1 HXCOMM Use DEFHEADING() to define headings in both help text and rST.
2 HXCOMM Text between SRST and ERST is copied to the rST version and
3 HXCOMM discarded from C version.
4 HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help, arch_mask) is used to
5 HXCOMM construct option structures, enums and help message for specified
7 HXCOMM HXCOMM can be used for comments, discarded from both rST and C.
9 DEFHEADING(Standard options:)
11 DEF("help", 0, QEMU_OPTION_h,
12 "-h or -help display this help and exit\n", QEMU_ARCH_ALL)
18 DEF("version", 0, QEMU_OPTION_version,
19 "-version display version information and exit\n", QEMU_ARCH_ALL)
22 Display version information and exit
25 DEF("machine", HAS_ARG, QEMU_OPTION_machine, \
26 "-machine [type=]name[,prop[=value][,...]]\n"
27 " selects emulated machine ('-machine help' for list)\n"
28 " property accel=accel1[:accel2[:...]] selects accelerator\n"
29 " supported accelerators are kvm, xen, hax, hvf, nvmm, whpx or tcg (default: tcg)\n"
30 " vmport=on|off|auto controls emulation of vmport (default: auto)\n"
31 " dump-guest-core=on|off include guest memory in a core dump (default=on)\n"
32 " mem-merge=on|off controls memory merge support (default: on)\n"
33 " aes-key-wrap=on|off controls support for AES key wrapping (default=on)\n"
34 " dea-key-wrap=on|off controls support for DEA key wrapping (default=on)\n"
35 " suppress-vmdesc=on|off disables self-describing migration (default=off)\n"
36 " nvdimm=on|off controls NVDIMM support (default=off)\n"
37 " memory-encryption=@var{} memory encryption object to use (default=none)\n"
38 " hmat=on|off controls ACPI HMAT support (default=off)\n"
39 " memory-backend='backend-id' specifies explicitly provided backend for main RAM (default=none)\n",
42 ``-machine [type=]name[,prop=value[,...]]``
43 Select the emulated machine by name. Use ``-machine help`` to list
46 For architectures which aim to support live migration compatibility
47 across releases, each release will introduce a new versioned machine
48 type. For example, the 2.8.0 release introduced machine types
49 "pc-i440fx-2.8" and "pc-q35-2.8" for the x86\_64/i686 architectures.
51 To allow live migration of guests from QEMU version 2.8.0, to QEMU
52 version 2.9.0, the 2.9.0 version must support the "pc-i440fx-2.8"
53 and "pc-q35-2.8" machines too. To allow users live migrating VMs to
54 skip multiple intermediate releases when upgrading, new releases of
55 QEMU will support machine types from many previous versions.
57 Supported machine properties are:
59 ``accel=accels1[:accels2[:...]]``
60 This is used to enable an accelerator. Depending on the target
61 architecture, kvm, xen, hax, hvf, nvmm, whpx or tcg can be available.
62 By default, tcg is used. If there is more than one accelerator
63 specified, the next one is used if the previous one fails to
66 ``vmport=on|off|auto``
67 Enables emulation of VMWare IO port, for vmmouse etc. auto says
68 to select the value based on accel. For accel=xen the default is
69 off otherwise the default is on.
71 ``dump-guest-core=on|off``
72 Include guest memory in a core dump. The default is on.
75 Enables or disables memory merge support. This feature, when
76 supported by the host, de-duplicates identical memory pages
77 among VMs instances (enabled by default).
79 ``aes-key-wrap=on|off``
80 Enables or disables AES key wrapping support on s390-ccw hosts.
81 This feature controls whether AES wrapping keys will be created
82 to allow execution of AES cryptographic functions. The default
85 ``dea-key-wrap=on|off``
86 Enables or disables DEA key wrapping support on s390-ccw hosts.
87 This feature controls whether DEA wrapping keys will be created
88 to allow execution of DEA cryptographic functions. The default
92 Enables or disables NVDIMM support. The default is off.
94 ``memory-encryption=``
95 Memory encryption object to use. The default is none.
98 Enables or disables ACPI Heterogeneous Memory Attribute Table
99 (HMAT) support. The default is off.
101 ``memory-backend='id'``
102 An alternative to legacy ``-mem-path`` and ``mem-prealloc`` options.
103 Allows to use a memory backend as main RAM.
108 -object memory-backend-file,id=pc.ram,size=512M,mem-path=/hugetlbfs,prealloc=on,share=on
109 -machine memory-backend=pc.ram
112 Migration compatibility note:
114 * as backend id one shall use value of 'default-ram-id', advertised by
115 machine type (available via ``query-machines`` QMP command), if migration
116 to/from old QEMU (<5.0) is expected.
117 * for machine types 4.0 and older, user shall
118 use ``x-use-canonical-path-for-ramblock-id=off`` backend option
119 if migration to/from old QEMU (<5.0) is expected.
124 -object memory-backend-ram,id=pc.ram,size=512M,x-use-canonical-path-for-ramblock-id=off
125 -machine memory-backend=pc.ram
129 HXCOMM Deprecated by -machine
130 DEF("M", HAS_ARG, QEMU_OPTION_M, "", QEMU_ARCH_ALL)
132 DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
133 "-cpu cpu select CPU ('-cpu help' for list)\n", QEMU_ARCH_ALL)
136 Select CPU model (``-cpu help`` for list and additional feature
140 DEF("accel", HAS_ARG, QEMU_OPTION_accel,
141 "-accel [accel=]accelerator[,prop[=value][,...]]\n"
142 " select accelerator (kvm, xen, hax, hvf, nvmm, whpx or tcg; use 'help' for a list)\n"
143 " igd-passthru=on|off (enable Xen integrated Intel graphics passthrough, default=off)\n"
144 " kernel-irqchip=on|off|split controls accelerated irqchip support (default=on)\n"
145 " kvm-shadow-mem=size of KVM shadow MMU in bytes\n"
146 " split-wx=on|off (enable TCG split w^x mapping)\n"
147 " tb-size=n (TCG translation block cache size)\n"
148 " dirty-ring-size=n (KVM dirty ring GFN count, default 0)\n"
149 " thread=single|multi (enable multi-threaded TCG)\n", QEMU_ARCH_ALL)
151 ``-accel name[,prop=value[,...]]``
152 This is used to enable an accelerator. Depending on the target
153 architecture, kvm, xen, hax, hvf, nvmm, whpx or tcg can be available. By
154 default, tcg is used. If there is more than one accelerator
155 specified, the next one is used if the previous one fails to
158 ``igd-passthru=on|off``
159 When Xen is in use, this option controls whether Intel
160 integrated graphics devices can be passed through to the guest
163 ``kernel-irqchip=on|off|split``
164 Controls KVM in-kernel irqchip support. The default is full
165 acceleration of the interrupt controllers. On x86, split irqchip
166 reduces the kernel attack surface, at a performance cost for
167 non-MSI interrupts. Disabling the in-kernel irqchip completely
168 is not recommended except for debugging purposes.
170 ``kvm-shadow-mem=size``
171 Defines the size of the KVM shadow MMU.
174 Controls the use of split w^x mapping for the TCG code generation
175 buffer. Some operating systems require this to be enabled, and in
176 such a case this will default on. On other operating systems, this
177 will default off, but one may enable this for testing or debugging.
180 Controls the size (in MiB) of the TCG translation block cache.
182 ``thread=single|multi``
183 Controls number of TCG threads. When the TCG is multi-threaded
184 there will be one thread per vCPU therefore taking advantage of
185 additional host cores. The default is to enable multi-threading
186 where both the back-end and front-ends support it and no
187 incompatible TCG features have been enabled (e.g.
190 ``dirty-ring-size=n``
191 When the KVM accelerator is used, it controls the size of the per-vCPU
192 dirty page ring buffer (number of entries for each vCPU). It should
193 be a value that is power of two, and it should be 1024 or bigger (but
194 still less than the maximum value that the kernel supports). 4096
195 could be a good initial value if you have no idea which is the best.
196 Set this value to 0 to disable the feature. By default, this feature
197 is disabled (dirty-ring-size=0). When enabled, KVM will instead
198 record dirty pages in a bitmap.
202 DEF("smp", HAS_ARG, QEMU_OPTION_smp,
203 "-smp [[cpus=]n][,maxcpus=cpus][,sockets=sockets][,dies=dies][,cores=cores][,threads=threads]\n"
204 " set the number of CPUs to 'n' [default=1]\n"
205 " maxcpus= maximum number of total CPUs, including\n"
206 " offline CPUs for hotplug, etc\n"
207 " sockets= number of discrete sockets in the system\n"
208 " dies= number of CPU dies on one socket (for PC only)\n"
209 " cores= number of CPU cores on one socket (for PC, it's on one die)\n"
210 " threads= number of threads on one CPU core\n",
213 ``-smp [[cpus=]n][,maxcpus=maxcpus][,sockets=sockets][,dies=dies][,cores=cores][,threads=threads]``
214 Simulate a SMP system with '\ ``n``\ ' CPUs initially present on
215 the machine type board. On boards supporting CPU hotplug, the optional
216 '\ ``maxcpus``\ ' parameter can be set to enable further CPUs to be
217 added at runtime. If omitted the maximum number of CPUs will be
218 set to match the initial CPU count. Both parameters are subject to
219 an upper limit that is determined by the specific machine type chosen.
221 To control reporting of CPU topology information, the number of sockets,
222 dies per socket, cores per die, and threads per core can be specified.
223 The sum `` sockets * cores * dies * threads `` must be equal to the
224 maximum CPU count. CPU targets may only support a subset of the topology
225 parameters. Where a CPU target does not support use of a particular
226 topology parameter, its value should be assumed to be 1 for the purpose
227 of computing the CPU maximum count.
229 Either the initial CPU count, or at least one of the topology parameters
230 must be specified. Values for any omitted parameters will be computed
231 from those which are given. Historically preference was given to the
232 coarsest topology parameters when computing missing values (ie sockets
233 preferred over cores, which were preferred over threads), however, this
234 behaviour is considered liable to change.
237 DEF("numa", HAS_ARG, QEMU_OPTION_numa,
238 "-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=node]\n"
239 "-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=node]\n"
240 "-numa dist,src=source,dst=destination,val=distance\n"
241 "-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]\n"
242 "-numa hmat-lb,initiator=node,target=node,hierarchy=memory|first-level|second-level|third-level,data-type=access-latency|read-latency|write-latency[,latency=lat][,bandwidth=bw]\n"
243 "-numa hmat-cache,node-id=node,size=size,level=level[,associativity=none|direct|complex][,policy=none|write-back|write-through][,line=size]\n",
246 ``-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=initiator]``
248 ``-numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node][,initiator=initiator]``
250 ``-numa dist,src=source,dst=destination,val=distance``
252 ``-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z]``
254 ``-numa hmat-lb,initiator=node,target=node,hierarchy=hierarchy,data-type=tpye[,latency=lat][,bandwidth=bw]``
256 ``-numa hmat-cache,node-id=node,size=size,level=level[,associativity=str][,policy=str][,line=size]``
257 Define a NUMA node and assign RAM and VCPUs to it. Set the NUMA
258 distance from a source node to a destination node. Set the ACPI
259 Heterogeneous Memory Attributes for the given nodes.
261 Legacy VCPU assignment uses '\ ``cpus``\ ' option where firstcpu and
262 lastcpu are CPU indexes. Each '\ ``cpus``\ ' option represent a
263 contiguous range of CPU indexes (or a single VCPU if lastcpu is
264 omitted). A non-contiguous set of VCPUs can be represented by
265 providing multiple '\ ``cpus``\ ' options. If '\ ``cpus``\ ' is
266 omitted on all nodes, VCPUs are automatically split between them.
268 For example, the following option assigns VCPUs 0, 1, 2 and 5 to a
273 -numa node,cpus=0-2,cpus=5
275 '\ ``cpu``\ ' option is a new alternative to '\ ``cpus``\ ' option
276 which uses '\ ``socket-id|core-id|thread-id``\ ' properties to
277 assign CPU objects to a node using topology layout properties of
278 CPU. The set of properties is machine specific, and depends on used
279 machine type/'\ ``smp``\ ' options. It could be queried with
280 '\ ``hotpluggable-cpus``\ ' monitor command. '\ ``node-id``\ '
281 property specifies node to which CPU object will be assigned, it's
282 required for node to be declared with '\ ``node``\ ' option before
283 it's used with '\ ``cpu``\ ' option.
290 -smp 1,sockets=2,maxcpus=2 \
291 -numa node,nodeid=0 -numa node,nodeid=1 \
292 -numa cpu,node-id=0,socket-id=0 -numa cpu,node-id=1,socket-id=1
294 Legacy '\ ``mem``\ ' assigns a given RAM amount to a node (not supported
295 for 5.1 and newer machine types). '\ ``memdev``\ ' assigns RAM from
296 a given memory backend device to a node. If '\ ``mem``\ ' and
297 '\ ``memdev``\ ' are omitted in all nodes, RAM is split equally between them.
300 '\ ``mem``\ ' and '\ ``memdev``\ ' are mutually exclusive.
301 Furthermore, if one node uses '\ ``memdev``\ ', all of them have to
304 '\ ``initiator``\ ' is an additional option that points to an
305 initiator NUMA node that has best performance (the lowest latency or
306 largest bandwidth) to this NUMA node. Note that this option can be
307 set only when the machine property 'hmat' is set to 'on'.
309 Following example creates a machine with 2 NUMA nodes, node 0 has
310 CPU. node 1 has only memory, and its initiator is node 0. Note that
311 because node 0 has CPU, by default the initiator of node 0 is itself
317 -m 2G,slots=2,maxmem=4G \
318 -object memory-backend-ram,size=1G,id=m0 \
319 -object memory-backend-ram,size=1G,id=m1 \
320 -numa node,nodeid=0,memdev=m0 \
321 -numa node,nodeid=1,memdev=m1,initiator=0 \
322 -smp 2,sockets=2,maxcpus=2 \
323 -numa cpu,node-id=0,socket-id=0 \
324 -numa cpu,node-id=0,socket-id=1
326 source and destination are NUMA node IDs. distance is the NUMA
327 distance from source to destination. The distance from a node to
328 itself is always 10. If any pair of nodes is given a distance, then
329 all pairs must be given distances. Although, when distances are only
330 given in one direction for each pair of nodes, then the distances in
331 the opposite directions are assumed to be the same. If, however, an
332 asymmetrical pair of distances is given for even one node pair, then
333 all node pairs must be provided distance values for both directions,
334 even when they are symmetrical. When a node is unreachable from
335 another node, set the pair's distance to 255.
337 Note that the -``numa`` option doesn't allocate any of the specified
338 resources, it just assigns existing resources to NUMA nodes. This
339 means that one still has to use the ``-m``, ``-smp`` options to
340 allocate RAM and VCPUs respectively.
342 Use '\ ``hmat-lb``\ ' to set System Locality Latency and Bandwidth
343 Information between initiator and target NUMA nodes in ACPI
344 Heterogeneous Attribute Memory Table (HMAT). Initiator NUMA node can
345 create memory requests, usually it has one or more processors.
346 Target NUMA node contains addressable memory.
348 In '\ ``hmat-lb``\ ' option, node are NUMA node IDs. hierarchy is
349 the memory hierarchy of the target NUMA node: if hierarchy is
350 'memory', the structure represents the memory performance; if
351 hierarchy is 'first-level\|second-level\|third-level', this
352 structure represents aggregated performance of memory side caches
353 for each domain. type of 'data-type' is type of data represented by
354 this structure instance: if 'hierarchy' is 'memory', 'data-type' is
355 'access\|read\|write' latency or 'access\|read\|write' bandwidth of
356 the target memory; if 'hierarchy' is
357 'first-level\|second-level\|third-level', 'data-type' is
358 'access\|read\|write' hit latency or 'access\|read\|write' hit
359 bandwidth of the target memory side cache.
361 lat is latency value in nanoseconds. bw is bandwidth value, the
362 possible value and units are NUM[M\|G\|T], mean that the bandwidth
363 value are NUM byte per second (or MB/s, GB/s or TB/s depending on
364 used suffix). Note that if latency or bandwidth value is 0, means
365 the corresponding latency or bandwidth information is not provided.
367 In '\ ``hmat-cache``\ ' option, node-id is the NUMA-id of the memory
368 belongs. size is the size of memory side cache in bytes. level is
369 the cache level described in this structure, note that the cache
370 level 0 should not be used with '\ ``hmat-cache``\ ' option.
371 associativity is the cache associativity, the possible value is
372 'none/direct(direct-mapped)/complex(complex cache indexing)'. policy
373 is the write policy. line is the cache Line size in bytes.
375 For example, the following options describe 2 NUMA nodes. Node 0 has
376 2 cpus and a ram, node 1 has only a ram. The processors in node 0
377 access memory in node 0 with access-latency 5 nanoseconds,
378 access-bandwidth is 200 MB/s; The processors in NUMA node 0 access
379 memory in NUMA node 1 with access-latency 10 nanoseconds,
380 access-bandwidth is 100 MB/s. And for memory side cache information,
381 NUMA node 0 and 1 both have 1 level memory cache, size is 10KB,
382 policy is write-back, the cache Line size is 8 bytes:
388 -object memory-backend-ram,size=1G,id=m0 \
389 -object memory-backend-ram,size=1G,id=m1 \
391 -numa node,nodeid=0,memdev=m0 \
392 -numa node,nodeid=1,memdev=m1,initiator=0 \
393 -numa cpu,node-id=0,socket-id=0 \
394 -numa cpu,node-id=0,socket-id=1 \
395 -numa hmat-lb,initiator=0,target=0,hierarchy=memory,data-type=access-latency,latency=5 \
396 -numa hmat-lb,initiator=0,target=0,hierarchy=memory,data-type=access-bandwidth,bandwidth=200M \
397 -numa hmat-lb,initiator=0,target=1,hierarchy=memory,data-type=access-latency,latency=10 \
398 -numa hmat-lb,initiator=0,target=1,hierarchy=memory,data-type=access-bandwidth,bandwidth=100M \
399 -numa hmat-cache,node-id=0,size=10K,level=1,associativity=direct,policy=write-back,line=8 \
400 -numa hmat-cache,node-id=1,size=10K,level=1,associativity=direct,policy=write-back,line=8
403 DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd,
404 "-add-fd fd=fd,set=set[,opaque=opaque]\n"
405 " Add 'fd' to fd 'set'\n", QEMU_ARCH_ALL)
407 ``-add-fd fd=fd,set=set[,opaque=opaque]``
408 Add a file descriptor to an fd set. Valid options are:
411 This option defines the file descriptor of which a duplicate is
412 added to fd set. The file descriptor cannot be stdin, stdout, or
416 This option defines the ID of the fd set to add the file
420 This option defines a free-form string that can be used to
423 You can open an image using pre-opened file descriptors from an fd
429 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file" \\
430 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file" \\
431 -drive file=/dev/fdset/2,index=0,media=disk
434 DEF("set", HAS_ARG, QEMU_OPTION_set,
435 "-set group.id.arg=value\n"
436 " set <arg> parameter for item <id> of type <group>\n"
437 " i.e. -set drive.$id.file=/path/to/image\n", QEMU_ARCH_ALL)
439 ``-set group.id.arg=value``
440 Set parameter arg for item id of type group
443 DEF("global", HAS_ARG, QEMU_OPTION_global,
444 "-global driver.property=value\n"
445 "-global driver=driver,property=property,value=value\n"
446 " set a global default for a driver property\n",
449 ``-global driver.prop=value``
451 ``-global driver=driver,property=property,value=value``
452 Set default value of driver's property prop to value, e.g.:
456 |qemu_system_x86| -global ide-hd.physical_block_size=4096 disk-image.img
458 In particular, you can use this to set driver properties for devices
459 which are created automatically by the machine model. To create a
460 device which is not created automatically and set properties on it,
463 -global driver.prop=value is shorthand for -global
464 driver=driver,property=prop,value=value. The longhand syntax works
465 even when driver contains a dot.
468 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
469 "-boot [order=drives][,once=drives][,menu=on|off]\n"
470 " [,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]\n"
471 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n"
472 " 'sp_name': the file's name that would be passed to bios as logo picture, if menu=on\n"
473 " 'sp_time': the period that splash picture last if menu=on, unit is ms\n"
474 " 'rb_timeout': the timeout before guest reboot when boot failed, unit is ms\n",
477 ``-boot [order=drives][,once=drives][,menu=on|off][,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_timeout][,strict=on|off]``
478 Specify boot order drives as a string of drive letters. Valid drive
479 letters depend on the target architecture. The x86 PC uses: a, b
480 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p
481 (Etherboot from network adapter 1-4), hard disk boot is the default.
482 To apply a particular boot order only on the first startup, specify
483 it via ``once``. Note that the ``order`` or ``once`` parameter
484 should not be used together with the ``bootindex`` property of
485 devices, since the firmware implementations normally do not support
486 both at the same time.
488 Interactive boot menus/prompts can be enabled via ``menu=on`` as far
489 as firmware/BIOS supports them. The default is non-interactive boot.
491 A splash picture could be passed to bios, enabling user to show it
492 as logo, when option splash=sp\_name is given and menu=on, If
493 firmware/BIOS supports them. Currently Seabios for X86 system
494 support it. limitation: The splash file could be a jpeg file or a
495 BMP file in 24 BPP format(true color). The resolution should be
496 supported by the SVGA mode, so the recommended is 320x240, 640x480,
499 A timeout could be passed to bios, guest will pause for rb\_timeout
500 ms when boot failed, then reboot. If rb\_timeout is '-1', guest will
501 not reboot, qemu passes '-1' to bios by default. Currently Seabios
502 for X86 system support it.
504 Do strict boot via ``strict=on`` as far as firmware/BIOS supports
505 it. This only effects when boot priority is changed by bootindex
506 options. The default is non-strict boot.
510 # try to boot from network first, then from hard disk
511 |qemu_system_x86| -boot order=nc
512 # boot from CD-ROM first, switch back to default order after reboot
513 |qemu_system_x86| -boot once=d
514 # boot with a splash picture for 5 seconds.
515 |qemu_system_x86| -boot menu=on,splash=/root/boot.bmp,splash-time=5000
517 Note: The legacy format '-boot drives' is still supported but its
518 use is discouraged as it may be removed from future versions.
521 DEF("m", HAS_ARG, QEMU_OPTION_m,
522 "-m [size=]megs[,slots=n,maxmem=size]\n"
523 " configure guest RAM\n"
524 " size: initial amount of guest memory\n"
525 " slots: number of hotplug slots (default: none)\n"
526 " maxmem: maximum amount of guest memory (default: none)\n"
527 "NOTE: Some architectures might enforce a specific granularity\n",
530 ``-m [size=]megs[,slots=n,maxmem=size]``
531 Sets guest startup RAM size to megs megabytes. Default is 128 MiB.
532 Optionally, a suffix of "M" or "G" can be used to signify a value in
533 megabytes or gigabytes respectively. Optional pair slots, maxmem
534 could be used to set amount of hotpluggable memory slots and maximum
535 amount of memory. Note that maxmem must be aligned to the page size.
537 For example, the following command-line sets the guest startup RAM
538 size to 1GB, creates 3 slots to hotplug additional memory and sets
539 the maximum memory the guest can reach to 4GB:
543 |qemu_system| -m 1G,slots=3,maxmem=4G
545 If slots and maxmem are not specified, memory hotplug won't be
546 enabled and the guest startup RAM will never increase.
549 DEF("mem-path", HAS_ARG, QEMU_OPTION_mempath,
550 "-mem-path FILE provide backing storage for guest RAM\n", QEMU_ARCH_ALL)
553 Allocate guest RAM from a temporarily created file in path.
556 DEF("mem-prealloc", 0, QEMU_OPTION_mem_prealloc,
557 "-mem-prealloc preallocate guest memory (use with -mem-path)\n",
561 Preallocate memory when using -mem-path.
564 DEF("k", HAS_ARG, QEMU_OPTION_k,
565 "-k language use keyboard layout (for example 'fr' for French)\n",
569 Use keyboard layout language (for example ``fr`` for French). This
570 option is only needed where it is not easy to get raw PC keycodes
571 (e.g. on Macs, with some X11 servers or with a VNC or curses
572 display). You don't normally need to use it on PC/Linux or
575 The available layouts are:
579 ar de-ch es fo fr-ca hu ja mk no pt-br sv
580 da en-gb et fr fr-ch is lt nl pl ru th
581 de en-us fi fr-be hr it lv nl-be pt sl tr
583 The default is ``en-us``.
587 HXCOMM Deprecated by -audiodev
588 DEF("audio-help", 0, QEMU_OPTION_audio_help,
589 "-audio-help show -audiodev equivalent of the currently specified audio settings\n",
593 Will show the -audiodev equivalent of the currently specified
594 (deprecated) environment variables.
597 DEF("audiodev", HAS_ARG, QEMU_OPTION_audiodev,
598 "-audiodev [driver=]driver,id=id[,prop[=value][,...]]\n"
599 " specifies the audio backend to use\n"
600 " id= identifier of the backend\n"
601 " timer-period= timer period in microseconds\n"
602 " in|out.mixing-engine= use mixing engine to mix streams inside QEMU\n"
603 " in|out.fixed-settings= use fixed settings for host audio\n"
604 " in|out.frequency= frequency to use with fixed settings\n"
605 " in|out.channels= number of channels to use with fixed settings\n"
606 " in|out.format= sample format to use with fixed settings\n"
607 " valid values: s8, s16, s32, u8, u16, u32, f32\n"
608 " in|out.voices= number of voices to use\n"
609 " in|out.buffer-length= length of buffer in microseconds\n"
610 "-audiodev none,id=id,[,prop[=value][,...]]\n"
611 " dummy driver that discards all output\n"
612 #ifdef CONFIG_AUDIO_ALSA
613 "-audiodev alsa,id=id[,prop[=value][,...]]\n"
614 " in|out.dev= name of the audio device to use\n"
615 " in|out.period-length= length of period in microseconds\n"
616 " in|out.try-poll= attempt to use poll mode\n"
617 " threshold= threshold (in microseconds) when playback starts\n"
619 #ifdef CONFIG_AUDIO_COREAUDIO
620 "-audiodev coreaudio,id=id[,prop[=value][,...]]\n"
621 " in|out.buffer-count= number of buffers\n"
623 #ifdef CONFIG_AUDIO_DSOUND
624 "-audiodev dsound,id=id[,prop[=value][,...]]\n"
625 " latency= add extra latency to playback in microseconds\n"
627 #ifdef CONFIG_AUDIO_OSS
628 "-audiodev oss,id=id[,prop[=value][,...]]\n"
629 " in|out.dev= path of the audio device to use\n"
630 " in|out.buffer-count= number of buffers\n"
631 " in|out.try-poll= attempt to use poll mode\n"
632 " try-mmap= try using memory mapped access\n"
633 " exclusive= open device in exclusive mode\n"
634 " dsp-policy= set timing policy (0..10), -1 to use fragment mode\n"
636 #ifdef CONFIG_AUDIO_PA
637 "-audiodev pa,id=id[,prop[=value][,...]]\n"
638 " server= PulseAudio server address\n"
639 " in|out.name= source/sink device name\n"
640 " in|out.latency= desired latency in microseconds\n"
642 #ifdef CONFIG_AUDIO_SDL
643 "-audiodev sdl,id=id[,prop[=value][,...]]\n"
644 " in|out.buffer-count= number of buffers\n"
647 "-audiodev spice,id=id[,prop[=value][,...]]\n"
649 "-audiodev wav,id=id[,prop[=value][,...]]\n"
650 " path= path of wav file to record\n",
653 ``-audiodev [driver=]driver,id=id[,prop[=value][,...]]``
654 Adds a new audio backend driver identified by id. There are global
655 and driver specific properties. Some values can be set differently
656 for input and output, they're marked with ``in|out.``. You can set
657 the input's property with ``in.prop`` and the output's property with
658 ``out.prop``. For example:
662 -audiodev alsa,id=example,in.frequency=44110,out.frequency=8000
663 -audiodev alsa,id=example,out.channels=1 # leaves in.channels unspecified
665 NOTE: parameter validation is known to be incomplete, in many cases
666 specifying an invalid option causes QEMU to print an error message
667 and continue emulation without sound.
669 Valid global options are:
672 Identifies the audio backend.
674 ``timer-period=period``
675 Sets the timer period used by the audio subsystem in
676 microseconds. Default is 10000 (10 ms).
678 ``in|out.mixing-engine=on|off``
679 Use QEMU's mixing engine to mix all streams inside QEMU and
680 convert audio formats when not supported by the backend. When
681 off, fixed-settings must be off too. Note that disabling this
682 option means that the selected backend must support multiple
683 streams and the audio formats used by the virtual cards,
684 otherwise you'll get no sound. It's not recommended to disable
685 this option unless you want to use 5.1 or 7.1 audio, as mixing
686 engine only supports mono and stereo audio. Default is on.
688 ``in|out.fixed-settings=on|off``
689 Use fixed settings for host audio. When off, it will change
690 based on how the guest opens the sound card. In this case you
691 must not specify frequency, channels or format. Default is on.
693 ``in|out.frequency=frequency``
694 Specify the frequency to use when using fixed-settings. Default
697 ``in|out.channels=channels``
698 Specify the number of channels to use when using fixed-settings.
699 Default is 2 (stereo).
701 ``in|out.format=format``
702 Specify the sample format to use when using fixed-settings.
703 Valid values are: ``s8``, ``s16``, ``s32``, ``u8``, ``u16``,
704 ``u32``, ``f32``. Default is ``s16``.
706 ``in|out.voices=voices``
707 Specify the number of voices to use. Default is 1.
709 ``in|out.buffer-length=usecs``
710 Sets the size of the buffer in microseconds.
712 ``-audiodev none,id=id[,prop[=value][,...]]``
713 Creates a dummy backend that discards all outputs. This backend has
714 no backend specific properties.
716 ``-audiodev alsa,id=id[,prop[=value][,...]]``
717 Creates backend using the ALSA. This backend is only available on
720 ALSA specific options are:
722 ``in|out.dev=device``
723 Specify the ALSA device to use for input and/or output. Default
726 ``in|out.period-length=usecs``
727 Sets the period length in microseconds.
729 ``in|out.try-poll=on|off``
730 Attempt to use poll mode with the device. Default is on.
732 ``threshold=threshold``
733 Threshold (in microseconds) when playback starts. Default is 0.
735 ``-audiodev coreaudio,id=id[,prop[=value][,...]]``
736 Creates a backend using Apple's Core Audio. This backend is only
737 available on Mac OS and only supports playback.
739 Core Audio specific options are:
741 ``in|out.buffer-count=count``
742 Sets the count of the buffers.
744 ``-audiodev dsound,id=id[,prop[=value][,...]]``
745 Creates a backend using Microsoft's DirectSound. This backend is
746 only available on Windows and only supports playback.
748 DirectSound specific options are:
751 Add extra usecs microseconds latency to playback. Default is
754 ``-audiodev oss,id=id[,prop[=value][,...]]``
755 Creates a backend using OSS. This backend is available on most
758 OSS specific options are:
760 ``in|out.dev=device``
761 Specify the file name of the OSS device to use. Default is
764 ``in|out.buffer-count=count``
765 Sets the count of the buffers.
767 ``in|out.try-poll=on|of``
768 Attempt to use poll mode with the device. Default is on.
771 Try using memory mapped device access. Default is off.
774 Open the device in exclusive mode (vmix won't work in this
775 case). Default is off.
777 ``dsp-policy=policy``
778 Sets the timing policy (between 0 and 10, where smaller number
779 means smaller latency but higher CPU usage). Use -1 to use
780 buffer sizes specified by ``buffer`` and ``buffer-count``. This
781 option is ignored if you do not have OSS 4. Default is 5.
783 ``-audiodev pa,id=id[,prop[=value][,...]]``
784 Creates a backend using PulseAudio. This backend is available on
787 PulseAudio specific options are:
790 Sets the PulseAudio server to connect to.
793 Use the specified source/sink for recording/playback.
795 ``in|out.latency=usecs``
796 Desired latency in microseconds. The PulseAudio server will try
797 to honor this value but actual latencies may be lower or higher.
799 ``-audiodev sdl,id=id[,prop[=value][,...]]``
800 Creates a backend using SDL. This backend is available on most
801 systems, but you should use your platform's native backend if
804 SDL specific options are:
806 ``in|out.buffer-count=count``
807 Sets the count of the buffers.
809 ``-audiodev spice,id=id[,prop[=value][,...]]``
810 Creates a backend that sends audio through SPICE. This backend
811 requires ``-spice`` and automatically selected in that case, so
812 usually you can ignore this option. This backend has no backend
815 ``-audiodev wav,id=id[,prop[=value][,...]]``
816 Creates a backend that writes audio to a WAV file.
818 Backend specific options are:
821 Write recorded audio into the specified file. Default is
825 DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
826 "-soundhw c1,... enable audio support\n"
827 " and only specified sound cards (comma separated list)\n"
828 " use '-soundhw help' to get the list of supported cards\n"
829 " use '-soundhw all' to enable all of them\n", QEMU_ARCH_ALL)
831 ``-soundhw card1[,card2,...] or -soundhw all``
832 Enable audio and selected sound hardware. Use 'help' to print all
833 available sound hardware. For example:
837 |qemu_system_x86| -soundhw sb16,adlib disk.img
838 |qemu_system_x86| -soundhw es1370 disk.img
839 |qemu_system_x86| -soundhw ac97 disk.img
840 |qemu_system_x86| -soundhw hda disk.img
841 |qemu_system_x86| -soundhw all disk.img
842 |qemu_system_x86| -soundhw help
844 Note that Linux's i810\_audio OSS kernel (for AC97) module might
845 require manually specifying clocking.
849 modprobe i810_audio clocking=48000
852 DEF("device", HAS_ARG, QEMU_OPTION_device,
853 "-device driver[,prop[=value][,...]]\n"
854 " add device (based on driver)\n"
855 " prop=value,... sets driver properties\n"
856 " use '-device help' to print all possible drivers\n"
857 " use '-device driver,help' to print all possible properties\n",
860 ``-device driver[,prop[=value][,...]]``
861 Add device driver. prop=value sets driver properties. Valid
862 properties depend on the driver. To get help on possible drivers and
863 properties, use ``-device help`` and ``-device driver,help``.
867 ``-device ipmi-bmc-sim,id=id[,prop[=value][,...]]``
868 Add an IPMI BMC. This is a simulation of a hardware management
869 interface processor that normally sits on a system. It provides a
870 watchdog and the ability to reset and power control the system. You
871 need to connect this to an IPMI interface to make it useful
873 The IPMI slave address to use for the BMC. The default is 0x20. This
874 address is the BMC's address on the I2C network of management
875 controllers. If you don't know what this means, it is safe to ignore
879 The BMC id for interfaces to use this device.
882 Define slave address to use for the BMC. The default is 0x20.
885 file containing raw Sensor Data Records (SDR) data. The default
889 size of a Field Replaceable Unit (FRU) area. The default is
893 file containing raw Field Replaceable Unit (FRU) inventory data.
897 value for the GUID for the BMC, in standard UUID format. If this
898 is set, get "Get GUID" command to the BMC will return it.
899 Otherwise "Get GUID" will return an error.
901 ``-device ipmi-bmc-extern,id=id,chardev=id[,slave_addr=val]``
902 Add a connection to an external IPMI BMC simulator. Instead of
903 locally emulating the BMC like the above item, instead connect to an
904 external entity that provides the IPMI services.
906 A connection is made to an external BMC simulator. If you do this,
907 it is strongly recommended that you use the "reconnect=" chardev
908 option to reconnect to the simulator if the connection is lost. Note
909 that if this is not used carefully, it can be a security issue, as
910 the interface has the ability to send resets, NMIs, and power off
911 the VM. It's best if QEMU makes a connection to an external
912 simulator running on a secure port on localhost, so neither the
913 simulator nor QEMU is exposed to any outside network.
915 See the "lanserv/README.vm" file in the OpenIPMI library for more
916 details on the external interface.
918 ``-device isa-ipmi-kcs,bmc=id[,ioport=val][,irq=val]``
919 Add a KCS IPMI interafce on the ISA bus. This also adds a
920 corresponding ACPI and SMBIOS entries, if appropriate.
923 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern
927 Define the I/O address of the interface. The default is 0xca0
931 Define the interrupt to use. The default is 5. To disable
932 interrupts, set this to 0.
934 ``-device isa-ipmi-bt,bmc=id[,ioport=val][,irq=val]``
935 Like the KCS interface, but defines a BT interface. The default port
936 is 0xe4 and the default interrupt is 5.
938 ``-device pci-ipmi-kcs,bmc=id``
939 Add a KCS IPMI interafce on the PCI bus.
942 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
944 ``-device pci-ipmi-bt,bmc=id``
945 Like the KCS interface, but defines a BT interface on the PCI bus.
947 ``-device intel-iommu[,option=...]``
948 This is only supported by ``-machine q35``, which will enable Intel VT-d
949 emulation within the guest. It supports below options:
951 ``intremap=on|off`` (default: auto)
952 This enables interrupt remapping feature. It's required to enable
953 complete x2apic. Currently it only supports kvm kernel-irqchip modes
954 ``off`` or ``split``, while full kernel-irqchip is not yet supported.
955 The default value is "auto", which will be decided by the mode of
958 ``caching-mode=on|off`` (default: off)
959 This enables caching mode for the VT-d emulated device. When
960 caching-mode is enabled, each guest DMA buffer mapping will generate an
961 IOTLB invalidation from the guest IOMMU driver to the vIOMMU device in
962 a synchronous way. It is required for ``-device vfio-pci`` to work
963 with the VT-d device, because host assigned devices requires to setup
964 the DMA mapping on the host before guest DMA starts.
966 ``device-iotlb=on|off`` (default: off)
967 This enables device-iotlb capability for the emulated VT-d device. So
968 far virtio/vhost should be the only real user for this parameter,
969 paired with ats=on configured for the device.
971 ``aw-bits=39|48`` (default: 39)
972 This decides the address width of IOVA address space. The address
973 space has 39 bits width for 3-level IOMMU page tables, and 48 bits for
974 4-level IOMMU page tables.
976 Please also refer to the wiki page for general scenarios of VT-d
977 emulation in QEMU: https://wiki.qemu.org/Features/VT-d.
981 DEF("name", HAS_ARG, QEMU_OPTION_name,
982 "-name string1[,process=string2][,debug-threads=on|off]\n"
983 " set the name of the guest\n"
984 " string1 sets the window title and string2 the process name\n"
985 " When debug-threads is enabled, individual threads are given a separate name\n"
986 " NOTE: The thread names are for debugging and not a stable API.\n",
990 Sets the name of the guest. This name will be displayed in the SDL
991 window caption. The name will also be used for the VNC server. Also
992 optionally set the top visible process name in Linux. Naming of
993 individual threads can also be enabled on Linux to aid debugging.
996 DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
997 "-uuid %08x-%04x-%04x-%04x-%012x\n"
998 " specify machine UUID\n", QEMU_ARCH_ALL)
1006 DEFHEADING(Block device options:)
1008 DEF("fda", HAS_ARG, QEMU_OPTION_fda,
1009 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n", QEMU_ARCH_ALL)
1010 DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "", QEMU_ARCH_ALL)
1015 Use file as floppy disk 0/1 image (see the :ref:`disk images` chapter in
1016 the System Emulation Users Guide).
1019 DEF("hda", HAS_ARG, QEMU_OPTION_hda,
1020 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n", QEMU_ARCH_ALL)
1021 DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "", QEMU_ARCH_ALL)
1022 DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
1023 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n", QEMU_ARCH_ALL)
1024 DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "", QEMU_ARCH_ALL)
1033 Use file as hard disk 0, 1, 2 or 3 image (see the :ref:`disk images`
1034 chapter in the System Emulation Users Guide).
1037 DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
1038 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n",
1042 Use file as CD-ROM image (you cannot use ``-hdc`` and ``-cdrom`` at
1043 the same time). You can use the host CD-ROM by using ``/dev/cdrom``
1047 DEF("blockdev", HAS_ARG, QEMU_OPTION_blockdev,
1048 "-blockdev [driver=]driver[,node-name=N][,discard=ignore|unmap]\n"
1049 " [,cache.direct=on|off][,cache.no-flush=on|off]\n"
1050 " [,read-only=on|off][,auto-read-only=on|off]\n"
1051 " [,force-share=on|off][,detect-zeroes=on|off|unmap]\n"
1052 " [,driver specific parameters...]\n"
1053 " configure a block backend\n", QEMU_ARCH_ALL)
1055 ``-blockdev option[,option[,option[,...]]]``
1056 Define a new block driver node. Some of the options apply to all
1057 block drivers, other options are only accepted for a specific block
1058 driver. See below for a list of generic options and options for the
1059 most common block drivers.
1061 Options that expect a reference to another node (e.g. ``file``) can
1062 be given in two ways. Either you specify the node name of an already
1063 existing node (file=node-name), or you define a new node inline,
1064 adding options for the referenced node after a dot
1065 (file.filename=path,file.aio=native).
1067 A block driver node created with ``-blockdev`` can be used for a
1068 guest device by specifying its node name for the ``drive`` property
1069 in a ``-device`` argument that defines a block device.
1071 ``Valid options for any block driver node:``
1073 Specifies the block driver to use for the given node.
1076 This defines the name of the block driver node by which it
1077 will be referenced later. The name must be unique, i.e. it
1078 must not match the name of a different block driver node, or
1079 (if you use ``-drive`` as well) the ID of a drive.
1081 If no node name is specified, it is automatically generated.
1082 The generated node name is not intended to be predictable
1083 and changes between QEMU invocations. For the top level, an
1084 explicit node name must be specified.
1087 Open the node read-only. Guest write attempts will fail.
1089 Note that some block drivers support only read-only access,
1090 either generally or in certain configurations. In this case,
1091 the default value ``read-only=off`` does not work and the
1092 option must be specified explicitly.
1095 If ``auto-read-only=on`` is set, QEMU may fall back to
1096 read-only usage even when ``read-only=off`` is requested, or
1097 even switch between modes as needed, e.g. depending on
1098 whether the image file is writable or whether a writing user
1099 is attached to the node.
1102 Override the image locking system of QEMU by forcing the
1103 node to utilize weaker shared access for permissions where
1104 it would normally request exclusive access. When there is
1105 the potential for multiple instances to have the same file
1106 open (whether this invocation of QEMU is the first or the
1107 second instance), both instances must permit shared access
1108 for the second instance to succeed at opening the file.
1110 Enabling ``force-share=on`` requires ``read-only=on``.
1113 The host page cache can be avoided with ``cache.direct=on``.
1114 This will attempt to do disk IO directly to the guest's
1115 memory. QEMU may still perform an internal copy of the data.
1118 In case you don't care about data integrity over host
1119 failures, you can use ``cache.no-flush=on``. This option
1120 tells QEMU that it never needs to write any data to the disk
1121 but can instead keep things in cache. If anything goes
1122 wrong, like your host losing power, the disk storage getting
1123 disconnected accidentally, etc. your image will most
1124 probably be rendered unusable.
1127 discard is one of "ignore" (or "off") or "unmap" (or "on")
1128 and controls whether ``discard`` (also known as ``trim`` or
1129 ``unmap``) requests are ignored or passed to the filesystem.
1130 Some machine types may not support discard requests.
1132 ``detect-zeroes=detect-zeroes``
1133 detect-zeroes is "off", "on" or "unmap" and enables the
1134 automatic conversion of plain zero writes by the OS to
1135 driver specific optimized zero write commands. You may even
1136 choose "unmap" if discard is set to "unmap" to allow a zero
1137 write to be converted to an ``unmap`` operation.
1139 ``Driver-specific options for file``
1140 This is the protocol-level block driver for accessing regular
1144 The path to the image file in the local filesystem
1147 Specifies the AIO backend (threads/native/io_uring,
1151 Specifies whether the image file is protected with Linux OFD
1152 / POSIX locks. The default is to use the Linux Open File
1153 Descriptor API if available, otherwise no lock is applied.
1154 (auto/on/off, default: auto)
1160 -blockdev driver=file,node-name=disk,filename=disk.img
1162 ``Driver-specific options for raw``
1163 This is the image format block driver for raw images. It is
1164 usually stacked on top of a protocol level block driver such as
1168 Reference to or definition of the data source block driver
1169 node (e.g. a ``file`` driver node)
1175 -blockdev driver=file,node-name=disk_file,filename=disk.img
1176 -blockdev driver=raw,node-name=disk,file=disk_file
1182 -blockdev driver=raw,node-name=disk,file.driver=file,file.filename=disk.img
1184 ``Driver-specific options for qcow2``
1185 This is the image format block driver for qcow2 images. It is
1186 usually stacked on top of a protocol level block driver such as
1190 Reference to or definition of the data source block driver
1191 node (e.g. a ``file`` driver node)
1194 Reference to or definition of the backing file block device
1195 (default is taken from the image file). It is allowed to
1196 pass ``null`` here in order to disable the default backing
1200 Whether to enable the lazy refcounts feature (on/off;
1201 default is taken from the image file)
1204 The maximum total size of the L2 table and refcount block
1205 caches in bytes (default: the sum of l2-cache-size and
1206 refcount-cache-size)
1209 The maximum size of the L2 table cache in bytes (default: if
1210 cache-size is not specified - 32M on Linux platforms, and 8M
1211 on non-Linux platforms; otherwise, as large as possible
1212 within the cache-size, while permitting the requested or the
1213 minimal refcount cache size)
1215 ``refcount-cache-size``
1216 The maximum size of the refcount block cache in bytes
1217 (default: 4 times the cluster size; or if cache-size is
1218 specified, the part of it which is not used for the L2
1221 ``cache-clean-interval``
1222 Clean unused entries in the L2 and refcount caches. The
1223 interval is in seconds. The default value is 600 on
1224 supporting platforms, and 0 on other platforms. Setting it
1225 to 0 disables this feature.
1227 ``pass-discard-request``
1228 Whether discard requests to the qcow2 device should be
1229 forwarded to the data source (on/off; default: on if
1230 discard=unmap is specified, off otherwise)
1232 ``pass-discard-snapshot``
1233 Whether discard requests for the data source should be
1234 issued when a snapshot operation (e.g. deleting a snapshot)
1235 frees clusters in the qcow2 file (on/off; default: on)
1237 ``pass-discard-other``
1238 Whether discard requests for the data source should be
1239 issued on other occasions where a cluster gets freed
1240 (on/off; default: off)
1243 Which overlap checks to perform for writes to the image
1244 (none/constant/cached/all; default: cached). For details or
1245 finer granularity control refer to the QAPI documentation of
1252 -blockdev driver=file,node-name=my_file,filename=/tmp/disk.qcow2
1253 -blockdev driver=qcow2,node-name=hda,file=my_file,overlap-check=none,cache-size=16777216
1259 -blockdev driver=qcow2,node-name=disk,file.driver=http,file.filename=http://example.com/image.qcow2
1261 ``Driver-specific options for other drivers``
1262 Please refer to the QAPI documentation of the ``blockdev-add``
1266 DEF("drive", HAS_ARG, QEMU_OPTION_drive,
1267 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
1268 " [,cache=writethrough|writeback|none|directsync|unsafe][,format=f]\n"
1269 " [,snapshot=on|off][,rerror=ignore|stop|report]\n"
1270 " [,werror=ignore|stop|report|enospc][,id=name]\n"
1271 " [,aio=threads|native|io_uring]\n"
1272 " [,readonly=on|off][,copy-on-read=on|off]\n"
1273 " [,discard=ignore|unmap][,detect-zeroes=on|off|unmap]\n"
1274 " [[,bps=b]|[[,bps_rd=r][,bps_wr=w]]]\n"
1275 " [[,iops=i]|[[,iops_rd=r][,iops_wr=w]]]\n"
1276 " [[,bps_max=bm]|[[,bps_rd_max=rm][,bps_wr_max=wm]]]\n"
1277 " [[,iops_max=im]|[[,iops_rd_max=irm][,iops_wr_max=iwm]]]\n"
1278 " [[,iops_size=is]]\n"
1280 " use 'file' as a drive image\n", QEMU_ARCH_ALL)
1282 ``-drive option[,option[,option[,...]]]``
1283 Define a new drive. This includes creating a block driver node (the
1284 backend) as well as a guest device, and is mostly a shortcut for
1285 defining the corresponding ``-blockdev`` and ``-device`` options.
1287 ``-drive`` accepts all options that are accepted by ``-blockdev``.
1288 In addition, it knows the following options:
1291 This option defines which disk image (see the :ref:`disk images`
1292 chapter in the System Emulation Users Guide) to use with this drive.
1293 If the filename contains comma, you must double it (for instance,
1294 "file=my,,file" to use file "my,file").
1296 Special files such as iSCSI devices can be specified using
1297 protocol specific URLs. See the section for "Device URL Syntax"
1298 for more information.
1301 This option defines on which type on interface the drive is
1302 connected. Available types are: ide, scsi, sd, mtd, floppy,
1303 pflash, virtio, none.
1305 ``bus=bus,unit=unit``
1306 These options define where is connected the drive by defining
1307 the bus number and the unit id.
1310 This option defines where is connected the drive by using an
1311 index in the list of available connectors of a given interface
1315 This option defines the type of the media: disk or cdrom.
1317 ``snapshot=snapshot``
1318 snapshot is "on" or "off" and controls snapshot mode for the
1319 given drive (see ``-snapshot``).
1322 cache is "none", "writeback", "unsafe", "directsync" or
1323 "writethrough" and controls how the host cache is used to access
1324 block data. This is a shortcut that sets the ``cache.direct``
1325 and ``cache.no-flush`` options (as in ``-blockdev``), and
1326 additionally ``cache.writeback``, which provides a default for
1327 the ``write-cache`` option of block guest devices (as in
1328 ``-device``). The modes correspond to the following settings:
1330 ============= =============== ============ ==============
1331 \ cache.writeback cache.direct cache.no-flush
1332 ============= =============== ============ ==============
1333 writeback on off off
1335 writethrough off off off
1336 directsync off on off
1338 ============= =============== ============ ==============
1340 The default mode is ``cache=writeback``.
1343 aio is "threads", "native", or "io_uring" and selects between pthread
1344 based disk I/O, native Linux AIO, or Linux io_uring API.
1347 Specify which disk format will be used rather than detecting the
1348 format. Can be used to specify format=raw to avoid interpreting
1349 an untrusted format header.
1351 ``werror=action,rerror=action``
1352 Specify which action to take on write and read errors. Valid
1353 actions are: "ignore" (ignore the error and try to continue),
1354 "stop" (pause QEMU), "report" (report the error to the guest),
1355 "enospc" (pause QEMU only if the host disk is full; report the
1356 error to the guest otherwise). The default setting is
1357 ``werror=enospc`` and ``rerror=report``.
1359 ``copy-on-read=copy-on-read``
1360 copy-on-read is "on" or "off" and enables whether to copy read
1361 backing file sectors into the image file.
1363 ``bps=b,bps_rd=r,bps_wr=w``
1364 Specify bandwidth throttling limits in bytes per second, either
1365 for all request types or for reads or writes only. Small values
1366 can lead to timeouts or hangs inside the guest. A safe minimum
1367 for disks is 2 MB/s.
1369 ``bps_max=bm,bps_rd_max=rm,bps_wr_max=wm``
1370 Specify bursts in bytes per second, either for all request types
1371 or for reads or writes only. Bursts allow the guest I/O to spike
1372 above the limit temporarily.
1374 ``iops=i,iops_rd=r,iops_wr=w``
1375 Specify request rate limits in requests per second, either for
1376 all request types or for reads or writes only.
1378 ``iops_max=bm,iops_rd_max=rm,iops_wr_max=wm``
1379 Specify bursts in requests per second, either for all request
1380 types or for reads or writes only. Bursts allow the guest I/O to
1381 spike above the limit temporarily.
1384 Let every is bytes of a request count as a new request for iops
1385 throttling purposes. Use this option to prevent guests from
1386 circumventing iops limits by sending fewer but larger requests.
1389 Join a throttling quota group with given name g. All drives that
1390 are members of the same group are accounted for together. Use
1391 this option to prevent guests from circumventing throttling
1392 limits by using many small disks instead of a single larger
1395 By default, the ``cache.writeback=on`` mode is used. It will report
1396 data writes as completed as soon as the data is present in the host
1397 page cache. This is safe as long as your guest OS makes sure to
1398 correctly flush disk caches where needed. If your guest OS does not
1399 handle volatile disk write caches correctly and your host crashes or
1400 loses power, then the guest may experience data corruption.
1402 For such guests, you should consider using ``cache.writeback=off``.
1403 This means that the host page cache will be used to read and write
1404 data, but write notification will be sent to the guest only after
1405 QEMU has made sure to flush each write to the disk. Be aware that
1406 this has a major impact on performance.
1408 When using the ``-snapshot`` option, unsafe caching is always used.
1410 Copy-on-read avoids accessing the same backing file sectors
1411 repeatedly and is useful when the backing file is over a slow
1412 network. By default copy-on-read is off.
1414 Instead of ``-cdrom`` you can use:
1418 |qemu_system| -drive file=file,index=2,media=cdrom
1420 Instead of ``-hda``, ``-hdb``, ``-hdc``, ``-hdd``, you can use:
1424 |qemu_system| -drive file=file,index=0,media=disk
1425 |qemu_system| -drive file=file,index=1,media=disk
1426 |qemu_system| -drive file=file,index=2,media=disk
1427 |qemu_system| -drive file=file,index=3,media=disk
1429 You can open an image using pre-opened file descriptors from an fd
1435 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file" \\
1436 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file" \\
1437 -drive file=/dev/fdset/2,index=0,media=disk
1439 You can connect a CDROM to the slave of ide0:
1443 |qemu_system_x86| -drive file=file,if=ide,index=1,media=cdrom
1445 If you don't specify the "file=" argument, you define an empty
1450 |qemu_system_x86| -drive if=ide,index=1,media=cdrom
1452 Instead of ``-fda``, ``-fdb``, you can use:
1456 |qemu_system_x86| -drive file=file,index=0,if=floppy
1457 |qemu_system_x86| -drive file=file,index=1,if=floppy
1459 By default, interface is "ide" and index is automatically
1464 |qemu_system_x86| -drive file=a -drive file=b"
1466 is interpreted like:
1470 |qemu_system_x86| -hda a -hdb b
1473 DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
1474 "-mtdblock file use 'file' as on-board Flash memory image\n",
1478 Use file as on-board Flash memory image.
1481 DEF("sd", HAS_ARG, QEMU_OPTION_sd,
1482 "-sd file use 'file' as SecureDigital card image\n", QEMU_ARCH_ALL)
1485 Use file as SecureDigital card image.
1488 DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
1489 "-pflash file use 'file' as a parallel flash image\n", QEMU_ARCH_ALL)
1492 Use file as a parallel flash image.
1495 DEF("snapshot", 0, QEMU_OPTION_snapshot,
1496 "-snapshot write to temporary files instead of disk image files\n",
1500 Write to temporary files instead of disk image files. In this case,
1501 the raw disk image you use is not written back. You can however
1502 force the write back by pressing C-a s (see the :ref:`disk images`
1503 chapter in the System Emulation Users Guide).
1506 DEF("fsdev", HAS_ARG, QEMU_OPTION_fsdev,
1507 "-fsdev local,id=id,path=path,security_model=mapped-xattr|mapped-file|passthrough|none\n"
1508 " [,writeout=immediate][,readonly=on][,fmode=fmode][,dmode=dmode]\n"
1509 " [[,throttling.bps-total=b]|[[,throttling.bps-read=r][,throttling.bps-write=w]]]\n"
1510 " [[,throttling.iops-total=i]|[[,throttling.iops-read=r][,throttling.iops-write=w]]]\n"
1511 " [[,throttling.bps-total-max=bm]|[[,throttling.bps-read-max=rm][,throttling.bps-write-max=wm]]]\n"
1512 " [[,throttling.iops-total-max=im]|[[,throttling.iops-read-max=irm][,throttling.iops-write-max=iwm]]]\n"
1513 " [[,throttling.iops-size=is]]\n"
1514 "-fsdev proxy,id=id,socket=socket[,writeout=immediate][,readonly=on]\n"
1515 "-fsdev proxy,id=id,sock_fd=sock_fd[,writeout=immediate][,readonly=on]\n"
1516 "-fsdev synth,id=id\n",
1520 ``-fsdev local,id=id,path=path,security_model=security_model [,writeout=writeout][,readonly=on][,fmode=fmode][,dmode=dmode] [,throttling.option=value[,throttling.option=value[,...]]]``
1522 ``-fsdev proxy,id=id,socket=socket[,writeout=writeout][,readonly=on]``
1524 ``-fsdev proxy,id=id,sock_fd=sock_fd[,writeout=writeout][,readonly=on]``
1526 ``-fsdev synth,id=id[,readonly=on]``
1527 Define a new file system device. Valid options are:
1530 Accesses to the filesystem are done by QEMU.
1533 Accesses to the filesystem are done by virtfs-proxy-helper(1).
1536 Synthetic filesystem, only used by QTests.
1539 Specifies identifier for this device.
1542 Specifies the export path for the file system device. Files
1543 under this path will be available to the 9p client on the guest.
1545 ``security_model=security_model``
1546 Specifies the security model to be used for this export path.
1547 Supported security models are "passthrough", "mapped-xattr",
1548 "mapped-file" and "none". In "passthrough" security model, files
1549 are stored using the same credentials as they are created on the
1550 guest. This requires QEMU to run as root. In "mapped-xattr"
1551 security model, some of the file attributes like uid, gid, mode
1552 bits and link target are stored as file attributes. For
1553 "mapped-file" these attributes are stored in the hidden
1554 .virtfs\_metadata directory. Directories exported by this
1555 security model cannot interact with other unix tools. "none"
1556 security model is same as passthrough except the sever won't
1557 report failures if it fails to set file attributes like
1558 ownership. Security model is mandatory only for local fsdriver.
1559 Other fsdrivers (like proxy) don't take security model as a
1562 ``writeout=writeout``
1563 This is an optional argument. The only supported value is
1564 "immediate". This means that host page cache will be used to
1565 read and write data but write notification will be sent to the
1566 guest only when the data has been reported as written by the
1570 Enables exporting 9p share as a readonly mount for guests. By
1571 default read-write access is given.
1574 Enables proxy filesystem driver to use passed socket file for
1575 communicating with virtfs-proxy-helper(1).
1578 Enables proxy filesystem driver to use passed socket descriptor
1579 for communicating with virtfs-proxy-helper(1). Usually a helper
1580 like libvirt will create socketpair and pass one of the fds as
1584 Specifies the default mode for newly created files on the host.
1585 Works only with security models "mapped-xattr" and
1589 Specifies the default mode for newly created directories on the
1590 host. Works only with security models "mapped-xattr" and
1593 ``throttling.bps-total=b,throttling.bps-read=r,throttling.bps-write=w``
1594 Specify bandwidth throttling limits in bytes per second, either
1595 for all request types or for reads or writes only.
1597 ``throttling.bps-total-max=bm,bps-read-max=rm,bps-write-max=wm``
1598 Specify bursts in bytes per second, either for all request types
1599 or for reads or writes only. Bursts allow the guest I/O to spike
1600 above the limit temporarily.
1602 ``throttling.iops-total=i,throttling.iops-read=r, throttling.iops-write=w``
1603 Specify request rate limits in requests per second, either for
1604 all request types or for reads or writes only.
1606 ``throttling.iops-total-max=im,throttling.iops-read-max=irm, throttling.iops-write-max=iwm``
1607 Specify bursts in requests per second, either for all request
1608 types or for reads or writes only. Bursts allow the guest I/O to
1609 spike above the limit temporarily.
1611 ``throttling.iops-size=is``
1612 Let every is bytes of a request count as a new request for iops
1613 throttling purposes.
1615 -fsdev option is used along with -device driver "virtio-9p-...".
1617 ``-device virtio-9p-type,fsdev=id,mount_tag=mount_tag``
1618 Options for virtio-9p-... driver are:
1621 Specifies the variant to be used. Supported values are "pci",
1622 "ccw" or "device", depending on the machine type.
1625 Specifies the id value specified along with -fsdev option.
1627 ``mount_tag=mount_tag``
1628 Specifies the tag name to be used by the guest to mount this
1632 DEF("virtfs", HAS_ARG, QEMU_OPTION_virtfs,
1633 "-virtfs local,path=path,mount_tag=tag,security_model=mapped-xattr|mapped-file|passthrough|none\n"
1634 " [,id=id][,writeout=immediate][,readonly=on][,fmode=fmode][,dmode=dmode][,multidevs=remap|forbid|warn]\n"
1635 "-virtfs proxy,mount_tag=tag,socket=socket[,id=id][,writeout=immediate][,readonly=on]\n"
1636 "-virtfs proxy,mount_tag=tag,sock_fd=sock_fd[,id=id][,writeout=immediate][,readonly=on]\n"
1637 "-virtfs synth,mount_tag=tag[,id=id][,readonly=on]\n",
1641 ``-virtfs local,path=path,mount_tag=mount_tag ,security_model=security_model[,writeout=writeout][,readonly=on] [,fmode=fmode][,dmode=dmode][,multidevs=multidevs]``
1643 ``-virtfs proxy,socket=socket,mount_tag=mount_tag [,writeout=writeout][,readonly=on]``
1645 ``-virtfs proxy,sock_fd=sock_fd,mount_tag=mount_tag [,writeout=writeout][,readonly=on]``
1647 ``-virtfs synth,mount_tag=mount_tag``
1648 Define a new virtual filesystem device and expose it to the guest using
1649 a virtio-9p-device (a.k.a. 9pfs), which essentially means that a certain
1650 directory on host is made directly accessible by guest as a pass-through
1651 file system by using the 9P network protocol for communication between
1652 host and guests, if desired even accessible, shared by several guests
1655 Note that ``-virtfs`` is actually just a convenience shortcut for its
1656 generalized form ``-fsdev -device virtio-9p-pci``.
1658 The general form of pass-through file system options are:
1661 Accesses to the filesystem are done by QEMU.
1664 Accesses to the filesystem are done by virtfs-proxy-helper(1).
1667 Synthetic filesystem, only used by QTests.
1670 Specifies identifier for the filesystem device
1673 Specifies the export path for the file system device. Files
1674 under this path will be available to the 9p client on the guest.
1676 ``security_model=security_model``
1677 Specifies the security model to be used for this export path.
1678 Supported security models are "passthrough", "mapped-xattr",
1679 "mapped-file" and "none". In "passthrough" security model, files
1680 are stored using the same credentials as they are created on the
1681 guest. This requires QEMU to run as root. In "mapped-xattr"
1682 security model, some of the file attributes like uid, gid, mode
1683 bits and link target are stored as file attributes. For
1684 "mapped-file" these attributes are stored in the hidden
1685 .virtfs\_metadata directory. Directories exported by this
1686 security model cannot interact with other unix tools. "none"
1687 security model is same as passthrough except the sever won't
1688 report failures if it fails to set file attributes like
1689 ownership. Security model is mandatory only for local fsdriver.
1690 Other fsdrivers (like proxy) don't take security model as a
1693 ``writeout=writeout``
1694 This is an optional argument. The only supported value is
1695 "immediate". This means that host page cache will be used to
1696 read and write data but write notification will be sent to the
1697 guest only when the data has been reported as written by the
1701 Enables exporting 9p share as a readonly mount for guests. By
1702 default read-write access is given.
1705 Enables proxy filesystem driver to use passed socket file for
1706 communicating with virtfs-proxy-helper(1). Usually a helper like
1707 libvirt will create socketpair and pass one of the fds as
1711 Enables proxy filesystem driver to use passed 'sock\_fd' as the
1712 socket descriptor for interfacing with virtfs-proxy-helper(1).
1715 Specifies the default mode for newly created files on the host.
1716 Works only with security models "mapped-xattr" and
1720 Specifies the default mode for newly created directories on the
1721 host. Works only with security models "mapped-xattr" and
1724 ``mount_tag=mount_tag``
1725 Specifies the tag name to be used by the guest to mount this
1728 ``multidevs=multidevs``
1729 Specifies how to deal with multiple devices being shared with a
1730 9p export. Supported behaviours are either "remap", "forbid" or
1731 "warn". The latter is the default behaviour on which virtfs 9p
1732 expects only one device to be shared with the same export, and
1733 if more than one device is shared and accessed via the same 9p
1734 export then only a warning message is logged (once) by qemu on
1735 host side. In order to avoid file ID collisions on guest you
1736 should either create a separate virtfs export for each device to
1737 be shared with guests (recommended way) or you might use "remap"
1738 instead which allows you to share multiple devices with only one
1739 export instead, which is achieved by remapping the original
1740 inode numbers from host to guest in a way that would prevent
1741 such collisions. Remapping inodes in such use cases is required
1742 because the original device IDs from host are never passed and
1743 exposed on guest. Instead all files of an export shared with
1744 virtfs always share the same device id on guest. So two files
1745 with identical inode numbers but from actually different devices
1746 on host would otherwise cause a file ID collision and hence
1747 potential misbehaviours on guest. "forbid" on the other hand
1748 assumes like "warn" that only one device is shared by the same
1749 export, however it will not only log a warning message but also
1750 deny access to additional devices on guest. Note though that
1751 "forbid" does currently not block all possible file access
1752 operations (e.g. readdir() would still return entries from other
1756 DEF("iscsi", HAS_ARG, QEMU_OPTION_iscsi,
1757 "-iscsi [user=user][,password=password]\n"
1758 " [,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE\n"
1759 " [,initiator-name=initiator-iqn][,id=target-iqn]\n"
1760 " [,timeout=timeout]\n"
1761 " iSCSI session parameters\n", QEMU_ARCH_ALL)
1765 Configure iSCSI session parameters.
1770 DEFHEADING(USB convenience options:)
1772 DEF("usb", 0, QEMU_OPTION_usb,
1773 "-usb enable on-board USB host controller (if not enabled by default)\n",
1777 Enable USB emulation on machine types with an on-board USB host
1778 controller (if not enabled by default). Note that on-board USB host
1779 controllers may not support USB 3.0. In this case
1780 ``-device qemu-xhci`` can be used instead on machines with PCI.
1783 DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
1784 "-usbdevice name add the host or guest USB device 'name'\n",
1787 ``-usbdevice devname``
1788 Add the USB device devname, and enable an on-board USB controller
1789 if possible and necessary (just like it can be done via
1790 ``-machine usb=on``). Note that this option is mainly intended for
1791 the user's convenience only. More fine-grained control can be
1792 achieved by selecting a USB host controller (if necessary) and the
1793 desired USB device via the ``-device`` option instead. For example,
1794 instead of using ``-usbdevice mouse`` it is possible to use
1795 ``-device qemu-xhci -device usb-mouse`` to connect the USB mouse
1796 to a USB 3.0 controller instead (at least on machines that support
1797 PCI and do not have an USB controller enabled by default yet).
1798 For more details, see the chapter about
1799 :ref:`Connecting USB devices` in the System Emulation Users Guide.
1800 Possible devices for devname are:
1803 Braille device. This will use BrlAPI to display the braille
1804 output on a real or fake device (i.e. it also creates a
1805 corresponding ``braille`` chardev automatically beside the
1806 ``usb-braille`` USB device).
1809 Standard USB keyboard. Will override the PS/2 keyboard (if present).
1812 Virtual Mouse. This will override the PS/2 mouse emulation when
1816 Pointer device that uses absolute coordinates (like a
1817 touchscreen). This means QEMU is able to report the mouse
1818 position without having to grab the mouse. Also overrides the
1819 PS/2 mouse emulation when activated.
1822 Wacom PenPartner USB tablet.
1829 DEFHEADING(Display options:)
1831 DEF("display", HAS_ARG, QEMU_OPTION_display,
1832 #if defined(CONFIG_SPICE)
1833 "-display spice-app[,gl=on|off]\n"
1835 #if defined(CONFIG_SDL)
1836 "-display sdl[,alt_grab=on|off][,ctrl_grab=on|off][,gl=on|core|es|off]\n"
1837 " [,show-cursor=on|off][,window-close=on|off]\n"
1839 #if defined(CONFIG_GTK)
1840 "-display gtk[,full-screen=on|off][,gl=on|off][,grab-on-hover=on|off]\n"
1841 " [,show-cursor=on|off][,window-close=on|off]\n"
1843 #if defined(CONFIG_VNC)
1844 "-display vnc=<display>[,<optargs>]\n"
1846 #if defined(CONFIG_CURSES)
1847 "-display curses[,charset=<encoding>]\n"
1849 #if defined(CONFIG_OPENGL)
1850 "-display egl-headless[,rendernode=<file>]\n"
1853 " select display backend type\n"
1854 " The default display is equivalent to\n "
1855 #if defined(CONFIG_GTK)
1856 "\"-display gtk\"\n"
1857 #elif defined(CONFIG_SDL)
1858 "\"-display sdl\"\n"
1859 #elif defined(CONFIG_COCOA)
1860 "\"-display cocoa\"\n"
1861 #elif defined(CONFIG_VNC)
1862 "\"-vnc localhost:0,to=99,id=default\"\n"
1864 "\"-display none\"\n"
1869 Select type of display to use. This option is a replacement for the
1870 old style -sdl/-curses/... options. Use ``-display help`` to list
1871 the available display types. Valid values for type are
1873 ``spice-app[,gl=on|off]``
1874 Start QEMU as a Spice server and launch the default Spice client
1875 application. The Spice server will redirect the serial consoles
1876 and QEMU monitors. (Since 4.0)
1879 Display video output via SDL (usually in a separate graphics
1880 window; see the SDL documentation for other possibilities).
1881 Valid parameters are:
1883 ``alt_grab=on|off`` : Use Control+Alt+Shift-g to toggle mouse grabbing
1885 ``ctrl_grab=on|off`` : Use Right-Control-g to toggle mouse grabbing
1887 ``gl=on|off|core|es`` : Use OpenGL for displaying
1889 ``show-cursor=on|off`` : Force showing the mouse cursor
1891 ``window-close=on|off`` : Allow to quit qemu with window close button
1894 Display video output in a GTK window. This interface provides
1895 drop-down menus and other UI elements to configure and control
1896 the VM during runtime. Valid parameters are:
1898 ``full-screen=on|off`` : Start in fullscreen mode
1900 ``gl=on|off`` : Use OpenGL for displaying
1902 ``grab-on-hover=on|off`` : Grab keyboard input on mouse hover
1904 ``show-cursor=on|off`` : Force showing the mouse cursor
1906 ``window-close=on|off`` : Allow to quit qemu with window close button
1908 ``curses[,charset=<encoding>]``
1909 Display video output via curses. For graphics device models
1910 which support a text mode, QEMU can display this output using a
1911 curses/ncurses interface. Nothing is displayed when the graphics
1912 device is in graphical mode or if the graphics device does not
1913 support a text mode. Generally only the VGA device models
1914 support text mode. The font charset used by the guest can be
1915 specified with the ``charset`` option, for example
1916 ``charset=CP850`` for IBM CP850 encoding. The default is
1919 ``egl-headless[,rendernode=<file>]``
1920 Offload all OpenGL operations to a local DRI device. For any
1921 graphical display, this display needs to be paired with either
1922 VNC or SPICE displays.
1925 Start a VNC server on display <display>
1928 Do not display video output. The guest will still see an
1929 emulated graphics card, but its output will not be displayed to
1930 the QEMU user. This option differs from the -nographic option in
1931 that it only affects what is done with video output; -nographic
1932 also changes the destination of the serial and parallel port
1936 DEF("nographic", 0, QEMU_OPTION_nographic,
1937 "-nographic disable graphical output and redirect serial I/Os to console\n",
1941 Normally, if QEMU is compiled with graphical window support, it
1942 displays output such as guest graphics, guest console, and the QEMU
1943 monitor in a window. With this option, you can totally disable
1944 graphical output so that QEMU is a simple command line application.
1945 The emulated serial port is redirected on the console and muxed with
1946 the monitor (unless redirected elsewhere explicitly). Therefore, you
1947 can still use QEMU to debug a Linux kernel with a serial console.
1948 Use C-a h for help on switching between the console and monitor.
1951 DEF("curses", 0, QEMU_OPTION_curses,
1952 "-curses shorthand for -display curses\n",
1956 Normally, if QEMU is compiled with graphical window support, it
1957 displays output such as guest graphics, guest console, and the QEMU
1958 monitor in a window. With this option, QEMU can display the VGA
1959 output when in text mode using a curses/ncurses interface. Nothing
1960 is displayed in graphical mode.
1963 DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
1964 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n",
1968 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that
1969 this also affects the special keys (for fullscreen, monitor-mode
1973 DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab,
1974 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n",
1978 Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this
1979 also affects the special keys (for fullscreen, monitor-mode
1983 DEF("no-quit", 0, QEMU_OPTION_no_quit,
1984 "-no-quit disable SDL/GTK window close capability (deprecated)\n", QEMU_ARCH_ALL)
1987 Disable window close capability (SDL and GTK only). This option is
1988 deprecated, please use ``-display ...,window-close=off`` instead.
1991 DEF("sdl", 0, QEMU_OPTION_sdl,
1992 "-sdl shorthand for -display sdl\n", QEMU_ARCH_ALL)
1998 DEF("spice", HAS_ARG, QEMU_OPTION_spice,
1999 "-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]\n"
2000 " [,x509-key-file=<file>][,x509-key-password=<file>]\n"
2001 " [,x509-cert-file=<file>][,x509-cacert-file=<file>]\n"
2002 " [,x509-dh-key-file=<file>][,addr=addr]\n"
2003 " [,ipv4=on|off][,ipv6=on|off][,unix=on|off]\n"
2004 " [,tls-ciphers=<list>]\n"
2005 " [,tls-channel=[main|display|cursor|inputs|record|playback]]\n"
2006 " [,plaintext-channel=[main|display|cursor|inputs|record|playback]]\n"
2007 " [,sasl=on|off][,disable-ticketing=on|off]\n"
2008 " [,password=<string>][,password-secret=<secret-id>]\n"
2009 " [,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]\n"
2010 " [,jpeg-wan-compression=[auto|never|always]]\n"
2011 " [,zlib-glz-wan-compression=[auto|never|always]]\n"
2012 " [,streaming-video=[off|all|filter]][,disable-copy-paste=on|off]\n"
2013 " [,disable-agent-file-xfer=on|off][,agent-mouse=[on|off]]\n"
2014 " [,playback-compression=[on|off]][,seamless-migration=[on|off]]\n"
2015 " [,gl=[on|off]][,rendernode=<file>]\n"
2017 " at least one of {port, tls-port} is mandatory\n",
2020 ``-spice option[,option[,...]]``
2021 Enable the spice remote desktop protocol. Valid options are
2024 Set the TCP port spice is listening on for plaintext channels.
2027 Set the IP address spice is listening on. Default is any
2030 ``ipv4=on|off``; \ ``ipv6=on|off``; \ ``unix=on|off``
2031 Force using the specified IP version.
2033 ``password=<string>``
2034 Set the password you need to authenticate.
2036 This option is deprecated and insecure because it leaves the
2037 password visible in the process listing. Use ``password-secret``
2040 ``password-secret=<secret-id>``
2041 Set the ID of the ``secret`` object containing the password
2042 you need to authenticate.
2045 Require that the client use SASL to authenticate with the spice.
2046 The exact choice of authentication method used is controlled
2047 from the system / user's SASL configuration file for the 'qemu'
2048 service. This is typically found in /etc/sasl2/qemu.conf. If
2049 running QEMU as an unprivileged user, an environment variable
2050 SASL\_CONF\_PATH can be used to make it search alternate
2051 locations for the service config. While some SASL auth methods
2052 can also provide data encryption (eg GSSAPI), it is recommended
2053 that SASL always be combined with the 'tls' and 'x509' settings
2054 to enable use of SSL and server certificates. This ensures a
2055 data encryption preventing compromise of authentication
2058 ``disable-ticketing=on|off``
2059 Allow client connects without authentication.
2061 ``disable-copy-paste=on|off``
2062 Disable copy paste between the client and the guest.
2064 ``disable-agent-file-xfer=on|off``
2065 Disable spice-vdagent based file-xfer between the client and the
2069 Set the TCP port spice is listening on for encrypted channels.
2072 Set the x509 file directory. Expects same filenames as -vnc
2075 ``x509-key-file=<file>``; \ ``x509-key-password=<file>``; \ ``x509-cert-file=<file>``; \ ``x509-cacert-file=<file>``; \ ``x509-dh-key-file=<file>``
2076 The x509 file names can also be configured individually.
2078 ``tls-ciphers=<list>``
2079 Specify which ciphers to use.
2081 ``tls-channel=[main|display|cursor|inputs|record|playback]``; \ ``plaintext-channel=[main|display|cursor|inputs|record|playback]``
2082 Force specific channel to be used with or without TLS
2083 encryption. The options can be specified multiple times to
2084 configure multiple channels. The special name "default" can be
2085 used to set the default mode. For channels which are not
2086 explicitly forced into one mode the spice client is allowed to
2087 pick tls/plaintext as he pleases.
2089 ``image-compression=[auto_glz|auto_lz|quic|glz|lz|off]``
2090 Configure image compression (lossless). Default is auto\_glz.
2092 ``jpeg-wan-compression=[auto|never|always]``; \ ``zlib-glz-wan-compression=[auto|never|always]``
2093 Configure wan image compression (lossy for slow links). Default
2096 ``streaming-video=[off|all|filter]``
2097 Configure video stream detection. Default is off.
2099 ``agent-mouse=[on|off]``
2100 Enable/disable passing mouse events via vdagent. Default is on.
2102 ``playback-compression=[on|off]``
2103 Enable/disable audio stream compression (using celt 0.5.1).
2106 ``seamless-migration=[on|off]``
2107 Enable/disable spice seamless migration. Default is off.
2110 Enable/disable OpenGL context. Default is off.
2112 ``rendernode=<file>``
2113 DRM render node for OpenGL rendering. If not specified, it will
2114 pick the first available. (Since 2.9)
2117 DEF("portrait", 0, QEMU_OPTION_portrait,
2118 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n",
2122 Rotate graphical output 90 deg left (only PXA LCD).
2125 DEF("rotate", HAS_ARG, QEMU_OPTION_rotate,
2126 "-rotate <deg> rotate graphical output some deg left (only PXA LCD)\n",
2130 Rotate graphical output some deg left (only PXA LCD).
2133 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
2134 "-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]\n"
2135 " select video card type\n", QEMU_ARCH_ALL)
2138 Select type of VGA card to emulate. Valid values for type are
2141 Cirrus Logic GD5446 Video card. All Windows versions starting
2142 from Windows 95 should recognize and use this graphic card. For
2143 optimal performances, use 16 bit color depth in the guest and
2144 the host OS. (This card was the default before QEMU 2.2)
2147 Standard VGA card with Bochs VBE extensions. If your guest OS
2148 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if
2149 you want to use high resolution modes (>= 1280x1024x16) then you
2150 should use this option. (This card is the default since QEMU
2154 VMWare SVGA-II compatible adapter. Use it if you have
2155 sufficiently recent XFree86/XOrg server or Windows guest with a
2156 driver for this card.
2159 QXL paravirtual graphic card. It is VGA compatible (including
2160 VESA 2.0 VBE support). Works best with qxl guest drivers
2161 installed though. Recommended choice when using the spice
2165 (sun4m only) Sun TCX framebuffer. This is the default
2166 framebuffer for sun4m machines and offers both 8-bit and 24-bit
2167 colour depths at a fixed resolution of 1024x768.
2170 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit
2171 framebuffer for sun4m machines available in both 1024x768
2172 (OpenBIOS) and 1152x900 (OBP) resolutions aimed at people
2173 wishing to run older Solaris versions.
2182 DEF("full-screen", 0, QEMU_OPTION_full_screen,
2183 "-full-screen start in full screen\n", QEMU_ARCH_ALL)
2186 Start in full screen.
2189 DEF("g", HAS_ARG, QEMU_OPTION_g ,
2190 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n",
2191 QEMU_ARCH_PPC | QEMU_ARCH_SPARC | QEMU_ARCH_M68K)
2193 ``-g`` *width*\ ``x``\ *height*\ ``[x``\ *depth*\ ``]``
2194 Set the initial graphical resolution and depth (PPC, SPARC only).
2196 For PPC the default is 800x600x32.
2198 For SPARC with the TCX graphics device, the default is 1024x768x8
2199 with the option of 1024x768x24. For cgthree, the default is
2200 1024x768x8 with the option of 1152x900x8 for people who wish to use
2204 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
2205 "-vnc <display> shorthand for -display vnc=<display>\n", QEMU_ARCH_ALL)
2207 ``-vnc display[,option[,option[,...]]]``
2208 Normally, if QEMU is compiled with graphical window support, it
2209 displays output such as guest graphics, guest console, and the QEMU
2210 monitor in a window. With this option, you can have QEMU listen on
2211 VNC display display and redirect the VGA display over the VNC
2212 session. It is very useful to enable the usb tablet device when
2213 using this option (option ``-device usb-tablet``). When using the
2214 VNC display, you must use the ``-k`` parameter to set the keyboard
2215 layout if you are not using en-us. Valid syntax for the display is
2218 With this option, QEMU will try next available VNC displays,
2219 until the number L, if the origianlly defined "-vnc display" is
2220 not available, e.g. port 5900+display is already used by another
2221 application. By default, to=0.
2224 TCP connections will only be allowed from host on display d. By
2225 convention the TCP port is 5900+d. Optionally, host can be
2226 omitted in which case the server will accept connections from
2230 Connections will be allowed over UNIX domain sockets where path
2231 is the location of a unix socket to listen for connections on.
2234 VNC is initialized but not started. The monitor ``change``
2235 command can be used to later start the VNC server.
2237 Following the display value there may be one or more option flags
2238 separated by commas. Valid options are
2241 Connect to a listening VNC client via a "reverse" connection.
2242 The client is specified by the display. For reverse network
2243 connections (host:d,``reverse``), the d argument is a TCP port
2244 number, not a display number.
2246 ``websocket=on|off``
2247 Opens an additional TCP listening port dedicated to VNC
2248 Websocket connections. If a bare websocket option is given, the
2249 Websocket port is 5700+display. An alternative port can be
2250 specified with the syntax ``websocket``\ =port.
2252 If host is specified connections will only be allowed from this
2253 host. It is possible to control the websocket listen address
2254 independently, using the syntax ``websocket``\ =host:port.
2256 If no TLS credentials are provided, the websocket connection
2257 runs in unencrypted mode. If TLS credentials are provided, the
2258 websocket connection requires encrypted client connections.
2261 Require that password based authentication is used for client
2264 The password must be set separately using the ``set_password``
2265 command in the :ref:`QEMU monitor`. The
2266 syntax to change your password is:
2267 ``set_password <protocol> <password>`` where <protocol> could be
2268 either "vnc" or "spice".
2270 If you would like to change <protocol> password expiration, you
2271 should use ``expire_password <protocol> <expiration-time>``
2272 where expiration time could be one of the following options:
2273 now, never, +seconds or UNIX time of expiration, e.g. +60 to
2274 make password expire in 60 seconds, or 1335196800 to make
2275 password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for
2276 this date and time).
2278 You can also use keywords "now" or "never" for the expiration
2279 time to allow <protocol> password to expire immediately or never
2282 ``password-secret=<secret-id>``
2283 Require that password based authentication is used for client
2284 connections, using the password provided by the ``secret``
2285 object identified by ``secret-id``.
2288 Provides the ID of a set of TLS credentials to use to secure the
2289 VNC server. They will apply to both the normal VNC server socket
2290 and the websocket socket (if enabled). Setting TLS credentials
2291 will cause the VNC server socket to enable the VeNCrypt auth
2292 mechanism. The credentials should have been previously created
2293 using the ``-object tls-creds`` argument.
2296 Provides the ID of the QAuthZ authorization object against which
2297 the client's x509 distinguished name will validated. This object
2298 is only resolved at time of use, so can be deleted and recreated
2299 on the fly while the VNC server is active. If missing, it will
2300 default to denying access.
2303 Require that the client use SASL to authenticate with the VNC
2304 server. The exact choice of authentication method used is
2305 controlled from the system / user's SASL configuration file for
2306 the 'qemu' service. This is typically found in
2307 /etc/sasl2/qemu.conf. If running QEMU as an unprivileged user,
2308 an environment variable SASL\_CONF\_PATH can be used to make it
2309 search alternate locations for the service config. While some
2310 SASL auth methods can also provide data encryption (eg GSSAPI),
2311 it is recommended that SASL always be combined with the 'tls'
2312 and 'x509' settings to enable use of SSL and server
2313 certificates. This ensures a data encryption preventing
2314 compromise of authentication credentials. See the
2315 :ref:`VNC security` section in the System Emulation Users Guide
2316 for details on using SASL authentication.
2319 Provides the ID of the QAuthZ authorization object against which
2320 the client's SASL username will validated. This object is only
2321 resolved at time of use, so can be deleted and recreated on the
2322 fly while the VNC server is active. If missing, it will default
2326 Legacy method for enabling authorization of clients against the
2327 x509 distinguished name and SASL username. It results in the
2328 creation of two ``authz-list`` objects with IDs of
2329 ``vnc.username`` and ``vnc.x509dname``. The rules for these
2330 objects must be configured with the HMP ACL commands.
2332 This option is deprecated and should no longer be used. The new
2333 ``sasl-authz`` and ``tls-authz`` options are a replacement.
2336 Enable lossy compression methods (gradient, JPEG, ...). If this
2337 option is set, VNC client may receive lossy framebuffer updates
2338 depending on its encoding settings. Enabling this option can
2339 save a lot of bandwidth at the expense of quality.
2341 ``non-adaptive=on|off``
2342 Disable adaptive encodings. Adaptive encodings are enabled by
2343 default. An adaptive encoding will try to detect frequently
2344 updated screen regions, and send updates in these regions using
2345 a lossy encoding (like JPEG). This can be really helpful to save
2346 bandwidth when playing videos. Disabling adaptive encodings
2347 restores the original static behavior of encodings like Tight.
2349 ``share=[allow-exclusive|force-shared|ignore]``
2350 Set display sharing policy. 'allow-exclusive' allows clients to
2351 ask for exclusive access. As suggested by the rfb spec this is
2352 implemented by dropping other connections. Connecting multiple
2353 clients in parallel requires all clients asking for a shared
2354 session (vncviewer: -shared switch). This is the default.
2355 'force-shared' disables exclusive client access. Useful for
2356 shared desktop sessions, where you don't want someone forgetting
2357 specify -shared disconnect everybody else. 'ignore' completely
2358 ignores the shared flag and allows everybody connect
2359 unconditionally. Doesn't conform to the rfb spec but is
2360 traditional QEMU behavior.
2363 Set keyboard delay, for key down and key up events, in
2364 milliseconds. Default is 10. Keyboards are low-bandwidth
2365 devices, so this slowdown can help the device and guest to keep
2366 up and not lose events in case events are arriving in bulk.
2367 Possible causes for the latter are flaky network connections, or
2368 scripts for automated testing.
2370 ``audiodev=audiodev``
2371 Use the specified audiodev when the VNC client requests audio
2372 transmission. When not using an -audiodev argument, this option
2373 must be omitted, otherwise is must be present and specify a
2376 ``power-control=on|off``
2377 Permit the remote client to issue shutdown, reboot or reset power
2381 ARCHHEADING(, QEMU_ARCH_I386)
2383 ARCHHEADING(i386 target only:, QEMU_ARCH_I386)
2385 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
2386 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n",
2390 Use it when installing Windows 2000 to avoid a disk full bug. After
2391 Windows 2000 is installed, you no longer need this option (this
2392 option slows down the IDE transfers).
2395 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
2396 "-no-fd-bootchk disable boot signature checking for floppy disks\n",
2400 Disable boot signature checking for floppy disks in BIOS. May be
2401 needed to boot from old floppy disks.
2404 DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
2405 "-no-acpi disable ACPI\n", QEMU_ARCH_I386 | QEMU_ARCH_ARM)
2408 Disable ACPI (Advanced Configuration and Power Interface) support.
2409 Use it if your guest OS complains about ACPI problems (PC target
2413 DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
2414 "-no-hpet disable HPET\n", QEMU_ARCH_I386)
2417 Disable HPET support.
2420 DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
2421 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]\n"
2422 " ACPI table description\n", QEMU_ARCH_I386)
2424 ``-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n] [,asl_compiler_id=str][,asl_compiler_rev=n][,data=file1[:file2]...]``
2425 Add ACPI table with specified header fields and context from
2426 specified files. For file=, take whole ACPI table from the specified
2427 files, including all ACPI headers (possible overridden by other
2428 options). For data=, only data portion of the table is used, all
2429 header information is specified in the command line. If a SLIC table
2430 is supplied to QEMU, then the SLIC's oem\_id and oem\_table\_id
2431 fields will override the same in the RSDT and the FADT (a.k.a.
2432 FACP), in order to ensure the field matches required by the
2433 Microsoft SLIC spec and the ACPI spec.
2436 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
2437 "-smbios file=binary\n"
2438 " load SMBIOS entry from binary file\n"
2439 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]\n"
2441 " specify SMBIOS type 0 fields\n"
2442 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
2443 " [,uuid=uuid][,sku=str][,family=str]\n"
2444 " specify SMBIOS type 1 fields\n"
2445 "-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
2446 " [,asset=str][,location=str]\n"
2447 " specify SMBIOS type 2 fields\n"
2448 "-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]\n"
2450 " specify SMBIOS type 3 fields\n"
2451 "-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]\n"
2452 " [,asset=str][,part=str][,max-speed=%d][,current-speed=%d]\n"
2453 " specify SMBIOS type 4 fields\n"
2454 "-smbios type=11[,value=str][,path=filename]\n"
2455 " specify SMBIOS type 11 fields\n"
2456 "-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]\n"
2457 " [,asset=str][,part=str][,speed=%d]\n"
2458 " specify SMBIOS type 17 fields\n"
2459 "-smbios type=41[,designation=str][,kind=str][,instance=%d][,pcidev=str]\n"
2460 " specify SMBIOS type 41 fields\n",
2461 QEMU_ARCH_I386 | QEMU_ARCH_ARM)
2463 ``-smbios file=binary``
2464 Load SMBIOS entry from binary file.
2466 ``-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d][,uefi=on|off]``
2467 Specify SMBIOS type 0 fields
2469 ``-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str][,uuid=uuid][,sku=str][,family=str]``
2470 Specify SMBIOS type 1 fields
2472 ``-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str][,asset=str][,location=str]``
2473 Specify SMBIOS type 2 fields
2475 ``-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str][,sku=str]``
2476 Specify SMBIOS type 3 fields
2478 ``-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str][,asset=str][,part=str]``
2479 Specify SMBIOS type 4 fields
2481 ``-smbios type=11[,value=str][,path=filename]``
2482 Specify SMBIOS type 11 fields
2484 This argument can be repeated multiple times, and values are added in the order they are parsed.
2485 Applications intending to use OEM strings data are encouraged to use their application name as
2486 a prefix for the value string. This facilitates passing information for multiple applications
2489 The ``value=str`` syntax provides the string data inline, while the ``path=filename`` syntax
2490 loads data from a file on disk. Note that the file is not permitted to contain any NUL bytes.
2492 Both the ``value`` and ``path`` options can be repeated multiple times and will be added to
2493 the SMBIOS table in the order in which they appear.
2495 Note that on the x86 architecture, the total size of all SMBIOS tables is limited to 65535
2496 bytes. Thus the OEM strings data is not suitable for passing large amounts of data into the
2497 guest. Instead it should be used as a indicator to inform the guest where to locate the real
2498 data set, for example, by specifying the serial ID of a block device.
2500 An example passing three strings is
2504 -smbios type=11,value=cloud-init:ds=nocloud-net;s=http://10.10.0.1:8000/,\\
2505 value=anaconda:method=http://dl.fedoraproject.org/pub/fedora/linux/releases/25/x86_64/os,\\
2506 path=/some/file/with/oemstringsdata.txt
2508 In the guest OS this is visible with the ``dmidecode`` command
2513 Handle 0x0E00, DMI type 11, 5 bytes
2515 String 1: cloud-init:ds=nocloud-net;s=http://10.10.0.1:8000/
2516 String 2: anaconda:method=http://dl.fedoraproject.org/pub/fedora/linux/releases/25/x86_64/os
2517 String 3: myapp:some extra data
2520 ``-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str][,asset=str][,part=str][,speed=%d]``
2521 Specify SMBIOS type 17 fields
2523 ``-smbios type=41[,designation=str][,kind=str][,instance=%d][,pcidev=str]``
2524 Specify SMBIOS type 41 fields
2526 This argument can be repeated multiple times. Its main use is to allow network interfaces be created
2527 as ``enoX`` on Linux, with X being the instance number, instead of the name depending on the interface
2528 position on the PCI bus.
2530 Here is an example of use:
2534 -netdev user,id=internet \\
2535 -device virtio-net-pci,mac=50:54:00:00:00:42,netdev=internet,id=internet-dev \\
2536 -smbios type=41,designation='Onboard LAN',instance=1,kind=ethernet,pcidev=internet-dev
2538 In the guest OS, the device should then appear as ``eno1``:
2543 lo UNKNOWN 00:00:00:00:00:00 <LOOPBACK,UP,LOWER_UP>
2544 eno1 UP 50:54:00:00:00:42 <BROADCAST,MULTICAST,UP,LOWER_UP>
2546 Currently, the PCI device has to be attached to the root bus.
2552 DEFHEADING(Network options:)
2554 DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
2556 "-netdev user,id=str[,ipv4=on|off][,net=addr[/mask]][,host=addr]\n"
2557 " [,ipv6=on|off][,ipv6-net=addr[/int]][,ipv6-host=addr]\n"
2558 " [,restrict=on|off][,hostname=host][,dhcpstart=addr]\n"
2559 " [,dns=addr][,ipv6-dns=addr][,dnssearch=domain][,domainname=domain]\n"
2560 " [,tftp=dir][,tftp-server-name=name][,bootfile=f][,hostfwd=rule][,guestfwd=rule]"
2562 "[,smb=dir[,smbserver=addr]]\n"
2564 " configure a user mode network backend with ID 'str',\n"
2565 " its DHCP server and optional services\n"
2568 "-netdev tap,id=str,ifname=name\n"
2569 " configure a host TAP network backend with ID 'str'\n"
2571 "-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]\n"
2572 " [,br=bridge][,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]\n"
2573 " [,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]\n"
2575 " configure a host TAP network backend with ID 'str'\n"
2576 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
2577 " use network scripts 'file' (default=" DEFAULT_NETWORK_SCRIPT ")\n"
2578 " to configure it and 'dfile' (default=" DEFAULT_NETWORK_DOWN_SCRIPT ")\n"
2579 " to deconfigure it\n"
2580 " use '[down]script=no' to disable script execution\n"
2581 " use network helper 'helper' (default=" DEFAULT_BRIDGE_HELPER ") to\n"
2583 " use 'fd=h' to connect to an already opened TAP interface\n"
2584 " use 'fds=x:y:...:z' to connect to already opened multiqueue capable TAP interfaces\n"
2585 " use 'sndbuf=nbytes' to limit the size of the send buffer (the\n"
2586 " default is disabled 'sndbuf=0' to enable flow control set 'sndbuf=1048576')\n"
2587 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n"
2588 " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n"
2589 " use vhost=on to enable experimental in kernel accelerator\n"
2590 " (only has effect for virtio guests which use MSIX)\n"
2591 " use vhostforce=on to force vhost on for non-MSIX virtio guests\n"
2592 " use 'vhostfd=h' to connect to an already opened vhost net device\n"
2593 " use 'vhostfds=x:y:...:z to connect to multiple already opened vhost net devices\n"
2594 " use 'queues=n' to specify the number of queues to be created for multiqueue TAP\n"
2595 " use 'poll-us=n' to specify the maximum number of microseconds that could be\n"
2596 " spent on busy polling for vhost net\n"
2597 "-netdev bridge,id=str[,br=bridge][,helper=helper]\n"
2598 " configure a host TAP network backend with ID 'str' that is\n"
2599 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
2600 " using the program 'helper (default=" DEFAULT_BRIDGE_HELPER ")\n"
2603 "-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]\n"
2604 " [,rxsession=rxsession],txsession=txsession[,ipv6=on|off][,udp=on|off]\n"
2605 " [,cookie64=on|off][,counter][,pincounter][,txcookie=txcookie]\n"
2606 " [,rxcookie=rxcookie][,offset=offset]\n"
2607 " configure a network backend with ID 'str' connected to\n"
2608 " an Ethernet over L2TPv3 pseudowire.\n"
2609 " Linux kernel 3.3+ as well as most routers can talk\n"
2610 " L2TPv3. This transport allows connecting a VM to a VM,\n"
2611 " VM to a router and even VM to Host. It is a nearly-universal\n"
2612 " standard (RFC3931). Note - this implementation uses static\n"
2613 " pre-configured tunnels (same as the Linux kernel).\n"
2614 " use 'src=' to specify source address\n"
2615 " use 'dst=' to specify destination address\n"
2616 " use 'udp=on' to specify udp encapsulation\n"
2617 " use 'srcport=' to specify source udp port\n"
2618 " use 'dstport=' to specify destination udp port\n"
2619 " use 'ipv6=on' to force v6\n"
2620 " L2TPv3 uses cookies to prevent misconfiguration as\n"
2621 " well as a weak security measure\n"
2622 " use 'rxcookie=0x012345678' to specify a rxcookie\n"
2623 " use 'txcookie=0x012345678' to specify a txcookie\n"
2624 " use 'cookie64=on' to set cookie size to 64 bit, otherwise 32\n"
2625 " use 'counter=off' to force a 'cut-down' L2TPv3 with no counter\n"
2626 " use 'pincounter=on' to work around broken counter handling in peer\n"
2627 " use 'offset=X' to add an extra offset between header and data\n"
2629 "-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]\n"
2630 " configure a network backend to connect to another network\n"
2631 " using a socket connection\n"
2632 "-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]\n"
2633 " configure a network backend to connect to a multicast maddr and port\n"
2634 " use 'localaddr=addr' to specify the host address to send packets from\n"
2635 "-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]\n"
2636 " configure a network backend to connect to another network\n"
2637 " using an UDP tunnel\n"
2639 "-netdev vde,id=str[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
2640 " configure a network backend to connect to port 'n' of a vde switch\n"
2641 " running on host and listening for incoming connections on 'socketpath'.\n"
2642 " Use group 'groupname' and mode 'octalmode' to change default\n"
2643 " ownership and permissions for communication port.\n"
2645 #ifdef CONFIG_NETMAP
2646 "-netdev netmap,id=str,ifname=name[,devname=nmname]\n"
2647 " attach to the existing netmap-enabled network interface 'name', or to a\n"
2648 " VALE port (created on the fly) called 'name' ('nmname' is name of the \n"
2649 " netmap device, defaults to '/dev/netmap')\n"
2652 "-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]\n"
2653 " configure a vhost-user network, backed by a chardev 'dev'\n"
2656 "-netdev vhost-vdpa,id=str,vhostdev=/path/to/dev\n"
2657 " configure a vhost-vdpa network,Establish a vhost-vdpa netdev\n"
2659 "-netdev hubport,id=str,hubid=n[,netdev=nd]\n"
2660 " configure a hub port on the hub with ID 'n'\n", QEMU_ARCH_ALL)
2661 DEF("nic", HAS_ARG, QEMU_OPTION_nic,
2672 #ifdef CONFIG_NETMAP
2678 "socket][,option][,...][mac=macaddr]\n"
2679 " initialize an on-board / default host NIC (using MAC address\n"
2680 " macaddr) and connect it to the given host network backend\n"
2681 "-nic none use it alone to have zero network devices (the default is to\n"
2682 " provided a 'user' network connection)\n",
2684 DEF("net", HAS_ARG, QEMU_OPTION_net,
2685 "-net nic[,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
2686 " configure or create an on-board (or machine default) NIC and\n"
2687 " connect it to hub 0 (please use -nic unless you need a hub)\n"
2697 #ifdef CONFIG_NETMAP
2700 "socket][,option][,option][,...]\n"
2701 " old way to initialize a host network interface\n"
2702 " (use the -netdev option if possible instead)\n", QEMU_ARCH_ALL)
2704 ``-nic [tap|bridge|user|l2tpv3|vde|netmap|vhost-user|socket][,...][,mac=macaddr][,model=mn]``
2705 This option is a shortcut for configuring both the on-board
2706 (default) guest NIC hardware and the host network backend in one go.
2707 The host backend options are the same as with the corresponding
2708 ``-netdev`` options below. The guest NIC model can be set with
2709 ``model=modelname``. Use ``model=help`` to list the available device
2710 types. The hardware MAC address can be set with ``mac=macaddr``.
2712 The following two example do exactly the same, to show how ``-nic``
2713 can be used to shorten the command line length:
2717 |qemu_system| -netdev user,id=n1,ipv6=off -device e1000,netdev=n1,mac=52:54:98:76:54:32
2718 |qemu_system| -nic user,ipv6=off,model=e1000,mac=52:54:98:76:54:32
2721 Indicate that no network devices should be configured. It is used to
2722 override the default configuration (default NIC with "user" host
2723 network backend) which is activated if no other networking options
2726 ``-netdev user,id=id[,option][,option][,...]``
2727 Configure user mode host network backend which requires no
2728 administrator privilege to run. Valid options are:
2731 Assign symbolic name for use in monitor commands.
2733 ``ipv4=on|off and ipv6=on|off``
2734 Specify that either IPv4 or IPv6 must be enabled. If neither is
2735 specified both protocols are enabled.
2738 Set IP network address the guest will see. Optionally specify
2739 the netmask, either in the form a.b.c.d or as number of valid
2740 top-most bits. Default is 10.0.2.0/24.
2743 Specify the guest-visible address of the host. Default is the
2744 2nd IP in the guest network, i.e. x.x.x.2.
2746 ``ipv6-net=addr[/int]``
2747 Set IPv6 network address the guest will see (default is
2748 fec0::/64). The network prefix is given in the usual hexadecimal
2749 IPv6 address notation. The prefix size is optional, and is given
2750 as the number of valid top-most bits (default is 64).
2753 Specify the guest-visible IPv6 address of the host. Default is
2754 the 2nd IPv6 in the guest network, i.e. xxxx::2.
2757 If this option is enabled, the guest will be isolated, i.e. it
2758 will not be able to contact the host and no guest IP packets
2759 will be routed over the host to the outside. This option does
2760 not affect any explicitly set forwarding rules.
2763 Specifies the client hostname reported by the built-in DHCP
2767 Specify the first of the 16 IPs the built-in DHCP server can
2768 assign. Default is the 15th to 31st IP in the guest network,
2769 i.e. x.x.x.15 to x.x.x.31.
2772 Specify the guest-visible address of the virtual nameserver. The
2773 address must be different from the host address. Default is the
2774 3rd IP in the guest network, i.e. x.x.x.3.
2777 Specify the guest-visible address of the IPv6 virtual
2778 nameserver. The address must be different from the host address.
2779 Default is the 3rd IP in the guest network, i.e. xxxx::3.
2781 ``dnssearch=domain``
2782 Provides an entry for the domain-search list sent by the
2783 built-in DHCP server. More than one domain suffix can be
2784 transmitted by specifying this option multiple times. If
2785 supported, this will cause the guest to automatically try to
2786 append the given domain suffix(es) in case a domain name can not
2793 |qemu_system| -nic user,dnssearch=mgmt.example.org,dnssearch=example.org
2795 ``domainname=domain``
2796 Specifies the client domain name reported by the built-in DHCP
2800 When using the user mode network stack, activate a built-in TFTP
2801 server. The files in dir will be exposed as the root of a TFTP
2802 server. The TFTP client on the guest must be configured in
2803 binary mode (use the command ``bin`` of the Unix TFTP client).
2805 ``tftp-server-name=name``
2806 In BOOTP reply, broadcast name as the "TFTP server name"
2807 (RFC2132 option 66). This can be used to advise the guest to
2808 load boot files or configurations from a different server than
2812 When using the user mode network stack, broadcast file as the
2813 BOOTP filename. In conjunction with ``tftp``, this can be used
2814 to network boot a guest from a local directory.
2816 Example (using pxelinux):
2820 |qemu_system| -hda linux.img -boot n -device e1000,netdev=n1 \\
2821 -netdev user,id=n1,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
2823 ``smb=dir[,smbserver=addr]``
2824 When using the user mode network stack, activate a built-in SMB
2825 server so that Windows OSes can access to the host files in
2826 ``dir`` transparently. The IP address of the SMB server can be
2827 set to addr. By default the 4th IP in the guest network is used,
2830 In the guest Windows OS, the line:
2836 must be added in the file ``C:\WINDOWS\LMHOSTS`` (for windows
2837 9x/Me) or ``C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS`` (Windows
2840 Then ``dir`` can be accessed in ``\\smbserver\qemu``.
2842 Note that a SAMBA server must be installed on the host OS.
2844 ``hostfwd=[tcp|udp]:[hostaddr]:hostport-[guestaddr]:guestport``
2845 Redirect incoming TCP or UDP connections to the host port
2846 hostport to the guest IP address guestaddr on guest port
2847 guestport. If guestaddr is not specified, its value is x.x.x.15
2848 (default first address given by the built-in DHCP server). By
2849 specifying hostaddr, the rule can be bound to a specific host
2850 interface. If no connection type is set, TCP is used. This
2851 option can be given multiple times.
2853 For example, to redirect host X11 connection from screen 1 to
2854 guest screen 0, use the following:
2859 |qemu_system| -nic user,hostfwd=tcp:127.0.0.1:6001-:6000
2860 # this host xterm should open in the guest X11 server
2863 To redirect telnet connections from host port 5555 to telnet
2864 port on the guest, use the following:
2869 |qemu_system| -nic user,hostfwd=tcp::5555-:23
2870 telnet localhost 5555
2872 Then when you use on the host ``telnet localhost 5555``, you
2873 connect to the guest telnet server.
2875 ``guestfwd=[tcp]:server:port-dev``; \ ``guestfwd=[tcp]:server:port-cmd:command``
2876 Forward guest TCP connections to the IP address server on port
2877 port to the character device dev or to a program executed by
2878 cmd:command which gets spawned for each connection. This option
2879 can be given multiple times.
2881 You can either use a chardev directly and have that one used
2882 throughout QEMU's lifetime, like in the following example:
2886 # open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever
2887 # the guest accesses it
2888 |qemu_system| -nic user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321
2890 Or you can execute a command on every TCP connection established
2891 by the guest, so that QEMU behaves similar to an inetd process
2892 for that virtual server:
2896 # call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234
2897 # and connect the TCP stream to its stdin/stdout
2898 |qemu_system| -nic 'user,id=n1,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'
2900 ``-netdev tap,id=id[,fd=h][,ifname=name][,script=file][,downscript=dfile][,br=bridge][,helper=helper]``
2901 Configure a host TAP network backend with ID id.
2903 Use the network script file to configure it and the network script
2904 dfile to deconfigure it. If name is not provided, the OS
2905 automatically provides one. The default network configure script is
2906 ``/etc/qemu-ifup`` and the default network deconfigure script is
2907 ``/etc/qemu-ifdown``. Use ``script=no`` or ``downscript=no`` to
2908 disable script execution.
2910 If running QEMU as an unprivileged user, use the network helper
2911 to configure the TAP interface and attach it to the bridge.
2912 The default network helper executable is
2913 ``/path/to/qemu-bridge-helper`` and the default bridge device is
2916 ``fd``\ =h can be used to specify the handle of an already opened
2923 #launch a QEMU instance with the default network script
2924 |qemu_system| linux.img -nic tap
2928 #launch a QEMU instance with two NICs, each one connected
2930 |qemu_system| linux.img \\
2931 -netdev tap,id=nd0,ifname=tap0 -device e1000,netdev=nd0 \\
2932 -netdev tap,id=nd1,ifname=tap1 -device rtl8139,netdev=nd1
2936 #launch a QEMU instance with the default network helper to
2937 #connect a TAP device to bridge br0
2938 |qemu_system| linux.img -device virtio-net-pci,netdev=n1 \\
2939 -netdev tap,id=n1,"helper=/path/to/qemu-bridge-helper"
2941 ``-netdev bridge,id=id[,br=bridge][,helper=helper]``
2942 Connect a host TAP network interface to a host bridge device.
2944 Use the network helper helper to configure the TAP interface and
2945 attach it to the bridge. The default network helper executable is
2946 ``/path/to/qemu-bridge-helper`` and the default bridge device is
2953 #launch a QEMU instance with the default network helper to
2954 #connect a TAP device to bridge br0
2955 |qemu_system| linux.img -netdev bridge,id=n1 -device virtio-net,netdev=n1
2959 #launch a QEMU instance with the default network helper to
2960 #connect a TAP device to bridge qemubr0
2961 |qemu_system| linux.img -netdev bridge,br=qemubr0,id=n1 -device virtio-net,netdev=n1
2963 ``-netdev socket,id=id[,fd=h][,listen=[host]:port][,connect=host:port]``
2964 This host network backend can be used to connect the guest's network
2965 to another QEMU virtual machine using a TCP socket connection. If
2966 ``listen`` is specified, QEMU waits for incoming connections on port
2967 (host is optional). ``connect`` is used to connect to another QEMU
2968 instance using the ``listen`` option. ``fd``\ =h specifies an
2969 already opened TCP socket.
2975 # launch a first QEMU instance
2976 |qemu_system| linux.img \\
2977 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \\
2978 -netdev socket,id=n1,listen=:1234
2979 # connect the network of this instance to the network of the first instance
2980 |qemu_system| linux.img \\
2981 -device e1000,netdev=n2,mac=52:54:00:12:34:57 \\
2982 -netdev socket,id=n2,connect=127.0.0.1:1234
2984 ``-netdev socket,id=id[,fd=h][,mcast=maddr:port[,localaddr=addr]]``
2985 Configure a socket host network backend to share the guest's network
2986 traffic with another QEMU virtual machines using a UDP multicast
2987 socket, effectively making a bus for every QEMU with same multicast
2988 address maddr and port. NOTES:
2990 1. Several QEMU can be running on different hosts and share same bus
2991 (assuming correct multicast setup for these hosts).
2993 2. mcast support is compatible with User Mode Linux (argument
2994 ``ethN=mcast``), see http://user-mode-linux.sf.net.
2996 3. Use ``fd=h`` to specify an already opened UDP multicast socket.
3002 # launch one QEMU instance
3003 |qemu_system| linux.img \\
3004 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \\
3005 -netdev socket,id=n1,mcast=230.0.0.1:1234
3006 # launch another QEMU instance on same "bus"
3007 |qemu_system| linux.img \\
3008 -device e1000,netdev=n2,mac=52:54:00:12:34:57 \\
3009 -netdev socket,id=n2,mcast=230.0.0.1:1234
3010 # launch yet another QEMU instance on same "bus"
3011 |qemu_system| linux.img \\
3012 -device e1000,netdev=n3,mac=52:54:00:12:34:58 \\
3013 -netdev socket,id=n3,mcast=230.0.0.1:1234
3015 Example (User Mode Linux compat.):
3019 # launch QEMU instance (note mcast address selected is UML's default)
3020 |qemu_system| linux.img \\
3021 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \\
3022 -netdev socket,id=n1,mcast=239.192.168.1:1102
3024 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
3026 Example (send packets from host's 1.2.3.4):
3030 |qemu_system| linux.img \\
3031 -device e1000,netdev=n1,mac=52:54:00:12:34:56 \\
3032 -netdev socket,id=n1,mcast=239.192.168.1:1102,localaddr=1.2.3.4
3034 ``-netdev l2tpv3,id=id,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport],txsession=txsession[,rxsession=rxsession][,ipv6=on|off][,udp=on|off][,cookie64][,counter][,pincounter][,txcookie=txcookie][,rxcookie=rxcookie][,offset=offset]``
3035 Configure a L2TPv3 pseudowire host network backend. L2TPv3 (RFC3931)
3036 is a popular protocol to transport Ethernet (and other Layer 2) data
3037 frames between two systems. It is present in routers, firewalls and
3038 the Linux kernel (from version 3.3 onwards).
3040 This transport allows a VM to communicate to another VM, router or
3044 source address (mandatory)
3047 destination address (mandatory)
3050 select udp encapsulation (default is ip).
3056 destination udp port.
3059 force v6, otherwise defaults to v4.
3061 ``rxcookie=rxcookie``; \ ``txcookie=txcookie``
3062 Cookies are a weak form of security in the l2tpv3 specification.
3063 Their function is mostly to prevent misconfiguration. By default
3067 Set cookie size to 64 bit instead of the default 32
3070 Force a 'cut-down' L2TPv3 with no counter as in
3071 draft-mkonstan-l2tpext-keyed-ipv6-tunnel-00
3074 Work around broken counter handling in peer. This may also help
3075 on networks which have packet reorder.
3078 Add an extra offset between header and data
3080 For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to
3081 the bridge br-lan on the remote Linux host 1.2.3.4:
3085 # Setup tunnel on linux host using raw ip as encapsulation
3087 ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 \\
3088 encap udp udp_sport 16384 udp_dport 16384
3089 ip l2tp add session tunnel_id 1 name vmtunnel0 session_id \\
3090 0xFFFFFFFF peer_session_id 0xFFFFFFFF
3091 ifconfig vmtunnel0 mtu 1500
3092 ifconfig vmtunnel0 up
3093 brctl addif br-lan vmtunnel0
3097 # launch QEMU instance - if your network has reorder or is very lossy add ,pincounter
3099 |qemu_system| linux.img -device e1000,netdev=n1 \\
3100 -netdev l2tpv3,id=n1,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter
3102 ``-netdev vde,id=id[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]``
3103 Configure VDE backend to connect to PORT n of a vde switch running
3104 on host and listening for incoming connections on socketpath. Use
3105 GROUP groupname and MODE octalmode to change default ownership and
3106 permissions for communication port. This option is only available if
3107 QEMU has been compiled with vde support enabled.
3114 vde_switch -F -sock /tmp/myswitch
3115 # launch QEMU instance
3116 |qemu_system| linux.img -nic vde,sock=/tmp/myswitch
3118 ``-netdev vhost-user,chardev=id[,vhostforce=on|off][,queues=n]``
3119 Establish a vhost-user netdev, backed by a chardev id. The chardev
3120 should be a unix domain socket backed one. The vhost-user uses a
3121 specifically defined protocol to pass vhost ioctl replacement
3122 messages to an application on the other end of the socket. On
3123 non-MSIX guests, the feature can be forced with vhostforce. Use
3124 'queues=n' to specify the number of queues to be created for
3125 multiqueue vhost-user.
3131 qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \
3132 -numa node,memdev=mem \
3133 -chardev socket,id=chr0,path=/path/to/socket \
3134 -netdev type=vhost-user,id=net0,chardev=chr0 \
3135 -device virtio-net-pci,netdev=net0
3137 ``-netdev vhost-vdpa,vhostdev=/path/to/dev``
3138 Establish a vhost-vdpa netdev.
3140 vDPA device is a device that uses a datapath which complies with
3141 the virtio specifications with a vendor specific control path.
3142 vDPA devices can be both physically located on the hardware or
3143 emulated by software.
3145 ``-netdev hubport,id=id,hubid=hubid[,netdev=nd]``
3146 Create a hub port on the emulated hub with ID hubid.
3148 The hubport netdev lets you connect a NIC to a QEMU emulated hub
3149 instead of a single netdev. Alternatively, you can also connect the
3150 hubport to another netdev with ID nd by using the ``netdev=nd``
3153 ``-net nic[,netdev=nd][,macaddr=mac][,model=type] [,name=name][,addr=addr][,vectors=v]``
3154 Legacy option to configure or create an on-board (or machine
3155 default) Network Interface Card(NIC) and connect it either to the
3156 emulated hub with ID 0 (i.e. the default hub), or to the netdev nd.
3157 If model is omitted, then the default NIC model associated with the
3158 machine type is used. Note that the default NIC model may change in
3159 future QEMU releases, so it is highly recommended to always specify
3160 a model. Optionally, the MAC address can be changed to mac, the
3161 device address set to addr (PCI cards only), and a name can be
3162 assigned for use in monitor commands. Optionally, for PCI cards, you
3163 can specify the number v of MSI-X vectors that the card should have;
3164 this option currently only affects virtio cards; set v = 0 to
3165 disable MSI-X. If no ``-net`` option is specified, a single NIC is
3166 created. QEMU can emulate several different models of network card.
3167 Use ``-net nic,model=help`` for a list of available devices for your
3170 ``-net user|tap|bridge|socket|l2tpv3|vde[,...][,name=name]``
3171 Configure a host network backend (with the options corresponding to
3172 the same ``-netdev`` option) and connect it to the emulated hub 0
3173 (the default hub). Use name to specify the name of the hub port.
3178 DEFHEADING(Character device options:)
3180 DEF("chardev", HAS_ARG, QEMU_OPTION_chardev,
3182 "-chardev null,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3183 "-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4=on|off][,ipv6=on|off][,nodelay=on|off][,reconnect=seconds]\n"
3184 " [,server=on|off][,wait=on|off][,telnet=on|off][,websocket=on|off][,reconnect=seconds][,mux=on|off]\n"
3185 " [,logfile=PATH][,logappend=on|off][,tls-creds=ID][,tls-authz=ID] (tcp)\n"
3186 "-chardev socket,id=id,path=path[,server=on|off][,wait=on|off][,telnet=on|off][,websocket=on|off][,reconnect=seconds]\n"
3187 " [,mux=on|off][,logfile=PATH][,logappend=on|off][,abstract=on|off][,tight=on|off] (unix)\n"
3188 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n"
3189 " [,localport=localport][,ipv4=on|off][,ipv6=on|off][,mux=on|off]\n"
3190 " [,logfile=PATH][,logappend=on|off]\n"
3191 "-chardev msmouse,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3192 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n"
3193 " [,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3194 "-chardev ringbuf,id=id[,size=size][,logfile=PATH][,logappend=on|off]\n"
3195 "-chardev file,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3196 "-chardev pipe,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3198 "-chardev console,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3199 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3201 "-chardev pty,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3202 "-chardev stdio,id=id[,mux=on|off][,signal=on|off][,logfile=PATH][,logappend=on|off]\n"
3204 #ifdef CONFIG_BRLAPI
3205 "-chardev braille,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3207 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
3208 || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)
3209 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3210 "-chardev tty,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3212 #if defined(__linux__) || defined(__FreeBSD__) || defined(__DragonFly__)
3213 "-chardev parallel,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3214 "-chardev parport,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
3216 #if defined(CONFIG_SPICE)
3217 "-chardev spicevmc,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
3218 "-chardev spiceport,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
3224 The general form of a character device option is:
3226 ``-chardev backend,id=id[,mux=on|off][,options]``
3227 Backend is one of: ``null``, ``socket``, ``udp``, ``msmouse``,
3228 ``vc``, ``ringbuf``, ``file``, ``pipe``, ``console``, ``serial``,
3229 ``pty``, ``stdio``, ``braille``, ``tty``, ``parallel``, ``parport``,
3230 ``spicevmc``, ``spiceport``. The specific backend will determine the
3233 Use ``-chardev help`` to print all available chardev backend types.
3235 All devices must have an id, which can be any string up to 127
3236 characters long. It is used to uniquely identify this device in
3237 other command line directives.
3239 A character device may be used in multiplexing mode by multiple
3240 front-ends. Specify ``mux=on`` to enable this mode. A multiplexer is
3241 a "1:N" device, and here the "1" end is your specified chardev
3242 backend, and the "N" end is the various parts of QEMU that can talk
3243 to a chardev. If you create a chardev with ``id=myid`` and
3244 ``mux=on``, QEMU will create a multiplexer with your specified ID,
3245 and you can then configure multiple front ends to use that chardev
3246 ID for their input/output. Up to four different front ends can be
3247 connected to a single multiplexed chardev. (Without multiplexing
3248 enabled, a chardev can only be used by a single front end.) For
3249 instance you could use this to allow a single stdio chardev to be
3250 used by two serial ports and the QEMU monitor:
3254 -chardev stdio,mux=on,id=char0 \
3255 -mon chardev=char0,mode=readline \
3256 -serial chardev:char0 \
3257 -serial chardev:char0
3259 You can have more than one multiplexer in a system configuration;
3260 for instance you could have a TCP port multiplexed between UART 0
3261 and UART 1, and stdio multiplexed between the QEMU monitor and a
3266 -chardev stdio,mux=on,id=char0 \
3267 -mon chardev=char0,mode=readline \
3268 -parallel chardev:char0 \
3269 -chardev tcp,...,mux=on,id=char1 \
3270 -serial chardev:char1 \
3271 -serial chardev:char1
3273 When you're using a multiplexed character device, some escape
3274 sequences are interpreted in the input. See the chapter about
3275 :ref:`keys in the character backend multiplexer` in the
3276 System Emulation Users Guide for more details.
3278 Note that some other command line options may implicitly create
3279 multiplexed character backends; for instance ``-serial mon:stdio``
3280 creates a multiplexed stdio backend connected to the serial port and
3281 the QEMU monitor, and ``-nographic`` also multiplexes the console
3282 and the monitor to stdio.
3284 There is currently no support for multiplexing in the other
3285 direction (where a single QEMU front end takes input and output from
3288 Every backend supports the ``logfile`` option, which supplies the
3289 path to a file to record all data transmitted via the backend. The
3290 ``logappend`` option controls whether the log file will be truncated
3291 or appended to when opened.
3293 The available backends are:
3295 ``-chardev null,id=id``
3296 A void device. This device will not emit any data, and will drop any
3297 data it receives. The null backend does not take any options.
3299 ``-chardev socket,id=id[,TCP options or unix options][,server=on|off][,wait=on|off][,telnet=on|off][,websocket=on|off][,reconnect=seconds][,tls-creds=id][,tls-authz=id]``
3300 Create a two-way stream socket, which can be either a TCP or a unix
3301 socket. A unix socket will be created if ``path`` is specified.
3302 Behaviour is undefined if TCP options are specified for a unix
3305 ``server=on|off`` specifies that the socket shall be a listening socket.
3307 ``wait=on|off`` specifies that QEMU should not block waiting for a client
3308 to connect to a listening socket.
3310 ``telnet=on|off`` specifies that traffic on the socket should interpret
3311 telnet escape sequences.
3313 ``websocket=on|off`` specifies that the socket uses WebSocket protocol for
3316 ``reconnect`` sets the timeout for reconnecting on non-server
3317 sockets when the remote end goes away. qemu will delay this many
3318 seconds and then attempt to reconnect. Zero disables reconnecting,
3321 ``tls-creds`` requests enablement of the TLS protocol for
3322 encryption, and specifies the id of the TLS credentials to use for
3323 the handshake. The credentials must be previously created with the
3324 ``-object tls-creds`` argument.
3326 ``tls-auth`` provides the ID of the QAuthZ authorization object
3327 against which the client's x509 distinguished name will be
3328 validated. This object is only resolved at time of use, so can be
3329 deleted and recreated on the fly while the chardev server is active.
3330 If missing, it will default to denying access.
3332 TCP and unix socket options are given below:
3334 ``TCP options: port=port[,host=host][,to=to][,ipv4=on|off][,ipv6=on|off][,nodelay=on|off]``
3335 ``host`` for a listening socket specifies the local address to
3336 be bound. For a connecting socket species the remote host to
3337 connect to. ``host`` is optional for listening sockets. If not
3338 specified it defaults to ``0.0.0.0``.
3340 ``port`` for a listening socket specifies the local port to be
3341 bound. For a connecting socket specifies the port on the remote
3342 host to connect to. ``port`` can be given as either a port
3343 number or a service name. ``port`` is required.
3345 ``to`` is only relevant to listening sockets. If it is
3346 specified, and ``port`` cannot be bound, QEMU will attempt to
3347 bind to subsequent ports up to and including ``to`` until it
3348 succeeds. ``to`` must be specified as a port number.
3350 ``ipv4=on|off`` and ``ipv6=on|off`` specify that either IPv4
3351 or IPv6 must be used. If neither is specified the socket may
3352 use either protocol.
3354 ``nodelay=on|off`` disables the Nagle algorithm.
3356 ``unix options: path=path[,abstract=on|off][,tight=on|off]``
3357 ``path`` specifies the local path of the unix socket. ``path``
3359 ``abstract=on|off`` specifies the use of the abstract socket namespace,
3360 rather than the filesystem. Optional, defaults to false.
3361 ``tight=on|off`` sets the socket length of abstract sockets to their minimum,
3362 rather than the full sun_path length. Optional, defaults to true.
3364 ``-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr][,localport=localport][,ipv4=on|off][,ipv6=on|off]``
3365 Sends all traffic from the guest to a remote host over UDP.
3367 ``host`` specifies the remote host to connect to. If not specified
3368 it defaults to ``localhost``.
3370 ``port`` specifies the port on the remote host to connect to.
3371 ``port`` is required.
3373 ``localaddr`` specifies the local address to bind to. If not
3374 specified it defaults to ``0.0.0.0``.
3376 ``localport`` specifies the local port to bind to. If not specified
3377 any available local port will be used.
3379 ``ipv4=on|off`` and ``ipv6=on|off`` specify that either IPv4 or IPv6 must be used.
3380 If neither is specified the device may use either protocol.
3382 ``-chardev msmouse,id=id``
3383 Forward QEMU's emulated msmouse events to the guest. ``msmouse``
3384 does not take any options.
3386 ``-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]``
3387 Connect to a QEMU text console. ``vc`` may optionally be given a
3390 ``width`` and ``height`` specify the width and height respectively
3391 of the console, in pixels.
3393 ``cols`` and ``rows`` specify that the console be sized to fit a
3394 text console with the given dimensions.
3396 ``-chardev ringbuf,id=id[,size=size]``
3397 Create a ring buffer with fixed size ``size``. size must be a power
3398 of two and defaults to ``64K``.
3400 ``-chardev file,id=id,path=path``
3401 Log all traffic received from the guest to a file.
3403 ``path`` specifies the path of the file to be opened. This file will
3404 be created if it does not already exist, and overwritten if it does.
3405 ``path`` is required.
3407 ``-chardev pipe,id=id,path=path``
3408 Create a two-way connection to the guest. The behaviour differs
3409 slightly between Windows hosts and other hosts:
3411 On Windows, a single duplex pipe will be created at
3414 On other hosts, 2 pipes will be created called ``path.in`` and
3415 ``path.out``. Data written to ``path.in`` will be received by the
3416 guest. Data written by the guest can be read from ``path.out``. QEMU
3417 will not create these fifos, and requires them to be present.
3419 ``path`` forms part of the pipe path as described above. ``path`` is
3422 ``-chardev console,id=id``
3423 Send traffic from the guest to QEMU's standard output. ``console``
3424 does not take any options.
3426 ``console`` is only available on Windows hosts.
3428 ``-chardev serial,id=id,path=path``
3429 Send traffic from the guest to a serial device on the host.
3431 On Unix hosts serial will actually accept any tty device, not only
3434 ``path`` specifies the name of the serial device to open.
3436 ``-chardev pty,id=id``
3437 Create a new pseudo-terminal on the host and connect to it. ``pty``
3438 does not take any options.
3440 ``pty`` is not available on Windows hosts.
3442 ``-chardev stdio,id=id[,signal=on|off]``
3443 Connect to standard input and standard output of the QEMU process.
3445 ``signal`` controls if signals are enabled on the terminal, that
3446 includes exiting QEMU with the key sequence Control-c. This option
3447 is enabled by default, use ``signal=off`` to disable it.
3449 ``-chardev braille,id=id``
3450 Connect to a local BrlAPI server. ``braille`` does not take any
3453 ``-chardev tty,id=id,path=path``
3454 ``tty`` is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD
3455 and DragonFlyBSD hosts. It is an alias for ``serial``.
3457 ``path`` specifies the path to the tty. ``path`` is required.
3459 ``-chardev parallel,id=id,path=path``
3461 ``-chardev parport,id=id,path=path``
3462 ``parallel`` is only available on Linux, FreeBSD and DragonFlyBSD
3465 Connect to a local parallel port.
3467 ``path`` specifies the path to the parallel port device. ``path`` is
3470 ``-chardev spicevmc,id=id,debug=debug,name=name``
3471 ``spicevmc`` is only available when spice support is built in.
3473 ``debug`` debug level for spicevmc
3475 ``name`` name of spice channel to connect to
3477 Connect to a spice virtual machine channel, such as vdiport.
3479 ``-chardev spiceport,id=id,debug=debug,name=name``
3480 ``spiceport`` is only available when spice support is built in.
3482 ``debug`` debug level for spicevmc
3484 ``name`` name of spice port to connect to
3486 Connect to a spice port, allowing a Spice client to handle the
3487 traffic identified by a name (preferably a fqdn).
3493 DEFHEADING(TPM device options:)
3495 DEF("tpmdev", HAS_ARG, QEMU_OPTION_tpmdev, \
3496 "-tpmdev passthrough,id=id[,path=path][,cancel-path=path]\n"
3497 " use path to provide path to a character device; default is /dev/tpm0\n"
3498 " use cancel-path to provide path to TPM's cancel sysfs entry; if\n"
3499 " not provided it will be searched for in /sys/class/misc/tpm?/device\n"
3500 "-tpmdev emulator,id=id,chardev=dev\n"
3501 " configure the TPM device using chardev backend\n",
3504 The general form of a TPM device option is:
3506 ``-tpmdev backend,id=id[,options]``
3507 The specific backend type will determine the applicable options. The
3508 ``-tpmdev`` option creates the TPM backend and requires a
3509 ``-device`` option that specifies the TPM frontend interface model.
3511 Use ``-tpmdev help`` to print all available TPM backend types.
3513 The available backends are:
3515 ``-tpmdev passthrough,id=id,path=path,cancel-path=cancel-path``
3516 (Linux-host only) Enable access to the host's TPM using the
3519 ``path`` specifies the path to the host's TPM device, i.e., on a
3520 Linux host this would be ``/dev/tpm0``. ``path`` is optional and by
3521 default ``/dev/tpm0`` is used.
3523 ``cancel-path`` specifies the path to the host TPM device's sysfs
3524 entry allowing for cancellation of an ongoing TPM command.
3525 ``cancel-path`` is optional and by default QEMU will search for the
3528 Some notes about using the host's TPM with the passthrough driver:
3530 The TPM device accessed by the passthrough driver must not be used
3531 by any other application on the host.
3533 Since the host's firmware (BIOS/UEFI) has already initialized the
3534 TPM, the VM's firmware (BIOS/UEFI) will not be able to initialize
3535 the TPM again and may therefore not show a TPM-specific menu that
3536 would otherwise allow the user to configure the TPM, e.g., allow the
3537 user to enable/disable or activate/deactivate the TPM. Further, if
3538 TPM ownership is released from within a VM then the host's TPM will
3539 get disabled and deactivated. To enable and activate the TPM again
3540 afterwards, the host has to be rebooted and the user is required to
3541 enter the firmware's menu to enable and activate the TPM. If the TPM
3542 is left disabled and/or deactivated most TPM commands will fail.
3544 To create a passthrough TPM use the following two options:
3548 -tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0
3550 Note that the ``-tpmdev`` id is ``tpm0`` and is referenced by
3551 ``tpmdev=tpm0`` in the device option.
3553 ``-tpmdev emulator,id=id,chardev=dev``
3554 (Linux-host only) Enable access to a TPM emulator using Unix domain
3555 socket based chardev backend.
3557 ``chardev`` specifies the unique ID of a character device backend
3558 that provides connection to the software TPM server.
3560 To create a TPM emulator backend device with chardev socket backend:
3564 -chardev socket,id=chrtpm,path=/tmp/swtpm-sock -tpmdev emulator,id=tpm0,chardev=chrtpm -device tpm-tis,tpmdev=tpm0
3571 DEFHEADING(Linux/Multiboot boot specific:)
3573 When using these options, you can use a given Linux or Multiboot kernel
3574 without installing it in the disk image. It can be useful for easier
3575 testing of various kernels.
3580 DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
3581 "-kernel bzImage use 'bzImage' as kernel image\n", QEMU_ARCH_ALL)
3584 Use bzImage as kernel image. The kernel can be either a Linux kernel
3585 or in multiboot format.
3588 DEF("append", HAS_ARG, QEMU_OPTION_append, \
3589 "-append cmdline use 'cmdline' as kernel command line\n", QEMU_ARCH_ALL)
3592 Use cmdline as kernel command line
3595 DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
3596 "-initrd file use 'file' as initial ram disk\n", QEMU_ARCH_ALL)
3599 Use file as initial ram disk.
3601 ``-initrd "file1 arg=foo,file2"``
3602 This syntax is only available with multiboot.
3604 Use file1 and file2 as modules and pass arg=foo as parameter to the
3608 DEF("dtb", HAS_ARG, QEMU_OPTION_dtb, \
3609 "-dtb file use 'file' as device tree image\n", QEMU_ARCH_ALL)
3612 Use file as a device tree binary (dtb) image and pass it to the
3618 DEFHEADING(Debug/Expert options:)
3620 DEF("compat", HAS_ARG, QEMU_OPTION_compat,
3621 "-compat [deprecated-input=accept|reject|crash][,deprecated-output=accept|hide]\n"
3622 " Policy for handling deprecated management interfaces\n",
3625 ``-compat [deprecated-input=@var{input-policy}][,deprecated-output=@var{output-policy}]``
3626 Set policy for handling deprecated management interfaces (experimental):
3628 ``deprecated-input=accept`` (default)
3629 Accept deprecated commands and arguments
3630 ``deprecated-input=reject``
3631 Reject deprecated commands and arguments
3632 ``deprecated-input=crash``
3633 Crash on deprecated commands and arguments
3634 ``deprecated-output=accept`` (default)
3635 Emit deprecated command results and events
3636 ``deprecated-output=hide``
3637 Suppress deprecated command results and events
3639 Limitation: covers only syntactic aspects of QMP.
3642 DEF("fw_cfg", HAS_ARG, QEMU_OPTION_fwcfg,
3643 "-fw_cfg [name=]<name>,file=<file>\n"
3644 " add named fw_cfg entry with contents from file\n"
3645 "-fw_cfg [name=]<name>,string=<str>\n"
3646 " add named fw_cfg entry with contents from string\n",
3649 ``-fw_cfg [name=]name,file=file``
3650 Add named fw\_cfg entry with contents from file file.
3652 ``-fw_cfg [name=]name,string=str``
3653 Add named fw\_cfg entry with contents from string str.
3655 The terminating NUL character of the contents of str will not be
3656 included as part of the fw\_cfg item data. To insert contents with
3657 embedded NUL characters, you have to use the file parameter.
3659 The fw\_cfg entries are passed by QEMU through to the guest.
3665 -fw_cfg name=opt/com.mycompany/blob,file=./my_blob.bin
3667 creates an fw\_cfg entry named opt/com.mycompany/blob with contents
3668 from ./my\_blob.bin.
3671 DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
3672 "-serial dev redirect the serial port to char device 'dev'\n",
3676 Redirect the virtual serial port to host character device dev. The
3677 default device is ``vc`` in graphical mode and ``stdio`` in non
3680 This option can be used several times to simulate up to 4 serial
3683 Use ``-serial none`` to disable all serial ports.
3685 Available character devices are:
3688 Virtual console. Optionally, a width and height can be given in
3695 It is also possible to specify width or height in characters:
3702 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
3705 No device is allocated.
3711 Use a named character device defined with the ``-chardev``
3715 [Linux only] Use host tty, e.g. ``/dev/ttyS0``. The host serial
3716 port parameters are set according to the emulated ones.
3719 [Linux only, parallel port only] Use host parallel port N.
3720 Currently SPP and EPP parallel port features can be used.
3723 Write output to filename. No character can be read.
3726 [Unix only] standard input/output
3732 [Windows only] Use host serial port n
3734 ``udp:[remote_host]:remote_port[@[src_ip]:src_port]``
3735 This implements UDP Net Console. When remote\_host or src\_ip
3736 are not specified they default to ``0.0.0.0``. When not using a
3737 specified src\_port a random port is automatically chosen.
3739 If you just want a simple readonly console you can use
3740 ``netcat`` or ``nc``, by starting QEMU with:
3741 ``-serial udp::4555`` and nc as: ``nc -u -l -p 4555``. Any time
3742 QEMU writes something to that port it will appear in the
3745 If you plan to send characters back via netconsole or you want
3746 to stop and start QEMU a lot of times, you should have QEMU use
3747 the same source port each time by using something like ``-serial
3748 udp::4555@:4556`` to QEMU. Another approach is to use a patched
3749 version of netcat which can listen to a TCP port and send and
3750 receive characters via udp. If you have a patched version of
3751 netcat which activates telnet remote echo and single char
3752 transfer, then you can use the following options to set up a
3753 netcat redirector to allow telnet on port 5555 to access the
3757 -serial udp::4555@:4556
3760 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
3765 ``tcp:[host]:port[,server=on|off][,wait=on|off][,nodelay=on|off][,reconnect=seconds]``
3766 The TCP Net Console has two modes of operation. It can send the
3767 serial I/O to a location or wait for a connection from a
3768 location. By default the TCP Net Console is sent to host at the
3769 port. If you use the ``server=on`` option QEMU will wait for a client
3770 socket application to connect to the port before continuing,
3771 unless the ``wait=on|off`` option was specified. The ``nodelay=on|off``
3772 option disables the Nagle buffering algorithm. The ``reconnect=on``
3773 option only applies if ``server=no`` is set, if the connection goes
3774 down it will attempt to reconnect at the given interval. If host
3775 is omitted, 0.0.0.0 is assumed. Only one TCP connection at a
3776 time is accepted. You can use ``telnet=on`` to connect to the
3777 corresponding character device.
3779 ``Example to send tcp console to 192.168.0.2 port 4444``
3780 -serial tcp:192.168.0.2:4444
3782 ``Example to listen and wait on port 4444 for connection``
3783 -serial tcp::4444,server=on
3785 ``Example to not wait and listen on ip 192.168.0.100 port 4444``
3786 -serial tcp:192.168.0.100:4444,server=on,wait=off
3788 ``telnet:host:port[,server=on|off][,wait=on|off][,nodelay=on|off]``
3789 The telnet protocol is used instead of raw tcp sockets. The
3790 options work the same as if you had specified ``-serial tcp``.
3791 The difference is that the port acts like a telnet server or
3792 client using telnet option negotiation. This will also allow you
3793 to send the MAGIC\_SYSRQ sequence if you use a telnet that
3794 supports sending the break sequence. Typically in unix telnet
3795 you do it with Control-] and then type "send break" followed by
3796 pressing the enter key.
3798 ``websocket:host:port,server=on[,wait=on|off][,nodelay=on|off]``
3799 The WebSocket protocol is used instead of raw tcp socket. The
3800 port acts as a WebSocket server. Client mode is not supported.
3802 ``unix:path[,server=on|off][,wait=on|off][,reconnect=seconds]``
3803 A unix domain socket is used instead of a tcp socket. The option
3804 works the same as if you had specified ``-serial tcp`` except
3805 the unix domain socket path is used for connections.
3808 This is a special option to allow the monitor to be multiplexed
3809 onto another serial port. The monitor is accessed with key
3810 sequence of Control-a and then pressing c. dev\_string should be
3811 any one of the serial devices specified above. An example to
3812 multiplex the monitor onto a telnet server listening on port
3815 ``-serial mon:telnet::4444,server=on,wait=off``
3817 When the monitor is multiplexed to stdio in this way, Ctrl+C
3818 will not terminate QEMU any more but will be passed to the guest
3822 Braille device. This will use BrlAPI to display the braille
3823 output on a real or fake device.
3826 Three button serial mouse. Configure the guest to use Microsoft
3830 DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
3831 "-parallel dev redirect the parallel port to char device 'dev'\n",
3835 Redirect the virtual parallel port to host device dev (same devices
3836 as the serial port). On Linux hosts, ``/dev/parportN`` can be used
3837 to use hardware devices connected on the corresponding host parallel
3840 This option can be used several times to simulate up to 3 parallel
3843 Use ``-parallel none`` to disable all parallel ports.
3846 DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
3847 "-monitor dev redirect the monitor to char device 'dev'\n",
3851 Redirect the monitor to host device dev (same devices as the serial
3852 port). The default device is ``vc`` in graphical mode and ``stdio``
3853 in non graphical mode. Use ``-monitor none`` to disable the default
3856 DEF("qmp", HAS_ARG, QEMU_OPTION_qmp, \
3857 "-qmp dev like -monitor but opens in 'control' mode\n",
3861 Like -monitor but opens in 'control' mode.
3863 DEF("qmp-pretty", HAS_ARG, QEMU_OPTION_qmp_pretty, \
3864 "-qmp-pretty dev like -qmp but uses pretty JSON formatting\n",
3868 Like -qmp but uses pretty JSON formatting.
3871 DEF("mon", HAS_ARG, QEMU_OPTION_mon, \
3872 "-mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]\n", QEMU_ARCH_ALL)
3874 ``-mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]``
3875 Setup monitor on chardev name. ``mode=control`` configures
3876 a QMP monitor (a JSON RPC-style protocol) and it is not the
3877 same as HMP, the human monitor that has a "(qemu)" prompt.
3878 ``pretty`` is only valid when ``mode=control``,
3879 turning on JSON pretty printing to ease
3880 human reading and debugging.
3883 DEF("debugcon", HAS_ARG, QEMU_OPTION_debugcon, \
3884 "-debugcon dev redirect the debug console to char device 'dev'\n",
3888 Redirect the debug console to host device dev (same devices as the
3889 serial port). The debug console is an I/O port which is typically
3890 port 0xe9; writing to that I/O port sends output to this device. The
3891 default device is ``vc`` in graphical mode and ``stdio`` in non
3895 DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
3896 "-pidfile file write PID to 'file'\n", QEMU_ARCH_ALL)
3899 Store the QEMU process PID in file. It is useful if you launch QEMU
3903 DEF("singlestep", 0, QEMU_OPTION_singlestep, \
3904 "-singlestep always run in singlestep mode\n", QEMU_ARCH_ALL)
3907 Run the emulation in single step mode.
3910 DEF("preconfig", 0, QEMU_OPTION_preconfig, \
3911 "--preconfig pause QEMU before machine is initialized (experimental)\n",
3915 Pause QEMU for interactive configuration before the machine is
3916 created, which allows querying and configuring properties that will
3917 affect machine initialization. Use QMP command 'x-exit-preconfig' to
3918 exit the preconfig state and move to the next state (i.e. run guest
3919 if -S isn't used or pause the second time if -S is used). This
3920 option is experimental.
3923 DEF("S", 0, QEMU_OPTION_S, \
3924 "-S freeze CPU at startup (use 'c' to start execution)\n",
3928 Do not start CPU at startup (you must type 'c' in the monitor).
3931 DEF("overcommit", HAS_ARG, QEMU_OPTION_overcommit,
3932 "-overcommit [mem-lock=on|off][cpu-pm=on|off]\n"
3933 " run qemu with overcommit hints\n"
3934 " mem-lock=on|off controls memory lock support (default: off)\n"
3935 " cpu-pm=on|off controls cpu power management (default: off)\n",
3938 ``-overcommit mem-lock=on|off``
3940 ``-overcommit cpu-pm=on|off``
3941 Run qemu with hints about host resource overcommit. The default is
3942 to assume that host overcommits all resources.
3944 Locking qemu and guest memory can be enabled via ``mem-lock=on``
3945 (disabled by default). This works when host memory is not
3946 overcommitted and reduces the worst-case latency for guest.
3948 Guest ability to manage power state of host cpus (increasing latency
3949 for other processes on the same host cpu, but decreasing latency for
3950 guest) can be enabled via ``cpu-pm=on`` (disabled by default). This
3951 works best when host CPU is not overcommitted. When used, host
3952 estimates of CPU cycle and power utilization will be incorrect, not
3953 taking into account guest idle time.
3956 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
3957 "-gdb dev accept gdb connection on 'dev'. (QEMU defaults to starting\n"
3958 " the guest without waiting for gdb to connect; use -S too\n"
3959 " if you want it to not start execution.)\n",
3963 Accept a gdb connection on device dev (see the :ref:`GDB usage` chapter
3964 in the System Emulation Users Guide). Note that this option does not pause QEMU
3965 execution -- if you want QEMU to not start the guest until you
3966 connect with gdb and issue a ``continue`` command, you will need to
3967 also pass the ``-S`` option to QEMU.
3969 The most usual configuration is to listen on a local TCP socket::
3973 but you can specify other backends; UDP, pseudo TTY, or even stdio
3974 are all reasonable use cases. For example, a stdio connection
3975 allows you to start QEMU from within gdb and establish the
3976 connection via a pipe:
3980 (gdb) target remote | exec |qemu_system| -gdb stdio ...
3983 DEF("s", 0, QEMU_OPTION_s, \
3984 "-s shorthand for -gdb tcp::" DEFAULT_GDBSTUB_PORT "\n",
3988 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
3989 (see the :ref:`GDB usage` chapter in the System Emulation Users Guide).
3992 DEF("d", HAS_ARG, QEMU_OPTION_d, \
3993 "-d item1,... enable logging of specified items (use '-d help' for a list of log items)\n",
3997 Enable logging of specified items. Use '-d help' for a list of log
4001 DEF("D", HAS_ARG, QEMU_OPTION_D, \
4002 "-D logfile output log to logfile (default stderr)\n",
4006 Output log in logfile instead of to stderr
4009 DEF("dfilter", HAS_ARG, QEMU_OPTION_DFILTER, \
4010 "-dfilter range,.. filter debug output to range of addresses (useful for -d cpu,exec,etc..)\n",
4013 ``-dfilter range1[,...]``
4014 Filter debug output to that relevant to a range of target addresses.
4015 The filter spec can be either start+size, start-size or start..end
4016 where start end and size are the addresses and sizes required. For
4021 -dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000
4023 Will dump output for any code in the 0x1000 sized block starting at
4024 0x8000 and the 0x200 sized block starting at 0xffffffc000080000 and
4025 another 0x1000 sized block starting at 0xffffffc00005f000.
4028 DEF("seed", HAS_ARG, QEMU_OPTION_seed, \
4029 "-seed number seed the pseudo-random number generator\n",
4033 Force the guest to use a deterministic pseudo-random number
4034 generator, seeded with number. This does not affect crypto routines
4038 DEF("L", HAS_ARG, QEMU_OPTION_L, \
4039 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n",
4043 Set the directory for the BIOS, VGA BIOS and keymaps.
4045 To list all the data directories, use ``-L help``.
4048 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
4049 "-bios file set the filename for the BIOS\n", QEMU_ARCH_ALL)
4052 Set the filename for the BIOS.
4055 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
4056 "-enable-kvm enable KVM full virtualization support\n", QEMU_ARCH_ALL)
4059 Enable KVM full virtualization support. This option is only
4060 available if KVM support is enabled when compiling.
4063 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
4064 "-xen-domid id specify xen guest domain id\n", QEMU_ARCH_ALL)
4065 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
4066 "-xen-attach attach to existing xen domain\n"
4067 " libxl will use this when starting QEMU\n",
4069 DEF("xen-domid-restrict", 0, QEMU_OPTION_xen_domid_restrict,
4070 "-xen-domid-restrict restrict set of available xen operations\n"
4071 " to specified domain id. (Does not affect\n"
4072 " xenpv machine type).\n",
4076 Specify xen guest domain id (XEN only).
4079 Attach to existing xen domain. libxl will use this when starting
4080 QEMU (XEN only). Restrict set of available xen operations to
4081 specified domain id (XEN only).
4084 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
4085 "-no-reboot exit instead of rebooting\n", QEMU_ARCH_ALL)
4088 Exit instead of rebooting.
4091 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
4092 "-no-shutdown stop before shutdown\n", QEMU_ARCH_ALL)
4095 Don't exit QEMU on guest shutdown, but instead only stop the
4096 emulation. This allows for instance switching to monitor to commit
4097 changes to the disk image.
4100 DEF("action", HAS_ARG, QEMU_OPTION_action,
4101 "-action reboot=reset|shutdown\n"
4102 " action when guest reboots [default=reset]\n"
4103 "-action shutdown=poweroff|pause\n"
4104 " action when guest shuts down [default=poweroff]\n"
4105 "-action panic=pause|shutdown|none\n"
4106 " action when guest panics [default=shutdown]\n"
4107 "-action watchdog=reset|shutdown|poweroff|inject-nmi|pause|debug|none\n"
4108 " action when watchdog fires [default=reset]\n",
4111 ``-action event=action``
4112 The action parameter serves to modify QEMU's default behavior when
4113 certain guest events occur. It provides a generic method for specifying the
4114 same behaviors that are modified by the ``-no-reboot`` and ``-no-shutdown``
4119 ``-action panic=none``
4120 ``-action reboot=shutdown,shutdown=pause``
4121 ``-watchdog i6300esb -action watchdog=pause``
4125 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
4126 "-loadvm [tag|id]\n" \
4127 " start right away with a saved state (loadvm in monitor)\n",
4131 Start right away with a saved state (``loadvm`` in monitor)
4135 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
4136 "-daemonize daemonize QEMU after initializing\n", QEMU_ARCH_ALL)
4140 Daemonize the QEMU process after initialization. QEMU will not
4141 detach from standard IO until it is ready to receive connections on
4142 any of its devices. This option is a useful way for external
4143 programs to launch QEMU without having to cope with initialization
4147 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
4148 "-option-rom rom load a file, rom, into the option ROM space\n",
4151 ``-option-rom file``
4152 Load the contents of file as an option ROM. This option is useful to
4153 load things like EtherBoot.
4156 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
4157 "-rtc [base=utc|localtime|<datetime>][,clock=host|rt|vm][,driftfix=none|slew]\n" \
4158 " set the RTC base and clock, enable drift fix for clock ticks (x86 only)\n",
4162 ``-rtc [base=utc|localtime|datetime][,clock=host|rt|vm][,driftfix=none|slew]``
4163 Specify ``base`` as ``utc`` or ``localtime`` to let the RTC start at
4164 the current UTC or local time, respectively. ``localtime`` is
4165 required for correct date in MS-DOS or Windows. To start at a
4166 specific point in time, provide datetime in the format
4167 ``2006-06-17T16:01:21`` or ``2006-06-17``. The default base is UTC.
4169 By default the RTC is driven by the host system time. This allows
4170 using of the RTC as accurate reference clock inside the guest,
4171 specifically if the host time is smoothly following an accurate
4172 external reference clock, e.g. via NTP. If you want to isolate the
4173 guest time from the host, you can set ``clock`` to ``rt`` instead,
4174 which provides a host monotonic clock if host support it. To even
4175 prevent the RTC from progressing during suspension, you can set
4176 ``clock`` to ``vm`` (virtual clock). '\ ``clock=vm``\ ' is
4177 recommended especially in icount mode in order to preserve
4178 determinism; however, note that in icount mode the speed of the
4179 virtual clock is variable and can in general differ from the host
4182 Enable ``driftfix`` (i386 targets only) if you experience time drift
4183 problems, specifically with Windows' ACPI HAL. This option will try
4184 to figure out how many timer interrupts were not processed by the
4185 Windows guest and will re-inject them.
4188 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
4189 "-icount [shift=N|auto][,align=on|off][,sleep=on|off][,rr=record|replay,rrfile=<filename>[,rrsnapshot=<snapshot>]]\n" \
4190 " enable virtual instruction counter with 2^N clock ticks per\n" \
4191 " instruction, enable aligning the host and virtual clocks\n" \
4192 " or disable real time cpu sleeping, and optionally enable\n" \
4193 " record-and-replay mode\n", QEMU_ARCH_ALL)
4195 ``-icount [shift=N|auto][,align=on|off][,sleep=on|off][,rr=record|replay,rrfile=filename[,rrsnapshot=snapshot]]``
4196 Enable virtual instruction counter. The virtual cpu will execute one
4197 instruction every 2^N ns of virtual time. If ``auto`` is specified
4198 then the virtual cpu speed will be automatically adjusted to keep
4199 virtual time within a few seconds of real time.
4201 Note that while this option can give deterministic behavior, it does
4202 not provide cycle accurate emulation. Modern CPUs contain
4203 superscalar out of order cores with complex cache hierarchies. The
4204 number of instructions executed often has little or no correlation
4205 with actual performance.
4207 When the virtual cpu is sleeping, the virtual time will advance at
4208 default speed unless ``sleep=on`` is specified. With
4209 ``sleep=on``, the virtual time will jump to the next timer
4210 deadline instantly whenever the virtual cpu goes to sleep mode and
4211 will not advance if no timer is enabled. This behavior gives
4212 deterministic execution times from the guest point of view.
4213 The default if icount is enabled is ``sleep=off``.
4214 ``sleep=on`` cannot be used together with either ``shift=auto``
4217 ``align=on`` will activate the delay algorithm which will try to
4218 synchronise the host clock and the virtual clock. The goal is to
4219 have a guest running at the real frequency imposed by the shift
4220 option. Whenever the guest clock is behind the host clock and if
4221 ``align=on`` is specified then we print a message to the user to
4222 inform about the delay. Currently this option does not work when
4223 ``shift`` is ``auto``. Note: The sync algorithm will work for those
4224 shift values for which the guest clock runs ahead of the host clock.
4225 Typically this happens when the shift value is high (how high
4226 depends on the host machine). The default if icount is enabled
4229 When the ``rr`` option is specified deterministic record/replay is
4230 enabled. The ``rrfile=`` option must also be provided to
4231 specify the path to the replay log. In record mode data is written
4232 to this file, and in replay mode it is read back.
4233 If the ``rrsnapshot`` option is given then it specifies a VM snapshot
4234 name. In record mode, a new VM snapshot with the given name is created
4235 at the start of execution recording. In replay mode this option
4236 specifies the snapshot name used to load the initial VM state.
4239 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
4240 "-watchdog model\n" \
4241 " enable virtual hardware watchdog [default=none]\n",
4245 Create a virtual hardware watchdog device. Once enabled (by a guest
4246 action), the watchdog must be periodically polled by an agent inside
4247 the guest or else the guest will be restarted. Choose a model for
4248 which your guest has drivers.
4250 The model is the model of hardware watchdog to emulate. Use
4251 ``-watchdog help`` to list available hardware models. Only one
4252 watchdog can be enabled for a guest.
4254 The following models may be available:
4257 iBASE 700 is a very simple ISA watchdog with a single timer.
4260 Intel 6300ESB I/O controller hub is a much more featureful
4261 PCI-based dual-timer watchdog.
4264 A virtual watchdog for s390x backed by the diagnose 288
4265 hypercall (currently KVM only).
4268 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
4269 "-watchdog-action reset|shutdown|poweroff|inject-nmi|pause|debug|none\n" \
4270 " action when watchdog fires [default=reset]\n",
4273 ``-watchdog-action action``
4274 The action controls what QEMU will do when the watchdog timer
4275 expires. The default is ``reset`` (forcefully reset the guest).
4276 Other possible actions are: ``shutdown`` (attempt to gracefully
4277 shutdown the guest), ``poweroff`` (forcefully poweroff the guest),
4278 ``inject-nmi`` (inject a NMI into the guest), ``pause`` (pause the
4279 guest), ``debug`` (print a debug message and continue), or ``none``
4282 Note that the ``shutdown`` action requires that the guest responds
4283 to ACPI signals, which it may not be able to do in the sort of
4284 situations where the watchdog would have expired, and thus
4285 ``-watchdog-action shutdown`` is not recommended for production use.
4289 ``-watchdog i6300esb -watchdog-action pause``; \ ``-watchdog ib700``
4293 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
4294 "-echr chr set terminal escape character instead of ctrl-a\n",
4297 ``-echr numeric_ascii_value``
4298 Change the escape character used for switching to the monitor when
4299 using monitor and serial sharing. The default is ``0x01`` when using
4300 the ``-nographic`` option. ``0x01`` is equal to pressing
4301 ``Control-a``. You can select a different character from the ascii
4302 control keys where 1 through 26 map to Control-a through Control-z.
4303 For instance you could use the either of the following to change the
4304 escape character to Control-t.
4306 ``-echr 0x14``; \ ``-echr 20``
4310 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
4311 "-incoming tcp:[host]:port[,to=maxport][,ipv4=on|off][,ipv6=on|off]\n" \
4312 "-incoming rdma:host:port[,ipv4=on|off][,ipv6=on|off]\n" \
4313 "-incoming unix:socketpath\n" \
4314 " prepare for incoming migration, listen on\n" \
4315 " specified protocol and socket address\n" \
4316 "-incoming fd:fd\n" \
4317 "-incoming exec:cmdline\n" \
4318 " accept incoming migration on given file descriptor\n" \
4319 " or from given external command\n" \
4320 "-incoming defer\n" \
4321 " wait for the URI to be specified via migrate_incoming\n",
4324 ``-incoming tcp:[host]:port[,to=maxport][,ipv4=on|off][,ipv6=on|off]``
4326 ``-incoming rdma:host:port[,ipv4=on|off][,ipv6=on|off]``
4327 Prepare for incoming migration, listen on a given tcp port.
4329 ``-incoming unix:socketpath``
4330 Prepare for incoming migration, listen on a given unix socket.
4333 Accept incoming migration from a given filedescriptor.
4335 ``-incoming exec:cmdline``
4336 Accept incoming migration as an output from specified external
4340 Wait for the URI to be specified via migrate\_incoming. The monitor
4341 can be used to change settings (such as migration parameters) prior
4342 to issuing the migrate\_incoming to allow the migration to begin.
4345 DEF("only-migratable", 0, QEMU_OPTION_only_migratable, \
4346 "-only-migratable allow only migratable devices\n", QEMU_ARCH_ALL)
4348 ``-only-migratable``
4349 Only allow migratable devices. Devices will not be allowed to enter
4350 an unmigratable state.
4353 DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \
4354 "-nodefaults don't create default devices\n", QEMU_ARCH_ALL)
4357 Don't create default devices. Normally, QEMU sets the default
4358 devices like serial port, parallel port, virtual console, monitor
4359 device, VGA adapter, floppy and CD-ROM drive and others. The
4360 ``-nodefaults`` option will disable all those default devices.
4364 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
4365 "-chroot dir chroot to dir just before starting the VM\n",
4370 Immediately before starting guest execution, chroot to the specified
4371 directory. Especially useful in combination with -runas.
4375 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
4376 "-runas user change to user id user just before starting the VM\n" \
4377 " user can be numeric uid:gid instead\n",
4382 Immediately before starting guest execution, drop root privileges,
4383 switching to the specified user.
4386 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
4387 "-prom-env variable=value\n"
4388 " set OpenBIOS nvram variables\n",
4389 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
4391 ``-prom-env variable=value``
4392 Set OpenBIOS nvram variable to given value (PPC, SPARC only).
4396 qemu-system-sparc -prom-env 'auto-boot?=false' \
4397 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
4401 qemu-system-ppc -prom-env 'auto-boot?=false' \
4402 -prom-env 'boot-device=hd:2,\yaboot' \
4403 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
4405 DEF("semihosting", 0, QEMU_OPTION_semihosting,
4406 "-semihosting semihosting mode\n",
4407 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA |
4408 QEMU_ARCH_MIPS | QEMU_ARCH_NIOS2 | QEMU_ARCH_RISCV)
4411 Enable semihosting mode (ARM, M68K, Xtensa, MIPS, Nios II, RISC-V only).
4413 Note that this allows guest direct access to the host filesystem, so
4414 should only be used with a trusted guest OS.
4416 See the -semihosting-config option documentation for further
4417 information about the facilities this enables.
4419 DEF("semihosting-config", HAS_ARG, QEMU_OPTION_semihosting_config,
4420 "-semihosting-config [enable=on|off][,target=native|gdb|auto][,chardev=id][,arg=str[,...]]\n" \
4421 " semihosting configuration\n",
4422 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA |
4423 QEMU_ARCH_MIPS | QEMU_ARCH_NIOS2 | QEMU_ARCH_RISCV)
4425 ``-semihosting-config [enable=on|off][,target=native|gdb|auto][,chardev=id][,arg=str[,...]]``
4426 Enable and configure semihosting (ARM, M68K, Xtensa, MIPS, Nios II, RISC-V
4429 Note that this allows guest direct access to the host filesystem, so
4430 should only be used with a trusted guest OS.
4432 On Arm this implements the standard semihosting API, version 2.0.
4434 On M68K this implements the "ColdFire GDB" interface used by
4437 Xtensa semihosting provides basic file IO calls, such as
4438 open/read/write/seek/select. Tensilica baremetal libc for ISS and
4439 linux platform "sim" use this interface.
4441 On RISC-V this implements the standard semihosting API, version 0.2.
4443 ``target=native|gdb|auto``
4444 Defines where the semihosting calls will be addressed, to QEMU
4445 (``native``) or to GDB (``gdb``). The default is ``auto``, which
4446 means ``gdb`` during debug sessions and ``native`` otherwise.
4449 Send the output to a chardev backend output for native or auto
4450 output when not in gdb
4452 ``arg=str1,arg=str2,...``
4453 Allows the user to pass input arguments, and can be used
4454 multiple times to build up a list. The old-style
4455 ``-kernel``/``-append`` method of passing a command line is
4456 still supported for backward compatibility. If both the
4457 ``--semihosting-config arg`` and the ``-kernel``/``-append`` are
4458 specified, the former is passed to semihosting as it always
4461 DEF("old-param", 0, QEMU_OPTION_old_param,
4462 "-old-param old param mode\n", QEMU_ARCH_ARM)
4465 Old param mode (ARM only).
4468 DEF("sandbox", HAS_ARG, QEMU_OPTION_sandbox, \
4469 "-sandbox on[,obsolete=allow|deny][,elevateprivileges=allow|deny|children]\n" \
4470 " [,spawn=allow|deny][,resourcecontrol=allow|deny]\n" \
4471 " Enable seccomp mode 2 system call filter (default 'off').\n" \
4472 " use 'obsolete' to allow obsolete system calls that are provided\n" \
4473 " by the kernel, but typically no longer used by modern\n" \
4474 " C library implementations.\n" \
4475 " use 'elevateprivileges' to allow or deny the QEMU process ability\n" \
4476 " to elevate privileges using set*uid|gid system calls.\n" \
4477 " The value 'children' will deny set*uid|gid system calls for\n" \
4478 " main QEMU process but will allow forks and execves to run unprivileged\n" \
4479 " use 'spawn' to avoid QEMU to spawn new threads or processes by\n" \
4480 " blocking *fork and execve\n" \
4481 " use 'resourcecontrol' to disable process affinity and schedular priority\n",
4484 ``-sandbox arg[,obsolete=string][,elevateprivileges=string][,spawn=string][,resourcecontrol=string]``
4485 Enable Seccomp mode 2 system call filter. 'on' will enable syscall
4486 filtering and 'off' will disable it. The default is 'off'.
4489 Enable Obsolete system calls
4491 ``elevateprivileges=string``
4492 Disable set\*uid\|gid system calls
4495 Disable \*fork and execve
4497 ``resourcecontrol=string``
4498 Disable process affinity and schedular priority
4501 DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig,
4502 "-readconfig <file>\n", QEMU_ARCH_ALL)
4504 ``-readconfig file``
4505 Read device configuration from file. This approach is useful when
4506 you want to spawn QEMU process with many command line options but
4507 you don't want to exceed the command line character limit.
4509 DEF("writeconfig", HAS_ARG, QEMU_OPTION_writeconfig,
4510 "-writeconfig <file>\n"
4511 " read/write config file (deprecated)\n", QEMU_ARCH_ALL)
4515 DEF("no-user-config", 0, QEMU_OPTION_nouserconfig,
4517 " do not load default user-provided config files at startup\n",
4521 The ``-no-user-config`` option makes QEMU not load any of the
4522 user-provided config files on sysconfdir.
4525 DEF("trace", HAS_ARG, QEMU_OPTION_trace,
4526 "-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
4527 " specify tracing options\n",
4530 ``-trace [[enable=]pattern][,events=file][,file=file]``
4531 .. include:: ../qemu-option-trace.rst.inc
4534 DEF("plugin", HAS_ARG, QEMU_OPTION_plugin,
4535 "-plugin [file=]<file>[,<argname>=<argvalue>]\n"
4539 ``-plugin file=file[,argname=argvalue]``
4543 Load the given plugin from a shared library file.
4545 ``argname=argvalue``
4546 Argument passed to the plugin. (Can be given multiple times.)
4550 DEF("qtest", HAS_ARG, QEMU_OPTION_qtest, "", QEMU_ARCH_ALL)
4551 DEF("qtest-log", HAS_ARG, QEMU_OPTION_qtest_log, "", QEMU_ARCH_ALL)
4554 DEF("enable-fips", 0, QEMU_OPTION_enablefips,
4555 "-enable-fips enable FIPS 140-2 compliance\n",
4560 Enable FIPS 140-2 compliance mode.
4563 DEF("msg", HAS_ARG, QEMU_OPTION_msg,
4564 "-msg [timestamp[=on|off]][,guest-name=[on|off]]\n"
4565 " control error message format\n"
4566 " timestamp=on enables timestamps (default: off)\n"
4567 " guest-name=on enables guest name prefix but only if\n"
4568 " -name guest option is set (default: off)\n",
4571 ``-msg [timestamp[=on|off]][,guest-name[=on|off]]``
4572 Control error message format.
4574 ``timestamp=on|off``
4575 Prefix messages with a timestamp. Default is off.
4577 ``guest-name=on|off``
4578 Prefix messages with guest name but only if -name guest option is set
4579 otherwise the option is ignored. Default is off.
4582 DEF("dump-vmstate", HAS_ARG, QEMU_OPTION_dump_vmstate,
4583 "-dump-vmstate <file>\n"
4584 " Output vmstate information in JSON format to file.\n"
4585 " Use the scripts/vmstate-static-checker.py file to\n"
4586 " check for possible regressions in migration code\n"
4587 " by comparing two such vmstate dumps.\n",
4590 ``-dump-vmstate file``
4591 Dump json-encoded vmstate information for current machine type to
4595 DEF("enable-sync-profile", 0, QEMU_OPTION_enable_sync_profile,
4596 "-enable-sync-profile\n"
4597 " enable synchronization profiling\n",
4600 ``-enable-sync-profile``
4601 Enable synchronization profiling.
4606 DEFHEADING(Generic object creation:)
4608 DEF("object", HAS_ARG, QEMU_OPTION_object,
4609 "-object TYPENAME[,PROP1=VALUE1,...]\n"
4610 " create a new object of type TYPENAME setting properties\n"
4611 " in the order they are specified. Note that the 'id'\n"
4612 " property must be set. These objects are placed in the\n"
4613 " '/objects' path.\n",
4616 ``-object typename[,prop1=value1,...]``
4617 Create a new object of type typename setting properties in the order
4618 they are specified. Note that the 'id' property must be set. These
4619 objects are placed in the '/objects' path.
4621 ``-object memory-backend-file,id=id,size=size,mem-path=dir,share=on|off,discard-data=on|off,merge=on|off,dump=on|off,prealloc=on|off,host-nodes=host-nodes,policy=default|preferred|bind|interleave,align=align,readonly=on|off``
4622 Creates a memory file backend object, which can be used to back
4623 the guest RAM with huge pages.
4625 The ``id`` parameter is a unique ID that will be used to
4626 reference this memory region in other parameters, e.g. ``-numa``,
4627 ``-device nvdimm``, etc.
4629 The ``size`` option provides the size of the memory region, and
4630 accepts common suffixes, e.g. ``500M``.
4632 The ``mem-path`` provides the path to either a shared memory or
4633 huge page filesystem mount.
4635 The ``share`` boolean option determines whether the memory
4636 region is marked as private to QEMU, or shared. The latter
4637 allows a co-operating external process to access the QEMU memory
4640 The ``share`` is also required for pvrdma devices due to
4641 limitations in the RDMA API provided by Linux.
4643 Setting share=on might affect the ability to configure NUMA
4644 bindings for the memory backend under some circumstances, see
4645 Documentation/vm/numa\_memory\_policy.txt on the Linux kernel
4646 source tree for additional details.
4648 Setting the ``discard-data`` boolean option to on indicates that
4649 file contents can be destroyed when QEMU exits, to avoid
4650 unnecessarily flushing data to the backing file. Note that
4651 ``discard-data`` is only an optimization, and QEMU might not
4652 discard file contents if it aborts unexpectedly or is terminated
4655 The ``merge`` boolean option enables memory merge, also known as
4656 MADV\_MERGEABLE, so that Kernel Samepage Merging will consider
4657 the pages for memory deduplication.
4659 Setting the ``dump`` boolean option to off excludes the memory
4660 from core dumps. This feature is also known as MADV\_DONTDUMP.
4662 The ``prealloc`` boolean option enables memory preallocation.
4664 The ``host-nodes`` option binds the memory range to a list of
4667 The ``policy`` option sets the NUMA policy to one of the
4674 prefer the given host node list for allocation
4677 restrict memory allocation to the given host node list
4680 interleave memory allocations across the given host node
4683 The ``align`` option specifies the base address alignment when
4684 QEMU mmap(2) ``mem-path``, and accepts common suffixes, eg
4685 ``2M``. Some backend store specified by ``mem-path`` requires an
4686 alignment different than the default one used by QEMU, eg the
4687 device DAX /dev/dax0.0 requires 2M alignment rather than 4K. In
4688 such cases, users can specify the required alignment via this
4691 The ``pmem`` option specifies whether the backing file specified
4692 by ``mem-path`` is in host persistent memory that can be
4693 accessed using the SNIA NVM programming model (e.g. Intel
4694 NVDIMM). If ``pmem`` is set to 'on', QEMU will take necessary
4695 operations to guarantee the persistence of its own writes to
4696 ``mem-path`` (e.g. in vNVDIMM label emulation and live
4697 migration). Also, we will map the backend-file with MAP\_SYNC
4698 flag, which ensures the file metadata is in sync for
4699 ``mem-path`` in case of host crash or a power failure. MAP\_SYNC
4700 requires support from both the host kernel (since Linux kernel
4701 4.15) and the filesystem of ``mem-path`` mounted with DAX
4704 The ``readonly`` option specifies whether the backing file is opened
4705 read-only or read-write (default).
4707 ``-object memory-backend-ram,id=id,merge=on|off,dump=on|off,share=on|off,prealloc=on|off,size=size,host-nodes=host-nodes,policy=default|preferred|bind|interleave``
4708 Creates a memory backend object, which can be used to back the
4709 guest RAM. Memory backend objects offer more control than the
4710 ``-m`` option that is traditionally used to define guest RAM.
4711 Please refer to ``memory-backend-file`` for a description of the
4714 ``-object memory-backend-memfd,id=id,merge=on|off,dump=on|off,share=on|off,prealloc=on|off,size=size,host-nodes=host-nodes,policy=default|preferred|bind|interleave,seal=on|off,hugetlb=on|off,hugetlbsize=size``
4715 Creates an anonymous memory file backend object, which allows
4716 QEMU to share the memory with an external process (e.g. when
4717 using vhost-user). The memory is allocated with memfd and
4718 optional sealing. (Linux only)
4720 The ``seal`` option creates a sealed-file, that will block
4721 further resizing the memory ('on' by default).
4723 The ``hugetlb`` option specify the file to be created resides in
4724 the hugetlbfs filesystem (since Linux 4.14). Used in conjunction
4725 with the ``hugetlb`` option, the ``hugetlbsize`` option specify
4726 the hugetlb page size on systems that support multiple hugetlb
4727 page sizes (it must be a power of 2 value supported by the
4730 In some versions of Linux, the ``hugetlb`` option is
4731 incompatible with the ``seal`` option (requires at least Linux
4734 Please refer to ``memory-backend-file`` for a description of the
4737 The ``share`` boolean option is on by default with memfd.
4739 ``-object rng-builtin,id=id``
4740 Creates a random number generator backend which obtains entropy
4741 from QEMU builtin functions. The ``id`` parameter is a unique ID
4742 that will be used to reference this entropy backend from the
4743 ``virtio-rng`` device. By default, the ``virtio-rng`` device
4744 uses this RNG backend.
4746 ``-object rng-random,id=id,filename=/dev/random``
4747 Creates a random number generator backend which obtains entropy
4748 from a device on the host. The ``id`` parameter is a unique ID
4749 that will be used to reference this entropy backend from the
4750 ``virtio-rng`` device. The ``filename`` parameter specifies
4751 which file to obtain entropy from and if omitted defaults to
4754 ``-object rng-egd,id=id,chardev=chardevid``
4755 Creates a random number generator backend which obtains entropy
4756 from an external daemon running on the host. The ``id``
4757 parameter is a unique ID that will be used to reference this
4758 entropy backend from the ``virtio-rng`` device. The ``chardev``
4759 parameter is the unique ID of a character device backend that
4760 provides the connection to the RNG daemon.
4762 ``-object tls-creds-anon,id=id,endpoint=endpoint,dir=/path/to/cred/dir,verify-peer=on|off``
4763 Creates a TLS anonymous credentials object, which can be used to
4764 provide TLS support on network backends. The ``id`` parameter is
4765 a unique ID which network backends will use to access the
4766 credentials. The ``endpoint`` is either ``server`` or ``client``
4767 depending on whether the QEMU network backend that uses the
4768 credentials will be acting as a client or as a server. If
4769 ``verify-peer`` is enabled (the default) then once the handshake
4770 is completed, the peer credentials will be verified, though this
4771 is a no-op for anonymous credentials.
4773 The dir parameter tells QEMU where to find the credential files.
4774 For server endpoints, this directory may contain a file
4775 dh-params.pem providing diffie-hellman parameters to use for the
4776 TLS server. If the file is missing, QEMU will generate a set of
4777 DH parameters at startup. This is a computationally expensive
4778 operation that consumes random pool entropy, so it is
4779 recommended that a persistent set of parameters be generated
4782 ``-object tls-creds-psk,id=id,endpoint=endpoint,dir=/path/to/keys/dir[,username=username]``
4783 Creates a TLS Pre-Shared Keys (PSK) credentials object, which
4784 can be used to provide TLS support on network backends. The
4785 ``id`` parameter is a unique ID which network backends will use
4786 to access the credentials. The ``endpoint`` is either ``server``
4787 or ``client`` depending on whether the QEMU network backend that
4788 uses the credentials will be acting as a client or as a server.
4789 For clients only, ``username`` is the username which will be
4790 sent to the server. If omitted it defaults to "qemu".
4792 The dir parameter tells QEMU where to find the keys file. It is
4793 called "dir/keys.psk" and contains "username:key" pairs. This
4794 file can most easily be created using the GnuTLS ``psktool``
4797 For server endpoints, dir may also contain a file dh-params.pem
4798 providing diffie-hellman parameters to use for the TLS server.
4799 If the file is missing, QEMU will generate a set of DH
4800 parameters at startup. This is a computationally expensive
4801 operation that consumes random pool entropy, so it is
4802 recommended that a persistent set of parameters be generated up
4805 ``-object tls-creds-x509,id=id,endpoint=endpoint,dir=/path/to/cred/dir,priority=priority,verify-peer=on|off,passwordid=id``
4806 Creates a TLS anonymous credentials object, which can be used to
4807 provide TLS support on network backends. The ``id`` parameter is
4808 a unique ID which network backends will use to access the
4809 credentials. The ``endpoint`` is either ``server`` or ``client``
4810 depending on whether the QEMU network backend that uses the
4811 credentials will be acting as a client or as a server. If
4812 ``verify-peer`` is enabled (the default) then once the handshake
4813 is completed, the peer credentials will be verified. With x509
4814 certificates, this implies that the clients must be provided
4815 with valid client certificates too.
4817 The dir parameter tells QEMU where to find the credential files.
4818 For server endpoints, this directory may contain a file
4819 dh-params.pem providing diffie-hellman parameters to use for the
4820 TLS server. If the file is missing, QEMU will generate a set of
4821 DH parameters at startup. This is a computationally expensive
4822 operation that consumes random pool entropy, so it is
4823 recommended that a persistent set of parameters be generated
4826 For x509 certificate credentials the directory will contain
4827 further files providing the x509 certificates. The certificates
4828 must be stored in PEM format, in filenames ca-cert.pem,
4829 ca-crl.pem (optional), server-cert.pem (only servers),
4830 server-key.pem (only servers), client-cert.pem (only clients),
4831 and client-key.pem (only clients).
4833 For the server-key.pem and client-key.pem files which contain
4834 sensitive private keys, it is possible to use an encrypted
4835 version by providing the passwordid parameter. This provides the
4836 ID of a previously created ``secret`` object containing the
4837 password for decryption.
4839 The priority parameter allows to override the global default
4840 priority used by gnutls. This can be useful if the system
4841 administrator needs to use a weaker set of crypto priorities for
4842 QEMU without potentially forcing the weakness onto all
4843 applications. Or conversely if one wants wants a stronger
4844 default for QEMU than for all other applications, they can do
4845 this through this parameter. Its format is a gnutls priority
4846 string as described at
4847 https://gnutls.org/manual/html_node/Priority-Strings.html.
4849 ``-object tls-cipher-suites,id=id,priority=priority``
4850 Creates a TLS cipher suites object, which can be used to control
4851 the TLS cipher/protocol algorithms that applications are permitted
4854 The ``id`` parameter is a unique ID which frontends will use to
4855 access the ordered list of permitted TLS cipher suites from the
4858 The ``priority`` parameter allows to override the global default
4859 priority used by gnutls. This can be useful if the system
4860 administrator needs to use a weaker set of crypto priorities for
4861 QEMU without potentially forcing the weakness onto all
4862 applications. Or conversely if one wants wants a stronger
4863 default for QEMU than for all other applications, they can do
4864 this through this parameter. Its format is a gnutls priority
4865 string as described at
4866 https://gnutls.org/manual/html_node/Priority-Strings.html.
4868 An example of use of this object is to control UEFI HTTPS Boot.
4869 The tls-cipher-suites object exposes the ordered list of permitted
4870 TLS cipher suites from the host side to the guest firmware, via
4871 fw_cfg. The list is represented as an array of IANA_TLS_CIPHER
4872 objects. The firmware uses the IANA_TLS_CIPHER array for configuring
4875 In the following example, the priority at which the host-side policy
4876 is retrieved is given by the ``priority`` property.
4877 Given that QEMU uses GNUTLS, ``priority=@SYSTEM`` may be used to
4878 refer to /etc/crypto-policies/back-ends/gnutls.config.
4883 -object tls-cipher-suites,id=mysuite0,priority=@SYSTEM \\
4884 -fw_cfg name=etc/edk2/https/ciphers,gen_id=mysuite0
4886 ``-object filter-buffer,id=id,netdev=netdevid,interval=t[,queue=all|rx|tx][,status=on|off][,position=head|tail|id=<id>][,insert=behind|before]``
4887 Interval t can't be 0, this filter batches the packet delivery:
4888 all packets arriving in a given interval on netdev netdevid are
4889 delayed until the end of the interval. Interval is in
4890 microseconds. ``status`` is optional that indicate whether the
4891 netfilter is on (enabled) or off (disabled), the default status
4892 for netfilter will be 'on'.
4894 queue all\|rx\|tx is an option that can be applied to any
4897 ``all``: the filter is attached both to the receive and the
4898 transmit queue of the netdev (default).
4900 ``rx``: the filter is attached to the receive queue of the
4901 netdev, where it will receive packets sent to the netdev.
4903 ``tx``: the filter is attached to the transmit queue of the
4904 netdev, where it will receive packets sent by the netdev.
4906 position head\|tail\|id=<id> is an option to specify where the
4907 filter should be inserted in the filter list. It can be applied
4910 ``head``: the filter is inserted at the head of the filter list,
4911 before any existing filters.
4913 ``tail``: the filter is inserted at the tail of the filter list,
4914 behind any existing filters (default).
4916 ``id=<id>``: the filter is inserted before or behind the filter
4917 specified by <id>, see the insert option below.
4919 insert behind\|before is an option to specify where to insert
4920 the new filter relative to the one specified with
4921 position=id=<id>. It can be applied to any netfilter.
4923 ``before``: insert before the specified filter.
4925 ``behind``: insert behind the specified filter (default).
4927 ``-object filter-mirror,id=id,netdev=netdevid,outdev=chardevid,queue=all|rx|tx[,vnet_hdr_support][,position=head|tail|id=<id>][,insert=behind|before]``
4928 filter-mirror on netdev netdevid,mirror net packet to
4929 chardevchardevid, if it has the vnet\_hdr\_support flag,
4930 filter-mirror will mirror packet with vnet\_hdr\_len.
4932 ``-object filter-redirector,id=id,netdev=netdevid,indev=chardevid,outdev=chardevid,queue=all|rx|tx[,vnet_hdr_support][,position=head|tail|id=<id>][,insert=behind|before]``
4933 filter-redirector on netdev netdevid,redirect filter's net
4934 packet to chardev chardevid,and redirect indev's packet to
4935 filter.if it has the vnet\_hdr\_support flag, filter-redirector
4936 will redirect packet with vnet\_hdr\_len. Create a
4937 filter-redirector we need to differ outdev id from indev id, id
4938 can not be the same. we can just use indev or outdev, but at
4939 least one of indev or outdev need to be specified.
4941 ``-object filter-rewriter,id=id,netdev=netdevid,queue=all|rx|tx,[vnet_hdr_support][,position=head|tail|id=<id>][,insert=behind|before]``
4942 Filter-rewriter is a part of COLO project.It will rewrite tcp
4943 packet to secondary from primary to keep secondary tcp
4944 connection,and rewrite tcp packet to primary from secondary make
4945 tcp packet can be handled by client.if it has the
4946 vnet\_hdr\_support flag, we can parse packet with vnet header.
4948 usage: colo secondary: -object
4949 filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0 -object
4950 filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1 -object
4951 filter-rewriter,id=rew0,netdev=hn0,queue=all
4953 ``-object filter-dump,id=id,netdev=dev[,file=filename][,maxlen=len][,position=head|tail|id=<id>][,insert=behind|before]``
4954 Dump the network traffic on netdev dev to the file specified by
4955 filename. At most len bytes (64k by default) per packet are
4956 stored. The file format is libpcap, so it can be analyzed with
4957 tools such as tcpdump or Wireshark.
4959 ``-object colo-compare,id=id,primary_in=chardevid,secondary_in=chardevid,outdev=chardevid,iothread=id[,vnet_hdr_support][,notify_dev=id][,compare_timeout=@var{ms}][,expired_scan_cycle=@var{ms}][,max_queue_size=@var{size}]``
4960 Colo-compare gets packet from primary\_in chardevid and
4961 secondary\_in, then compare whether the payload of primary packet
4962 and secondary packet are the same. If same, it will output
4963 primary packet to out\_dev, else it will notify COLO-framework to do
4964 checkpoint and send primary packet to out\_dev. In order to
4965 improve efficiency, we need to put the task of comparison in
4966 another iothread. If it has the vnet\_hdr\_support flag,
4967 colo compare will send/recv packet with vnet\_hdr\_len.
4968 The compare\_timeout=@var{ms} determines the maximum time of the
4969 colo-compare hold the packet. The expired\_scan\_cycle=@var{ms}
4970 is to set the period of scanning expired primary node network packets.
4971 The max\_queue\_size=@var{size} is to set the max compare queue
4972 size depend on user environment.
4973 If user want to use Xen COLO, need to add the notify\_dev to
4974 notify Xen colo-frame to do checkpoint.
4976 COLO-compare must be used with the help of filter-mirror,
4977 filter-redirector and filter-rewriter.
4984 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
4985 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
4986 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server=on,wait=off
4987 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server=on,wait=off
4988 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server=on,wait=off
4989 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
4990 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server=on,wait=off
4991 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
4992 -object iothread,id=iothread1
4993 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
4994 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
4995 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
4996 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0,iothread=iothread1
4999 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
5000 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
5001 -chardev socket,id=red0,host=3.3.3.3,port=9003
5002 -chardev socket,id=red1,host=3.3.3.3,port=9004
5003 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
5004 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
5010 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
5011 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
5012 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server=on,wait=off
5013 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server=on,wait=off
5014 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server=on,wait=off
5015 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
5016 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server=on,wait=off
5017 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
5018 -chardev socket,id=notify_way,host=3.3.3.3,port=9009,server=on,wait=off
5019 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
5020 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
5021 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
5022 -object iothread,id=iothread1
5023 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0,notify_dev=nofity_way,iothread=iothread1
5026 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
5027 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
5028 -chardev socket,id=red0,host=3.3.3.3,port=9003
5029 -chardev socket,id=red1,host=3.3.3.3,port=9004
5030 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
5031 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
5033 If you want to know the detail of above command line, you can
5034 read the colo-compare git log.
5036 ``-object cryptodev-backend-builtin,id=id[,queues=queues]``
5037 Creates a cryptodev backend which executes crypto opreation from
5038 the QEMU cipher APIS. The id parameter is a unique ID that will
5039 be used to reference this cryptodev backend from the
5040 ``virtio-crypto`` device. The queues parameter is optional,
5041 which specify the queue number of cryptodev backend, the default
5048 -object cryptodev-backend-builtin,id=cryptodev0 \\
5049 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \\
5052 ``-object cryptodev-vhost-user,id=id,chardev=chardevid[,queues=queues]``
5053 Creates a vhost-user cryptodev backend, backed by a chardev
5054 chardevid. The id parameter is a unique ID that will be used to
5055 reference this cryptodev backend from the ``virtio-crypto``
5056 device. The chardev should be a unix domain socket backed one.
5057 The vhost-user uses a specifically defined protocol to pass
5058 vhost ioctl replacement messages to an application on the other
5059 end of the socket. The queues parameter is optional, which
5060 specify the queue number of cryptodev backend for multiqueue
5061 vhost-user, the default of queues is 1.
5067 -chardev socket,id=chardev0,path=/path/to/socket \\
5068 -object cryptodev-vhost-user,id=cryptodev0,chardev=chardev0 \\
5069 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \\
5072 ``-object secret,id=id,data=string,format=raw|base64[,keyid=secretid,iv=string]``
5074 ``-object secret,id=id,file=filename,format=raw|base64[,keyid=secretid,iv=string]``
5075 Defines a secret to store a password, encryption key, or some
5076 other sensitive data. The sensitive data can either be passed
5077 directly via the data parameter, or indirectly via the file
5078 parameter. Using the data parameter is insecure unless the
5079 sensitive data is encrypted.
5081 The sensitive data can be provided in raw format (the default),
5082 or base64. When encoded as JSON, the raw format only supports
5083 valid UTF-8 characters, so base64 is recommended for sending
5084 binary data. QEMU will convert from which ever format is
5085 provided to the format it needs internally. eg, an RBD password
5086 can be provided in raw format, even though it will be base64
5087 encoded when passed onto the RBD sever.
5089 For added protection, it is possible to encrypt the data
5090 associated with a secret using the AES-256-CBC cipher. Use of
5091 encryption is indicated by providing the keyid and iv
5092 parameters. The keyid parameter provides the ID of a previously
5093 defined secret that contains the AES-256 decryption key. This
5094 key should be 32-bytes long and be base64 encoded. The iv
5095 parameter provides the random initialization vector used for
5096 encryption of this particular secret and should be a base64
5097 encrypted string of the 16-byte IV.
5099 The simplest (insecure) usage is to provide the secret inline
5103 # |qemu_system| -object secret,id=sec0,data=letmein,format=raw
5105 The simplest secure usage is to provide the secret via a file
5107 # printf "letmein" > mypasswd.txt # QEMU\_SYSTEM\_MACRO -object
5108 secret,id=sec0,file=mypasswd.txt,format=raw
5110 For greater security, AES-256-CBC should be used. To illustrate
5111 usage, consider the openssl command line tool which can encrypt
5112 the data. Note that when encrypting, the plaintext must be
5113 padded to the cipher block size (32 bytes) using the standard
5114 PKCS#5/6 compatible padding algorithm.
5116 First a master key needs to be created in base64 encoding:
5120 # openssl rand -base64 32 > key.b64
5121 # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"')
5123 Each secret to be encrypted needs to have a random
5124 initialization vector generated. These do not need to be kept
5129 # openssl rand -base64 16 > iv.b64
5130 # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"')
5132 The secret to be defined can now be encrypted, in this case
5133 we're telling openssl to base64 encode the result, but it could
5134 be left as raw bytes if desired.
5138 # SECRET=$(printf "letmein" |
5139 openssl enc -aes-256-cbc -a -K $KEY -iv $IV)
5141 When launching QEMU, create a master secret pointing to
5142 ``key.b64`` and specify that to be used to decrypt the user
5143 password. Pass the contents of ``iv.b64`` to the second secret
5148 -object secret,id=secmaster0,format=base64,file=key.b64 \\
5149 -object secret,id=sec0,keyid=secmaster0,format=base64,\\
5150 data=$SECRET,iv=$(<iv.b64)
5152 ``-object sev-guest,id=id,cbitpos=cbitpos,reduced-phys-bits=val,[sev-device=string,policy=policy,handle=handle,dh-cert-file=file,session-file=file]``
5153 Create a Secure Encrypted Virtualization (SEV) guest object,
5154 which can be used to provide the guest memory encryption support
5157 When memory encryption is enabled, one of the physical address
5158 bit (aka the C-bit) is utilized to mark if a memory page is
5159 protected. The ``cbitpos`` is used to provide the C-bit
5160 position. The C-bit position is Host family dependent hence user
5161 must provide this value. On EPYC, the value should be 47.
5163 When memory encryption is enabled, we loose certain bits in
5164 physical address space. The ``reduced-phys-bits`` is used to
5165 provide the number of bits we loose in physical address space.
5166 Similar to C-bit, the value is Host family dependent. On EPYC,
5167 the value should be 5.
5169 The ``sev-device`` provides the device file to use for
5170 communicating with the SEV firmware running inside AMD Secure
5171 Processor. The default device is '/dev/sev'. If hardware
5172 supports memory encryption then /dev/sev devices are created by
5175 The ``policy`` provides the guest policy to be enforced by the
5176 SEV firmware and restrict what configuration and operational
5177 commands can be performed on this guest by the hypervisor. The
5178 policy should be provided by the guest owner and is bound to the
5179 guest and cannot be changed throughout the lifetime of the
5180 guest. The default is 0.
5182 If guest ``policy`` allows sharing the key with another SEV
5183 guest then ``handle`` can be use to provide handle of the guest
5184 from which to share the key.
5186 The ``dh-cert-file`` and ``session-file`` provides the guest
5187 owner's Public Diffie-Hillman key defined in SEV spec. The PDH
5188 and session parameters are used for establishing a cryptographic
5189 session with the guest owner to negotiate keys used for
5190 attestation. The file must be encoded in base64.
5192 e.g to launch a SEV guest
5196 # |qemu_system_x86| \\
5198 -object sev-guest,id=sev0,cbitpos=47,reduced-phys-bits=5 \\
5199 -machine ...,memory-encryption=sev0 \\
5202 ``-object authz-simple,id=id,identity=string``
5203 Create an authorization object that will control access to
5206 The ``identity`` parameter is identifies the user and its format
5207 depends on the network service that authorization object is
5208 associated with. For authorizing based on TLS x509 certificates,
5209 the identity must be the x509 distinguished name. Note that care
5210 must be taken to escape any commas in the distinguished name.
5212 An example authorization object to validate a x509 distinguished
5213 name would look like:
5219 -object 'authz-simple,id=auth0,identity=CN=laptop.example.com,,O=Example Org,,L=London,,ST=London,,C=GB' \\
5222 Note the use of quotes due to the x509 distinguished name
5223 containing whitespace, and escaping of ','.
5225 ``-object authz-listfile,id=id,filename=path,refresh=on|off``
5226 Create an authorization object that will control access to
5229 The ``filename`` parameter is the fully qualified path to a file
5230 containing the access control list rules in JSON format.
5232 An example set of rules that match against SASL usernames might
5239 { "match": "fred", "policy": "allow", "format": "exact" },
5240 { "match": "bob", "policy": "allow", "format": "exact" },
5241 { "match": "danb", "policy": "deny", "format": "glob" },
5242 { "match": "dan*", "policy": "allow", "format": "exact" },
5247 When checking access the object will iterate over all the rules
5248 and the first rule to match will have its ``policy`` value
5249 returned as the result. If no rules match, then the default
5250 ``policy`` value is returned.
5252 The rules can either be an exact string match, or they can use
5253 the simple UNIX glob pattern matching to allow wildcards to be
5256 If ``refresh`` is set to true the file will be monitored and
5257 automatically reloaded whenever its content changes.
5259 As with the ``authz-simple`` object, the format of the identity
5260 strings being matched depends on the network service, but is
5261 usually a TLS x509 distinguished name, or a SASL username.
5263 An example authorization object to validate a SASL username
5270 -object authz-simple,id=auth0,filename=/etc/qemu/vnc-sasl.acl,refresh=on \\
5273 ``-object authz-pam,id=id,service=string``
5274 Create an authorization object that will control access to
5277 The ``service`` parameter provides the name of a PAM service to
5278 use for authorization. It requires that a file
5279 ``/etc/pam.d/service`` exist to provide the configuration for
5280 the ``account`` subsystem.
5282 An example authorization object to validate a TLS x509
5283 distinguished name would look like:
5289 -object authz-pam,id=auth0,service=qemu-vnc \\
5292 There would then be a corresponding config file for PAM at
5293 ``/etc/pam.d/qemu-vnc`` that contains:
5297 account requisite pam_listfile.so item=user sense=allow \
5298 file=/etc/qemu/vnc.allow
5300 Finally the ``/etc/qemu/vnc.allow`` file would contain the list
5301 of x509 distingished names that are permitted access
5305 CN=laptop.example.com,O=Example Home,L=London,ST=London,C=GB
5307 ``-object iothread,id=id,poll-max-ns=poll-max-ns,poll-grow=poll-grow,poll-shrink=poll-shrink,aio-max-batch=aio-max-batch``
5308 Creates a dedicated event loop thread that devices can be
5309 assigned to. This is known as an IOThread. By default device
5310 emulation happens in vCPU threads or the main event loop thread.
5311 This can become a scalability bottleneck. IOThreads allow device
5312 emulation and I/O to run on other host CPUs.
5314 The ``id`` parameter is a unique ID that will be used to
5315 reference this IOThread from ``-device ...,iothread=id``.
5316 Multiple devices can be assigned to an IOThread. Note that not
5317 all devices support an ``iothread`` parameter.
5319 The ``query-iothreads`` QMP command lists IOThreads and reports
5320 their thread IDs so that the user can configure host CPU
5323 IOThreads use an adaptive polling algorithm to reduce event loop
5324 latency. Instead of entering a blocking system call to monitor
5325 file descriptors and then pay the cost of being woken up when an
5326 event occurs, the polling algorithm spins waiting for events for
5327 a short time. The algorithm's default parameters are suitable
5328 for many cases but can be adjusted based on knowledge of the
5329 workload and/or host device latency.
5331 The ``poll-max-ns`` parameter is the maximum number of
5332 nanoseconds to busy wait for events. Polling can be disabled by
5333 setting this value to 0.
5335 The ``poll-grow`` parameter is the multiplier used to increase
5336 the polling time when the algorithm detects it is missing events
5337 due to not polling long enough.
5339 The ``poll-shrink`` parameter is the divisor used to decrease
5340 the polling time when the algorithm detects it is spending too
5341 long polling without encountering events.
5343 The ``aio-max-batch`` parameter is the maximum number of requests
5344 in a batch for the AIO engine, 0 means that the engine will use
5347 The IOThread parameters can be modified at run-time using the
5348 ``qom-set`` command (where ``iothread1`` is the IOThread's
5353 (qemu) qom-set /objects/iothread1 poll-max-ns 100000
5357 HXCOMM This is the last statement. Insert new options before this line!