2 * internal execution defines for qemu
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include "qemu-common.h"
24 #include "exec/tb-context.h"
25 #include "sysemu/cpus.h"
27 /* allow to see translation results - the slowdown should be negligible, so we leave it */
30 /* Page tracking code uses ram addresses in system mode, and virtual
31 addresses in userspace mode. Define tb_page_addr_t to be an appropriate
33 #if defined(CONFIG_USER_ONLY)
34 typedef abi_ulong tb_page_addr_t;
35 #define TB_PAGE_ADDR_FMT TARGET_ABI_FMT_lx
37 typedef ram_addr_t tb_page_addr_t;
38 #define TB_PAGE_ADDR_FMT RAM_ADDR_FMT
43 void gen_intermediate_code(CPUState *cpu, struct TranslationBlock *tb);
44 void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb,
47 void cpu_gen_init(void);
48 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc);
50 void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu);
51 void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr);
52 TranslationBlock *tb_gen_code(CPUState *cpu,
53 target_ulong pc, target_ulong cs_base,
57 void QEMU_NORETURN cpu_loop_exit(CPUState *cpu);
58 void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
59 void QEMU_NORETURN cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
61 #if !defined(CONFIG_USER_ONLY)
62 void cpu_reloading_memory_map(void);
64 * cpu_address_space_init:
65 * @cpu: CPU to add this address space to
66 * @as: address space to add
67 * @asidx: integer index of this address space
69 * Add the specified address space to the CPU's cpu_ases list.
70 * The address space added with @asidx 0 is the one used for the
71 * convenience pointer cpu->as.
72 * The target-specific code which registers ASes is responsible
73 * for defining what semantics address space 0, 1, 2, etc have.
75 * Before the first call to this function, the caller must set
76 * cpu->num_ases to the total number of address spaces it needs
79 * Note that with KVM only one address space is supported.
81 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx);
84 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG)
88 * @cpu: CPU whose TLB should be flushed
89 * @addr: virtual address of page to be flushed
91 * Flush one page from the TLB of the specified CPU, for all
94 void tlb_flush_page(CPUState *cpu, target_ulong addr);
96 * tlb_flush_page_all_cpus:
97 * @cpu: src CPU of the flush
98 * @addr: virtual address of page to be flushed
100 * Flush one page from the TLB of the specified CPU, for all
103 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr);
105 * tlb_flush_page_all_cpus_synced:
106 * @cpu: src CPU of the flush
107 * @addr: virtual address of page to be flushed
109 * Flush one page from the TLB of the specified CPU, for all MMU
110 * indexes like tlb_flush_page_all_cpus except the source vCPUs work
111 * is scheduled as safe work meaning all flushes will be complete once
112 * the source vCPUs safe work is complete. This will depend on when
113 * the guests translation ends the TB.
115 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr);
118 * @cpu: CPU whose TLB should be flushed
120 * Flush the entire TLB for the specified CPU. Most CPU architectures
121 * allow the implementation to drop entries from the TLB at any time
122 * so this is generally safe. If more selective flushing is required
123 * use one of the other functions for efficiency.
125 void tlb_flush(CPUState *cpu);
127 * tlb_flush_all_cpus:
128 * @cpu: src CPU of the flush
130 void tlb_flush_all_cpus(CPUState *src_cpu);
132 * tlb_flush_all_cpus_synced:
133 * @cpu: src CPU of the flush
135 * Like tlb_flush_all_cpus except this except the source vCPUs work is
136 * scheduled as safe work meaning all flushes will be complete once
137 * the source vCPUs safe work is complete. This will depend on when
138 * the guests translation ends the TB.
140 void tlb_flush_all_cpus_synced(CPUState *src_cpu);
142 * tlb_flush_page_by_mmuidx:
143 * @cpu: CPU whose TLB should be flushed
144 * @addr: virtual address of page to be flushed
145 * @idxmap: bitmap of MMU indexes to flush
147 * Flush one page from the TLB of the specified CPU, for the specified
150 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr,
153 * tlb_flush_page_by_mmuidx_all_cpus:
154 * @cpu: Originating CPU of the flush
155 * @addr: virtual address of page to be flushed
156 * @idxmap: bitmap of MMU indexes to flush
158 * Flush one page from the TLB of all CPUs, for the specified
161 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
164 * tlb_flush_page_by_mmuidx_all_cpus_synced:
165 * @cpu: Originating CPU of the flush
166 * @addr: virtual address of page to be flushed
167 * @idxmap: bitmap of MMU indexes to flush
169 * Flush one page from the TLB of all CPUs, for the specified MMU
170 * indexes like tlb_flush_page_by_mmuidx_all_cpus except the source
171 * vCPUs work is scheduled as safe work meaning all flushes will be
172 * complete once the source vCPUs safe work is complete. This will
173 * depend on when the guests translation ends the TB.
175 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
178 * tlb_flush_by_mmuidx:
179 * @cpu: CPU whose TLB should be flushed
180 * @wait: If true ensure synchronisation by exiting the cpu_loop
181 * @idxmap: bitmap of MMU indexes to flush
183 * Flush all entries from the TLB of the specified CPU, for the specified
186 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap);
188 * tlb_flush_by_mmuidx_all_cpus:
189 * @cpu: Originating CPU of the flush
190 * @idxmap: bitmap of MMU indexes to flush
192 * Flush all entries from all TLBs of all CPUs, for the specified
195 void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap);
197 * tlb_flush_by_mmuidx_all_cpus_synced:
198 * @cpu: Originating CPU of the flush
199 * @idxmap: bitmap of MMU indexes to flush
201 * Flush all entries from all TLBs of all CPUs, for the specified
202 * MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source
203 * vCPUs work is scheduled as safe work meaning all flushes will be
204 * complete once the source vCPUs safe work is complete. This will
205 * depend on when the guests translation ends the TB.
207 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap);
209 * tlb_set_page_with_attrs:
210 * @cpu: CPU to add this TLB entry for
211 * @vaddr: virtual address of page to add entry for
212 * @paddr: physical address of the page
213 * @attrs: memory transaction attributes
214 * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
215 * @mmu_idx: MMU index to insert TLB entry for
216 * @size: size of the page in bytes
218 * Add an entry to this CPU's TLB (a mapping from virtual address
219 * @vaddr to physical address @paddr) with the specified memory
220 * transaction attributes. This is generally called by the target CPU
221 * specific code after it has been called through the tlb_fill()
222 * entry point and performed a successful page table walk to find
223 * the physical address and attributes for the virtual address
224 * which provoked the TLB miss.
226 * At most one entry for a given virtual address is permitted. Only a
227 * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
228 * used by tlb_flush_page.
230 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
231 hwaddr paddr, MemTxAttrs attrs,
232 int prot, int mmu_idx, target_ulong size);
235 * This function is equivalent to calling tlb_set_page_with_attrs()
236 * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
237 * as a convenience for CPUs which don't use memory transaction attributes.
239 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
240 hwaddr paddr, int prot,
241 int mmu_idx, target_ulong size);
242 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr);
243 void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx,
246 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
249 static inline void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
252 static inline void tlb_flush_page_all_cpus_synced(CPUState *src,
256 static inline void tlb_flush(CPUState *cpu)
259 static inline void tlb_flush_all_cpus(CPUState *src_cpu)
262 static inline void tlb_flush_all_cpus_synced(CPUState *src_cpu)
265 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
266 target_ulong addr, uint16_t idxmap)
270 static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
273 static inline void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu,
278 static inline void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu,
283 static inline void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap)
286 static inline void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu,
290 static inline void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
295 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
297 /* Estimated block size for TB allocation. */
298 /* ??? The following is based on a 2015 survey of x86_64 host output.
299 Better would seem to be some sort of dynamically sized TB array,
300 adapting to the block sizes actually being produced. */
301 #if defined(CONFIG_SOFTMMU)
302 #define CODE_GEN_AVG_BLOCK_SIZE 400
304 #define CODE_GEN_AVG_BLOCK_SIZE 150
308 * Translation Cache-related fields of a TB.
309 * This struct exists just for convenience; we keep track of TB's in a binary
310 * search tree, and the only fields needed to compare TB's in the tree are
312 * Note: the address of search data can be obtained by adding @size to @ptr.
315 void *ptr; /* pointer to the translated code */
319 struct TranslationBlock {
320 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */
321 target_ulong cs_base; /* CS base for this block */
322 uint32_t flags; /* flags defining in which context the code was generated */
323 uint16_t size; /* size of target code for this block (1 <=
324 size <= TARGET_PAGE_SIZE) */
326 uint32_t cflags; /* compile flags */
327 #define CF_COUNT_MASK 0x00007fff
328 #define CF_LAST_IO 0x00008000 /* Last insn may be an IO access. */
329 #define CF_NOCACHE 0x00010000 /* To be freed after execution */
330 #define CF_USE_ICOUNT 0x00020000
331 #define CF_INVALID 0x00040000 /* TB is stale. Setters need tb_lock */
332 #define CF_PARALLEL 0x00080000 /* Generate code for a parallel context */
333 /* cflags' mask for hashing/comparison */
334 #define CF_HASH_MASK \
335 (CF_COUNT_MASK | CF_LAST_IO | CF_USE_ICOUNT | CF_PARALLEL)
337 /* Per-vCPU dynamic tracing state used to generate this TB */
338 uint32_t trace_vcpu_dstate;
342 /* original tb when cflags has CF_NOCACHE */
343 struct TranslationBlock *orig_tb;
344 /* first and second physical page containing code. The lower bit
345 of the pointer tells the index in page_next[] */
346 struct TranslationBlock *page_next[2];
347 tb_page_addr_t page_addr[2];
349 /* The following data are used to directly call another TB from
350 * the code of this one. This can be done either by emitting direct or
351 * indirect native jump instructions. These jumps are reset so that the TB
352 * just continues its execution. The TB can be linked to another one by
353 * setting one of the jump targets (or patching the jump instruction). Only
354 * two of such jumps are supported.
356 uint16_t jmp_reset_offset[2]; /* offset of original jump target */
357 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
358 uintptr_t jmp_target_arg[2]; /* target address or offset */
360 /* Each TB has an associated circular list of TBs jumping to this one.
361 * jmp_list_first points to the first TB jumping to this one.
362 * jmp_list_next is used to point to the next TB in a list.
363 * Since each TB can have two jumps, it can participate in two lists.
364 * jmp_list_first and jmp_list_next are 4-byte aligned pointers to a
365 * TranslationBlock structure, but the two least significant bits of
366 * them are used to encode which data field of the pointed TB should
367 * be used to traverse the list further from that TB:
368 * 0 => jmp_list_next[0], 1 => jmp_list_next[1], 2 => jmp_list_first.
369 * In other words, 0/1 tells which jump is used in the pointed TB,
370 * and 2 means that this is a pointer back to the target TB of this list.
372 uintptr_t jmp_list_next[2];
373 uintptr_t jmp_list_first;
376 extern bool parallel_cpus;
378 /* Hide the atomic_read to make code a little easier on the eyes */
379 static inline uint32_t tb_cflags(const TranslationBlock *tb)
381 return atomic_read(&tb->cflags);
384 /* current cflags for hashing/comparison */
385 static inline uint32_t curr_cflags(void)
387 return (parallel_cpus ? CF_PARALLEL : 0)
388 | (use_icount ? CF_USE_ICOUNT : 0);
391 void tb_remove(TranslationBlock *tb);
392 void tb_flush(CPUState *cpu);
393 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
394 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
395 target_ulong cs_base, uint32_t flags,
397 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr);
399 /* GETPC is the true target of the return instruction that we'll execute. */
400 #if defined(CONFIG_TCG_INTERPRETER)
401 extern uintptr_t tci_tb_ptr;
402 # define GETPC() tci_tb_ptr
405 ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
408 /* The true return address will often point to a host insn that is part of
409 the next translated guest insn. Adjust the address backward to point to
410 the middle of the call insn. Subtracting one would do the job except for
411 several compressed mode architectures (arm, mips) which set the low bit
412 to indicate the compressed mode; subtracting two works around that. It
413 is also the case that there are no host isas that contain a call insn
414 smaller than 4 bytes, so we don't worry about special-casing this. */
418 void tb_unlock(void);
419 void tb_lock_reset(void);
421 #if !defined(CONFIG_USER_ONLY)
423 struct MemoryRegion *iotlb_to_region(CPUState *cpu,
424 hwaddr index, MemTxAttrs attrs);
426 void tlb_fill(CPUState *cpu, target_ulong addr, MMUAccessType access_type,
427 int mmu_idx, uintptr_t retaddr);
431 #if defined(CONFIG_USER_ONLY)
432 void mmap_lock(void);
433 void mmap_unlock(void);
434 bool have_mmap_lock(void);
436 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
441 static inline void mmap_lock(void) {}
442 static inline void mmap_unlock(void) {}
445 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr);
447 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
448 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
451 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr);
453 MemoryRegionSection *
454 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
455 hwaddr *xlat, hwaddr *plen);
456 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
457 MemoryRegionSection *section,
459 hwaddr paddr, hwaddr xlat,
461 target_ulong *address);
462 bool memory_region_is_unassigned(MemoryRegion *mr);
467 extern int singlestep;