2 * QEMU Sparc SLAVIO interrupt controller emulation
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 //#define DEBUG_IRQ_COUNT
29 #define DPRINTF(fmt, args...) \
30 do { printf("IRQ: " fmt , ##args); } while (0)
32 #define DPRINTF(fmt, args...)
36 * Registers of interrupt controller in sun4m.
38 * This is the interrupt controller part of chip STP2001 (Slave I/O), also
39 * produced as NCR89C105. See
40 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
42 * There is a system master controller and one for each cpu.
48 typedef struct SLAVIO_INTCTLState {
49 uint32_t intreg_pending[MAX_CPUS];
50 uint32_t intregm_pending;
51 uint32_t intregm_disabled;
53 #ifdef DEBUG_IRQ_COUNT
54 uint64_t irq_count[32];
58 #define INTCTL_MAXADDR 0xf
59 #define INTCTLM_MAXADDR 0xf
60 static void slavio_check_interrupts(void *opaque);
62 // per-cpu interrupt controller
63 static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
65 SLAVIO_INTCTLState *s = opaque;
69 cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
70 saddr = (addr & INTCTL_MAXADDR) >> 2;
73 return s->intreg_pending[cpu];
80 static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
82 SLAVIO_INTCTLState *s = opaque;
86 cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
87 saddr = (addr & INTCTL_MAXADDR) >> 2;
89 case 1: // clear pending softints
93 s->intreg_pending[cpu] &= ~val;
94 DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
96 case 2: // set softint
98 s->intreg_pending[cpu] |= val;
99 DPRINTF("Set cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
106 static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = {
107 slavio_intctl_mem_readl,
108 slavio_intctl_mem_readl,
109 slavio_intctl_mem_readl,
112 static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = {
113 slavio_intctl_mem_writel,
114 slavio_intctl_mem_writel,
115 slavio_intctl_mem_writel,
118 // master system interrupt controller
119 static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
121 SLAVIO_INTCTLState *s = opaque;
124 saddr = (addr & INTCTLM_MAXADDR) >> 2;
127 return s->intregm_pending & 0x7fffffff;
129 return s->intregm_disabled;
131 return s->target_cpu;
138 static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
140 SLAVIO_INTCTLState *s = opaque;
143 saddr = (addr & INTCTLM_MAXADDR) >> 2;
145 case 2: // clear (enable)
146 // Force clear unused bits
148 s->intregm_disabled &= ~val;
149 DPRINTF("Enabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
150 slavio_check_interrupts(s);
152 case 3: // set (disable, clear pending)
153 // Force clear unused bits
155 s->intregm_disabled |= val;
156 s->intregm_pending &= ~val;
157 DPRINTF("Disabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
160 s->target_cpu = val & (MAX_CPUS - 1);
161 DPRINTF("Set master irq cpu %d\n", s->target_cpu);
168 static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = {
169 slavio_intctlm_mem_readl,
170 slavio_intctlm_mem_readl,
171 slavio_intctlm_mem_readl,
174 static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = {
175 slavio_intctlm_mem_writel,
176 slavio_intctlm_mem_writel,
177 slavio_intctlm_mem_writel,
180 void slavio_pic_info(void *opaque)
182 SLAVIO_INTCTLState *s = opaque;
185 for (i = 0; i < MAX_CPUS; i++) {
186 term_printf("per-cpu %d: pending 0x%08x\n", i, s->intreg_pending[i]);
188 term_printf("master: pending 0x%08x, disabled 0x%08x\n", s->intregm_pending, s->intregm_disabled);
191 void slavio_irq_info(void *opaque)
193 #ifndef DEBUG_IRQ_COUNT
194 term_printf("irq statistic code not compiled.\n");
196 SLAVIO_INTCTLState *s = opaque;
200 term_printf("IRQ statistics:\n");
201 for (i = 0; i < 32; i++) {
202 count = s->irq_count[i];
204 term_printf("%2d: %lld\n", i, count);
209 static const uint32_t intbit_to_level[32] = {
210 2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12,
211 6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0,
214 static void slavio_check_interrupts(void *opaque)
216 SLAVIO_INTCTLState *s = opaque;
217 uint32_t pending = s->intregm_pending;
218 unsigned int i, max = 0;
220 pending &= ~s->intregm_disabled;
222 if (pending && !(s->intregm_disabled & 0x80000000)) {
223 for (i = 0; i < 32; i++) {
224 if (pending & (1 << i)) {
225 if (max < intbit_to_level[i])
226 max = intbit_to_level[i];
229 if (cpu_single_env->interrupt_index == 0) {
230 DPRINTF("Triggered pil %d\n", max);
231 #ifdef DEBUG_IRQ_COUNT
234 cpu_single_env->interrupt_index = TT_EXTINT | max;
235 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
238 DPRINTF("Not triggered (pending %x), pending exception %x\n", pending, cpu_single_env->interrupt_index);
241 DPRINTF("Not triggered (pending %x), disabled %x\n", pending, s->intregm_disabled);
245 * "irq" here is the bit number in the system interrupt register to
246 * separate serial and keyboard interrupts sharing a level.
248 void slavio_pic_set_irq(void *opaque, int irq, int level)
250 SLAVIO_INTCTLState *s = opaque;
252 DPRINTF("Set irq %d level %d\n", irq, level);
254 uint32_t mask = 1 << irq;
255 uint32_t pil = intbit_to_level[irq];
258 s->intregm_pending |= mask;
259 s->intreg_pending[s->target_cpu] |= 1 << pil;
262 s->intregm_pending &= ~mask;
263 s->intreg_pending[s->target_cpu] &= ~(1 << pil);
267 slavio_check_interrupts(s);
270 static void slavio_intctl_save(QEMUFile *f, void *opaque)
272 SLAVIO_INTCTLState *s = opaque;
275 for (i = 0; i < MAX_CPUS; i++) {
276 qemu_put_be32s(f, &s->intreg_pending[i]);
278 qemu_put_be32s(f, &s->intregm_pending);
279 qemu_put_be32s(f, &s->intregm_disabled);
280 qemu_put_be32s(f, &s->target_cpu);
283 static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id)
285 SLAVIO_INTCTLState *s = opaque;
291 for (i = 0; i < MAX_CPUS; i++) {
292 qemu_get_be32s(f, &s->intreg_pending[i]);
294 qemu_get_be32s(f, &s->intregm_pending);
295 qemu_get_be32s(f, &s->intregm_disabled);
296 qemu_get_be32s(f, &s->target_cpu);
300 static void slavio_intctl_reset(void *opaque)
302 SLAVIO_INTCTLState *s = opaque;
305 for (i = 0; i < MAX_CPUS; i++) {
306 s->intreg_pending[i] = 0;
308 s->intregm_disabled = ~0xffb2007f;
309 s->intregm_pending = 0;
313 void *slavio_intctl_init(uint32_t addr, uint32_t addrg)
315 int slavio_intctl_io_memory, slavio_intctlm_io_memory, i;
316 SLAVIO_INTCTLState *s;
318 s = qemu_mallocz(sizeof(SLAVIO_INTCTLState));
322 for (i = 0; i < MAX_CPUS; i++) {
323 slavio_intctl_io_memory = cpu_register_io_memory(0, slavio_intctl_mem_read, slavio_intctl_mem_write, s);
324 cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_MAXADDR, slavio_intctl_io_memory);
327 slavio_intctlm_io_memory = cpu_register_io_memory(0, slavio_intctlm_mem_read, slavio_intctlm_mem_write, s);
328 cpu_register_physical_memory(addrg, INTCTLM_MAXADDR, slavio_intctlm_io_memory);
330 register_savevm("slavio_intctl", addr, 1, slavio_intctl_save, slavio_intctl_load, s);
331 qemu_register_reset(slavio_intctl_reset, s);
332 slavio_intctl_reset(s);