: option '%s' requires an argument\n",
5081 optarg = argv[optind++];
5086 switch(popt->index) {
5088 machine = find_machine(optarg);
5091 printf("Supported machines are:\n");
5092 for(m = first_machine; m != NULL; m = m->next) {
5093 printf("%-10s %s%s\n",
5095 m->is_default ? " (default)" : "");
5097 exit(*optarg != '?');
5100 case QEMU_OPTION_cpu:
5101 /* hw initialization will check this */
5102 if (*optarg == '?') {
5103 /* XXX: implement xxx_cpu_list for targets that still miss it */
5104 #if defined(cpu_list)
5105 cpu_list(stdout, &fprintf);
5112 case QEMU_OPTION_initrd:
5113 initrd_filename = optarg;
5115 case QEMU_OPTION_hda:
5117 hda_index = drive_add(optarg, HD_ALIAS, 0);
5119 hda_index = drive_add(optarg, HD_ALIAS
5120 ",cyls=%d,heads=%d,secs=%d%s",
5121 0, cyls, heads, secs,
5122 translation == BIOS_ATA_TRANSLATION_LBA ?
5124 translation == BIOS_ATA_TRANSLATION_NONE ?
5125 ",trans=none" : "");
5127 case QEMU_OPTION_hdb:
5128 case QEMU_OPTION_hdc:
5129 case QEMU_OPTION_hdd:
5130 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5132 case QEMU_OPTION_drive:
5133 drive_add(NULL, "%s", optarg);
5135 case QEMU_OPTION_mtdblock:
5136 drive_add(optarg, MTD_ALIAS);
5138 case QEMU_OPTION_sd:
5139 drive_add(optarg, SD_ALIAS);
5141 case QEMU_OPTION_pflash:
5142 drive_add(optarg, PFLASH_ALIAS);
5144 case QEMU_OPTION_snapshot:
5147 case QEMU_OPTION_hdachs:
5151 cyls = strtol(p, (char **)&p, 0);
5152 if (cyls < 1 || cyls > 16383)
5157 heads = strtol(p, (char **)&p, 0);
5158 if (heads < 1 || heads > 16)
5163 secs = strtol(p, (char **)&p, 0);
5164 if (secs < 1 || secs > 63)
5168 if (!strcmp(p, "none"))
5169 translation = BIOS_ATA_TRANSLATION_NONE;
5170 else if (!strcmp(p, "lba"))
5171 translation = BIOS_ATA_TRANSLATION_LBA;
5172 else if (!strcmp(p, "auto"))
5173 translation = BIOS_ATA_TRANSLATION_AUTO;
5176 } else if (*p != '\0') {
5178 fprintf(stderr, "qemu: invalid physical CHS format\n");
5181 if (hda_index != -1)
5182 snprintf(drives_opt[hda_index].opt,
5183 sizeof(drives_opt[hda_index].opt),
5184 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5185 0, cyls, heads, secs,
5186 translation == BIOS_ATA_TRANSLATION_LBA ?
5188 translation == BIOS_ATA_TRANSLATION_NONE ?
5189 ",trans=none" : "");
5192 case QEMU_OPTION_numa:
5193 if (nb_numa_nodes >= MAX_NODES) {
5194 fprintf(stderr, "qemu: too many NUMA nodes\n");
5199 case QEMU_OPTION_nographic:
5200 display_type = DT_NOGRAPHIC;
5202 #ifdef CONFIG_CURSES
5203 case QEMU_OPTION_curses:
5204 display_type = DT_CURSES;
5207 case QEMU_OPTION_portrait:
5210 case QEMU_OPTION_kernel:
5211 kernel_filename = optarg;
5213 case QEMU_OPTION_append:
5214 kernel_cmdline = optarg;
5216 case QEMU_OPTION_cdrom:
5217 drive_add(optarg, CDROM_ALIAS);
5219 case QEMU_OPTION_boot:
5220 boot_devices = optarg;
5221 /* We just do some generic consistency checks */
5223 /* Could easily be extended to 64 devices if needed */
5226 boot_devices_bitmap = 0;
5227 for (p = boot_devices; *p != '\0'; p++) {
5228 /* Allowed boot devices are:
5229 * a b : floppy disk drives
5230 * c ... f : IDE disk drives
5231 * g ... m : machine implementation dependant drives
5232 * n ... p : network devices
5233 * It's up to each machine implementation to check
5234 * if the given boot devices match the actual hardware
5235 * implementation and firmware features.
5237 if (*p < 'a' || *p > 'q') {
5238 fprintf(stderr, "Invalid boot device '%c'\n", *p);
5241 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
5243 "Boot device '%c' was given twice\n",*p);
5246 boot_devices_bitmap |= 1 << (*p - 'a');
5250 case QEMU_OPTION_fda:
5251 case QEMU_OPTION_fdb:
5252 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5255 case QEMU_OPTION_no_fd_bootchk:
5259 case QEMU_OPTION_net:
5260 if (nb_net_clients >= MAX_NET_CLIENTS) {
5261 fprintf(stderr, "qemu: too many network clients\n");
5264 net_clients[nb_net_clients] = optarg;
5268 case QEMU_OPTION_tftp:
5269 tftp_prefix = optarg;
5271 case QEMU_OPTION_bootp:
5272 bootp_filename = optarg;
5275 case QEMU_OPTION_smb:
5276 net_slirp_smb(optarg);
5279 case QEMU_OPTION_redir:
5280 net_slirp_redir(NULL, optarg, NULL);
5283 case QEMU_OPTION_bt:
5284 if (nb_bt_opts >= MAX_BT_CMDLINE) {
5285 fprintf(stderr, "qemu: too many bluetooth options\n");
5288 bt_opts[nb_bt_opts++] = optarg;
5291 case QEMU_OPTION_audio_help:
5295 case QEMU_OPTION_soundhw:
5296 select_soundhw (optarg);
5302 case QEMU_OPTION_version:
5306 case QEMU_OPTION_m: {
5310 value = strtoul(optarg, &ptr, 10);
5312 case 0: case 'M': case 'm':
5319 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5323 /* On 32-bit hosts, QEMU is limited by virtual address space */
5324 if (value > (2047 << 20)
5325 #ifndef CONFIG_KQEMU
5326 && HOST_LONG_BITS == 32
5329 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5332 if (value != (uint64_t)(ram_addr_t)value) {
5333 fprintf(stderr, "qemu: ram size too large\n");
5342 const CPULogItem *item;
5344 mask = cpu_str_to_log_mask(optarg);
5346 printf("Log items (comma separated):\n");
5347 for(item = cpu_log_items; item->mask != 0; item++) {
5348 printf("%-10s %s\n", item->name, item->help);
5356 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5358 case QEMU_OPTION_gdb:
5359 gdbstub_dev = optarg;
5364 case QEMU_OPTION_bios:
5367 case QEMU_OPTION_singlestep:
5375 keyboard_layout = optarg;
5378 case QEMU_OPTION_localtime:
5381 case QEMU_OPTION_vga:
5382 select_vgahw (optarg);
5384 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5390 w = strtol(p, (char **)&p, 10);
5393 fprintf(stderr, "qemu: invalid resolution or depth\n");
5399 h = strtol(p, (char **)&p, 10);
5404 depth = strtol(p, (char **)&p, 10);
5405 if (depth != 8 && depth != 15 && depth != 16 &&
5406 depth != 24 && depth != 32)
5408 } else if (*p == '\0') {
5409 depth = graphic_depth;
5416 graphic_depth = depth;
5420 case QEMU_OPTION_echr:
5423 term_escape_char = strtol(optarg, &r, 0);
5425 printf("Bad argument to echr\n");
5428 case QEMU_OPTION_monitor:
5429 monitor_device = optarg;
5431 case QEMU_OPTION_serial:
5432 if (serial_device_index >= MAX_SERIAL_PORTS) {
5433 fprintf(stderr, "qemu: too many serial ports\n");
5436 serial_devices[serial_device_index] = optarg;
5437 serial_device_index++;
5439 case QEMU_OPTION_watchdog:
5440 i = select_watchdog(optarg);
5442 exit (i == 1 ? 1 : 0);
5444 case QEMU_OPTION_watchdog_action:
5445 if (select_watchdog_action(optarg) == -1) {
5446 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5450 case QEMU_OPTION_virtiocon:
5451 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5452 fprintf(stderr, "qemu: too many virtio consoles\n");
5455 virtio_consoles[virtio_console_index] = optarg;
5456 virtio_console_index++;
5458 case QEMU_OPTION_parallel:
5459 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5460 fprintf(stderr, "qemu: too many parallel ports\n");
5463 parallel_devices[parallel_device_index] = optarg;
5464 parallel_device_index++;
5466 case QEMU_OPTION_loadvm:
5469 case QEMU_OPTION_full_screen:
5473 case QEMU_OPTION_no_frame:
5476 case QEMU_OPTION_alt_grab:
5479 case QEMU_OPTION_no_quit:
5482 case QEMU_OPTION_sdl:
5483 display_type = DT_SDL;
5486 case QEMU_OPTION_pidfile:
5490 case QEMU_OPTION_win2k_hack:
5491 win2k_install_hack = 1;
5493 case QEMU_OPTION_rtc_td_hack:
5496 case QEMU_OPTION_acpitable:
5497 if(acpi_table_add(optarg) < 0) {
5498 fprintf(stderr, "Wrong acpi table provided\n");
5502 case QEMU_OPTION_smbios:
5503 if(smbios_entry_add(optarg) < 0) {
5504 fprintf(stderr, "Wrong smbios provided\n");
5510 case QEMU_OPTION_no_kqemu:
5513 case QEMU_OPTION_kernel_kqemu:
5518 case QEMU_OPTION_enable_kvm:
5525 case QEMU_OPTION_usb:
5528 case QEMU_OPTION_usbdevice:
5530 if (usb_devices_index >= MAX_USB_CMDLINE) {
5531 fprintf(stderr, "Too many USB devices\n");
5534 usb_devices[usb_devices_index] = optarg;
5535 usb_devices_index++;
5537 case QEMU_OPTION_smp:
5538 smp_cpus = atoi(optarg);
5540 fprintf(stderr, "Invalid number of CPUs\n");
5544 case QEMU_OPTION_vnc:
5545 display_type = DT_VNC;
5546 vnc_display = optarg;
5549 case QEMU_OPTION_no_acpi:
5552 case QEMU_OPTION_no_hpet:
5556 case QEMU_OPTION_no_reboot:
5559 case QEMU_OPTION_no_shutdown:
5562 case QEMU_OPTION_show_cursor:
5565 case QEMU_OPTION_uuid:
5566 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5567 fprintf(stderr, "Fail to parse UUID string."
5568 " Wrong format.\n");
5573 case QEMU_OPTION_daemonize:
5577 case QEMU_OPTION_option_rom:
5578 if (nb_option_roms >= MAX_OPTION_ROMS) {
5579 fprintf(stderr, "Too many option ROMs\n");
5582 option_rom[nb_option_roms] = optarg;
5585 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5586 case QEMU_OPTION_semihosting:
5587 semihosting_enabled = 1;
5590 case QEMU_OPTION_name:
5593 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5594 case QEMU_OPTION_prom_env:
5595 if (nb_prom_envs >= MAX_PROM_ENVS) {
5596 fprintf(stderr, "Too many prom variables\n");
5599 prom_envs[nb_prom_envs] = optarg;
5604 case QEMU_OPTION_old_param:
5608 case QEMU_OPTION_clock:
5609 configure_alarms(optarg);
5611 case QEMU_OPTION_startdate:
5614 time_t rtc_start_date;
5615 if (!strcmp(optarg, "now")) {
5616 rtc_date_offset = -1;
5618 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5626 } else if (sscanf(optarg, "%d-%d-%d",
5629 &tm.tm_mday) == 3) {
5638 rtc_start_date = mktimegm(&tm);
5639 if (rtc_start_date == -1) {
5641 fprintf(stderr, "Invalid date format. Valid format are:\n"
5642 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5645 rtc_date_offset = time(NULL) - rtc_start_date;
5649 case QEMU_OPTION_tb_size:
5650 tb_size = strtol(optarg, NULL, 0);
5654 case QEMU_OPTION_icount:
5656 if (strcmp(optarg, "auto") == 0) {
5657 icount_time_shift = -1;
5659 icount_time_shift = strtol(optarg, NULL, 0);
5662 case QEMU_OPTION_incoming:
5666 case QEMU_OPTION_chroot:
5667 chroot_dir = optarg;
5669 case QEMU_OPTION_runas:
5674 case QEMU_OPTION_xen_domid:
5675 xen_domid = atoi(optarg);
5677 case QEMU_OPTION_xen_create:
5678 xen_mode = XEN_CREATE;
5680 case QEMU_OPTION_xen_attach:
5681 xen_mode = XEN_ATTACH;
5688 /* If no data_dir is specified then try to find it relative to the
5691 data_dir = find_datadir(argv[0]);
5693 /* If all else fails use the install patch specified when building. */
5695 data_dir = CONFIG_QEMU_SHAREDIR;
5698 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5699 if (kvm_allowed && kqemu_allowed) {
5701 "You can not enable both KVM and kqemu at the same time\n");
5706 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5707 if (smp_cpus > machine->max_cpus) {
5708 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5709 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5714 if (display_type == DT_NOGRAPHIC) {
5715 if (serial_device_index == 0)
5716 serial_devices[0] = "stdio";
5717 if (parallel_device_index == 0)
5718 parallel_devices[0] = "null";
5719 if (strncmp(monitor_device, "vc", 2) == 0)
5720 monitor_device = "stdio";
5727 if (pipe(fds) == -1)
5738 len = read(fds[0], &status, 1);
5739 if (len == -1 && (errno == EINTR))
5744 else if (status == 1) {
5745 fprintf(stderr, "Could not acquire pidfile\n");
5762 signal(SIGTSTP, SIG_IGN);
5763 signal(SIGTTOU, SIG_IGN);
5764 signal(SIGTTIN, SIG_IGN);
5767 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5770 write(fds[1], &status, 1);
5772 fprintf(stderr, "Could not acquire pid file\n");
5781 if (qemu_init_main_loop()) {
5782 fprintf(stderr, "qemu_init_main_loop failed\n");
5785 linux_boot = (kernel_filename != NULL);
5786 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5788 if (!linux_boot && *kernel_cmdline != '\0') {
5789 fprintf(stderr, "-append only allowed with -kernel option\n");
5793 if (!linux_boot && initrd_filename != NULL) {
5794 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5798 /* boot to floppy or the default cd if no hard disk defined yet */
5799 if (!boot_devices[0]) {
5800 boot_devices = "cad";
5802 setvbuf(stdout, NULL, _IOLBF, 0);
5805 if (init_timer_alarm() < 0) {
5806 fprintf(stderr, "could not initialize alarm timer\n");
5809 if (use_icount && icount_time_shift < 0) {
5811 /* 125MIPS seems a reasonable initial guess at the guest speed.
5812 It will be corrected fairly quickly anyway. */
5813 icount_time_shift = 3;
5814 init_icount_adjust();
5821 /* init network clients */
5822 if (nb_net_clients == 0) {
5823 /* if no clients, we use a default config */
5824 net_clients[nb_net_clients++] = "nic";
5826 net_clients[nb_net_clients++] = "user";
5830 for(i = 0;i < nb_net_clients; i++) {
5831 if (net_client_parse(net_clients[i]) < 0)
5837 /* XXX: this should be moved in the PC machine instantiation code */
5838 if (net_boot != 0) {
5840 for (i = 0; i < nb_nics && i < 4; i++) {
5841 const char *model = nd_table[i].model;
5844 if (net_boot & (1 << i)) {
5847 snprintf(buf, sizeof(buf), "pxe-%s.bin", model);
5848 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, buf);
5849 if (filename && get_image_size(filename) > 0) {
5850 if (nb_option_roms >= MAX_OPTION_ROMS) {
5851 fprintf(stderr, "Too many option ROMs\n");
5854 option_rom[nb_option_roms] = qemu_strdup(buf);
5859 qemu_free(filename);
5864 fprintf(stderr, "No valid PXE rom found for network device\n");
5870 /* init the bluetooth world */
5871 for (i = 0; i < nb_bt_opts; i++)
5872 if (bt_parse(bt_opts[i]))
5875 /* init the memory */
5877 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5880 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5881 guest ram allocation. It needs to go away. */
5882 if (kqemu_allowed) {
5883 kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024;
5884 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5885 if (!kqemu_phys_ram_base) {
5886 fprintf(stderr, "Could not allocate physical memory\n");
5892 /* init the dynamic translator */
5893 cpu_exec_init_all(tb_size * 1024 * 1024);
5897 /* we always create the cdrom drive, even if no disk is there */
5899 if (nb_drives_opt < MAX_DRIVES)
5900 drive_add(NULL, CDROM_ALIAS);
5902 /* we always create at least one floppy */
5904 if (nb_drives_opt < MAX_DRIVES)
5905 drive_add(NULL, FD_ALIAS, 0);
5907 /* we always create one sd slot, even if no card is in it */
5909 if (nb_drives_opt < MAX_DRIVES)
5910 drive_add(NULL, SD_ALIAS);
5912 /* open the virtual block devices */
5914 for(i = 0; i < nb_drives_opt; i++)
5915 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5918 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5919 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5922 /* must be after terminal init, SDL library changes signal handlers */
5926 /* Maintain compatibility with multiple stdio monitors */
5927 if (!strcmp(monitor_device,"stdio")) {
5928 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5929 const char *devname = serial_devices[i];
5930 if (devname && !strcmp(devname,"mon:stdio")) {
5931 monitor_device = NULL;
5933 } else if (devname && !strcmp(devname,"stdio")) {
5934 monitor_device = NULL;
5935 serial_devices[i] = "mon:stdio";
5941 if (nb_numa_nodes > 0) {
5944 if (nb_numa_nodes > smp_cpus) {
5945 nb_numa_nodes = smp_cpus;
5948 /* If no memory size if given for any node, assume the default case
5949 * and distribute the available memory equally across all nodes
5951 for (i = 0; i < nb_numa_nodes; i++) {
5952 if (node_mem[i] != 0)
5955 if (i == nb_numa_nodes) {
5956 uint64_t usedmem = 0;
5958 /* On Linux, the each node's border has to be 8MB aligned,
5959 * the final node gets the rest.
5961 for (i = 0; i < nb_numa_nodes - 1; i++) {
5962 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5963 usedmem += node_mem[i];
5965 node_mem[i] = ram_size - usedmem;
5968 for (i = 0; i < nb_numa_nodes; i++) {
5969 if (node_cpumask[i] != 0)
5972 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5973 * must cope with this anyway, because there are BIOSes out there in
5974 * real machines which also use this scheme.
5976 if (i == nb_numa_nodes) {
5977 for (i = 0; i < smp_cpus; i++) {
5978 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5983 if (kvm_enabled()) {
5986 ret = kvm_init(smp_cpus);
5988 fprintf(stderr, "failed to initialize KVM\n");
5993 if (monitor_device) {
5994 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5996 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
6001 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6002 const char *devname = serial_devices[i];
6003 if (devname && strcmp(devname, "none")) {
6005 snprintf(label, sizeof(label), "serial%d", i);
6006 serial_hds[i] = qemu_chr_open(label, devname, NULL);
6007 if (!serial_hds[i]) {
6008 fprintf(stderr, "qemu: could not open serial device '%s'\n",
6015 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6016 const char *devname = parallel_devices[i];
6017 if (devname && strcmp(devname, "none")) {
6019 snprintf(label, sizeof(label), "parallel%d", i);
6020 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
6021 if (!parallel_hds[i]) {
6022 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
6029 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6030 const char *devname = virtio_consoles[i];
6031 if (devname && strcmp(devname, "none")) {
6033 snprintf(label, sizeof(label), "virtcon%d", i);
6034 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
6035 if (!virtcon_hds[i]) {
6036 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
6043 module_call_init(MODULE_INIT_DEVICE);
6045 machine->init(ram_size, boot_devices,
6046 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
6049 for (env = first_cpu; env != NULL; env = env->next_cpu) {
6050 for (i = 0; i < nb_numa_nodes; i++) {
6051 if (node_cpumask[i] & (1 << env->cpu_index)) {
6057 current_machine = machine;
6059 /* Set KVM's vcpu state to qemu's initial CPUState. */
6060 if (kvm_enabled()) {
6063 ret = kvm_sync_vcpus();
6065 fprintf(stderr, "failed to initialize vcpus\n");
6070 /* init USB devices */
6072 for(i = 0; i < usb_devices_index; i++) {
6073 if (usb_device_add(usb_devices[i], 0) < 0) {
6074 fprintf(stderr, "Warning: could not add USB device %s\n",
6081 dumb_display_init();
6082 /* just use the first displaystate for the moment */
6085 if (display_type == DT_DEFAULT) {
6086 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
6087 display_type = DT_SDL;
6089 display_type = DT_VNC;
6090 vnc_display = "localhost:0,to=99";
6096 switch (display_type) {
6099 #if defined(CONFIG_CURSES)
6101 curses_display_init(ds, full_screen);
6104 #if defined(CONFIG_SDL)
6106 sdl_display_init(ds, full_screen, no_frame);
6108 #elif defined(CONFIG_COCOA)
6110 cocoa_display_init(ds, full_screen);
6114 vnc_display_init(ds);
6115 if (vnc_display_open(ds, vnc_display) < 0)
6118 if (show_vnc_port) {
6119 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
6127 dcl = ds->listeners;
6128 while (dcl != NULL) {
6129 if (dcl->dpy_refresh != NULL) {
6130 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
6131 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
6136 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
6137 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
6138 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
6141 text_consoles_set_display(display_state);
6142 qemu_chr_initial_reset();
6144 if (monitor_device && monitor_hd)
6145 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
6147 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6148 const char *devname = serial_devices[i];
6149 if (devname && strcmp(devname, "none")) {
6151 snprintf(label, sizeof(label), "serial%d", i);
6152 if (strstart(devname, "vc", 0))
6153 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6157 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6158 const char *devname = parallel_devices[i];
6159 if (devname && strcmp(devname, "none")) {
6161 snprintf(label, sizeof(label), "parallel%d", i);
6162 if (strstart(devname, "vc", 0))
6163 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6167 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6168 const char *devname = virtio_consoles[i];
6169 if (virtcon_hds[i] && devname) {
6171 snprintf(label, sizeof(label), "virtcon%d", i);
6172 if (strstart(devname, "vc", 0))
6173 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6177 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6178 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6184 do_loadvm(cur_mon, loadvm);
6187 autostart = 0; /* fixme how to deal with -daemonize */
6188 qemu_start_incoming_migration(incoming);
6200 len = write(fds[1], &status, 1);
6201 if (len == -1 && (errno == EINTR))
6208 TFR(fd = open("/dev/null", O_RDWR));
6214 pwd = getpwnam(run_as);
6216 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6222 if (chroot(chroot_dir) < 0) {
6223 fprintf(stderr, "chroot failed\n");
6230 if (setgid(pwd->pw_gid) < 0) {
6231 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6234 if (setuid(pwd->pw_uid) < 0) {
6235 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6238 if (setuid(0) != -1) {
6239 fprintf(stderr, "Dropping privileges failed\n");