4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
29 #include "qemu/osdep.h"
32 #include "qemu/cutils.h"
33 #include "qemu/bitops.h"
34 #include "qemu/bitmap.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/pmem.h"
39 #include "migration.h"
41 #include "migration/register.h"
42 #include "migration/misc.h"
43 #include "qemu-file.h"
44 #include "postcopy-ram.h"
45 #include "page_cache.h"
46 #include "qemu/error-report.h"
47 #include "qapi/error.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qmp/qerror.h"
51 #include "exec/ram_addr.h"
52 #include "exec/target_page.h"
53 #include "qemu/rcu_queue.h"
54 #include "migration/colo.h"
56 #include "sysemu/sysemu.h"
57 #include "qemu/uuid.h"
61 /***********************************************************/
62 /* ram save/restore */
64 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
65 * worked for pages that where filled with the same char. We switched
66 * it to only search for the zero value. And to avoid confusion with
67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
70 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
71 #define RAM_SAVE_FLAG_ZERO 0x02
72 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
73 #define RAM_SAVE_FLAG_PAGE 0x08
74 #define RAM_SAVE_FLAG_EOS 0x10
75 #define RAM_SAVE_FLAG_CONTINUE 0x20
76 #define RAM_SAVE_FLAG_XBZRLE 0x40
77 /* 0x80 is reserved in migration.h start with 0x100 next */
78 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
80 static inline bool is_zero_range(uint8_t *p, uint64_t size)
82 return buffer_is_zero(p, size);
85 XBZRLECacheStats xbzrle_counters;
87 /* struct contains XBZRLE cache and a static page
88 used by the compression */
90 /* buffer used for XBZRLE encoding */
92 /* buffer for storing page content */
94 /* Cache for XBZRLE, Protected by lock. */
97 /* it will store a page full of zeros */
98 uint8_t *zero_target_page;
99 /* buffer used for XBZRLE decoding */
100 uint8_t *decoded_buf;
103 static void XBZRLE_cache_lock(void)
105 if (migrate_use_xbzrle())
106 qemu_mutex_lock(&XBZRLE.lock);
109 static void XBZRLE_cache_unlock(void)
111 if (migrate_use_xbzrle())
112 qemu_mutex_unlock(&XBZRLE.lock);
116 * xbzrle_cache_resize: resize the xbzrle cache
118 * This function is called from qmp_migrate_set_cache_size in main
119 * thread, possibly while a migration is in progress. A running
120 * migration may be using the cache and might finish during this call,
121 * hence changes to the cache are protected by XBZRLE.lock().
123 * Returns 0 for success or -1 for error
125 * @new_size: new cache size
126 * @errp: set *errp if the check failed, with reason
128 int xbzrle_cache_resize(int64_t new_size, Error **errp)
130 PageCache *new_cache;
133 /* Check for truncation */
134 if (new_size != (size_t)new_size) {
135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
136 "exceeding address space");
140 if (new_size == migrate_xbzrle_cache_size()) {
147 if (XBZRLE.cache != NULL) {
148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
154 cache_fini(XBZRLE.cache);
155 XBZRLE.cache = new_cache;
158 XBZRLE_cache_unlock();
162 static bool ramblock_is_ignored(RAMBlock *block)
164 return !qemu_ram_is_migratable(block) ||
165 (migrate_ignore_shared() && qemu_ram_is_shared(block));
168 /* Should be holding either ram_list.mutex, or the RCU lock. */
169 #define RAMBLOCK_FOREACH_NOT_IGNORED(block) \
170 INTERNAL_RAMBLOCK_FOREACH(block) \
171 if (ramblock_is_ignored(block)) {} else
173 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \
174 INTERNAL_RAMBLOCK_FOREACH(block) \
175 if (!qemu_ram_is_migratable(block)) {} else
177 #undef RAMBLOCK_FOREACH
179 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
185 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
186 ret = func(block, opaque);
195 static void ramblock_recv_map_init(void)
199 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
200 assert(!rb->receivedmap);
201 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
205 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
207 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
211 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
213 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
216 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
218 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
221 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
224 bitmap_set_atomic(rb->receivedmap,
225 ramblock_recv_bitmap_offset(host_addr, rb),
229 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
234 * Returns >0 if success with sent bytes, or <0 if error.
236 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
237 const char *block_name)
239 RAMBlock *block = qemu_ram_block_by_name(block_name);
240 unsigned long *le_bitmap, nbits;
244 error_report("%s: invalid block name: %s", __func__, block_name);
248 nbits = block->used_length >> TARGET_PAGE_BITS;
251 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
252 * machines we may need 4 more bytes for padding (see below
253 * comment). So extend it a bit before hand.
255 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
258 * Always use little endian when sending the bitmap. This is
259 * required that when source and destination VMs are not using the
260 * same endianess. (Note: big endian won't work.)
262 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
264 /* Size of the bitmap, in bytes */
265 size = DIV_ROUND_UP(nbits, 8);
268 * size is always aligned to 8 bytes for 64bit machines, but it
269 * may not be true for 32bit machines. We need this padding to
270 * make sure the migration can survive even between 32bit and
273 size = ROUND_UP(size, 8);
275 qemu_put_be64(file, size);
276 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
278 * Mark as an end, in case the middle part is screwed up due to
279 * some "misterious" reason.
281 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
286 if (qemu_file_get_error(file)) {
287 return qemu_file_get_error(file);
290 return size + sizeof(size);
294 * An outstanding page request, on the source, having been received
297 struct RAMSrcPageRequest {
302 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
305 /* State of RAM for migration */
307 /* QEMUFile used for this migration */
309 /* Last block that we have visited searching for dirty pages */
310 RAMBlock *last_seen_block;
311 /* Last block from where we have sent data */
312 RAMBlock *last_sent_block;
313 /* Last dirty target page we have sent */
314 ram_addr_t last_page;
315 /* last ram version we have seen */
316 uint32_t last_version;
317 /* We are in the first round */
319 /* The free page optimization is enabled */
321 /* How many times we have dirty too many pages */
322 int dirty_rate_high_cnt;
323 /* these variables are used for bitmap sync */
324 /* last time we did a full bitmap_sync */
325 int64_t time_last_bitmap_sync;
326 /* bytes transferred at start_time */
327 uint64_t bytes_xfer_prev;
328 /* number of dirty pages since start_time */
329 uint64_t num_dirty_pages_period;
330 /* xbzrle misses since the beginning of the period */
331 uint64_t xbzrle_cache_miss_prev;
333 /* compression statistics since the beginning of the period */
334 /* amount of count that no free thread to compress data */
335 uint64_t compress_thread_busy_prev;
336 /* amount bytes after compression */
337 uint64_t compressed_size_prev;
338 /* amount of compressed pages */
339 uint64_t compress_pages_prev;
341 /* total handled target pages at the beginning of period */
342 uint64_t target_page_count_prev;
343 /* total handled target pages since start */
344 uint64_t target_page_count;
345 /* number of dirty bits in the bitmap */
346 uint64_t migration_dirty_pages;
347 /* Protects modification of the bitmap and migration dirty pages */
348 QemuMutex bitmap_mutex;
349 /* The RAMBlock used in the last src_page_requests */
350 RAMBlock *last_req_rb;
351 /* Queue of outstanding page requests from the destination */
352 QemuMutex src_page_req_mutex;
353 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
355 typedef struct RAMState RAMState;
357 static RAMState *ram_state;
359 static NotifierWithReturnList precopy_notifier_list;
361 void precopy_infrastructure_init(void)
363 notifier_with_return_list_init(&precopy_notifier_list);
366 void precopy_add_notifier(NotifierWithReturn *n)
368 notifier_with_return_list_add(&precopy_notifier_list, n);
371 void precopy_remove_notifier(NotifierWithReturn *n)
373 notifier_with_return_remove(n);
376 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
378 PrecopyNotifyData pnd;
382 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
385 void precopy_enable_free_page_optimization(void)
391 ram_state->fpo_enabled = true;
394 uint64_t ram_bytes_remaining(void)
396 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
400 MigrationStats ram_counters;
402 /* used by the search for pages to send */
403 struct PageSearchStatus {
404 /* Current block being searched */
406 /* Current page to search from */
408 /* Set once we wrap around */
411 typedef struct PageSearchStatus PageSearchStatus;
413 CompressionStats compression_counters;
415 struct CompressParam {
425 /* internally used fields */
429 typedef struct CompressParam CompressParam;
431 struct DecompressParam {
441 typedef struct DecompressParam DecompressParam;
443 static CompressParam *comp_param;
444 static QemuThread *compress_threads;
445 /* comp_done_cond is used to wake up the migration thread when
446 * one of the compression threads has finished the compression.
447 * comp_done_lock is used to co-work with comp_done_cond.
449 static QemuMutex comp_done_lock;
450 static QemuCond comp_done_cond;
451 /* The empty QEMUFileOps will be used by file in CompressParam */
452 static const QEMUFileOps empty_ops = { };
454 static QEMUFile *decomp_file;
455 static DecompressParam *decomp_param;
456 static QemuThread *decompress_threads;
457 static QemuMutex decomp_done_lock;
458 static QemuCond decomp_done_cond;
460 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
461 ram_addr_t offset, uint8_t *source_buf);
463 static void *do_data_compress(void *opaque)
465 CompressParam *param = opaque;
470 qemu_mutex_lock(¶m->mutex);
471 while (!param->quit) {
473 block = param->block;
474 offset = param->offset;
476 qemu_mutex_unlock(¶m->mutex);
478 zero_page = do_compress_ram_page(param->file, ¶m->stream,
479 block, offset, param->originbuf);
481 qemu_mutex_lock(&comp_done_lock);
483 param->zero_page = zero_page;
484 qemu_cond_signal(&comp_done_cond);
485 qemu_mutex_unlock(&comp_done_lock);
487 qemu_mutex_lock(¶m->mutex);
489 qemu_cond_wait(¶m->cond, ¶m->mutex);
492 qemu_mutex_unlock(¶m->mutex);
497 static void compress_threads_save_cleanup(void)
501 if (!migrate_use_compression() || !comp_param) {
505 thread_count = migrate_compress_threads();
506 for (i = 0; i < thread_count; i++) {
508 * we use it as a indicator which shows if the thread is
509 * properly init'd or not
511 if (!comp_param[i].file) {
515 qemu_mutex_lock(&comp_param[i].mutex);
516 comp_param[i].quit = true;
517 qemu_cond_signal(&comp_param[i].cond);
518 qemu_mutex_unlock(&comp_param[i].mutex);
520 qemu_thread_join(compress_threads + i);
521 qemu_mutex_destroy(&comp_param[i].mutex);
522 qemu_cond_destroy(&comp_param[i].cond);
523 deflateEnd(&comp_param[i].stream);
524 g_free(comp_param[i].originbuf);
525 qemu_fclose(comp_param[i].file);
526 comp_param[i].file = NULL;
528 qemu_mutex_destroy(&comp_done_lock);
529 qemu_cond_destroy(&comp_done_cond);
530 g_free(compress_threads);
532 compress_threads = NULL;
536 static int compress_threads_save_setup(void)
540 if (!migrate_use_compression()) {
543 thread_count = migrate_compress_threads();
544 compress_threads = g_new0(QemuThread, thread_count);
545 comp_param = g_new0(CompressParam, thread_count);
546 qemu_cond_init(&comp_done_cond);
547 qemu_mutex_init(&comp_done_lock);
548 for (i = 0; i < thread_count; i++) {
549 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
550 if (!comp_param[i].originbuf) {
554 if (deflateInit(&comp_param[i].stream,
555 migrate_compress_level()) != Z_OK) {
556 g_free(comp_param[i].originbuf);
560 /* comp_param[i].file is just used as a dummy buffer to save data,
561 * set its ops to empty.
563 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
564 comp_param[i].done = true;
565 comp_param[i].quit = false;
566 qemu_mutex_init(&comp_param[i].mutex);
567 qemu_cond_init(&comp_param[i].cond);
568 qemu_thread_create(compress_threads + i, "compress",
569 do_data_compress, comp_param + i,
570 QEMU_THREAD_JOINABLE);
575 compress_threads_save_cleanup();
581 #define MULTIFD_MAGIC 0x11223344U
582 #define MULTIFD_VERSION 1
584 #define MULTIFD_FLAG_SYNC (1 << 0)
586 /* This value needs to be a multiple of qemu_target_page_size() */
587 #define MULTIFD_PACKET_SIZE (512 * 1024)
592 unsigned char uuid[16]; /* QemuUUID */
594 uint8_t unused1[7]; /* Reserved for future use */
595 uint64_t unused2[4]; /* Reserved for future use */
596 } __attribute__((packed)) MultiFDInit_t;
602 /* maximum number of allocated pages */
603 uint32_t pages_alloc;
605 /* size of the next packet that contains pages */
606 uint32_t next_packet_size;
608 uint64_t unused[4]; /* Reserved for future use */
611 } __attribute__((packed)) MultiFDPacket_t;
614 /* number of used pages */
616 /* number of allocated pages */
618 /* global number of generated multifd packets */
620 /* offset of each page */
622 /* pointer to each page */
628 /* this fields are not changed once the thread is created */
631 /* channel thread name */
633 /* channel thread id */
635 /* communication channel */
637 /* sem where to wait for more work */
639 /* this mutex protects the following parameters */
641 /* is this channel thread running */
643 /* should this thread finish */
645 /* thread has work to do */
647 /* array of pages to sent */
648 MultiFDPages_t *pages;
649 /* packet allocated len */
651 /* pointer to the packet */
652 MultiFDPacket_t *packet;
653 /* multifd flags for each packet */
655 /* size of the next packet that contains pages */
656 uint32_t next_packet_size;
657 /* global number of generated multifd packets */
659 /* thread local variables */
660 /* packets sent through this channel */
661 uint64_t num_packets;
662 /* pages sent through this channel */
667 /* this fields are not changed once the thread is created */
670 /* channel thread name */
672 /* channel thread id */
674 /* communication channel */
676 /* this mutex protects the following parameters */
678 /* is this channel thread running */
680 /* should this thread finish */
682 /* array of pages to receive */
683 MultiFDPages_t *pages;
684 /* packet allocated len */
686 /* pointer to the packet */
687 MultiFDPacket_t *packet;
688 /* multifd flags for each packet */
690 /* global number of generated multifd packets */
692 /* thread local variables */
693 /* size of the next packet that contains pages */
694 uint32_t next_packet_size;
695 /* packets sent through this channel */
696 uint64_t num_packets;
697 /* pages sent through this channel */
699 /* syncs main thread and channels */
700 QemuSemaphore sem_sync;
703 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
708 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
709 msg.version = cpu_to_be32(MULTIFD_VERSION);
711 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
713 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
720 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
725 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
730 msg.magic = be32_to_cpu(msg.magic);
731 msg.version = be32_to_cpu(msg.version);
733 if (msg.magic != MULTIFD_MAGIC) {
734 error_setg(errp, "multifd: received packet magic %x "
735 "expected %x", msg.magic, MULTIFD_MAGIC);
739 if (msg.version != MULTIFD_VERSION) {
740 error_setg(errp, "multifd: received packet version %d "
741 "expected %d", msg.version, MULTIFD_VERSION);
745 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
746 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
747 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
749 error_setg(errp, "multifd: received uuid '%s' and expected "
750 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
756 if (msg.id > migrate_multifd_channels()) {
757 error_setg(errp, "multifd: received channel version %d "
758 "expected %d", msg.version, MULTIFD_VERSION);
765 static MultiFDPages_t *multifd_pages_init(size_t size)
767 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
769 pages->allocated = size;
770 pages->iov = g_new0(struct iovec, size);
771 pages->offset = g_new0(ram_addr_t, size);
776 static void multifd_pages_clear(MultiFDPages_t *pages)
779 pages->allocated = 0;
780 pages->packet_num = 0;
784 g_free(pages->offset);
785 pages->offset = NULL;
789 static void multifd_send_fill_packet(MultiFDSendParams *p)
791 MultiFDPacket_t *packet = p->packet;
792 uint32_t page_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
795 packet->magic = cpu_to_be32(MULTIFD_MAGIC);
796 packet->version = cpu_to_be32(MULTIFD_VERSION);
797 packet->flags = cpu_to_be32(p->flags);
798 packet->pages_alloc = cpu_to_be32(page_max);
799 packet->pages_used = cpu_to_be32(p->pages->used);
800 packet->next_packet_size = cpu_to_be32(p->next_packet_size);
801 packet->packet_num = cpu_to_be64(p->packet_num);
803 if (p->pages->block) {
804 strncpy(packet->ramblock, p->pages->block->idstr, 256);
807 for (i = 0; i < p->pages->used; i++) {
808 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
812 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
814 MultiFDPacket_t *packet = p->packet;
815 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
819 packet->magic = be32_to_cpu(packet->magic);
820 if (packet->magic != MULTIFD_MAGIC) {
821 error_setg(errp, "multifd: received packet "
822 "magic %x and expected magic %x",
823 packet->magic, MULTIFD_MAGIC);
827 packet->version = be32_to_cpu(packet->version);
828 if (packet->version != MULTIFD_VERSION) {
829 error_setg(errp, "multifd: received packet "
830 "version %d and expected version %d",
831 packet->version, MULTIFD_VERSION);
835 p->flags = be32_to_cpu(packet->flags);
837 packet->pages_alloc = be32_to_cpu(packet->pages_alloc);
839 * If we recevied a packet that is 100 times bigger than expected
840 * just stop migration. It is a magic number.
842 if (packet->pages_alloc > pages_max * 100) {
843 error_setg(errp, "multifd: received packet "
844 "with size %d and expected a maximum size of %d",
845 packet->pages_alloc, pages_max * 100) ;
849 * We received a packet that is bigger than expected but inside
850 * reasonable limits (see previous comment). Just reallocate.
852 if (packet->pages_alloc > p->pages->allocated) {
853 multifd_pages_clear(p->pages);
854 p->pages = multifd_pages_init(packet->pages_alloc);
857 p->pages->used = be32_to_cpu(packet->pages_used);
858 if (p->pages->used > packet->pages_alloc) {
859 error_setg(errp, "multifd: received packet "
860 "with %d pages and expected maximum pages are %d",
861 p->pages->used, packet->pages_alloc) ;
865 p->next_packet_size = be32_to_cpu(packet->next_packet_size);
866 p->packet_num = be64_to_cpu(packet->packet_num);
868 if (p->pages->used) {
869 /* make sure that ramblock is 0 terminated */
870 packet->ramblock[255] = 0;
871 block = qemu_ram_block_by_name(packet->ramblock);
873 error_setg(errp, "multifd: unknown ram block %s",
879 for (i = 0; i < p->pages->used; i++) {
880 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
882 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
883 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
884 " (max " RAM_ADDR_FMT ")",
885 offset, block->max_length);
888 p->pages->iov[i].iov_base = block->host + offset;
889 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
896 MultiFDSendParams *params;
897 /* array of pages to sent */
898 MultiFDPages_t *pages;
899 /* syncs main thread and channels */
900 QemuSemaphore sem_sync;
901 /* global number of generated multifd packets */
903 /* send channels ready */
904 QemuSemaphore channels_ready;
905 } *multifd_send_state;
908 * How we use multifd_send_state->pages and channel->pages?
910 * We create a pages for each channel, and a main one. Each time that
911 * we need to send a batch of pages we interchange the ones between
912 * multifd_send_state and the channel that is sending it. There are
913 * two reasons for that:
914 * - to not have to do so many mallocs during migration
915 * - to make easier to know what to free at the end of migration
917 * This way we always know who is the owner of each "pages" struct,
918 * and we don't need any locking. It belongs to the migration thread
919 * or to the channel thread. Switching is safe because the migration
920 * thread is using the channel mutex when changing it, and the channel
921 * have to had finish with its own, otherwise pending_job can't be
925 static int multifd_send_pages(RAMState *rs)
928 static int next_channel;
929 MultiFDSendParams *p = NULL; /* make happy gcc */
930 MultiFDPages_t *pages = multifd_send_state->pages;
931 uint64_t transferred;
933 qemu_sem_wait(&multifd_send_state->channels_ready);
934 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
935 p = &multifd_send_state->params[i];
937 qemu_mutex_lock(&p->mutex);
939 error_report("%s: channel %d has already quit!", __func__, i);
940 qemu_mutex_unlock(&p->mutex);
943 if (!p->pending_job) {
945 next_channel = (i + 1) % migrate_multifd_channels();
948 qemu_mutex_unlock(&p->mutex);
952 p->packet_num = multifd_send_state->packet_num++;
953 p->pages->block = NULL;
954 multifd_send_state->pages = p->pages;
956 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
957 qemu_file_update_transfer(rs->f, transferred);
958 ram_counters.multifd_bytes += transferred;
959 ram_counters.transferred += transferred;;
960 qemu_mutex_unlock(&p->mutex);
961 qemu_sem_post(&p->sem);
966 static int multifd_queue_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
968 MultiFDPages_t *pages = multifd_send_state->pages;
971 pages->block = block;
974 if (pages->block == block) {
975 pages->offset[pages->used] = offset;
976 pages->iov[pages->used].iov_base = block->host + offset;
977 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
980 if (pages->used < pages->allocated) {
985 if (multifd_send_pages(rs) < 0) {
989 if (pages->block != block) {
990 return multifd_queue_page(rs, block, offset);
996 static void multifd_send_terminate_threads(Error *err)
1001 MigrationState *s = migrate_get_current();
1002 migrate_set_error(s, err);
1003 if (s->state == MIGRATION_STATUS_SETUP ||
1004 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
1005 s->state == MIGRATION_STATUS_DEVICE ||
1006 s->state == MIGRATION_STATUS_ACTIVE) {
1007 migrate_set_state(&s->state, s->state,
1008 MIGRATION_STATUS_FAILED);
1012 for (i = 0; i < migrate_multifd_channels(); i++) {
1013 MultiFDSendParams *p = &multifd_send_state->params[i];
1015 qemu_mutex_lock(&p->mutex);
1017 qemu_sem_post(&p->sem);
1018 qemu_mutex_unlock(&p->mutex);
1022 void multifd_save_cleanup(void)
1026 if (!migrate_use_multifd()) {
1029 multifd_send_terminate_threads(NULL);
1030 for (i = 0; i < migrate_multifd_channels(); i++) {
1031 MultiFDSendParams *p = &multifd_send_state->params[i];
1034 qemu_thread_join(&p->thread);
1036 socket_send_channel_destroy(p->c);
1038 qemu_mutex_destroy(&p->mutex);
1039 qemu_sem_destroy(&p->sem);
1042 multifd_pages_clear(p->pages);
1048 qemu_sem_destroy(&multifd_send_state->channels_ready);
1049 qemu_sem_destroy(&multifd_send_state->sem_sync);
1050 g_free(multifd_send_state->params);
1051 multifd_send_state->params = NULL;
1052 multifd_pages_clear(multifd_send_state->pages);
1053 multifd_send_state->pages = NULL;
1054 g_free(multifd_send_state);
1055 multifd_send_state = NULL;
1058 static void multifd_send_sync_main(RAMState *rs)
1062 if (!migrate_use_multifd()) {
1065 if (multifd_send_state->pages->used) {
1066 if (multifd_send_pages(rs) < 0) {
1067 error_report("%s: multifd_send_pages fail", __func__);
1071 for (i = 0; i < migrate_multifd_channels(); i++) {
1072 MultiFDSendParams *p = &multifd_send_state->params[i];
1074 trace_multifd_send_sync_main_signal(p->id);
1076 qemu_mutex_lock(&p->mutex);
1079 error_report("%s: channel %d has already quit", __func__, i);
1080 qemu_mutex_unlock(&p->mutex);
1084 p->packet_num = multifd_send_state->packet_num++;
1085 p->flags |= MULTIFD_FLAG_SYNC;
1087 qemu_file_update_transfer(rs->f, p->packet_len);
1088 ram_counters.multifd_bytes += p->packet_len;
1089 ram_counters.transferred += p->packet_len;
1090 qemu_mutex_unlock(&p->mutex);
1091 qemu_sem_post(&p->sem);
1093 for (i = 0; i < migrate_multifd_channels(); i++) {
1094 MultiFDSendParams *p = &multifd_send_state->params[i];
1096 trace_multifd_send_sync_main_wait(p->id);
1097 qemu_sem_wait(&multifd_send_state->sem_sync);
1099 trace_multifd_send_sync_main(multifd_send_state->packet_num);
1102 static void *multifd_send_thread(void *opaque)
1104 MultiFDSendParams *p = opaque;
1105 Error *local_err = NULL;
1109 trace_multifd_send_thread_start(p->id);
1110 rcu_register_thread();
1112 if (multifd_send_initial_packet(p, &local_err) < 0) {
1115 /* initial packet */
1119 qemu_sem_wait(&p->sem);
1120 qemu_mutex_lock(&p->mutex);
1122 if (p->pending_job) {
1123 uint32_t used = p->pages->used;
1124 uint64_t packet_num = p->packet_num;
1127 p->next_packet_size = used * qemu_target_page_size();
1128 multifd_send_fill_packet(p);
1131 p->num_pages += used;
1133 qemu_mutex_unlock(&p->mutex);
1135 trace_multifd_send(p->id, packet_num, used, flags,
1136 p->next_packet_size);
1138 ret = qio_channel_write_all(p->c, (void *)p->packet,
1139 p->packet_len, &local_err);
1145 ret = qio_channel_writev_all(p->c, p->pages->iov,
1152 qemu_mutex_lock(&p->mutex);
1154 qemu_mutex_unlock(&p->mutex);
1156 if (flags & MULTIFD_FLAG_SYNC) {
1157 qemu_sem_post(&multifd_send_state->sem_sync);
1159 qemu_sem_post(&multifd_send_state->channels_ready);
1160 } else if (p->quit) {
1161 qemu_mutex_unlock(&p->mutex);
1164 qemu_mutex_unlock(&p->mutex);
1165 /* sometimes there are spurious wakeups */
1171 multifd_send_terminate_threads(local_err);
1175 * Error happen, I will exit, but I can't just leave, tell
1176 * who pay attention to me.
1179 if (flags & MULTIFD_FLAG_SYNC) {
1180 qemu_sem_post(&multifd_send_state->sem_sync);
1182 qemu_sem_post(&multifd_send_state->channels_ready);
1185 qemu_mutex_lock(&p->mutex);
1187 qemu_mutex_unlock(&p->mutex);
1189 rcu_unregister_thread();
1190 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1195 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1197 MultiFDSendParams *p = opaque;
1198 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1199 Error *local_err = NULL;
1201 if (qio_task_propagate_error(task, &local_err)) {
1202 migrate_set_error(migrate_get_current(), local_err);
1203 multifd_save_cleanup();
1205 p->c = QIO_CHANNEL(sioc);
1206 qio_channel_set_delay(p->c, false);
1208 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1209 QEMU_THREAD_JOINABLE);
1213 int multifd_save_setup(void)
1216 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1219 if (!migrate_use_multifd()) {
1222 thread_count = migrate_multifd_channels();
1223 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1224 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
1225 multifd_send_state->pages = multifd_pages_init(page_count);
1226 qemu_sem_init(&multifd_send_state->sem_sync, 0);
1227 qemu_sem_init(&multifd_send_state->channels_ready, 0);
1229 for (i = 0; i < thread_count; i++) {
1230 MultiFDSendParams *p = &multifd_send_state->params[i];
1232 qemu_mutex_init(&p->mutex);
1233 qemu_sem_init(&p->sem, 0);
1237 p->pages = multifd_pages_init(page_count);
1238 p->packet_len = sizeof(MultiFDPacket_t)
1239 + sizeof(ram_addr_t) * page_count;
1240 p->packet = g_malloc0(p->packet_len);
1241 p->name = g_strdup_printf("multifdsend_%d", i);
1242 socket_send_channel_create(multifd_new_send_channel_async, p);
1248 MultiFDRecvParams *params;
1249 /* number of created threads */
1251 /* syncs main thread and channels */
1252 QemuSemaphore sem_sync;
1253 /* global number of generated multifd packets */
1254 uint64_t packet_num;
1255 } *multifd_recv_state;
1257 static void multifd_recv_terminate_threads(Error *err)
1262 MigrationState *s = migrate_get_current();
1263 migrate_set_error(s, err);
1264 if (s->state == MIGRATION_STATUS_SETUP ||
1265 s->state == MIGRATION_STATUS_ACTIVE) {
1266 migrate_set_state(&s->state, s->state,
1267 MIGRATION_STATUS_FAILED);
1271 for (i = 0; i < migrate_multifd_channels(); i++) {
1272 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1274 qemu_mutex_lock(&p->mutex);
1276 /* We could arrive here for two reasons:
1277 - normal quit, i.e. everything went fine, just finished
1278 - error quit: We close the channels so the channel threads
1279 finish the qio_channel_read_all_eof() */
1280 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
1281 qemu_mutex_unlock(&p->mutex);
1285 int multifd_load_cleanup(Error **errp)
1290 if (!migrate_use_multifd()) {
1293 multifd_recv_terminate_threads(NULL);
1294 for (i = 0; i < migrate_multifd_channels(); i++) {
1295 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1300 * multifd_recv_thread may hung at MULTIFD_FLAG_SYNC handle code,
1301 * however try to wakeup it without harm in cleanup phase.
1303 qemu_sem_post(&p->sem_sync);
1304 qemu_thread_join(&p->thread);
1306 object_unref(OBJECT(p->c));
1308 qemu_mutex_destroy(&p->mutex);
1309 qemu_sem_destroy(&p->sem_sync);
1312 multifd_pages_clear(p->pages);
1318 qemu_sem_destroy(&multifd_recv_state->sem_sync);
1319 g_free(multifd_recv_state->params);
1320 multifd_recv_state->params = NULL;
1321 g_free(multifd_recv_state);
1322 multifd_recv_state = NULL;
1327 static void multifd_recv_sync_main(void)
1331 if (!migrate_use_multifd()) {
1334 for (i = 0; i < migrate_multifd_channels(); i++) {
1335 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1337 trace_multifd_recv_sync_main_wait(p->id);
1338 qemu_sem_wait(&multifd_recv_state->sem_sync);
1340 for (i = 0; i < migrate_multifd_channels(); i++) {
1341 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1343 qemu_mutex_lock(&p->mutex);
1344 if (multifd_recv_state->packet_num < p->packet_num) {
1345 multifd_recv_state->packet_num = p->packet_num;
1347 qemu_mutex_unlock(&p->mutex);
1348 trace_multifd_recv_sync_main_signal(p->id);
1349 qemu_sem_post(&p->sem_sync);
1351 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1354 static void *multifd_recv_thread(void *opaque)
1356 MultiFDRecvParams *p = opaque;
1357 Error *local_err = NULL;
1360 trace_multifd_recv_thread_start(p->id);
1361 rcu_register_thread();
1371 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1372 p->packet_len, &local_err);
1373 if (ret == 0) { /* EOF */
1376 if (ret == -1) { /* Error */
1380 qemu_mutex_lock(&p->mutex);
1381 ret = multifd_recv_unfill_packet(p, &local_err);
1383 qemu_mutex_unlock(&p->mutex);
1387 used = p->pages->used;
1389 trace_multifd_recv(p->id, p->packet_num, used, flags,
1390 p->next_packet_size);
1392 p->num_pages += used;
1393 qemu_mutex_unlock(&p->mutex);
1396 ret = qio_channel_readv_all(p->c, p->pages->iov,
1403 if (flags & MULTIFD_FLAG_SYNC) {
1404 qemu_sem_post(&multifd_recv_state->sem_sync);
1405 qemu_sem_wait(&p->sem_sync);
1410 multifd_recv_terminate_threads(local_err);
1412 qemu_mutex_lock(&p->mutex);
1414 qemu_mutex_unlock(&p->mutex);
1416 rcu_unregister_thread();
1417 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1422 int multifd_load_setup(void)
1425 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1428 if (!migrate_use_multifd()) {
1431 thread_count = migrate_multifd_channels();
1432 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1433 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
1434 atomic_set(&multifd_recv_state->count, 0);
1435 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
1437 for (i = 0; i < thread_count; i++) {
1438 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1440 qemu_mutex_init(&p->mutex);
1441 qemu_sem_init(&p->sem_sync, 0);
1444 p->pages = multifd_pages_init(page_count);
1445 p->packet_len = sizeof(MultiFDPacket_t)
1446 + sizeof(ram_addr_t) * page_count;
1447 p->packet = g_malloc0(p->packet_len);
1448 p->name = g_strdup_printf("multifdrecv_%d", i);
1453 bool multifd_recv_all_channels_created(void)
1455 int thread_count = migrate_multifd_channels();
1457 if (!migrate_use_multifd()) {
1461 return thread_count == atomic_read(&multifd_recv_state->count);
1465 * Try to receive all multifd channels to get ready for the migration.
1466 * - Return true and do not set @errp when correctly receving all channels;
1467 * - Return false and do not set @errp when correctly receiving the current one;
1468 * - Return false and set @errp when failing to receive the current channel.
1470 bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
1472 MultiFDRecvParams *p;
1473 Error *local_err = NULL;
1476 id = multifd_recv_initial_packet(ioc, &local_err);
1478 multifd_recv_terminate_threads(local_err);
1479 error_propagate_prepend(errp, local_err,
1480 "failed to receive packet"
1481 " via multifd channel %d: ",
1482 atomic_read(&multifd_recv_state->count));
1486 p = &multifd_recv_state->params[id];
1488 error_setg(&local_err, "multifd: received id '%d' already setup'",
1490 multifd_recv_terminate_threads(local_err);
1491 error_propagate(errp, local_err);
1495 object_ref(OBJECT(ioc));
1496 /* initial packet */
1500 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1501 QEMU_THREAD_JOINABLE);
1502 atomic_inc(&multifd_recv_state->count);
1503 return atomic_read(&multifd_recv_state->count) ==
1504 migrate_multifd_channels();
1508 * save_page_header: write page header to wire
1510 * If this is the 1st block, it also writes the block identification
1512 * Returns the number of bytes written
1514 * @f: QEMUFile where to send the data
1515 * @block: block that contains the page we want to send
1516 * @offset: offset inside the block for the page
1517 * in the lower bits, it contains flags
1519 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1524 if (block == rs->last_sent_block) {
1525 offset |= RAM_SAVE_FLAG_CONTINUE;
1527 qemu_put_be64(f, offset);
1530 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
1531 len = strlen(block->idstr);
1532 qemu_put_byte(f, len);
1533 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
1535 rs->last_sent_block = block;
1541 * mig_throttle_guest_down: throotle down the guest
1543 * Reduce amount of guest cpu execution to hopefully slow down memory
1544 * writes. If guest dirty memory rate is reduced below the rate at
1545 * which we can transfer pages to the destination then we should be
1546 * able to complete migration. Some workloads dirty memory way too
1547 * fast and will not effectively converge, even with auto-converge.
1549 static void mig_throttle_guest_down(void)
1551 MigrationState *s = migrate_get_current();
1552 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1553 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
1554 int pct_max = s->parameters.max_cpu_throttle;
1556 /* We have not started throttling yet. Let's start it. */
1557 if (!cpu_throttle_active()) {
1558 cpu_throttle_set(pct_initial);
1560 /* Throttling already on, just increase the rate */
1561 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1567 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1569 * @rs: current RAM state
1570 * @current_addr: address for the zero page
1572 * Update the xbzrle cache to reflect a page that's been sent as all 0.
1573 * The important thing is that a stale (not-yet-0'd) page be replaced
1575 * As a bonus, if the page wasn't in the cache it gets added so that
1576 * when a small write is made into the 0'd page it gets XBZRLE sent.
1578 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
1580 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
1584 /* We don't care if this fails to allocate a new cache page
1585 * as long as it updated an old one */
1586 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
1587 ram_counters.dirty_sync_count);
1590 #define ENCODING_FLAG_XBZRLE 0x1
1593 * save_xbzrle_page: compress and send current page
1595 * Returns: 1 means that we wrote the page
1596 * 0 means that page is identical to the one already sent
1597 * -1 means that xbzrle would be longer than normal
1599 * @rs: current RAM state
1600 * @current_data: pointer to the address of the page contents
1601 * @current_addr: addr of the page
1602 * @block: block that contains the page we want to send
1603 * @offset: offset inside the block for the page
1604 * @last_stage: if we are at the completion stage
1606 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
1607 ram_addr_t current_addr, RAMBlock *block,
1608 ram_addr_t offset, bool last_stage)
1610 int encoded_len = 0, bytes_xbzrle;
1611 uint8_t *prev_cached_page;
1613 if (!cache_is_cached(XBZRLE.cache, current_addr,
1614 ram_counters.dirty_sync_count)) {
1615 xbzrle_counters.cache_miss++;
1617 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
1618 ram_counters.dirty_sync_count) == -1) {
1621 /* update *current_data when the page has been
1622 inserted into cache */
1623 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1629 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1631 /* save current buffer into memory */
1632 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1634 /* XBZRLE encoding (if there is no overflow) */
1635 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1636 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1640 * Update the cache contents, so that it corresponds to the data
1641 * sent, in all cases except where we skip the page.
1643 if (!last_stage && encoded_len != 0) {
1644 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1646 * In the case where we couldn't compress, ensure that the caller
1647 * sends the data from the cache, since the guest might have
1648 * changed the RAM since we copied it.
1650 *current_data = prev_cached_page;
1653 if (encoded_len == 0) {
1654 trace_save_xbzrle_page_skipping();
1656 } else if (encoded_len == -1) {
1657 trace_save_xbzrle_page_overflow();
1658 xbzrle_counters.overflow++;
1662 /* Send XBZRLE based compressed page */
1663 bytes_xbzrle = save_page_header(rs, rs->f, block,
1664 offset | RAM_SAVE_FLAG_XBZRLE);
1665 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1666 qemu_put_be16(rs->f, encoded_len);
1667 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
1668 bytes_xbzrle += encoded_len + 1 + 2;
1669 xbzrle_counters.pages++;
1670 xbzrle_counters.bytes += bytes_xbzrle;
1671 ram_counters.transferred += bytes_xbzrle;
1677 * migration_bitmap_find_dirty: find the next dirty page from start
1679 * Returns the page offset within memory region of the start of a dirty page
1681 * @rs: current RAM state
1682 * @rb: RAMBlock where to search for dirty pages
1683 * @start: page where we start the search
1686 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
1687 unsigned long start)
1689 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1690 unsigned long *bitmap = rb->bmap;
1693 if (ramblock_is_ignored(rb)) {
1698 * When the free page optimization is enabled, we need to check the bitmap
1699 * to send the non-free pages rather than all the pages in the bulk stage.
1701 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
1704 next = find_next_bit(bitmap, size, start);
1710 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
1716 qemu_mutex_lock(&rs->bitmap_mutex);
1719 * Clear dirty bitmap if needed. This _must_ be called before we
1720 * send any of the page in the chunk because we need to make sure
1721 * we can capture further page content changes when we sync dirty
1722 * log the next time. So as long as we are going to send any of
1723 * the page in the chunk we clear the remote dirty bitmap for all.
1724 * Clearing it earlier won't be a problem, but too late will.
1726 if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) {
1727 uint8_t shift = rb->clear_bmap_shift;
1728 hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift);
1729 hwaddr start = (page << TARGET_PAGE_BITS) & (-size);
1732 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
1733 * can make things easier sometimes since then start address
1734 * of the small chunk will always be 64 pages aligned so the
1735 * bitmap will always be aligned to unsigned long. We should
1736 * even be able to remove this restriction but I'm simply
1740 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
1741 memory_region_clear_dirty_bitmap(rb->mr, start, size);
1744 ret = test_and_clear_bit(page, rb->bmap);
1747 rs->migration_dirty_pages--;
1749 qemu_mutex_unlock(&rs->bitmap_mutex);
1754 /* Called with RCU critical section */
1755 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
1757 rs->migration_dirty_pages +=
1758 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length,
1759 &rs->num_dirty_pages_period);
1763 * ram_pagesize_summary: calculate all the pagesizes of a VM
1765 * Returns a summary bitmap of the page sizes of all RAMBlocks
1767 * For VMs with just normal pages this is equivalent to the host page
1768 * size. If it's got some huge pages then it's the OR of all the
1769 * different page sizes.
1771 uint64_t ram_pagesize_summary(void)
1774 uint64_t summary = 0;
1776 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1777 summary |= block->page_size;
1783 uint64_t ram_get_total_transferred_pages(void)
1785 return ram_counters.normal + ram_counters.duplicate +
1786 compression_counters.pages + xbzrle_counters.pages;
1789 static void migration_update_rates(RAMState *rs, int64_t end_time)
1791 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
1792 double compressed_size;
1794 /* calculate period counters */
1795 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1796 / (end_time - rs->time_last_bitmap_sync);
1802 if (migrate_use_xbzrle()) {
1803 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1804 rs->xbzrle_cache_miss_prev) / page_count;
1805 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1808 if (migrate_use_compression()) {
1809 compression_counters.busy_rate = (double)(compression_counters.busy -
1810 rs->compress_thread_busy_prev) / page_count;
1811 rs->compress_thread_busy_prev = compression_counters.busy;
1813 compressed_size = compression_counters.compressed_size -
1814 rs->compressed_size_prev;
1815 if (compressed_size) {
1816 double uncompressed_size = (compression_counters.pages -
1817 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1819 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1820 compression_counters.compression_rate =
1821 uncompressed_size / compressed_size;
1823 rs->compress_pages_prev = compression_counters.pages;
1824 rs->compressed_size_prev = compression_counters.compressed_size;
1829 static void migration_bitmap_sync(RAMState *rs)
1833 uint64_t bytes_xfer_now;
1835 ram_counters.dirty_sync_count++;
1837 if (!rs->time_last_bitmap_sync) {
1838 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1841 trace_migration_bitmap_sync_start();
1842 memory_global_dirty_log_sync();
1844 qemu_mutex_lock(&rs->bitmap_mutex);
1846 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1847 ramblock_sync_dirty_bitmap(rs, block);
1849 ram_counters.remaining = ram_bytes_remaining();
1851 qemu_mutex_unlock(&rs->bitmap_mutex);
1853 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1855 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1857 /* more than 1 second = 1000 millisecons */
1858 if (end_time > rs->time_last_bitmap_sync + 1000) {
1859 bytes_xfer_now = ram_counters.transferred;
1861 /* During block migration the auto-converge logic incorrectly detects
1862 * that ram migration makes no progress. Avoid this by disabling the
1863 * throttling logic during the bulk phase of block migration. */
1864 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1865 /* The following detection logic can be refined later. For now:
1866 Check to see if the dirtied bytes is 50% more than the approx.
1867 amount of bytes that just got transferred since the last time we
1868 were in this routine. If that happens twice, start or increase
1871 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
1872 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
1873 (++rs->dirty_rate_high_cnt >= 2)) {
1874 trace_migration_throttle();
1875 rs->dirty_rate_high_cnt = 0;
1876 mig_throttle_guest_down();
1880 migration_update_rates(rs, end_time);
1882 rs->target_page_count_prev = rs->target_page_count;
1884 /* reset period counters */
1885 rs->time_last_bitmap_sync = end_time;
1886 rs->num_dirty_pages_period = 0;
1887 rs->bytes_xfer_prev = bytes_xfer_now;
1889 if (migrate_use_events()) {
1890 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
1894 static void migration_bitmap_sync_precopy(RAMState *rs)
1896 Error *local_err = NULL;
1899 * The current notifier usage is just an optimization to migration, so we
1900 * don't stop the normal migration process in the error case.
1902 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1903 error_report_err(local_err);
1906 migration_bitmap_sync(rs);
1908 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1909 error_report_err(local_err);
1914 * save_zero_page_to_file: send the zero page to the file
1916 * Returns the size of data written to the file, 0 means the page is not
1919 * @rs: current RAM state
1920 * @file: the file where the data is saved
1921 * @block: block that contains the page we want to send
1922 * @offset: offset inside the block for the page
1924 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1925 RAMBlock *block, ram_addr_t offset)
1927 uint8_t *p = block->host + offset;
1930 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1931 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1932 qemu_put_byte(file, 0);
1939 * save_zero_page: send the zero page to the stream
1941 * Returns the number of pages written.
1943 * @rs: current RAM state
1944 * @block: block that contains the page we want to send
1945 * @offset: offset inside the block for the page
1947 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1949 int len = save_zero_page_to_file(rs, rs->f, block, offset);
1952 ram_counters.duplicate++;
1953 ram_counters.transferred += len;
1959 static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
1961 if (!migrate_release_ram() || !migration_in_postcopy()) {
1965 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
1969 * @pages: the number of pages written by the control path,
1971 * > 0 - number of pages written
1973 * Return true if the pages has been saved, otherwise false is returned.
1975 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1978 uint64_t bytes_xmit = 0;
1982 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1984 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1989 ram_counters.transferred += bytes_xmit;
1993 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1997 if (bytes_xmit > 0) {
1998 ram_counters.normal++;
1999 } else if (bytes_xmit == 0) {
2000 ram_counters.duplicate++;
2007 * directly send the page to the stream
2009 * Returns the number of pages written.
2011 * @rs: current RAM state
2012 * @block: block that contains the page we want to send
2013 * @offset: offset inside the block for the page
2014 * @buf: the page to be sent
2015 * @async: send to page asyncly
2017 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
2018 uint8_t *buf, bool async)
2020 ram_counters.transferred += save_page_header(rs, rs->f, block,
2021 offset | RAM_SAVE_FLAG_PAGE);
2023 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
2024 migrate_release_ram() &
2025 migration_in_postcopy());
2027 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
2029 ram_counters.transferred += TARGET_PAGE_SIZE;
2030 ram_counters.normal++;
2035 * ram_save_page: send the given page to the stream
2037 * Returns the number of pages written.
2039 * >=0 - Number of pages written - this might legally be 0
2040 * if xbzrle noticed the page was the same.
2042 * @rs: current RAM state
2043 * @block: block that contains the page we want to send
2044 * @offset: offset inside the block for the page
2045 * @last_stage: if we are at the completion stage
2047 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
2051 bool send_async = true;
2052 RAMBlock *block = pss->block;
2053 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2054 ram_addr_t current_addr = block->offset + offset;
2056 p = block->host + offset;
2057 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
2059 XBZRLE_cache_lock();
2060 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
2061 migrate_use_xbzrle()) {
2062 pages = save_xbzrle_page(rs, &p, current_addr, block,
2063 offset, last_stage);
2065 /* Can't send this cached data async, since the cache page
2066 * might get updated before it gets to the wire
2072 /* XBZRLE overflow or normal page */
2074 pages = save_normal_page(rs, block, offset, p, send_async);
2077 XBZRLE_cache_unlock();
2082 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
2085 if (multifd_queue_page(rs, block, offset) < 0) {
2088 ram_counters.normal++;
2093 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
2094 ram_addr_t offset, uint8_t *source_buf)
2096 RAMState *rs = ram_state;
2097 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
2098 bool zero_page = false;
2101 if (save_zero_page_to_file(rs, f, block, offset)) {
2106 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
2109 * copy it to a internal buffer to avoid it being modified by VM
2110 * so that we can catch up the error during compression and
2113 memcpy(source_buf, p, TARGET_PAGE_SIZE);
2114 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
2116 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
2117 error_report("compressed data failed!");
2122 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
2127 update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
2129 ram_counters.transferred += bytes_xmit;
2131 if (param->zero_page) {
2132 ram_counters.duplicate++;
2136 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
2137 compression_counters.compressed_size += bytes_xmit - 8;
2138 compression_counters.pages++;
2141 static bool save_page_use_compression(RAMState *rs);
2143 static void flush_compressed_data(RAMState *rs)
2145 int idx, len, thread_count;
2147 if (!save_page_use_compression(rs)) {
2150 thread_count = migrate_compress_threads();
2152 qemu_mutex_lock(&comp_done_lock);
2153 for (idx = 0; idx < thread_count; idx++) {
2154 while (!comp_param[idx].done) {
2155 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2158 qemu_mutex_unlock(&comp_done_lock);
2160 for (idx = 0; idx < thread_count; idx++) {
2161 qemu_mutex_lock(&comp_param[idx].mutex);
2162 if (!comp_param[idx].quit) {
2163 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2165 * it's safe to fetch zero_page without holding comp_done_lock
2166 * as there is no further request submitted to the thread,
2167 * i.e, the thread should be waiting for a request at this point.
2169 update_compress_thread_counts(&comp_param[idx], len);
2171 qemu_mutex_unlock(&comp_param[idx].mutex);
2175 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
2178 param->block = block;
2179 param->offset = offset;
2182 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
2185 int idx, thread_count, bytes_xmit = -1, pages = -1;
2186 bool wait = migrate_compress_wait_thread();
2188 thread_count = migrate_compress_threads();
2189 qemu_mutex_lock(&comp_done_lock);
2191 for (idx = 0; idx < thread_count; idx++) {
2192 if (comp_param[idx].done) {
2193 comp_param[idx].done = false;
2194 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2195 qemu_mutex_lock(&comp_param[idx].mutex);
2196 set_compress_params(&comp_param[idx], block, offset);
2197 qemu_cond_signal(&comp_param[idx].cond);
2198 qemu_mutex_unlock(&comp_param[idx].mutex);
2200 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
2206 * wait for the free thread if the user specifies 'compress-wait-thread',
2207 * otherwise we will post the page out in the main thread as normal page.
2209 if (pages < 0 && wait) {
2210 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2213 qemu_mutex_unlock(&comp_done_lock);
2219 * find_dirty_block: find the next dirty page and update any state
2220 * associated with the search process.
2222 * Returns true if a page is found
2224 * @rs: current RAM state
2225 * @pss: data about the state of the current dirty page scan
2226 * @again: set to false if the search has scanned the whole of RAM
2228 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
2230 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
2231 if (pss->complete_round && pss->block == rs->last_seen_block &&
2232 pss->page >= rs->last_page) {
2234 * We've been once around the RAM and haven't found anything.
2240 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
2241 /* Didn't find anything in this RAM Block */
2243 pss->block = QLIST_NEXT_RCU(pss->block, next);
2246 * If memory migration starts over, we will meet a dirtied page
2247 * which may still exists in compression threads's ring, so we
2248 * should flush the compressed data to make sure the new page
2249 * is not overwritten by the old one in the destination.
2251 * Also If xbzrle is on, stop using the data compression at this
2252 * point. In theory, xbzrle can do better than compression.
2254 flush_compressed_data(rs);
2256 /* Hit the end of the list */
2257 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2258 /* Flag that we've looped */
2259 pss->complete_round = true;
2260 rs->ram_bulk_stage = false;
2262 /* Didn't find anything this time, but try again on the new block */
2266 /* Can go around again, but... */
2268 /* We've found something so probably don't need to */
2274 * unqueue_page: gets a page of the queue
2276 * Helper for 'get_queued_page' - gets a page off the queue
2278 * Returns the block of the page (or NULL if none available)
2280 * @rs: current RAM state
2281 * @offset: used to return the offset within the RAMBlock
2283 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
2285 RAMBlock *block = NULL;
2287 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2291 qemu_mutex_lock(&rs->src_page_req_mutex);
2292 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2293 struct RAMSrcPageRequest *entry =
2294 QSIMPLEQ_FIRST(&rs->src_page_requests);
2296 *offset = entry->offset;
2298 if (entry->len > TARGET_PAGE_SIZE) {
2299 entry->len -= TARGET_PAGE_SIZE;
2300 entry->offset += TARGET_PAGE_SIZE;
2302 memory_region_unref(block->mr);
2303 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2305 migration_consume_urgent_request();
2308 qemu_mutex_unlock(&rs->src_page_req_mutex);
2314 * get_queued_page: unqueue a page from the postcopy requests
2316 * Skips pages that are already sent (!dirty)
2318 * Returns true if a queued page is found
2320 * @rs: current RAM state
2321 * @pss: data about the state of the current dirty page scan
2323 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
2330 block = unqueue_page(rs, &offset);
2332 * We're sending this page, and since it's postcopy nothing else
2333 * will dirty it, and we must make sure it doesn't get sent again
2334 * even if this queue request was received after the background
2335 * search already sent it.
2340 page = offset >> TARGET_PAGE_BITS;
2341 dirty = test_bit(page, block->bmap);
2343 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
2344 page, test_bit(page, block->unsentmap));
2346 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
2350 } while (block && !dirty);
2354 * As soon as we start servicing pages out of order, then we have
2355 * to kill the bulk stage, since the bulk stage assumes
2356 * in (migration_bitmap_find_and_reset_dirty) that every page is
2357 * dirty, that's no longer true.
2359 rs->ram_bulk_stage = false;
2362 * We want the background search to continue from the queued page
2363 * since the guest is likely to want other pages near to the page
2364 * it just requested.
2367 pss->page = offset >> TARGET_PAGE_BITS;
2370 * This unqueued page would break the "one round" check, even is
2373 pss->complete_round = false;
2380 * migration_page_queue_free: drop any remaining pages in the ram
2383 * It should be empty at the end anyway, but in error cases there may
2384 * be some left. in case that there is any page left, we drop it.
2387 static void migration_page_queue_free(RAMState *rs)
2389 struct RAMSrcPageRequest *mspr, *next_mspr;
2390 /* This queue generally should be empty - but in the case of a failed
2391 * migration might have some droppings in.
2394 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
2395 memory_region_unref(mspr->rb->mr);
2396 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2403 * ram_save_queue_pages: queue the page for transmission
2405 * A request from postcopy destination for example.
2407 * Returns zero on success or negative on error
2409 * @rbname: Name of the RAMBLock of the request. NULL means the
2410 * same that last one.
2411 * @start: starting address from the start of the RAMBlock
2412 * @len: length (in bytes) to send
2414 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
2417 RAMState *rs = ram_state;
2419 ram_counters.postcopy_requests++;
2422 /* Reuse last RAMBlock */
2423 ramblock = rs->last_req_rb;
2427 * Shouldn't happen, we can't reuse the last RAMBlock if
2428 * it's the 1st request.
2430 error_report("ram_save_queue_pages no previous block");
2434 ramblock = qemu_ram_block_by_name(rbname);
2437 /* We shouldn't be asked for a non-existent RAMBlock */
2438 error_report("ram_save_queue_pages no block '%s'", rbname);
2441 rs->last_req_rb = ramblock;
2443 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2444 if (start+len > ramblock->used_length) {
2445 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2446 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
2447 __func__, start, len, ramblock->used_length);
2451 struct RAMSrcPageRequest *new_entry =
2452 g_malloc0(sizeof(struct RAMSrcPageRequest));
2453 new_entry->rb = ramblock;
2454 new_entry->offset = start;
2455 new_entry->len = len;
2457 memory_region_ref(ramblock->mr);
2458 qemu_mutex_lock(&rs->src_page_req_mutex);
2459 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2460 migration_make_urgent_request();
2461 qemu_mutex_unlock(&rs->src_page_req_mutex);
2471 static bool save_page_use_compression(RAMState *rs)
2473 if (!migrate_use_compression()) {
2478 * If xbzrle is on, stop using the data compression after first
2479 * round of migration even if compression is enabled. In theory,
2480 * xbzrle can do better than compression.
2482 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2490 * try to compress the page before posting it out, return true if the page
2491 * has been properly handled by compression, otherwise needs other
2492 * paths to handle it
2494 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2496 if (!save_page_use_compression(rs)) {
2501 * When starting the process of a new block, the first page of
2502 * the block should be sent out before other pages in the same
2503 * block, and all the pages in last block should have been sent
2504 * out, keeping this order is important, because the 'cont' flag
2505 * is used to avoid resending the block name.
2507 * We post the fist page as normal page as compression will take
2508 * much CPU resource.
2510 if (block != rs->last_sent_block) {
2511 flush_compressed_data(rs);
2515 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2519 compression_counters.busy++;
2524 * ram_save_target_page: save one target page
2526 * Returns the number of pages written
2528 * @rs: current RAM state
2529 * @pss: data about the page we want to send
2530 * @last_stage: if we are at the completion stage
2532 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
2535 RAMBlock *block = pss->block;
2536 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2539 if (control_save_page(rs, block, offset, &res)) {
2543 if (save_compress_page(rs, block, offset)) {
2547 res = save_zero_page(rs, block, offset);
2549 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2550 * page would be stale
2552 if (!save_page_use_compression(rs)) {
2553 XBZRLE_cache_lock();
2554 xbzrle_cache_zero_page(rs, block->offset + offset);
2555 XBZRLE_cache_unlock();
2557 ram_release_pages(block->idstr, offset, res);
2562 * do not use multifd for compression as the first page in the new
2563 * block should be posted out before sending the compressed page
2565 if (!save_page_use_compression(rs) && migrate_use_multifd()) {
2566 return ram_save_multifd_page(rs, block, offset);
2569 return ram_save_page(rs, pss, last_stage);
2573 * ram_save_host_page: save a whole host page
2575 * Starting at *offset send pages up to the end of the current host
2576 * page. It's valid for the initial offset to point into the middle of
2577 * a host page in which case the remainder of the hostpage is sent.
2578 * Only dirty target pages are sent. Note that the host page size may
2579 * be a huge page for this block.
2580 * The saving stops at the boundary of the used_length of the block
2581 * if the RAMBlock isn't a multiple of the host page size.
2583 * Returns the number of pages written or negative on error
2585 * @rs: current RAM state
2586 * @ms: current migration state
2587 * @pss: data about the page we want to send
2588 * @last_stage: if we are at the completion stage
2590 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
2593 int tmppages, pages = 0;
2594 size_t pagesize_bits =
2595 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2597 if (ramblock_is_ignored(pss->block)) {
2598 error_report("block %s should not be migrated !", pss->block->idstr);
2603 /* Check the pages is dirty and if it is send it */
2604 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2609 tmppages = ram_save_target_page(rs, pss, last_stage);
2615 if (pss->block->unsentmap) {
2616 clear_bit(pss->page, pss->block->unsentmap);
2620 } while ((pss->page & (pagesize_bits - 1)) &&
2621 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
2623 /* The offset we leave with is the last one we looked at */
2629 * ram_find_and_save_block: finds a dirty page and sends it to f
2631 * Called within an RCU critical section.
2633 * Returns the number of pages written where zero means no dirty pages,
2634 * or negative on error
2636 * @rs: current RAM state
2637 * @last_stage: if we are at the completion stage
2639 * On systems where host-page-size > target-page-size it will send all the
2640 * pages in a host page that are dirty.
2643 static int ram_find_and_save_block(RAMState *rs, bool last_stage)
2645 PageSearchStatus pss;
2649 /* No dirty page as there is zero RAM */
2650 if (!ram_bytes_total()) {
2654 pss.block = rs->last_seen_block;
2655 pss.page = rs->last_page;
2656 pss.complete_round = false;
2659 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2664 found = get_queued_page(rs, &pss);
2667 /* priority queue empty, so just search for something dirty */
2668 found = find_dirty_block(rs, &pss, &again);
2672 pages = ram_save_host_page(rs, &pss, last_stage);
2674 } while (!pages && again);
2676 rs->last_seen_block = pss.block;
2677 rs->last_page = pss.page;
2682 void acct_update_position(QEMUFile *f, size_t size, bool zero)
2684 uint64_t pages = size / TARGET_PAGE_SIZE;
2687 ram_counters.duplicate += pages;
2689 ram_counters.normal += pages;
2690 ram_counters.transferred += size;
2691 qemu_update_position(f, size);
2695 static uint64_t ram_bytes_total_common(bool count_ignored)
2701 if (count_ignored) {
2702 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2703 total += block->used_length;
2706 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2707 total += block->used_length;
2714 uint64_t ram_bytes_total(void)
2716 return ram_bytes_total_common(false);
2719 static void xbzrle_load_setup(void)
2721 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2724 static void xbzrle_load_cleanup(void)
2726 g_free(XBZRLE.decoded_buf);
2727 XBZRLE.decoded_buf = NULL;
2730 static void ram_state_cleanup(RAMState **rsp)
2733 migration_page_queue_free(*rsp);
2734 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2735 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2741 static void xbzrle_cleanup(void)
2743 XBZRLE_cache_lock();
2745 cache_fini(XBZRLE.cache);
2746 g_free(XBZRLE.encoded_buf);
2747 g_free(XBZRLE.current_buf);
2748 g_free(XBZRLE.zero_target_page);
2749 XBZRLE.cache = NULL;
2750 XBZRLE.encoded_buf = NULL;
2751 XBZRLE.current_buf = NULL;
2752 XBZRLE.zero_target_page = NULL;
2754 XBZRLE_cache_unlock();
2757 static void ram_save_cleanup(void *opaque)
2759 RAMState **rsp = opaque;
2762 /* caller have hold iothread lock or is in a bh, so there is
2763 * no writing race against the migration bitmap
2765 memory_global_dirty_log_stop();
2767 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2768 g_free(block->clear_bmap);
2769 block->clear_bmap = NULL;
2770 g_free(block->bmap);
2772 g_free(block->unsentmap);
2773 block->unsentmap = NULL;
2777 compress_threads_save_cleanup();
2778 ram_state_cleanup(rsp);
2781 static void ram_state_reset(RAMState *rs)
2783 rs->last_seen_block = NULL;
2784 rs->last_sent_block = NULL;
2786 rs->last_version = ram_list.version;
2787 rs->ram_bulk_stage = true;
2788 rs->fpo_enabled = false;
2791 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2794 * 'expected' is the value you expect the bitmap mostly to be full
2795 * of; it won't bother printing lines that are all this value.
2796 * If 'todump' is null the migration bitmap is dumped.
2798 void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2799 unsigned long pages)
2802 int64_t linelen = 128;
2805 for (cur = 0; cur < pages; cur += linelen) {
2809 * Last line; catch the case where the line length
2810 * is longer than remaining ram
2812 if (cur + linelen > pages) {
2813 linelen = pages - cur;
2815 for (curb = 0; curb < linelen; curb++) {
2816 bool thisbit = test_bit(cur + curb, todump);
2817 linebuf[curb] = thisbit ? '1' : '.';
2818 found = found || (thisbit != expected);
2821 linebuf[curb] = '\0';
2822 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2827 /* **** functions for postcopy ***** */
2829 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2831 struct RAMBlock *block;
2833 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2834 unsigned long *bitmap = block->bmap;
2835 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2836 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2838 while (run_start < range) {
2839 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2840 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
2841 (run_end - run_start) << TARGET_PAGE_BITS);
2842 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2848 * postcopy_send_discard_bm_ram: discard a RAMBlock
2850 * Returns zero on success
2852 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2853 * Note: At this point the 'unsentmap' is the processed bitmap combined
2854 * with the dirtymap; so a '1' means it's either dirty or unsent.
2856 * @ms: current migration state
2857 * @block: RAMBlock to discard
2859 static int postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2861 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2862 unsigned long current;
2863 unsigned long *unsentmap = block->unsentmap;
2865 for (current = 0; current < end; ) {
2866 unsigned long one = find_next_bit(unsentmap, end, current);
2867 unsigned long zero, discard_length;
2873 zero = find_next_zero_bit(unsentmap, end, one + 1);
2876 discard_length = end - one;
2878 discard_length = zero - one;
2880 postcopy_discard_send_range(ms, one, discard_length);
2881 current = one + discard_length;
2888 * postcopy_each_ram_send_discard: discard all RAMBlocks
2890 * Returns 0 for success or negative for error
2892 * Utility for the outgoing postcopy code.
2893 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2894 * passing it bitmap indexes and name.
2895 * (qemu_ram_foreach_block ends up passing unscaled lengths
2896 * which would mean postcopy code would have to deal with target page)
2898 * @ms: current migration state
2900 static int postcopy_each_ram_send_discard(MigrationState *ms)
2902 struct RAMBlock *block;
2905 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2906 postcopy_discard_send_init(ms, block->idstr);
2909 * Postcopy sends chunks of bitmap over the wire, but it
2910 * just needs indexes at this point, avoids it having
2911 * target page specific code.
2913 ret = postcopy_send_discard_bm_ram(ms, block);
2914 postcopy_discard_send_finish(ms);
2924 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
2926 * Helper for postcopy_chunk_hostpages; it's called twice to
2927 * canonicalize the two bitmaps, that are similar, but one is
2930 * Postcopy requires that all target pages in a hostpage are dirty or
2931 * clean, not a mix. This function canonicalizes the bitmaps.
2933 * @ms: current migration state
2934 * @unsent_pass: if true we need to canonicalize partially unsent host pages
2935 * otherwise we need to canonicalize partially dirty host pages
2936 * @block: block that contains the page we want to canonicalize
2938 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
2941 RAMState *rs = ram_state;
2942 unsigned long *bitmap = block->bmap;
2943 unsigned long *unsentmap = block->unsentmap;
2944 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2945 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2946 unsigned long run_start;
2948 if (block->page_size == TARGET_PAGE_SIZE) {
2949 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2954 /* Find a sent page */
2955 run_start = find_next_zero_bit(unsentmap, pages, 0);
2957 /* Find a dirty page */
2958 run_start = find_next_bit(bitmap, pages, 0);
2961 while (run_start < pages) {
2964 * If the start of this run of pages is in the middle of a host
2965 * page, then we need to fixup this host page.
2967 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2968 /* Find the end of this run */
2970 run_start = find_next_bit(unsentmap, pages, run_start + 1);
2972 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2975 * If the end isn't at the start of a host page, then the
2976 * run doesn't finish at the end of a host page
2977 * and we need to discard.
2981 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2983 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2985 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2987 /* Tell the destination to discard this page */
2988 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
2989 /* For the unsent_pass we:
2990 * discard partially sent pages
2991 * For the !unsent_pass (dirty) we:
2992 * discard partially dirty pages that were sent
2993 * (any partially sent pages were already discarded
2994 * by the previous unsent_pass)
2996 postcopy_discard_send_range(ms, fixup_start_addr, host_ratio);
2999 /* Clean up the bitmap */
3000 for (page = fixup_start_addr;
3001 page < fixup_start_addr + host_ratio; page++) {
3002 /* All pages in this host page are now not sent */
3003 set_bit(page, unsentmap);
3006 * Remark them as dirty, updating the count for any pages
3007 * that weren't previously dirty.
3009 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
3014 /* Find the next sent page for the next iteration */
3015 run_start = find_next_zero_bit(unsentmap, pages, run_start);
3017 /* Find the next dirty page for the next iteration */
3018 run_start = find_next_bit(bitmap, pages, run_start);
3024 * postcopy_chunk_hostpages: discard any partially sent host page
3026 * Utility for the outgoing postcopy code.
3028 * Discard any partially sent host-page size chunks, mark any partially
3029 * dirty host-page size chunks as all dirty. In this case the host-page
3030 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
3032 * Returns zero on success
3034 * @ms: current migration state
3035 * @block: block we want to work with
3037 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
3039 postcopy_discard_send_init(ms, block->idstr);
3041 /* First pass: Discard all partially sent host pages */
3042 postcopy_chunk_hostpages_pass(ms, true, block);
3044 * Second pass: Ensure that all partially dirty host pages are made
3047 postcopy_chunk_hostpages_pass(ms, false, block);
3049 postcopy_discard_send_finish(ms);
3054 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
3056 * Returns zero on success
3058 * Transmit the set of pages to be discarded after precopy to the target
3059 * these are pages that:
3060 * a) Have been previously transmitted but are now dirty again
3061 * b) Pages that have never been transmitted, this ensures that
3062 * any pages on the destination that have been mapped by background
3063 * tasks get discarded (transparent huge pages is the specific concern)
3064 * Hopefully this is pretty sparse
3066 * @ms: current migration state
3068 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
3070 RAMState *rs = ram_state;
3076 /* This should be our last sync, the src is now paused */
3077 migration_bitmap_sync(rs);
3079 /* Easiest way to make sure we don't resume in the middle of a host-page */
3080 rs->last_seen_block = NULL;
3081 rs->last_sent_block = NULL;
3084 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3085 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
3086 unsigned long *bitmap = block->bmap;
3087 unsigned long *unsentmap = block->unsentmap;
3090 /* We don't have a safe way to resize the sentmap, so
3091 * if the bitmap was resized it will be NULL at this
3094 error_report("migration ram resized during precopy phase");
3098 /* Deal with TPS != HPS and huge pages */
3099 ret = postcopy_chunk_hostpages(ms, block);
3106 * Update the unsentmap to be unsentmap = unsentmap | dirty
3108 bitmap_or(unsentmap, unsentmap, bitmap, pages);
3109 #ifdef DEBUG_POSTCOPY
3110 ram_debug_dump_bitmap(unsentmap, true, pages);
3113 trace_ram_postcopy_send_discard_bitmap();
3115 ret = postcopy_each_ram_send_discard(ms);
3122 * ram_discard_range: discard dirtied pages at the beginning of postcopy
3124 * Returns zero on success
3126 * @rbname: name of the RAMBlock of the request. NULL means the
3127 * same that last one.
3128 * @start: RAMBlock starting page
3129 * @length: RAMBlock size
3131 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
3135 trace_ram_discard_range(rbname, start, length);
3138 RAMBlock *rb = qemu_ram_block_by_name(rbname);
3141 error_report("ram_discard_range: Failed to find block '%s'", rbname);
3146 * On source VM, we don't need to update the received bitmap since
3147 * we don't even have one.
3149 if (rb->receivedmap) {
3150 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
3151 length >> qemu_target_page_bits());
3154 ret = ram_block_discard_range(rb, start, length);
3163 * For every allocation, we will try not to crash the VM if the
3164 * allocation failed.
3166 static int xbzrle_init(void)
3168 Error *local_err = NULL;
3170 if (!migrate_use_xbzrle()) {
3174 XBZRLE_cache_lock();
3176 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
3177 if (!XBZRLE.zero_target_page) {
3178 error_report("%s: Error allocating zero page", __func__);
3182 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
3183 TARGET_PAGE_SIZE, &local_err);
3184 if (!XBZRLE.cache) {
3185 error_report_err(local_err);
3186 goto free_zero_page;
3189 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
3190 if (!XBZRLE.encoded_buf) {
3191 error_report("%s: Error allocating encoded_buf", __func__);
3195 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
3196 if (!XBZRLE.current_buf) {
3197 error_report("%s: Error allocating current_buf", __func__);
3198 goto free_encoded_buf;
3201 /* We are all good */
3202 XBZRLE_cache_unlock();
3206 g_free(XBZRLE.encoded_buf);
3207 XBZRLE.encoded_buf = NULL;
3209 cache_fini(XBZRLE.cache);
3210 XBZRLE.cache = NULL;
3212 g_free(XBZRLE.zero_target_page);
3213 XBZRLE.zero_target_page = NULL;
3215 XBZRLE_cache_unlock();
3219 static int ram_state_init(RAMState **rsp)
3221 *rsp = g_try_new0(RAMState, 1);
3224 error_report("%s: Init ramstate fail", __func__);
3228 qemu_mutex_init(&(*rsp)->bitmap_mutex);
3229 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
3230 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
3233 * Count the total number of pages used by ram blocks not including any
3234 * gaps due to alignment or unplugs.
3235 * This must match with the initial values of dirty bitmap.
3237 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
3238 ram_state_reset(*rsp);
3243 static void ram_list_init_bitmaps(void)
3245 MigrationState *ms = migrate_get_current();
3247 unsigned long pages;
3250 /* Skip setting bitmap if there is no RAM */
3251 if (ram_bytes_total()) {
3252 shift = ms->clear_bitmap_shift;
3253 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
3254 error_report("clear_bitmap_shift (%u) too big, using "
3255 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
3256 shift = CLEAR_BITMAP_SHIFT_MAX;
3257 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
3258 error_report("clear_bitmap_shift (%u) too small, using "
3259 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
3260 shift = CLEAR_BITMAP_SHIFT_MIN;
3263 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3264 pages = block->max_length >> TARGET_PAGE_BITS;
3266 * The initial dirty bitmap for migration must be set with all
3267 * ones to make sure we'll migrate every guest RAM page to
3269 * Here we set RAMBlock.bmap all to 1 because when rebegin a
3270 * new migration after a failed migration, ram_list.
3271 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
3274 block->bmap = bitmap_new(pages);
3275 bitmap_set(block->bmap, 0, pages);
3276 block->clear_bmap_shift = shift;
3277 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
3278 if (migrate_postcopy_ram()) {
3279 block->unsentmap = bitmap_new(pages);
3280 bitmap_set(block->unsentmap, 0, pages);
3286 static void ram_init_bitmaps(RAMState *rs)
3288 /* For memory_global_dirty_log_start below. */
3289 qemu_mutex_lock_iothread();
3290 qemu_mutex_lock_ramlist();
3293 ram_list_init_bitmaps();
3294 memory_global_dirty_log_start();
3295 migration_bitmap_sync_precopy(rs);
3298 qemu_mutex_unlock_ramlist();
3299 qemu_mutex_unlock_iothread();
3302 static int ram_init_all(RAMState **rsp)
3304 if (ram_state_init(rsp)) {
3308 if (xbzrle_init()) {
3309 ram_state_cleanup(rsp);
3313 ram_init_bitmaps(*rsp);
3318 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3324 * Postcopy is not using xbzrle/compression, so no need for that.
3325 * Also, since source are already halted, we don't need to care
3326 * about dirty page logging as well.
3329 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3330 pages += bitmap_count_one(block->bmap,
3331 block->used_length >> TARGET_PAGE_BITS);
3334 /* This may not be aligned with current bitmaps. Recalculate. */
3335 rs->migration_dirty_pages = pages;
3337 rs->last_seen_block = NULL;
3338 rs->last_sent_block = NULL;
3340 rs->last_version = ram_list.version;
3342 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3343 * matter what we have sent.
3345 rs->ram_bulk_stage = false;
3347 /* Update RAMState cache of output QEMUFile */
3350 trace_ram_state_resume_prepare(pages);
3354 * This function clears bits of the free pages reported by the caller from the
3355 * migration dirty bitmap. @addr is the host address corresponding to the
3356 * start of the continuous guest free pages, and @len is the total bytes of
3359 void qemu_guest_free_page_hint(void *addr, size_t len)
3363 size_t used_len, start, npages;
3364 MigrationState *s = migrate_get_current();
3366 /* This function is currently expected to be used during live migration */
3367 if (!migration_is_setup_or_active(s->state)) {
3371 for (; len > 0; len -= used_len, addr += used_len) {
3372 block = qemu_ram_block_from_host(addr, false, &offset);
3373 if (unlikely(!block || offset >= block->used_length)) {
3375 * The implementation might not support RAMBlock resize during
3376 * live migration, but it could happen in theory with future
3377 * updates. So we add a check here to capture that case.
3379 error_report_once("%s unexpected error", __func__);
3383 if (len <= block->used_length - offset) {
3386 used_len = block->used_length - offset;
3389 start = offset >> TARGET_PAGE_BITS;
3390 npages = used_len >> TARGET_PAGE_BITS;
3392 qemu_mutex_lock(&ram_state->bitmap_mutex);
3393 ram_state->migration_dirty_pages -=
3394 bitmap_count_one_with_offset(block->bmap, start, npages);
3395 bitmap_clear(block->bmap, start, npages);
3396 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3401 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3402 * long-running RCU critical section. When rcu-reclaims in the code
3403 * start to become numerous it will be necessary to reduce the
3404 * granularity of these critical sections.
3408 * ram_save_setup: Setup RAM for migration
3410 * Returns zero to indicate success and negative for error
3412 * @f: QEMUFile where to send the data
3413 * @opaque: RAMState pointer
3415 static int ram_save_setup(QEMUFile *f, void *opaque)
3417 RAMState **rsp = opaque;
3420 if (compress_threads_save_setup()) {
3424 /* migration has already setup the bitmap, reuse it. */
3425 if (!migration_in_colo_state()) {
3426 if (ram_init_all(rsp) != 0) {
3427 compress_threads_save_cleanup();
3435 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
3437 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3438 qemu_put_byte(f, strlen(block->idstr));
3439 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3440 qemu_put_be64(f, block->used_length);
3441 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
3442 qemu_put_be64(f, block->page_size);
3444 if (migrate_ignore_shared()) {
3445 qemu_put_be64(f, block->mr->addr);
3451 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3452 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3454 multifd_send_sync_main(*rsp);
3455 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3462 * ram_save_iterate: iterative stage for migration
3464 * Returns zero to indicate success and negative for error
3466 * @f: QEMUFile where to send the data
3467 * @opaque: RAMState pointer
3469 static int ram_save_iterate(QEMUFile *f, void *opaque)
3471 RAMState **temp = opaque;
3472 RAMState *rs = *temp;
3478 if (blk_mig_bulk_active()) {
3479 /* Avoid transferring ram during bulk phase of block migration as
3480 * the bulk phase will usually take a long time and transferring
3481 * ram updates during that time is pointless. */
3486 if (ram_list.version != rs->last_version) {
3487 ram_state_reset(rs);
3490 /* Read version before ram_list.blocks */
3493 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3495 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3497 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3498 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
3501 if (qemu_file_get_error(f)) {
3505 pages = ram_find_and_save_block(rs, false);
3506 /* no more pages to sent */
3513 qemu_file_set_error(f, pages);
3517 rs->target_page_count += pages;
3519 /* we want to check in the 1st loop, just in case it was the 1st time
3520 and we had to sync the dirty bitmap.
3521 qemu_clock_get_ns() is a bit expensive, so we only check each some
3524 if ((i & 63) == 0) {
3525 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
3526 if (t1 > MAX_WAIT) {
3527 trace_ram_save_iterate_big_wait(t1, i);
3536 * Must occur before EOS (or any QEMUFile operation)
3537 * because of RDMA protocol.
3539 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3542 multifd_send_sync_main(rs);
3543 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3545 ram_counters.transferred += 8;
3547 ret = qemu_file_get_error(f);
3556 * ram_save_complete: function called to send the remaining amount of ram
3558 * Returns zero to indicate success or negative on error
3560 * Called with iothread lock
3562 * @f: QEMUFile where to send the data
3563 * @opaque: RAMState pointer
3565 static int ram_save_complete(QEMUFile *f, void *opaque)
3567 RAMState **temp = opaque;
3568 RAMState *rs = *temp;
3573 if (!migration_in_postcopy()) {
3574 migration_bitmap_sync_precopy(rs);
3577 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3579 /* try transferring iterative blocks of memory */
3581 /* flush all remaining blocks regardless of rate limiting */
3585 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
3586 /* no more blocks to sent */
3596 flush_compressed_data(rs);
3597 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3601 multifd_send_sync_main(rs);
3602 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3608 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
3609 uint64_t *res_precopy_only,
3610 uint64_t *res_compatible,
3611 uint64_t *res_postcopy_only)
3613 RAMState **temp = opaque;
3614 RAMState *rs = *temp;
3615 uint64_t remaining_size;
3617 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3619 if (!migration_in_postcopy() &&
3620 remaining_size < max_size) {
3621 qemu_mutex_lock_iothread();
3623 migration_bitmap_sync_precopy(rs);
3625 qemu_mutex_unlock_iothread();
3626 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3629 if (migrate_postcopy_ram()) {
3630 /* We can do postcopy, and all the data is postcopiable */
3631 *res_compatible += remaining_size;
3633 *res_precopy_only += remaining_size;
3637 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3639 unsigned int xh_len;
3641 uint8_t *loaded_data;
3643 /* extract RLE header */
3644 xh_flags = qemu_get_byte(f);
3645 xh_len = qemu_get_be16(f);
3647 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3648 error_report("Failed to load XBZRLE page - wrong compression!");
3652 if (xh_len > TARGET_PAGE_SIZE) {
3653 error_report("Failed to load XBZRLE page - len overflow!");
3656 loaded_data = XBZRLE.decoded_buf;
3657 /* load data and decode */
3658 /* it can change loaded_data to point to an internal buffer */
3659 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3662 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3663 TARGET_PAGE_SIZE) == -1) {
3664 error_report("Failed to load XBZRLE page - decode error!");
3672 * ram_block_from_stream: read a RAMBlock id from the migration stream
3674 * Must be called from within a rcu critical section.
3676 * Returns a pointer from within the RCU-protected ram_list.
3678 * @f: QEMUFile where to read the data from
3679 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3681 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
3683 static RAMBlock *block = NULL;
3687 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3689 error_report("Ack, bad migration stream!");
3695 len = qemu_get_byte(f);
3696 qemu_get_buffer(f, (uint8_t *)id, len);
3699 block = qemu_ram_block_by_name(id);
3701 error_report("Can't find block %s", id);
3705 if (ramblock_is_ignored(block)) {
3706 error_report("block %s should not be migrated !", id);
3713 static inline void *host_from_ram_block_offset(RAMBlock *block,
3716 if (!offset_in_ramblock(block, offset)) {
3720 return block->host + offset;
3723 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3726 if (!offset_in_ramblock(block, offset)) {
3729 if (!block->colo_cache) {
3730 error_report("%s: colo_cache is NULL in block :%s",
3731 __func__, block->idstr);
3736 * During colo checkpoint, we need bitmap of these migrated pages.
3737 * It help us to decide which pages in ram cache should be flushed
3738 * into VM's RAM later.
3740 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3741 ram_state->migration_dirty_pages++;
3743 return block->colo_cache + offset;
3747 * ram_handle_compressed: handle the zero page case
3749 * If a page (or a whole RDMA chunk) has been
3750 * determined to be zero, then zap it.
3752 * @host: host address for the zero page
3753 * @ch: what the page is filled from. We only support zero
3754 * @size: size of the zero page
3756 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3758 if (ch != 0 || !is_zero_range(host, size)) {
3759 memset(host, ch, size);
3763 /* return the size after decompression, or negative value on error */
3765 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3766 const uint8_t *source, size_t source_len)
3770 err = inflateReset(stream);
3775 stream->avail_in = source_len;
3776 stream->next_in = (uint8_t *)source;
3777 stream->avail_out = dest_len;
3778 stream->next_out = dest;
3780 err = inflate(stream, Z_NO_FLUSH);
3781 if (err != Z_STREAM_END) {
3785 return stream->total_out;
3788 static void *do_data_decompress(void *opaque)
3790 DecompressParam *param = opaque;
3791 unsigned long pagesize;
3795 qemu_mutex_lock(¶m->mutex);
3796 while (!param->quit) {
3801 qemu_mutex_unlock(¶m->mutex);
3803 pagesize = TARGET_PAGE_SIZE;
3805 ret = qemu_uncompress_data(¶m->stream, des, pagesize,
3806 param->compbuf, len);
3807 if (ret < 0 && migrate_get_current()->decompress_error_check) {
3808 error_report("decompress data failed");
3809 qemu_file_set_error(decomp_file, ret);
3812 qemu_mutex_lock(&decomp_done_lock);
3814 qemu_cond_signal(&decomp_done_cond);
3815 qemu_mutex_unlock(&decomp_done_lock);
3817 qemu_mutex_lock(¶m->mutex);
3819 qemu_cond_wait(¶m->cond, ¶m->mutex);
3822 qemu_mutex_unlock(¶m->mutex);
3827 static int wait_for_decompress_done(void)
3829 int idx, thread_count;
3831 if (!migrate_use_compression()) {
3835 thread_count = migrate_decompress_threads();
3836 qemu_mutex_lock(&decomp_done_lock);
3837 for (idx = 0; idx < thread_count; idx++) {
3838 while (!decomp_param[idx].done) {
3839 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3842 qemu_mutex_unlock(&decomp_done_lock);
3843 return qemu_file_get_error(decomp_file);
3846 static void compress_threads_load_cleanup(void)
3848 int i, thread_count;
3850 if (!migrate_use_compression()) {
3853 thread_count = migrate_decompress_threads();
3854 for (i = 0; i < thread_count; i++) {
3856 * we use it as a indicator which shows if the thread is
3857 * properly init'd or not
3859 if (!decomp_param[i].compbuf) {
3863 qemu_mutex_lock(&decomp_param[i].mutex);
3864 decomp_param[i].quit = true;
3865 qemu_cond_signal(&decomp_param[i].cond);
3866 qemu_mutex_unlock(&decomp_param[i].mutex);
3868 for (i = 0; i < thread_count; i++) {
3869 if (!decomp_param[i].compbuf) {
3873 qemu_thread_join(decompress_threads + i);
3874 qemu_mutex_destroy(&decomp_param[i].mutex);
3875 qemu_cond_destroy(&decomp_param[i].cond);
3876 inflateEnd(&decomp_param[i].stream);
3877 g_free(decomp_param[i].compbuf);
3878 decomp_param[i].compbuf = NULL;
3880 g_free(decompress_threads);
3881 g_free(decomp_param);
3882 decompress_threads = NULL;
3883 decomp_param = NULL;
3887 static int compress_threads_load_setup(QEMUFile *f)
3889 int i, thread_count;
3891 if (!migrate_use_compression()) {
3895 thread_count = migrate_decompress_threads();
3896 decompress_threads = g_new0(QemuThread, thread_count);
3897 decomp_param = g_new0(DecompressParam, thread_count);
3898 qemu_mutex_init(&decomp_done_lock);
3899 qemu_cond_init(&decomp_done_cond);
3901 for (i = 0; i < thread_count; i++) {
3902 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3906 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3907 qemu_mutex_init(&decomp_param[i].mutex);
3908 qemu_cond_init(&decomp_param[i].cond);
3909 decomp_param[i].done = true;
3910 decomp_param[i].quit = false;
3911 qemu_thread_create(decompress_threads + i, "decompress",
3912 do_data_decompress, decomp_param + i,
3913 QEMU_THREAD_JOINABLE);
3917 compress_threads_load_cleanup();
3921 static void decompress_data_with_multi_threads(QEMUFile *f,
3922 void *host, int len)
3924 int idx, thread_count;
3926 thread_count = migrate_decompress_threads();
3927 qemu_mutex_lock(&decomp_done_lock);
3929 for (idx = 0; idx < thread_count; idx++) {
3930 if (decomp_param[idx].done) {
3931 decomp_param[idx].done = false;
3932 qemu_mutex_lock(&decomp_param[idx].mutex);
3933 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
3934 decomp_param[idx].des = host;
3935 decomp_param[idx].len = len;
3936 qemu_cond_signal(&decomp_param[idx].cond);
3937 qemu_mutex_unlock(&decomp_param[idx].mutex);
3941 if (idx < thread_count) {
3944 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3947 qemu_mutex_unlock(&decomp_done_lock);
3951 * colo cache: this is for secondary VM, we cache the whole
3952 * memory of the secondary VM, it is need to hold the global lock
3953 * to call this helper.
3955 int colo_init_ram_cache(void)
3960 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3961 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3964 if (!block->colo_cache) {
3965 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3966 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3967 block->used_length);
3970 memcpy(block->colo_cache, block->host, block->used_length);
3974 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3975 * with to decide which page in cache should be flushed into SVM's RAM. Here
3976 * we use the same name 'ram_bitmap' as for migration.
3978 if (ram_bytes_total()) {
3981 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3982 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3984 block->bmap = bitmap_new(pages);
3985 bitmap_set(block->bmap, 0, pages);
3988 ram_state = g_new0(RAMState, 1);
3989 ram_state->migration_dirty_pages = 0;
3990 qemu_mutex_init(&ram_state->bitmap_mutex);
3991 memory_global_dirty_log_start();
3997 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3998 if (block->colo_cache) {
3999 qemu_anon_ram_free(block->colo_cache, block->used_length);
4000 block->colo_cache = NULL;
4008 /* It is need to hold the global lock to call this helper */
4009 void colo_release_ram_cache(void)
4013 memory_global_dirty_log_stop();
4014 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4015 g_free(block->bmap);
4021 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4022 if (block->colo_cache) {
4023 qemu_anon_ram_free(block->colo_cache, block->used_length);
4024 block->colo_cache = NULL;
4029 qemu_mutex_destroy(&ram_state->bitmap_mutex);
4035 * ram_load_setup: Setup RAM for migration incoming side
4037 * Returns zero to indicate success and negative for error
4039 * @f: QEMUFile where to receive the data
4040 * @opaque: RAMState pointer
4042 static int ram_load_setup(QEMUFile *f, void *opaque)
4044 if (compress_threads_load_setup(f)) {
4048 xbzrle_load_setup();
4049 ramblock_recv_map_init();
4054 static int ram_load_cleanup(void *opaque)
4058 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4059 if (ramblock_is_pmem(rb)) {
4060 pmem_persist(rb->host, rb->used_length);
4064 xbzrle_load_cleanup();
4065 compress_threads_load_cleanup();
4067 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4068 g_free(rb->receivedmap);
4069 rb->receivedmap = NULL;
4076 * ram_postcopy_incoming_init: allocate postcopy data structures
4078 * Returns 0 for success and negative if there was one error
4080 * @mis: current migration incoming state
4082 * Allocate data structures etc needed by incoming migration with
4083 * postcopy-ram. postcopy-ram's similarly names
4084 * postcopy_ram_incoming_init does the work.
4086 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
4088 return postcopy_ram_incoming_init(mis);
4092 * ram_load_postcopy: load a page in postcopy case
4094 * Returns 0 for success or -errno in case of error
4096 * Called in postcopy mode by ram_load().
4097 * rcu_read_lock is taken prior to this being called.
4099 * @f: QEMUFile where to send the data
4101 static int ram_load_postcopy(QEMUFile *f)
4103 int flags = 0, ret = 0;
4104 bool place_needed = false;
4105 bool matches_target_page_size = false;
4106 MigrationIncomingState *mis = migration_incoming_get_current();
4107 /* Temporary page that is later 'placed' */
4108 void *postcopy_host_page = postcopy_get_tmp_page(mis);
4109 void *last_host = NULL;
4110 bool all_zero = false;
4112 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4115 void *page_buffer = NULL;
4116 void *place_source = NULL;
4117 RAMBlock *block = NULL;
4120 addr = qemu_get_be64(f);
4123 * If qemu file error, we should stop here, and then "addr"
4126 ret = qemu_file_get_error(f);
4131 flags = addr & ~TARGET_PAGE_MASK;
4132 addr &= TARGET_PAGE_MASK;
4134 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
4135 place_needed = false;
4136 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
4137 block = ram_block_from_stream(f, flags);
4139 host = host_from_ram_block_offset(block, addr);
4141 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4145 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
4147 * Postcopy requires that we place whole host pages atomically;
4148 * these may be huge pages for RAMBlocks that are backed by
4150 * To make it atomic, the data is read into a temporary page
4151 * that's moved into place later.
4152 * The migration protocol uses, possibly smaller, target-pages
4153 * however the source ensures it always sends all the components
4154 * of a host page in order.
4156 page_buffer = postcopy_host_page +
4157 ((uintptr_t)host & (block->page_size - 1));
4158 /* If all TP are zero then we can optimise the place */
4159 if (!((uintptr_t)host & (block->page_size - 1))) {
4162 /* not the 1st TP within the HP */
4163 if (host != (last_host + TARGET_PAGE_SIZE)) {
4164 error_report("Non-sequential target page %p/%p",
4173 * If it's the last part of a host page then we place the host
4176 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
4177 (block->page_size - 1)) == 0;
4178 place_source = postcopy_host_page;
4182 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4183 case RAM_SAVE_FLAG_ZERO:
4184 ch = qemu_get_byte(f);
4185 memset(page_buffer, ch, TARGET_PAGE_SIZE);
4191 case RAM_SAVE_FLAG_PAGE:
4193 if (!matches_target_page_size) {
4194 /* For huge pages, we always use temporary buffer */
4195 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
4198 * For small pages that matches target page size, we
4199 * avoid the qemu_file copy. Instead we directly use
4200 * the buffer of QEMUFile to place the page. Note: we
4201 * cannot do any QEMUFile operation before using that
4202 * buffer to make sure the buffer is valid when
4205 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
4209 case RAM_SAVE_FLAG_EOS:
4211 multifd_recv_sync_main();
4214 error_report("Unknown combination of migration flags: %#x"
4215 " (postcopy mode)", flags);
4220 /* Detect for any possible file errors */
4221 if (!ret && qemu_file_get_error(f)) {
4222 ret = qemu_file_get_error(f);
4225 if (!ret && place_needed) {
4226 /* This gets called at the last target page in the host page */
4227 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
4230 ret = postcopy_place_page_zero(mis, place_dest,
4233 ret = postcopy_place_page(mis, place_dest,
4234 place_source, block);
4242 static bool postcopy_is_advised(void)
4244 PostcopyState ps = postcopy_state_get();
4245 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
4248 static bool postcopy_is_running(void)
4250 PostcopyState ps = postcopy_state_get();
4251 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
4255 * Flush content of RAM cache into SVM's memory.
4256 * Only flush the pages that be dirtied by PVM or SVM or both.
4258 static void colo_flush_ram_cache(void)
4260 RAMBlock *block = NULL;
4263 unsigned long offset = 0;
4265 memory_global_dirty_log_sync();
4267 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4268 ramblock_sync_dirty_bitmap(ram_state, block);
4272 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
4274 block = QLIST_FIRST_RCU(&ram_list.blocks);
4277 offset = migration_bitmap_find_dirty(ram_state, block, offset);
4279 if (offset << TARGET_PAGE_BITS >= block->used_length) {
4281 block = QLIST_NEXT_RCU(block, next);
4283 migration_bitmap_clear_dirty(ram_state, block, offset);
4284 dst_host = block->host + (offset << TARGET_PAGE_BITS);
4285 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS);
4286 memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
4291 trace_colo_flush_ram_cache_end();
4295 * ram_load_precopy: load pages in precopy case
4297 * Returns 0 for success or -errno in case of error
4299 * Called in precopy mode by ram_load().
4300 * rcu_read_lock is taken prior to this being called.
4302 * @f: QEMUFile where to send the data
4304 static int ram_load_precopy(QEMUFile *f)
4306 int flags = 0, ret = 0, invalid_flags = 0, len = 0;
4307 /* ADVISE is earlier, it shows the source has the postcopy capability on */
4308 bool postcopy_advised = postcopy_is_advised();
4309 if (!migrate_use_compression()) {
4310 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4313 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4314 ram_addr_t addr, total_ram_bytes;
4318 addr = qemu_get_be64(f);
4319 flags = addr & ~TARGET_PAGE_MASK;
4320 addr &= TARGET_PAGE_MASK;
4322 if (flags & invalid_flags) {
4323 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4324 error_report("Received an unexpected compressed page");
4331 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4332 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4333 RAMBlock *block = ram_block_from_stream(f, flags);
4336 * After going into COLO, we should load the Page into colo_cache.
4338 if (migration_incoming_in_colo_state()) {
4339 host = colo_cache_from_block_offset(block, addr);
4341 host = host_from_ram_block_offset(block, addr);
4344 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4349 if (!migration_incoming_in_colo_state()) {
4350 ramblock_recv_bitmap_set(block, host);
4353 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4356 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4357 case RAM_SAVE_FLAG_MEM_SIZE:
4358 /* Synchronize RAM block list */
4359 total_ram_bytes = addr;
4360 while (!ret && total_ram_bytes) {
4365 len = qemu_get_byte(f);
4366 qemu_get_buffer(f, (uint8_t *)id, len);
4368 length = qemu_get_be64(f);
4370 block = qemu_ram_block_by_name(id);
4371 if (block && !qemu_ram_is_migratable(block)) {
4372 error_report("block %s should not be migrated !", id);
4375 if (length != block->used_length) {
4376 Error *local_err = NULL;
4378 ret = qemu_ram_resize(block, length,
4381 error_report_err(local_err);
4384 /* For postcopy we need to check hugepage sizes match */
4385 if (postcopy_advised &&
4386 block->page_size != qemu_host_page_size) {
4387 uint64_t remote_page_size = qemu_get_be64(f);
4388 if (remote_page_size != block->page_size) {
4389 error_report("Mismatched RAM page size %s "
4390 "(local) %zd != %" PRId64,
4391 id, block->page_size,
4396 if (migrate_ignore_shared()) {
4397 hwaddr addr = qemu_get_be64(f);
4398 if (ramblock_is_ignored(block) &&
4399 block->mr->addr != addr) {
4400 error_report("Mismatched GPAs for block %s "
4401 "%" PRId64 "!= %" PRId64,
4403 (uint64_t)block->mr->addr);
4407 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4410 error_report("Unknown ramblock \"%s\", cannot "
4411 "accept migration", id);
4415 total_ram_bytes -= length;
4419 case RAM_SAVE_FLAG_ZERO:
4420 ch = qemu_get_byte(f);
4421 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4424 case RAM_SAVE_FLAG_PAGE:
4425 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4428 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4429 len = qemu_get_be32(f);
4430 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4431 error_report("Invalid compressed data length: %d", len);
4435 decompress_data_with_multi_threads(f, host, len);
4438 case RAM_SAVE_FLAG_XBZRLE:
4439 if (load_xbzrle(f, addr, host) < 0) {
4440 error_report("Failed to decompress XBZRLE page at "
4441 RAM_ADDR_FMT, addr);
4446 case RAM_SAVE_FLAG_EOS:
4448 multifd_recv_sync_main();
4451 if (flags & RAM_SAVE_FLAG_HOOK) {
4452 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
4454 error_report("Unknown combination of migration flags: %#x",
4460 ret = qemu_file_get_error(f);
4467 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4470 static uint64_t seq_iter;
4472 * If system is running in postcopy mode, page inserts to host memory must
4475 bool postcopy_running = postcopy_is_running();
4479 if (version_id != 4) {
4484 * This RCU critical section can be very long running.
4485 * When RCU reclaims in the code start to become numerous,
4486 * it will be necessary to reduce the granularity of this
4491 if (postcopy_running) {
4492 ret = ram_load_postcopy(f);
4494 ret = ram_load_precopy(f);
4497 ret |= wait_for_decompress_done();
4499 trace_ram_load_complete(ret, seq_iter);
4501 if (!ret && migration_incoming_in_colo_state()) {
4502 colo_flush_ram_cache();
4507 static bool ram_has_postcopy(void *opaque)
4510 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4511 if (ramblock_is_pmem(rb)) {
4512 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4513 "is not supported now!", rb->idstr, rb->host);
4518 return migrate_postcopy_ram();
4521 /* Sync all the dirty bitmap with destination VM. */
4522 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4525 QEMUFile *file = s->to_dst_file;
4526 int ramblock_count = 0;
4528 trace_ram_dirty_bitmap_sync_start();
4530 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4531 qemu_savevm_send_recv_bitmap(file, block->idstr);
4532 trace_ram_dirty_bitmap_request(block->idstr);
4536 trace_ram_dirty_bitmap_sync_wait();
4538 /* Wait until all the ramblocks' dirty bitmap synced */
4539 while (ramblock_count--) {
4540 qemu_sem_wait(&s->rp_state.rp_sem);
4543 trace_ram_dirty_bitmap_sync_complete();
4548 static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4550 qemu_sem_post(&s->rp_state.rp_sem);
4554 * Read the received bitmap, revert it as the initial dirty bitmap.
4555 * This is only used when the postcopy migration is paused but wants
4556 * to resume from a middle point.
4558 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4561 QEMUFile *file = s->rp_state.from_dst_file;
4562 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
4563 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4564 uint64_t size, end_mark;
4566 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4568 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4569 error_report("%s: incorrect state %s", __func__,
4570 MigrationStatus_str(s->state));
4575 * Note: see comments in ramblock_recv_bitmap_send() on why we
4576 * need the endianess convertion, and the paddings.
4578 local_size = ROUND_UP(local_size, 8);
4581 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4583 size = qemu_get_be64(file);
4585 /* The size of the bitmap should match with our ramblock */
4586 if (size != local_size) {
4587 error_report("%s: ramblock '%s' bitmap size mismatch "
4588 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4589 block->idstr, size, local_size);
4594 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4595 end_mark = qemu_get_be64(file);
4597 ret = qemu_file_get_error(file);
4598 if (ret || size != local_size) {
4599 error_report("%s: read bitmap failed for ramblock '%s': %d"
4600 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4601 __func__, block->idstr, ret, local_size, size);
4606 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4607 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4608 __func__, block->idstr, end_mark);
4614 * Endianess convertion. We are during postcopy (though paused).
4615 * The dirty bitmap won't change. We can directly modify it.
4617 bitmap_from_le(block->bmap, le_bitmap, nbits);
4620 * What we received is "received bitmap". Revert it as the initial
4621 * dirty bitmap for this ramblock.
4623 bitmap_complement(block->bmap, block->bmap, nbits);
4625 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4628 * We succeeded to sync bitmap for current ramblock. If this is
4629 * the last one to sync, we need to notify the main send thread.
4631 ram_dirty_bitmap_reload_notify(s);
4639 static int ram_resume_prepare(MigrationState *s, void *opaque)
4641 RAMState *rs = *(RAMState **)opaque;
4644 ret = ram_dirty_bitmap_sync_all(s, rs);
4649 ram_state_resume_prepare(rs, s->to_dst_file);
4654 static SaveVMHandlers savevm_ram_handlers = {
4655 .save_setup = ram_save_setup,
4656 .save_live_iterate = ram_save_iterate,
4657 .save_live_complete_postcopy = ram_save_complete,
4658 .save_live_complete_precopy = ram_save_complete,
4659 .has_postcopy = ram_has_postcopy,
4660 .save_live_pending = ram_save_pending,
4661 .load_state = ram_load,
4662 .save_cleanup = ram_save_cleanup,
4663 .load_setup = ram_load_setup,
4664 .load_cleanup = ram_load_cleanup,
4665 .resume_prepare = ram_resume_prepare,
4668 void ram_mig_init(void)
4670 qemu_mutex_init(&XBZRLE.lock);
4671 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);