2 * IMX6 Clock Control Module
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 * To get the timer frequencies right, we need to emulate at least part of
13 #include "qemu/osdep.h"
14 #include "hw/misc/imx6_ccm.h"
16 #ifndef DEBUG_IMX6_CCM
17 #define DEBUG_IMX6_CCM 0
20 #define DPRINTF(fmt, args...) \
22 if (DEBUG_IMX6_CCM) { \
23 fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX6_CCM, \
28 static char const *imx6_ccm_reg_name(uint32_t reg)
30 static char unknown[20];
96 sprintf(unknown, "%d ?", reg);
101 static char const *imx6_analog_reg_name(uint32_t reg)
103 static char unknown[20];
106 case CCM_ANALOG_PLL_ARM:
108 case CCM_ANALOG_PLL_ARM_SET:
109 return "PLL_ARM_SET";
110 case CCM_ANALOG_PLL_ARM_CLR:
111 return "PLL_ARM_CLR";
112 case CCM_ANALOG_PLL_ARM_TOG:
113 return "PLL_ARM_TOG";
114 case CCM_ANALOG_PLL_USB1:
116 case CCM_ANALOG_PLL_USB1_SET:
117 return "PLL_USB1_SET";
118 case CCM_ANALOG_PLL_USB1_CLR:
119 return "PLL_USB1_CLR";
120 case CCM_ANALOG_PLL_USB1_TOG:
121 return "PLL_USB1_TOG";
122 case CCM_ANALOG_PLL_USB2:
124 case CCM_ANALOG_PLL_USB2_SET:
125 return "PLL_USB2_SET";
126 case CCM_ANALOG_PLL_USB2_CLR:
127 return "PLL_USB2_CLR";
128 case CCM_ANALOG_PLL_USB2_TOG:
129 return "PLL_USB2_TOG";
130 case CCM_ANALOG_PLL_SYS:
132 case CCM_ANALOG_PLL_SYS_SET:
133 return "PLL_SYS_SET";
134 case CCM_ANALOG_PLL_SYS_CLR:
135 return "PLL_SYS_CLR";
136 case CCM_ANALOG_PLL_SYS_TOG:
137 return "PLL_SYS_TOG";
138 case CCM_ANALOG_PLL_SYS_SS:
140 case CCM_ANALOG_PLL_SYS_NUM:
141 return "PLL_SYS_NUM";
142 case CCM_ANALOG_PLL_SYS_DENOM:
143 return "PLL_SYS_DENOM";
144 case CCM_ANALOG_PLL_AUDIO:
146 case CCM_ANALOG_PLL_AUDIO_SET:
147 return "PLL_AUDIO_SET";
148 case CCM_ANALOG_PLL_AUDIO_CLR:
149 return "PLL_AUDIO_CLR";
150 case CCM_ANALOG_PLL_AUDIO_TOG:
151 return "PLL_AUDIO_TOG";
152 case CCM_ANALOG_PLL_AUDIO_NUM:
153 return "PLL_AUDIO_NUM";
154 case CCM_ANALOG_PLL_AUDIO_DENOM:
155 return "PLL_AUDIO_DENOM";
156 case CCM_ANALOG_PLL_VIDEO:
158 case CCM_ANALOG_PLL_VIDEO_SET:
159 return "PLL_VIDEO_SET";
160 case CCM_ANALOG_PLL_VIDEO_CLR:
161 return "PLL_VIDEO_CLR";
162 case CCM_ANALOG_PLL_VIDEO_TOG:
163 return "PLL_VIDEO_TOG";
164 case CCM_ANALOG_PLL_VIDEO_NUM:
165 return "PLL_VIDEO_NUM";
166 case CCM_ANALOG_PLL_VIDEO_DENOM:
167 return "PLL_VIDEO_DENOM";
168 case CCM_ANALOG_PLL_MLB:
170 case CCM_ANALOG_PLL_MLB_SET:
171 return "PLL_MLB_SET";
172 case CCM_ANALOG_PLL_MLB_CLR:
173 return "PLL_MLB_CLR";
174 case CCM_ANALOG_PLL_MLB_TOG:
175 return "PLL_MLB_TOG";
176 case CCM_ANALOG_PLL_ENET:
178 case CCM_ANALOG_PLL_ENET_SET:
179 return "PLL_ENET_SET";
180 case CCM_ANALOG_PLL_ENET_CLR:
181 return "PLL_ENET_CLR";
182 case CCM_ANALOG_PLL_ENET_TOG:
183 return "PLL_ENET_TOG";
184 case CCM_ANALOG_PFD_480:
186 case CCM_ANALOG_PFD_480_SET:
187 return "PFD_480_SET";
188 case CCM_ANALOG_PFD_480_CLR:
189 return "PFD_480_CLR";
190 case CCM_ANALOG_PFD_480_TOG:
191 return "PFD_480_TOG";
192 case CCM_ANALOG_PFD_528:
194 case CCM_ANALOG_PFD_528_SET:
195 return "PFD_528_SET";
196 case CCM_ANALOG_PFD_528_CLR:
197 return "PFD_528_CLR";
198 case CCM_ANALOG_PFD_528_TOG:
199 return "PFD_528_TOG";
200 case CCM_ANALOG_MISC0:
202 case CCM_ANALOG_MISC0_SET:
204 case CCM_ANALOG_MISC0_CLR:
206 case CCM_ANALOG_MISC0_TOG:
208 case CCM_ANALOG_MISC2:
210 case CCM_ANALOG_MISC2_SET:
212 case CCM_ANALOG_MISC2_CLR:
214 case CCM_ANALOG_MISC2_TOG:
217 return "PMU_REG_1P1";
219 return "PMU_REG_3P0";
221 return "PMU_REG_2P5";
223 return "PMU_REG_CORE";
227 return "PMU_MISC1_SET";
229 return "PMU_MISC1_CLR";
231 return "PMU_MISC1_TOG";
232 case USB_ANALOG_DIGPROG:
233 return "USB_ANALOG_DIGPROG";
235 sprintf(unknown, "%d ?", reg);
240 #define CKIH_FREQ 24000000 /* 24MHz crystal input */
242 static const VMStateDescription vmstate_imx6_ccm = {
243 .name = TYPE_IMX6_CCM,
245 .minimum_version_id = 1,
246 .fields = (VMStateField[]) {
247 VMSTATE_UINT32_ARRAY(ccm, IMX6CCMState, CCM_MAX),
248 VMSTATE_UINT32_ARRAY(analog, IMX6CCMState, CCM_ANALOG_MAX),
249 VMSTATE_END_OF_LIST()
253 static uint64_t imx6_analog_get_pll2_clk(IMX6CCMState *dev)
255 uint64_t freq = 24000000;
257 if (EXTRACT(dev->analog[CCM_ANALOG_PLL_SYS], DIV_SELECT)) {
263 DPRINTF("freq = %d\n", (uint32_t)freq);
268 static uint64_t imx6_analog_get_pll2_pfd0_clk(IMX6CCMState *dev)
272 freq = imx6_analog_get_pll2_clk(dev) * 18
273 / EXTRACT(dev->analog[CCM_ANALOG_PFD_528], PFD0_FRAC);
275 DPRINTF("freq = %d\n", (uint32_t)freq);
280 static uint64_t imx6_analog_get_pll2_pfd2_clk(IMX6CCMState *dev)
284 freq = imx6_analog_get_pll2_clk(dev) * 18
285 / EXTRACT(dev->analog[CCM_ANALOG_PFD_528], PFD2_FRAC);
287 DPRINTF("freq = %d\n", (uint32_t)freq);
292 static uint64_t imx6_analog_get_periph_clk(IMX6CCMState *dev)
296 switch (EXTRACT(dev->ccm[CCM_CBCMR], PRE_PERIPH_CLK_SEL)) {
298 freq = imx6_analog_get_pll2_clk(dev);
301 freq = imx6_analog_get_pll2_pfd2_clk(dev);
304 freq = imx6_analog_get_pll2_pfd0_clk(dev);
307 freq = imx6_analog_get_pll2_pfd2_clk(dev) / 2;
310 /* We should never get there */
311 g_assert_not_reached();
315 DPRINTF("freq = %d\n", (uint32_t)freq);
320 static uint64_t imx6_ccm_get_ahb_clk(IMX6CCMState *dev)
324 freq = imx6_analog_get_periph_clk(dev)
325 / (1 + EXTRACT(dev->ccm[CCM_CBCDR], AHB_PODF));
327 DPRINTF("freq = %d\n", (uint32_t)freq);
332 static uint64_t imx6_ccm_get_ipg_clk(IMX6CCMState *dev)
336 freq = imx6_ccm_get_ahb_clk(dev)
337 / (1 + EXTRACT(dev->ccm[CCM_CBCDR], IPG_PODF));;
339 DPRINTF("freq = %d\n", (uint32_t)freq);
344 static uint64_t imx6_ccm_get_per_clk(IMX6CCMState *dev)
348 freq = imx6_ccm_get_ipg_clk(dev)
349 / (1 + EXTRACT(dev->ccm[CCM_CSCMR1], PERCLK_PODF));
351 DPRINTF("freq = %d\n", (uint32_t)freq);
356 static uint32_t imx6_ccm_get_clock_frequency(IMXCCMState *dev, IMXClk clock)
359 IMX6CCMState *s = IMX6_CCM(dev);
365 freq = imx6_ccm_get_ipg_clk(s);
368 freq = imx6_ccm_get_per_clk(s);
374 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: unsupported clock %d\n",
375 TYPE_IMX6_CCM, __func__, clock);
379 DPRINTF("Clock = %d) = %d\n", clock, freq);
384 static void imx6_ccm_reset(DeviceState *dev)
386 IMX6CCMState *s = IMX6_CCM(dev);
390 s->ccm[CCM_CCR] = 0x040116FF;
391 s->ccm[CCM_CCDR] = 0x00000000;
392 s->ccm[CCM_CSR] = 0x00000010;
393 s->ccm[CCM_CCSR] = 0x00000100;
394 s->ccm[CCM_CACRR] = 0x00000000;
395 s->ccm[CCM_CBCDR] = 0x00018D40;
396 s->ccm[CCM_CBCMR] = 0x00022324;
397 s->ccm[CCM_CSCMR1] = 0x00F00000;
398 s->ccm[CCM_CSCMR2] = 0x02B92F06;
399 s->ccm[CCM_CSCDR1] = 0x00490B00;
400 s->ccm[CCM_CS1CDR] = 0x0EC102C1;
401 s->ccm[CCM_CS2CDR] = 0x000736C1;
402 s->ccm[CCM_CDCDR] = 0x33F71F92;
403 s->ccm[CCM_CHSCCDR] = 0x0002A150;
404 s->ccm[CCM_CSCDR2] = 0x0002A150;
405 s->ccm[CCM_CSCDR3] = 0x00014841;
406 s->ccm[CCM_CDHIPR] = 0x00000000;
407 s->ccm[CCM_CTOR] = 0x00000000;
408 s->ccm[CCM_CLPCR] = 0x00000079;
409 s->ccm[CCM_CISR] = 0x00000000;
410 s->ccm[CCM_CIMR] = 0xFFFFFFFF;
411 s->ccm[CCM_CCOSR] = 0x000A0001;
412 s->ccm[CCM_CGPR] = 0x0000FE62;
413 s->ccm[CCM_CCGR0] = 0xFFFFFFFF;
414 s->ccm[CCM_CCGR1] = 0xFFFFFFFF;
415 s->ccm[CCM_CCGR2] = 0xFC3FFFFF;
416 s->ccm[CCM_CCGR3] = 0xFFFFFFFF;
417 s->ccm[CCM_CCGR4] = 0xFFFFFFFF;
418 s->ccm[CCM_CCGR5] = 0xFFFFFFFF;
419 s->ccm[CCM_CCGR6] = 0xFFFFFFFF;
420 s->ccm[CCM_CMEOR] = 0xFFFFFFFF;
422 s->analog[CCM_ANALOG_PLL_ARM] = 0x00013042;
423 s->analog[CCM_ANALOG_PLL_USB1] = 0x00012000;
424 s->analog[CCM_ANALOG_PLL_USB2] = 0x00012000;
425 s->analog[CCM_ANALOG_PLL_SYS] = 0x00013001;
426 s->analog[CCM_ANALOG_PLL_SYS_SS] = 0x00000000;
427 s->analog[CCM_ANALOG_PLL_SYS_NUM] = 0x00000000;
428 s->analog[CCM_ANALOG_PLL_SYS_DENOM] = 0x00000012;
429 s->analog[CCM_ANALOG_PLL_AUDIO] = 0x00011006;
430 s->analog[CCM_ANALOG_PLL_AUDIO_NUM] = 0x05F5E100;
431 s->analog[CCM_ANALOG_PLL_AUDIO_DENOM] = 0x2964619C;
432 s->analog[CCM_ANALOG_PLL_VIDEO] = 0x0001100C;
433 s->analog[CCM_ANALOG_PLL_VIDEO_NUM] = 0x05F5E100;
434 s->analog[CCM_ANALOG_PLL_VIDEO_DENOM] = 0x10A24447;
435 s->analog[CCM_ANALOG_PLL_MLB] = 0x00010000;
436 s->analog[CCM_ANALOG_PLL_ENET] = 0x00011001;
437 s->analog[CCM_ANALOG_PFD_480] = 0x1311100C;
438 s->analog[CCM_ANALOG_PFD_528] = 0x1018101B;
440 s->analog[PMU_REG_1P1] = 0x00001073;
441 s->analog[PMU_REG_3P0] = 0x00000F74;
442 s->analog[PMU_REG_2P5] = 0x00005071;
443 s->analog[PMU_REG_CORE] = 0x00402010;
444 s->analog[PMU_MISC0] = 0x04000000;
445 s->analog[PMU_MISC1] = 0x00000000;
446 s->analog[PMU_MISC2] = 0x00272727;
448 s->analog[USB_ANALOG_USB1_VBUS_DETECT] = 0x00000004;
449 s->analog[USB_ANALOG_USB1_CHRG_DETECT] = 0x00000000;
450 s->analog[USB_ANALOG_USB1_VBUS_DETECT_STAT] = 0x00000000;
451 s->analog[USB_ANALOG_USB1_CHRG_DETECT_STAT] = 0x00000000;
452 s->analog[USB_ANALOG_USB1_MISC] = 0x00000002;
453 s->analog[USB_ANALOG_USB2_VBUS_DETECT] = 0x00000004;
454 s->analog[USB_ANALOG_USB2_CHRG_DETECT] = 0x00000000;
455 s->analog[USB_ANALOG_USB2_MISC] = 0x00000002;
456 s->analog[USB_ANALOG_DIGPROG] = 0x00000000;
458 /* all PLLs need to be locked */
459 s->analog[CCM_ANALOG_PLL_ARM] |= CCM_ANALOG_PLL_LOCK;
460 s->analog[CCM_ANALOG_PLL_USB1] |= CCM_ANALOG_PLL_LOCK;
461 s->analog[CCM_ANALOG_PLL_USB2] |= CCM_ANALOG_PLL_LOCK;
462 s->analog[CCM_ANALOG_PLL_SYS] |= CCM_ANALOG_PLL_LOCK;
463 s->analog[CCM_ANALOG_PLL_AUDIO] |= CCM_ANALOG_PLL_LOCK;
464 s->analog[CCM_ANALOG_PLL_VIDEO] |= CCM_ANALOG_PLL_LOCK;
465 s->analog[CCM_ANALOG_PLL_MLB] |= CCM_ANALOG_PLL_LOCK;
466 s->analog[CCM_ANALOG_PLL_ENET] |= CCM_ANALOG_PLL_LOCK;
469 static uint64_t imx6_ccm_read(void *opaque, hwaddr offset, unsigned size)
472 uint32_t index = offset >> 2;
473 IMX6CCMState *s = (IMX6CCMState *)opaque;
475 value = s->ccm[index];
477 DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_ccm_reg_name(index), value);
479 return (uint64_t)value;
482 static void imx6_ccm_write(void *opaque, hwaddr offset, uint64_t value,
485 uint32_t index = offset >> 2;
486 IMX6CCMState *s = (IMX6CCMState *)opaque;
488 DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_ccm_reg_name(index),
492 * We will do a better implementation later. In particular some bits
493 * cannot be written to.
495 s->ccm[index] = (uint32_t)value;
498 static uint64_t imx6_analog_read(void *opaque, hwaddr offset, unsigned size)
501 uint32_t index = offset >> 2;
502 IMX6CCMState *s = (IMX6CCMState *)opaque;
505 case CCM_ANALOG_PLL_ARM_SET:
506 case CCM_ANALOG_PLL_USB1_SET:
507 case CCM_ANALOG_PLL_USB2_SET:
508 case CCM_ANALOG_PLL_SYS_SET:
509 case CCM_ANALOG_PLL_AUDIO_SET:
510 case CCM_ANALOG_PLL_VIDEO_SET:
511 case CCM_ANALOG_PLL_MLB_SET:
512 case CCM_ANALOG_PLL_ENET_SET:
513 case CCM_ANALOG_PFD_480_SET:
514 case CCM_ANALOG_PFD_528_SET:
515 case CCM_ANALOG_MISC0_SET:
517 case CCM_ANALOG_MISC2_SET:
518 case USB_ANALOG_USB1_VBUS_DETECT_SET:
519 case USB_ANALOG_USB1_CHRG_DETECT_SET:
520 case USB_ANALOG_USB1_MISC_SET:
521 case USB_ANALOG_USB2_VBUS_DETECT_SET:
522 case USB_ANALOG_USB2_CHRG_DETECT_SET:
523 case USB_ANALOG_USB2_MISC_SET:
525 * All REG_NAME_SET register access are in fact targeting the
526 * the REG_NAME register.
528 value = s->analog[index - 1];
530 case CCM_ANALOG_PLL_ARM_CLR:
531 case CCM_ANALOG_PLL_USB1_CLR:
532 case CCM_ANALOG_PLL_USB2_CLR:
533 case CCM_ANALOG_PLL_SYS_CLR:
534 case CCM_ANALOG_PLL_AUDIO_CLR:
535 case CCM_ANALOG_PLL_VIDEO_CLR:
536 case CCM_ANALOG_PLL_MLB_CLR:
537 case CCM_ANALOG_PLL_ENET_CLR:
538 case CCM_ANALOG_PFD_480_CLR:
539 case CCM_ANALOG_PFD_528_CLR:
540 case CCM_ANALOG_MISC0_CLR:
542 case CCM_ANALOG_MISC2_CLR:
543 case USB_ANALOG_USB1_VBUS_DETECT_CLR:
544 case USB_ANALOG_USB1_CHRG_DETECT_CLR:
545 case USB_ANALOG_USB1_MISC_CLR:
546 case USB_ANALOG_USB2_VBUS_DETECT_CLR:
547 case USB_ANALOG_USB2_CHRG_DETECT_CLR:
548 case USB_ANALOG_USB2_MISC_CLR:
550 * All REG_NAME_CLR register access are in fact targeting the
551 * the REG_NAME register.
553 value = s->analog[index - 2];
555 case CCM_ANALOG_PLL_ARM_TOG:
556 case CCM_ANALOG_PLL_USB1_TOG:
557 case CCM_ANALOG_PLL_USB2_TOG:
558 case CCM_ANALOG_PLL_SYS_TOG:
559 case CCM_ANALOG_PLL_AUDIO_TOG:
560 case CCM_ANALOG_PLL_VIDEO_TOG:
561 case CCM_ANALOG_PLL_MLB_TOG:
562 case CCM_ANALOG_PLL_ENET_TOG:
563 case CCM_ANALOG_PFD_480_TOG:
564 case CCM_ANALOG_PFD_528_TOG:
565 case CCM_ANALOG_MISC0_TOG:
567 case CCM_ANALOG_MISC2_TOG:
568 case USB_ANALOG_USB1_VBUS_DETECT_TOG:
569 case USB_ANALOG_USB1_CHRG_DETECT_TOG:
570 case USB_ANALOG_USB1_MISC_TOG:
571 case USB_ANALOG_USB2_VBUS_DETECT_TOG:
572 case USB_ANALOG_USB2_CHRG_DETECT_TOG:
573 case USB_ANALOG_USB2_MISC_TOG:
575 * All REG_NAME_TOG register access are in fact targeting the
576 * the REG_NAME register.
578 value = s->analog[index - 3];
581 value = s->analog[index];
585 DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_analog_reg_name(index), value);
587 return (uint64_t)value;
590 static void imx6_analog_write(void *opaque, hwaddr offset, uint64_t value,
593 uint32_t index = offset >> 2;
594 IMX6CCMState *s = (IMX6CCMState *)opaque;
596 DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_analog_reg_name(index),
600 case CCM_ANALOG_PLL_ARM_SET:
601 case CCM_ANALOG_PLL_USB1_SET:
602 case CCM_ANALOG_PLL_USB2_SET:
603 case CCM_ANALOG_PLL_SYS_SET:
604 case CCM_ANALOG_PLL_AUDIO_SET:
605 case CCM_ANALOG_PLL_VIDEO_SET:
606 case CCM_ANALOG_PLL_MLB_SET:
607 case CCM_ANALOG_PLL_ENET_SET:
608 case CCM_ANALOG_PFD_480_SET:
609 case CCM_ANALOG_PFD_528_SET:
610 case CCM_ANALOG_MISC0_SET:
612 case CCM_ANALOG_MISC2_SET:
613 case USB_ANALOG_USB1_VBUS_DETECT_SET:
614 case USB_ANALOG_USB1_CHRG_DETECT_SET:
615 case USB_ANALOG_USB1_MISC_SET:
616 case USB_ANALOG_USB2_VBUS_DETECT_SET:
617 case USB_ANALOG_USB2_CHRG_DETECT_SET:
618 case USB_ANALOG_USB2_MISC_SET:
620 * All REG_NAME_SET register access are in fact targeting the
621 * the REG_NAME register. So we change the value of the
622 * REG_NAME register, setting bits passed in the value.
624 s->analog[index - 1] |= value;
626 case CCM_ANALOG_PLL_ARM_CLR:
627 case CCM_ANALOG_PLL_USB1_CLR:
628 case CCM_ANALOG_PLL_USB2_CLR:
629 case CCM_ANALOG_PLL_SYS_CLR:
630 case CCM_ANALOG_PLL_AUDIO_CLR:
631 case CCM_ANALOG_PLL_VIDEO_CLR:
632 case CCM_ANALOG_PLL_MLB_CLR:
633 case CCM_ANALOG_PLL_ENET_CLR:
634 case CCM_ANALOG_PFD_480_CLR:
635 case CCM_ANALOG_PFD_528_CLR:
636 case CCM_ANALOG_MISC0_CLR:
638 case CCM_ANALOG_MISC2_CLR:
639 case USB_ANALOG_USB1_VBUS_DETECT_CLR:
640 case USB_ANALOG_USB1_CHRG_DETECT_CLR:
641 case USB_ANALOG_USB1_MISC_CLR:
642 case USB_ANALOG_USB2_VBUS_DETECT_CLR:
643 case USB_ANALOG_USB2_CHRG_DETECT_CLR:
644 case USB_ANALOG_USB2_MISC_CLR:
646 * All REG_NAME_CLR register access are in fact targeting the
647 * the REG_NAME register. So we change the value of the
648 * REG_NAME register, unsetting bits passed in the value.
650 s->analog[index - 2] &= ~value;
652 case CCM_ANALOG_PLL_ARM_TOG:
653 case CCM_ANALOG_PLL_USB1_TOG:
654 case CCM_ANALOG_PLL_USB2_TOG:
655 case CCM_ANALOG_PLL_SYS_TOG:
656 case CCM_ANALOG_PLL_AUDIO_TOG:
657 case CCM_ANALOG_PLL_VIDEO_TOG:
658 case CCM_ANALOG_PLL_MLB_TOG:
659 case CCM_ANALOG_PLL_ENET_TOG:
660 case CCM_ANALOG_PFD_480_TOG:
661 case CCM_ANALOG_PFD_528_TOG:
662 case CCM_ANALOG_MISC0_TOG:
664 case CCM_ANALOG_MISC2_TOG:
665 case USB_ANALOG_USB1_VBUS_DETECT_TOG:
666 case USB_ANALOG_USB1_CHRG_DETECT_TOG:
667 case USB_ANALOG_USB1_MISC_TOG:
668 case USB_ANALOG_USB2_VBUS_DETECT_TOG:
669 case USB_ANALOG_USB2_CHRG_DETECT_TOG:
670 case USB_ANALOG_USB2_MISC_TOG:
672 * All REG_NAME_TOG register access are in fact targeting the
673 * the REG_NAME register. So we change the value of the
674 * REG_NAME register, toggling bits passed in the value.
676 s->analog[index - 3] ^= value;
680 * We will do a better implementation later. In particular some bits
681 * cannot be written to.
683 s->analog[index] = value;
688 static const struct MemoryRegionOps imx6_ccm_ops = {
689 .read = imx6_ccm_read,
690 .write = imx6_ccm_write,
691 .endianness = DEVICE_NATIVE_ENDIAN,
694 * Our device would not work correctly if the guest was doing
695 * unaligned access. This might not be a limitation on the real
696 * device but in practice there is no reason for a guest to access
697 * this device unaligned.
699 .min_access_size = 4,
700 .max_access_size = 4,
705 static const struct MemoryRegionOps imx6_analog_ops = {
706 .read = imx6_analog_read,
707 .write = imx6_analog_write,
708 .endianness = DEVICE_NATIVE_ENDIAN,
711 * Our device would not work correctly if the guest was doing
712 * unaligned access. This might not be a limitation on the real
713 * device but in practice there is no reason for a guest to access
714 * this device unaligned.
716 .min_access_size = 4,
717 .max_access_size = 4,
722 static void imx6_ccm_init(Object *obj)
724 DeviceState *dev = DEVICE(obj);
725 SysBusDevice *sd = SYS_BUS_DEVICE(obj);
726 IMX6CCMState *s = IMX6_CCM(obj);
728 /* initialize a container for the all memory range */
729 memory_region_init(&s->container, OBJECT(dev), TYPE_IMX6_CCM, 0x5000);
731 /* We initialize an IO memory region for the CCM part */
732 memory_region_init_io(&s->ioccm, OBJECT(dev), &imx6_ccm_ops, s,
733 TYPE_IMX6_CCM ".ccm", CCM_MAX * sizeof(uint32_t));
735 /* Add the CCM as a subregion at offset 0 */
736 memory_region_add_subregion(&s->container, 0, &s->ioccm);
738 /* We initialize an IO memory region for the ANALOG part */
739 memory_region_init_io(&s->ioanalog, OBJECT(dev), &imx6_analog_ops, s,
740 TYPE_IMX6_CCM ".analog",
741 CCM_ANALOG_MAX * sizeof(uint32_t));
743 /* Add the ANALOG as a subregion at offset 0x4000 */
744 memory_region_add_subregion(&s->container, 0x4000, &s->ioanalog);
746 sysbus_init_mmio(sd, &s->container);
749 static void imx6_ccm_class_init(ObjectClass *klass, void *data)
751 DeviceClass *dc = DEVICE_CLASS(klass);
752 IMXCCMClass *ccm = IMX_CCM_CLASS(klass);
754 dc->reset = imx6_ccm_reset;
755 dc->vmsd = &vmstate_imx6_ccm;
756 dc->desc = "i.MX6 Clock Control Module";
758 ccm->get_clock_frequency = imx6_ccm_get_clock_frequency;
761 static const TypeInfo imx6_ccm_info = {
762 .name = TYPE_IMX6_CCM,
763 .parent = TYPE_IMX_CCM,
764 .instance_size = sizeof(IMX6CCMState),
765 .instance_init = imx6_ccm_init,
766 .class_init = imx6_ccm_class_init,
769 static void imx6_ccm_register_types(void)
771 type_register_static(&imx6_ccm_info);
774 type_init(imx6_ccm_register_types)