2 * Emulation of BSD signals
4 * Copyright (c) 2003 - 2008 Fabrice Bellard
5 * Copyright (c) 2013 Stacey Son
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
23 #include "signal-common.h"
25 #include "hw/core/tcg-cpu-ops.h"
26 #include "host-signal.h"
29 * Stubbed out routines until we merge signal support from bsd-user
33 static struct target_sigaction sigact_table[TARGET_NSIG];
34 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc);
37 * The BSD ABIs use the same singal numbers across all the CPU architectures, so
38 * (unlike Linux) these functions are just the identity mapping. This might not
39 * be true for XyzBSD running on AbcBSD, which doesn't currently work.
41 int host_to_target_signal(int sig)
46 int target_to_host_signal(int sig)
51 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
52 static inline void rewind_if_in_safe_syscall(void *puc)
54 ucontext_t *uc = (ucontext_t *)puc;
55 uintptr_t pcreg = host_signal_pc(uc);
57 if (pcreg > (uintptr_t)safe_syscall_start
58 && pcreg < (uintptr_t)safe_syscall_end) {
59 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
63 static bool has_trapno(int tsig)
65 return tsig == TARGET_SIGILL ||
66 tsig == TARGET_SIGFPE ||
67 tsig == TARGET_SIGSEGV ||
68 tsig == TARGET_SIGBUS ||
69 tsig == TARGET_SIGTRAP;
72 /* Siginfo conversion. */
75 * Populate tinfo w/o swapping based on guessing which fields are valid.
77 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
78 const siginfo_t *info)
80 int sig = host_to_target_signal(info->si_signo);
81 int si_code = info->si_code;
85 * Make sure we that the variable portion of the target siginfo is zeroed
86 * out so we don't leak anything into that.
88 memset(&tinfo->_reason, 0, sizeof(tinfo->_reason));
91 * This is awkward, because we have to use a combination of the si_code and
92 * si_signo to figure out which of the union's members are valid.o We
93 * therefore make our best guess.
95 * Once we have made our guess, we record it in the top 16 bits of
96 * the si_code, so that tswap_siginfo() later can use it.
97 * tswap_siginfo() will strip these top bits out before writing
98 * si_code to the guest (sign-extending the lower bits).
100 tinfo->si_signo = sig;
101 tinfo->si_errno = info->si_errno;
102 tinfo->si_code = info->si_code;
103 tinfo->si_pid = info->si_pid;
104 tinfo->si_uid = info->si_uid;
105 tinfo->si_status = info->si_status;
106 tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr;
108 * si_value is opaque to kernel. On all FreeBSD platforms,
109 * sizeof(sival_ptr) >= sizeof(sival_int) so the following
110 * always will copy the larger element.
112 tinfo->si_value.sival_ptr =
113 (abi_ulong)(unsigned long)info->si_value.sival_ptr;
117 * All the SI_xxx codes that are defined here are global to
118 * all the signals (they have values that none of the other,
119 * more specific signal info will set).
127 * Only the fixed parts are valid (though FreeBSD doesn't always
128 * set all the fields to non-zero values.
130 si_type = QEMU_SI_NOINFO;
133 tinfo->_reason._timer._timerid = info->_reason._timer._timerid;
134 tinfo->_reason._timer._overrun = info->_reason._timer._overrun;
135 si_type = QEMU_SI_TIMER;
138 tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd;
139 si_type = QEMU_SI_MESGQ;
143 * We have to go based on the signal number now to figure out
146 if (has_trapno(sig)) {
147 tinfo->_reason._fault._trapno = info->_reason._fault._trapno;
148 si_type = QEMU_SI_FAULT;
150 #ifdef TARGET_SIGPOLL
152 * FreeBSD never had SIGPOLL, but emulates it for Linux so there's
153 * a chance it may popup in the future.
155 if (sig == TARGET_SIGPOLL) {
156 tinfo->_reason._poll._band = info->_reason._poll._band;
157 si_type = QEMU_SI_POLL;
161 * Unsure that this can actually be generated, and our support for
162 * capsicum is somewhere between weak and non-existant, but if we get
163 * one, then we know what to save.
165 if (sig == TARGET_SIGTRAP) {
166 tinfo->_reason._capsicum._syscall =
167 info->_reason._capsicum._syscall;
168 si_type = QEMU_SI_CAPSICUM;
172 tinfo->si_code = deposit32(si_code, 24, 8, si_type);
175 /* Returns 1 if given signal should dump core if not handled. */
176 static int core_dump_signal(int sig)
192 /* Abort execution with signal. */
193 static void QEMU_NORETURN dump_core_and_abort(int target_sig)
195 CPUArchState *env = thread_cpu->env_ptr;
196 CPUState *cpu = env_cpu(env);
197 TaskState *ts = cpu->opaque;
200 struct sigaction act;
202 host_sig = target_to_host_signal(target_sig);
203 gdb_signalled(env, target_sig);
205 /* Dump core if supported by target binary format */
206 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
209 ((*ts->bprm->core_dump)(target_sig, env) == 0);
212 struct rlimit nodump;
215 * We already dumped the core of target process, we don't want
216 * a coredump of qemu itself.
218 getrlimit(RLIMIT_CORE, &nodump);
220 setrlimit(RLIMIT_CORE, &nodump);
221 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) "
222 "- %s\n", target_sig, strsignal(host_sig), "core dumped");
226 * The proper exit code for dying from an uncaught signal is
227 * -<signal>. The kernel doesn't allow exit() or _exit() to pass
228 * a negative value. To get the proper exit code we need to
229 * actually die from an uncaught signal. Here the default signal
230 * handler is installed, we send ourself a signal and we wait for
233 memset(&act, 0, sizeof(act));
234 sigfillset(&act.sa_mask);
235 act.sa_handler = SIG_DFL;
236 sigaction(host_sig, &act, NULL);
238 kill(getpid(), host_sig);
241 * Make sure the signal isn't masked (just reuse the mask inside
244 sigdelset(&act.sa_mask, host_sig);
245 sigsuspend(&act.sa_mask);
252 * Queue a signal so that it will be send to the virtual CPU as soon as
255 void queue_signal(CPUArchState *env, int sig, int si_type,
256 target_siginfo_t *info)
258 CPUState *cpu = env_cpu(env);
259 TaskState *ts = cpu->opaque;
261 trace_user_queue_signal(env, sig);
263 info->si_code = deposit32(info->si_code, 24, 8, si_type);
265 ts->sync_signal.info = *info;
266 ts->sync_signal.pending = sig;
267 /* Signal that a new signal is pending. */
268 qatomic_set(&ts->signal_pending, 1);
272 static int fatal_signal(int sig)
278 case TARGET_SIGWINCH:
280 /* Ignored by default. */
287 /* Job control signals. */
295 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
296 * 'force' part is handled in process_pending_signals().
298 void force_sig_fault(int sig, int code, abi_ulong addr)
300 CPUState *cpu = thread_cpu;
301 CPUArchState *env = cpu->env_ptr;
302 target_siginfo_t info = {};
308 queue_signal(env, sig, QEMU_SI_FAULT, &info);
311 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
313 CPUArchState *env = thread_cpu->env_ptr;
314 CPUState *cpu = env_cpu(env);
315 TaskState *ts = cpu->opaque;
316 target_siginfo_t tinfo;
317 ucontext_t *uc = puc;
318 struct emulated_sigtable *k;
321 bool sync_sig = false;
324 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
325 * handling wrt signal blocking and unwinding.
327 if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) {
328 MMUAccessType access_type;
333 host_addr = (uintptr_t)info->si_addr;
336 * Convert forcefully to guest address space: addresses outside
337 * reserved_va are still valid to report via SEGV_MAPERR.
339 guest_addr = h2g_nocheck(host_addr);
341 pc = host_signal_pc(uc);
342 is_write = host_signal_write(info, uc);
343 access_type = adjust_signal_pc(&pc, is_write);
345 if (host_sig == SIGSEGV) {
348 if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) {
349 /* If this was a write to a TB protected page, restart. */
351 handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask,
357 * With reserved_va, the whole address space is PROT_NONE,
358 * which means that we may get ACCERR when we want MAPERR.
360 if (page_get_flags(guest_addr) & PAGE_VALID) {
363 info->si_code = SEGV_MAPERR;
367 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
368 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
370 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
371 if (info->si_code == BUS_ADRALN) {
372 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
379 /* Get the target signal number. */
380 guest_sig = host_to_target_signal(host_sig);
381 if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
384 trace_user_host_signal(cpu, host_sig, guest_sig);
386 host_to_target_siginfo_noswap(&tinfo, info);
388 k = &ts->sigtab[guest_sig - 1];
390 k->pending = guest_sig;
391 ts->signal_pending = 1;
394 * For synchronous signals, unwind the cpu state to the faulting
395 * insn and then exit back to the main loop so that the signal
396 * is delivered immediately.
399 cpu->exception_index = EXCP_INTERRUPT;
400 cpu_loop_exit_restore(cpu, pc);
403 rewind_if_in_safe_syscall(puc);
406 * Block host signals until target signal handler entered. We
407 * can't block SIGSEGV or SIGBUS while we're executing guest
408 * code in case the guest code provokes one in the window between
409 * now and it getting out to the main loop. Signals will be
410 * unblocked again in process_pending_signals().
412 sigfillset(&uc->uc_sigmask);
413 sigdelset(&uc->uc_sigmask, SIGSEGV);
414 sigdelset(&uc->uc_sigmask, SIGBUS);
416 /* Interrupt the virtual CPU as soon as possible. */
417 cpu_exit(thread_cpu);
420 void signal_init(void)
422 TaskState *ts = (TaskState *)thread_cpu->opaque;
423 struct sigaction act;
424 struct sigaction oact;
428 /* Set the signal mask from the host mask. */
429 sigprocmask(0, 0, &ts->signal_mask);
431 sigfillset(&act.sa_mask);
432 act.sa_sigaction = host_signal_handler;
433 act.sa_flags = SA_SIGINFO;
435 for (i = 1; i <= TARGET_NSIG; i++) {
437 if (i == TARGET_SIGPROF) {
441 host_sig = target_to_host_signal(i);
442 sigaction(host_sig, NULL, &oact);
443 if (oact.sa_sigaction == (void *)SIG_IGN) {
444 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
445 } else if (oact.sa_sigaction == (void *)SIG_DFL) {
446 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
449 * If there's already a handler installed then something has
450 * gone horribly wrong, so don't even try to handle that case.
451 * Install some handlers for our own use. We need at least
452 * SIGSEGV and SIGBUS, to detect exceptions. We can not just
453 * trap all signals because it affects syscall interrupt
454 * behavior. But do trap all default-fatal signals.
456 if (fatal_signal(i)) {
457 sigaction(host_sig, &act, NULL);
462 void process_pending_signals(CPUArchState *cpu_env)
466 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
467 MMUAccessType access_type, bool maperr, uintptr_t ra)
469 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
471 if (tcg_ops->record_sigsegv) {
472 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
475 force_sig_fault(TARGET_SIGSEGV,
476 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
478 cpu->exception_index = EXCP_INTERRUPT;
479 cpu_loop_exit_restore(cpu, ra);
482 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
483 MMUAccessType access_type, uintptr_t ra)
485 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
487 if (tcg_ops->record_sigbus) {
488 tcg_ops->record_sigbus(cpu, addr, access_type, ra);
491 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
492 cpu->exception_index = EXCP_INTERRUPT;
493 cpu_loop_exit_restore(cpu, ra);