2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
36 #include "hw/boards.h"
38 #include "hw/loader.h"
41 #include "hw/spapr_vio.h"
42 #include "hw/spapr_pci.h"
51 #include "exec-memory.h"
56 /* SLOF memory layout:
58 * SLOF raw image loaded at 0, copies its romfs right below the flat
59 * device-tree, then position SLOF itself 31M below that
61 * So we set FW_OVERHEAD to 40MB which should account for all of that
64 * We load our kernel at 4M, leaving space for SLOF initial image
66 #define FDT_MAX_SIZE 0x10000
67 #define RTAS_MAX_SIZE 0x10000
68 #define FW_MAX_SIZE 0x400000
69 #define FW_FILE_NAME "slof.bin"
70 #define FW_OVERHEAD 0x2800000
71 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
73 #define MIN_RMA_SLOF 128UL
75 #define TIMEBASE_FREQ 512000000ULL
78 #define XICS_IRQS 1024
80 #define SPAPR_PCI_BUID 0x800000020000001ULL
81 #define SPAPR_PCI_MEM_WIN_ADDR (0x10000000000ULL + 0xA0000000)
82 #define SPAPR_PCI_MEM_WIN_SIZE 0x20000000
83 #define SPAPR_PCI_IO_WIN_ADDR (0x10000000000ULL + 0x80000000)
84 #define SPAPR_PCI_MSI_WIN_ADDR (0x10000000000ULL + 0x90000000)
86 #define PHANDLE_XICP 0x00001111
88 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
90 sPAPREnvironment *spapr;
92 int spapr_allocate_irq(int hint, bool lsi)
98 /* FIXME: we should probably check for collisions somehow */
100 irq = spapr->next_irq++;
103 /* Configure irq type */
104 if (!xics_get_qirq(spapr->icp, irq)) {
108 xics_set_irq_type(spapr->icp, irq, lsi);
113 /* Allocate block of consequtive IRQs, returns a number of the first */
114 int spapr_allocate_irq_block(int num, bool lsi)
119 for (i = 0; i < num; ++i) {
122 irq = spapr_allocate_irq(0, lsi);
131 /* If the above doesn't create a consecutive block then that's
133 assert(irq == (first + i));
139 static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
144 int smt = kvmppc_smt_threads();
145 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
147 assert(spapr->cpu_model);
149 for (env = first_cpu; env != NULL; env = env->next_cpu) {
150 uint32_t associativity[] = {cpu_to_be32(0x5),
154 cpu_to_be32(env->numa_node),
155 cpu_to_be32(env->cpu_index)};
157 if ((env->cpu_index % smt) != 0) {
161 snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model,
164 offset = fdt_path_offset(fdt, cpu_model);
169 if (nb_numa_nodes > 1) {
170 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
171 sizeof(associativity));
177 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
178 pft_size_prop, sizeof(pft_size_prop));
187 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
190 size_t maxcells = maxsize / sizeof(uint32_t);
194 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
195 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
197 if (!sps->page_shift) {
200 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
201 if (sps->enc[count].page_shift == 0) {
205 if ((p - prop) >= (maxcells - 3 - count * 2)) {
208 *(p++) = cpu_to_be32(sps->page_shift);
209 *(p++) = cpu_to_be32(sps->slb_enc);
210 *(p++) = cpu_to_be32(count);
211 for (j = 0; j < count; j++) {
212 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
213 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
217 return (p - prop) * sizeof(uint32_t);
224 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
225 #exp, fdt_strerror(ret)); \
231 static void *spapr_create_fdt_skel(const char *cpu_model,
232 target_phys_addr_t initrd_base,
233 target_phys_addr_t initrd_size,
234 target_phys_addr_t kernel_size,
235 const char *boot_device,
236 const char *kernel_cmdline)
240 uint32_t start_prop = cpu_to_be32(initrd_base);
241 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
242 char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
243 "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
244 char qemu_hypertas_prop[] = "hcall-memop1";
245 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
246 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
248 int i, smt = kvmppc_smt_threads();
249 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
251 fdt = g_malloc0(FDT_MAX_SIZE);
252 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
255 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
258 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
260 _FDT((fdt_finish_reservemap(fdt)));
263 _FDT((fdt_begin_node(fdt, "")));
264 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
265 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
267 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
268 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
271 _FDT((fdt_begin_node(fdt, "chosen")));
273 /* Set Form1_affinity */
274 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
276 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
277 _FDT((fdt_property(fdt, "linux,initrd-start",
278 &start_prop, sizeof(start_prop))));
279 _FDT((fdt_property(fdt, "linux,initrd-end",
280 &end_prop, sizeof(end_prop))));
282 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
283 cpu_to_be64(kernel_size) };
285 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
287 _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
288 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
289 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
290 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
292 _FDT((fdt_end_node(fdt)));
295 _FDT((fdt_begin_node(fdt, "cpus")));
297 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
298 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
300 modelname = g_strdup(cpu_model);
302 for (i = 0; i < strlen(modelname); i++) {
303 modelname[i] = toupper(modelname[i]);
306 /* This is needed during FDT finalization */
307 spapr->cpu_model = g_strdup(modelname);
309 for (env = first_cpu; env != NULL; env = env->next_cpu) {
310 int index = env->cpu_index;
311 uint32_t servers_prop[smp_threads];
312 uint32_t gservers_prop[smp_threads * 2];
314 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
315 0xffffffff, 0xffffffff};
316 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
317 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
318 uint32_t page_sizes_prop[64];
319 size_t page_sizes_prop_size;
321 if ((index % smt) != 0) {
325 if (asprintf(&nodename, "%s@%x", modelname, index) < 0) {
326 fprintf(stderr, "Allocation failure\n");
330 _FDT((fdt_begin_node(fdt, nodename)));
334 _FDT((fdt_property_cell(fdt, "reg", index)));
335 _FDT((fdt_property_string(fdt, "device_type", "cpu")));
337 _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
338 _FDT((fdt_property_cell(fdt, "dcache-block-size",
339 env->dcache_line_size)));
340 _FDT((fdt_property_cell(fdt, "icache-block-size",
341 env->icache_line_size)));
342 _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
343 _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
344 _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
345 _FDT((fdt_property_string(fdt, "status", "okay")));
346 _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
348 /* Build interrupt servers and gservers properties */
349 for (i = 0; i < smp_threads; i++) {
350 servers_prop[i] = cpu_to_be32(index + i);
351 /* Hack, direct the group queues back to cpu 0 */
352 gservers_prop[i*2] = cpu_to_be32(index + i);
353 gservers_prop[i*2 + 1] = 0;
355 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
356 servers_prop, sizeof(servers_prop))));
357 _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
358 gservers_prop, sizeof(gservers_prop))));
360 if (env->mmu_model & POWERPC_MMU_1TSEG) {
361 _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
362 segs, sizeof(segs))));
365 /* Advertise VMX/VSX (vector extensions) if available
366 * 0 / no property == no vector extensions
367 * 1 == VMX / Altivec available
368 * 2 == VSX available */
369 if (env->insns_flags & PPC_ALTIVEC) {
370 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
372 _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
375 /* Advertise DFP (Decimal Floating Point) if available
376 * 0 / no property == no DFP
377 * 1 == DFP available */
378 if (env->insns_flags2 & PPC2_DFP) {
379 _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
382 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
383 sizeof(page_sizes_prop));
384 if (page_sizes_prop_size) {
385 _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
386 page_sizes_prop, page_sizes_prop_size)));
389 _FDT((fdt_end_node(fdt)));
394 _FDT((fdt_end_node(fdt)));
397 _FDT((fdt_begin_node(fdt, "rtas")));
399 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
400 sizeof(hypertas_prop))));
401 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
402 sizeof(qemu_hypertas_prop))));
404 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
405 refpoints, sizeof(refpoints))));
407 _FDT((fdt_end_node(fdt)));
409 /* interrupt controller */
410 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
412 _FDT((fdt_property_string(fdt, "device_type",
413 "PowerPC-External-Interrupt-Presentation")));
414 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
415 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
416 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
417 interrupt_server_ranges_prop,
418 sizeof(interrupt_server_ranges_prop))));
419 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
420 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
421 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
423 _FDT((fdt_end_node(fdt)));
426 _FDT((fdt_begin_node(fdt, "vdevice")));
428 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
429 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
430 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
431 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
432 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
433 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
435 _FDT((fdt_end_node(fdt)));
437 _FDT((fdt_end_node(fdt))); /* close root node */
438 _FDT((fdt_finish(fdt)));
443 static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
445 uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
446 cpu_to_be32(0x0), cpu_to_be32(0x0),
449 target_phys_addr_t node0_size, mem_start;
450 uint64_t mem_reg_property[2];
454 node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
455 if (spapr->rma_size > node0_size) {
456 spapr->rma_size = node0_size;
460 mem_reg_property[0] = 0;
461 mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
462 off = fdt_add_subnode(fdt, 0, "memory@0");
464 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
465 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
466 sizeof(mem_reg_property))));
467 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
468 sizeof(associativity))));
471 if (node0_size > spapr->rma_size) {
472 mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
473 mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
475 sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
476 off = fdt_add_subnode(fdt, 0, mem_name);
478 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
479 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
480 sizeof(mem_reg_property))));
481 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
482 sizeof(associativity))));
485 /* RAM: Node 1 and beyond */
486 mem_start = node0_size;
487 for (i = 1; i < nb_numa_nodes; i++) {
488 mem_reg_property[0] = cpu_to_be64(mem_start);
489 mem_reg_property[1] = cpu_to_be64(node_mem[i]);
490 associativity[3] = associativity[4] = cpu_to_be32(i);
491 sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
492 off = fdt_add_subnode(fdt, 0, mem_name);
494 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
495 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
496 sizeof(mem_reg_property))));
497 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
498 sizeof(associativity))));
499 mem_start += node_mem[i];
505 static void spapr_finalize_fdt(sPAPREnvironment *spapr,
506 target_phys_addr_t fdt_addr,
507 target_phys_addr_t rtas_addr,
508 target_phys_addr_t rtas_size)
514 fdt = g_malloc(FDT_MAX_SIZE);
516 /* open out the base tree into a temp buffer for the final tweaks */
517 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
519 ret = spapr_populate_memory(spapr, fdt);
521 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
525 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
527 fprintf(stderr, "couldn't setup vio devices in fdt\n");
531 QLIST_FOREACH(phb, &spapr->phbs, list) {
532 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
536 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
541 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
543 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
546 /* Advertise NUMA via ibm,associativity */
547 ret = spapr_fixup_cpu_dt(fdt, spapr);
549 fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
552 if (!spapr->has_graphics) {
553 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
556 _FDT((fdt_pack(fdt)));
558 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
559 hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
560 fdt_totalsize(fdt), FDT_MAX_SIZE);
564 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
569 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
571 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
574 static void emulate_spapr_hypercall(CPUPPCState *env)
576 env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]);
579 static void spapr_reset_htab(sPAPREnvironment *spapr)
583 /* allocate hash page table. For now we always make this 16mb,
584 * later we should probably make it scale to the size of guest
587 shift = kvmppc_reset_htab(spapr->htab_shift);
590 /* Kernel handles htab, we don't need to allocate one */
591 spapr->htab_shift = shift;
594 /* Allocate an htab if we don't yet have one */
595 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
599 memset(spapr->htab, 0, HTAB_SIZE(spapr));
602 /* Update the RMA size if necessary */
603 if (spapr->vrma_adjust) {
604 spapr->rma_size = kvmppc_rma_size(ram_size, spapr->htab_shift);
608 static void ppc_spapr_reset(void)
610 /* Reset the hash table & recalc the RMA */
611 spapr_reset_htab(spapr);
613 qemu_devices_reset();
616 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
619 /* Set up the entry state */
620 first_cpu->gpr[3] = spapr->fdt_addr;
621 first_cpu->gpr[5] = 0;
622 first_cpu->halted = 0;
623 first_cpu->nip = spapr->entry_point;
627 static void spapr_cpu_reset(void *opaque)
629 PowerPCCPU *cpu = opaque;
630 CPUPPCState *env = &cpu->env;
634 /* All CPUs start halted. CPU0 is unhalted from the machine level
635 * reset code and the rest are explicitly started up by the guest
636 * using an RTAS call */
639 env->spr[SPR_HIOR] = 0;
641 env->external_htab = spapr->htab;
643 env->htab_mask = HTAB_SIZE(spapr) - 1;
644 env->spr[SPR_SDR1] = (unsigned long)spapr->htab |
645 (spapr->htab_shift - 18);
648 /* Returns whether we want to use VGA or not */
649 static int spapr_vga_init(PCIBus *pci_bus)
651 switch (vga_interface_type) {
653 pci_vga_init(pci_bus);
658 fprintf(stderr, "This vga model is not supported,"
659 "currently it only supports -vga std\n");
665 /* pSeries LPAR / sPAPR hardware init */
666 static void ppc_spapr_init(ram_addr_t ram_size,
667 const char *boot_device,
668 const char *kernel_filename,
669 const char *kernel_cmdline,
670 const char *initrd_filename,
671 const char *cpu_model)
677 MemoryRegion *sysmem = get_system_memory();
678 MemoryRegion *ram = g_new(MemoryRegion, 1);
679 target_phys_addr_t rma_alloc_size;
680 uint32_t initrd_base = 0;
681 long kernel_size = 0, initrd_size = 0;
682 long load_limit, rtas_limit, fw_size;
685 msi_supported = true;
687 spapr = g_malloc0(sizeof(*spapr));
688 QLIST_INIT(&spapr->phbs);
690 cpu_ppc_hypercall = emulate_spapr_hypercall;
692 /* Allocate RMA if necessary */
693 rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
695 if (rma_alloc_size == -1) {
696 hw_error("qemu: Unable to create RMA\n");
700 if (rma_alloc_size && (rma_alloc_size < ram_size)) {
701 spapr->rma_size = rma_alloc_size;
703 spapr->rma_size = ram_size;
705 /* With KVM, we don't actually know whether KVM supports an
706 * unbounded RMA (PR KVM) or is limited by the hash table size
707 * (HV KVM using VRMA), so we always assume the latter
709 * In that case, we also limit the initial allocations for RTAS
710 * etc... to 256M since we have no way to know what the VRMA size
711 * is going to be as it depends on the size of the hash table
712 * isn't determined yet.
715 spapr->vrma_adjust = 1;
716 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
720 /* We place the device tree and RTAS just below either the top of the RMA,
721 * or just below 2GB, whichever is lowere, so that it can be
722 * processed with 32-bit real mode code if necessary */
723 rtas_limit = MIN(spapr->rma_size, 0x80000000);
724 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
725 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
726 load_limit = spapr->fdt_addr - FW_OVERHEAD;
728 /* We aim for a hash table of size 1/128 the size of RAM. The
729 * normal rule of thumb is 1/64 the size of RAM, but that's much
730 * more than needed for the Linux guests we support. */
731 spapr->htab_shift = 18; /* Minimum architected size */
732 while (spapr->htab_shift <= 46) {
733 if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
740 if (cpu_model == NULL) {
741 cpu_model = kvm_enabled() ? "host" : "POWER7";
743 for (i = 0; i < smp_cpus; i++) {
744 cpu = cpu_ppc_init(cpu_model);
746 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
751 /* Set time-base frequency to 512 MHz */
752 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
754 /* PAPR always has exception vectors in RAM not ROM */
755 env->hreset_excp_prefix = 0;
757 /* Tell KVM that we're in PAPR mode */
759 kvmppc_set_papr(env);
762 qemu_register_reset(spapr_cpu_reset, cpu);
766 spapr->ram_limit = ram_size;
767 if (spapr->ram_limit > rma_alloc_size) {
768 ram_addr_t nonrma_base = rma_alloc_size;
769 ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
771 memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size);
772 vmstate_register_ram_global(ram);
773 memory_region_add_subregion(sysmem, nonrma_base, ram);
776 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
777 spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
778 rtas_limit - spapr->rtas_addr);
779 if (spapr->rtas_size < 0) {
780 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
783 if (spapr->rtas_size > RTAS_MAX_SIZE) {
784 hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
785 spapr->rtas_size, RTAS_MAX_SIZE);
791 /* Set up Interrupt Controller */
792 spapr->icp = xics_system_init(XICS_IRQS);
793 spapr->next_irq = 16;
799 spapr->vio_bus = spapr_vio_bus_init();
801 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
803 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
808 spapr_pci_rtas_init();
810 spapr_create_phb(spapr, "pci", SPAPR_PCI_BUID,
811 SPAPR_PCI_MEM_WIN_ADDR,
812 SPAPR_PCI_MEM_WIN_SIZE,
813 SPAPR_PCI_IO_WIN_ADDR,
814 SPAPR_PCI_MSI_WIN_ADDR);
815 phb = PCI_HOST_BRIDGE(QLIST_FIRST(&spapr->phbs));
817 for (i = 0; i < nb_nics; i++) {
818 NICInfo *nd = &nd_table[i];
821 nd->model = g_strdup("ibmveth");
824 if (strcmp(nd->model, "ibmveth") == 0) {
825 spapr_vlan_create(spapr->vio_bus, nd);
827 pci_nic_init_nofail(&nd_table[i], nd->model, NULL);
831 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
832 spapr_vscsi_create(spapr->vio_bus);
836 if (spapr_vga_init(phb->bus)) {
837 spapr->has_graphics = true;
841 pci_create_simple(phb->bus, -1, "pci-ohci");
842 if (spapr->has_graphics) {
843 usbdevice_create("keyboard");
844 usbdevice_create("mouse");
848 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
849 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
850 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
854 if (kernel_filename) {
855 uint64_t lowaddr = 0;
857 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
858 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
859 if (kernel_size < 0) {
860 kernel_size = load_image_targphys(kernel_filename,
862 load_limit - KERNEL_LOAD_ADDR);
864 if (kernel_size < 0) {
865 fprintf(stderr, "qemu: could not load kernel '%s'\n",
871 if (initrd_filename) {
872 /* Try to locate the initrd in the gap between the kernel
873 * and the firmware. Add a bit of space just in case
875 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
876 initrd_size = load_image_targphys(initrd_filename, initrd_base,
877 load_limit - initrd_base);
878 if (initrd_size < 0) {
879 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
889 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME);
890 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
892 hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
897 spapr->entry_point = 0x100;
899 /* Prepare the device tree */
900 spapr->fdt_skel = spapr_create_fdt_skel(cpu_model,
901 initrd_base, initrd_size,
903 boot_device, kernel_cmdline);
904 assert(spapr->fdt_skel != NULL);
907 static QEMUMachine spapr_machine = {
909 .desc = "pSeries Logical Partition (PAPR compliant)",
910 .init = ppc_spapr_init,
911 .reset = ppc_spapr_reset,
912 .max_cpus = MAX_CPUS,
917 static void spapr_machine_init(void)
919 qemu_register_machine(&spapr_machine);
922 machine_init(spapr_machine_init);