]> Git Repo - qemu.git/blob - hw/i386/kvmvapic.c
Merge branch 'icount-update' into HEAD
[qemu.git] / hw / i386 / kvmvapic.c
1 /*
2  * TPR optimization for 32-bit Windows guests (XP and Server 2003)
3  *
4  * Copyright (C) 2007-2008 Qumranet Technologies
5  * Copyright (C) 2012      Jan Kiszka, Siemens AG
6  *
7  * This work is licensed under the terms of the GNU GPL version 2, or
8  * (at your option) any later version. See the COPYING file in the
9  * top-level directory.
10  */
11 #include "qemu/osdep.h"
12 #include "qemu-common.h"
13 #include "cpu.h"
14 #include "exec/exec-all.h"
15 #include "sysemu/sysemu.h"
16 #include "sysemu/cpus.h"
17 #include "sysemu/hw_accel.h"
18 #include "sysemu/kvm.h"
19 #include "hw/i386/apic_internal.h"
20 #include "hw/sysbus.h"
21 #include "tcg/tcg.h"
22
23 #define VAPIC_IO_PORT           0x7e
24
25 #define VAPIC_CPU_SHIFT         7
26
27 #define ROM_BLOCK_SIZE          512
28 #define ROM_BLOCK_MASK          (~(ROM_BLOCK_SIZE - 1))
29
30 typedef enum VAPICMode {
31     VAPIC_INACTIVE = 0,
32     VAPIC_ACTIVE   = 1,
33     VAPIC_STANDBY  = 2,
34 } VAPICMode;
35
36 typedef struct VAPICHandlers {
37     uint32_t set_tpr;
38     uint32_t set_tpr_eax;
39     uint32_t get_tpr[8];
40     uint32_t get_tpr_stack;
41 } QEMU_PACKED VAPICHandlers;
42
43 typedef struct GuestROMState {
44     char signature[8];
45     uint32_t vaddr;
46     uint32_t fixup_start;
47     uint32_t fixup_end;
48     uint32_t vapic_vaddr;
49     uint32_t vapic_size;
50     uint32_t vcpu_shift;
51     uint32_t real_tpr_addr;
52     VAPICHandlers up;
53     VAPICHandlers mp;
54 } QEMU_PACKED GuestROMState;
55
56 typedef struct VAPICROMState {
57     SysBusDevice busdev;
58     MemoryRegion io;
59     MemoryRegion rom;
60     uint32_t state;
61     uint32_t rom_state_paddr;
62     uint32_t rom_state_vaddr;
63     uint32_t vapic_paddr;
64     uint32_t real_tpr_addr;
65     GuestROMState rom_state;
66     size_t rom_size;
67     bool rom_mapped_writable;
68     VMChangeStateEntry *vmsentry;
69 } VAPICROMState;
70
71 #define TYPE_VAPIC "kvmvapic"
72 #define VAPIC(obj) OBJECT_CHECK(VAPICROMState, (obj), TYPE_VAPIC)
73
74 #define TPR_INSTR_ABS_MODRM             0x1
75 #define TPR_INSTR_MATCH_MODRM_REG       0x2
76
77 typedef struct TPRInstruction {
78     uint8_t opcode;
79     uint8_t modrm_reg;
80     unsigned int flags;
81     TPRAccess access;
82     size_t length;
83     off_t addr_offset;
84 } TPRInstruction;
85
86 /* must be sorted by length, shortest first */
87 static const TPRInstruction tpr_instr[] = {
88     { /* mov abs to eax */
89         .opcode = 0xa1,
90         .access = TPR_ACCESS_READ,
91         .length = 5,
92         .addr_offset = 1,
93     },
94     { /* mov eax to abs */
95         .opcode = 0xa3,
96         .access = TPR_ACCESS_WRITE,
97         .length = 5,
98         .addr_offset = 1,
99     },
100     { /* mov r32 to r/m32 */
101         .opcode = 0x89,
102         .flags = TPR_INSTR_ABS_MODRM,
103         .access = TPR_ACCESS_WRITE,
104         .length = 6,
105         .addr_offset = 2,
106     },
107     { /* mov r/m32 to r32 */
108         .opcode = 0x8b,
109         .flags = TPR_INSTR_ABS_MODRM,
110         .access = TPR_ACCESS_READ,
111         .length = 6,
112         .addr_offset = 2,
113     },
114     { /* push r/m32 */
115         .opcode = 0xff,
116         .modrm_reg = 6,
117         .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
118         .access = TPR_ACCESS_READ,
119         .length = 6,
120         .addr_offset = 2,
121     },
122     { /* mov imm32, r/m32 (c7/0) */
123         .opcode = 0xc7,
124         .modrm_reg = 0,
125         .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
126         .access = TPR_ACCESS_WRITE,
127         .length = 10,
128         .addr_offset = 2,
129     },
130 };
131
132 static void read_guest_rom_state(VAPICROMState *s)
133 {
134     cpu_physical_memory_read(s->rom_state_paddr, &s->rom_state,
135                              sizeof(GuestROMState));
136 }
137
138 static void write_guest_rom_state(VAPICROMState *s)
139 {
140     cpu_physical_memory_write(s->rom_state_paddr, &s->rom_state,
141                               sizeof(GuestROMState));
142 }
143
144 static void update_guest_rom_state(VAPICROMState *s)
145 {
146     read_guest_rom_state(s);
147
148     s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr);
149     s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT);
150
151     write_guest_rom_state(s);
152 }
153
154 static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env)
155 {
156     CPUState *cs = CPU(x86_env_get_cpu(env));
157     hwaddr paddr;
158     target_ulong addr;
159
160     if (s->state == VAPIC_ACTIVE) {
161         return 0;
162     }
163     /*
164      * If there is no prior TPR access instruction we could analyze (which is
165      * the case after resume from hibernation), we need to scan the possible
166      * virtual address space for the APIC mapping.
167      */
168     for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) {
169         paddr = cpu_get_phys_page_debug(cs, addr);
170         if (paddr != APIC_DEFAULT_ADDRESS) {
171             continue;
172         }
173         s->real_tpr_addr = addr + 0x80;
174         update_guest_rom_state(s);
175         return 0;
176     }
177     return -1;
178 }
179
180 static uint8_t modrm_reg(uint8_t modrm)
181 {
182     return (modrm >> 3) & 7;
183 }
184
185 static bool is_abs_modrm(uint8_t modrm)
186 {
187     return (modrm & 0xc7) == 0x05;
188 }
189
190 static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr)
191 {
192     return opcode[0] == instr->opcode &&
193         (!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) &&
194         (!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) ||
195          modrm_reg(opcode[1]) == instr->modrm_reg);
196 }
197
198 static int evaluate_tpr_instruction(VAPICROMState *s, X86CPU *cpu,
199                                     target_ulong *pip, TPRAccess access)
200 {
201     CPUState *cs = CPU(cpu);
202     const TPRInstruction *instr;
203     target_ulong ip = *pip;
204     uint8_t opcode[2];
205     uint32_t real_tpr_addr;
206     int i;
207
208     if ((ip & 0xf0000000ULL) != 0x80000000ULL &&
209         (ip & 0xf0000000ULL) != 0xe0000000ULL) {
210         return -1;
211     }
212
213     /*
214      * Early Windows 2003 SMP initialization contains a
215      *
216      *   mov imm32, r/m32
217      *
218      * instruction that is patched by TPR optimization. The problem is that
219      * RSP, used by the patched instruction, is zero, so the guest gets a
220      * double fault and dies.
221      */
222     if (cpu->env.regs[R_ESP] == 0) {
223         return -1;
224     }
225
226     if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
227         /*
228          * KVM without kernel-based TPR access reporting will pass an IP that
229          * points after the accessing instruction. So we need to look backward
230          * to find the reason.
231          */
232         for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
233             instr = &tpr_instr[i];
234             if (instr->access != access) {
235                 continue;
236             }
237             if (cpu_memory_rw_debug(cs, ip - instr->length, opcode,
238                                     sizeof(opcode), 0) < 0) {
239                 return -1;
240             }
241             if (opcode_matches(opcode, instr)) {
242                 ip -= instr->length;
243                 goto instruction_ok;
244             }
245         }
246         return -1;
247     } else {
248         if (cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0) < 0) {
249             return -1;
250         }
251         for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
252             instr = &tpr_instr[i];
253             if (opcode_matches(opcode, instr)) {
254                 goto instruction_ok;
255             }
256         }
257         return -1;
258     }
259
260 instruction_ok:
261     /*
262      * Grab the virtual TPR address from the instruction
263      * and update the cached values.
264      */
265     if (cpu_memory_rw_debug(cs, ip + instr->addr_offset,
266                             (void *)&real_tpr_addr,
267                             sizeof(real_tpr_addr), 0) < 0) {
268         return -1;
269     }
270     real_tpr_addr = le32_to_cpu(real_tpr_addr);
271     if ((real_tpr_addr & 0xfff) != 0x80) {
272         return -1;
273     }
274     s->real_tpr_addr = real_tpr_addr;
275     update_guest_rom_state(s);
276
277     *pip = ip;
278     return 0;
279 }
280
281 static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip)
282 {
283     CPUState *cs = CPU(x86_env_get_cpu(env));
284     hwaddr paddr;
285     uint32_t rom_state_vaddr;
286     uint32_t pos, patch, offset;
287
288     /* nothing to do if already activated */
289     if (s->state == VAPIC_ACTIVE) {
290         return 0;
291     }
292
293     /* bail out if ROM init code was not executed (missing ROM?) */
294     if (s->state == VAPIC_INACTIVE) {
295         return -1;
296     }
297
298     /* find out virtual address of the ROM */
299     rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000);
300     paddr = cpu_get_phys_page_debug(cs, rom_state_vaddr);
301     if (paddr == -1) {
302         return -1;
303     }
304     paddr += rom_state_vaddr & ~TARGET_PAGE_MASK;
305     if (paddr != s->rom_state_paddr) {
306         return -1;
307     }
308     read_guest_rom_state(s);
309     if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) {
310         return -1;
311     }
312     s->rom_state_vaddr = rom_state_vaddr;
313
314     /* fixup addresses in ROM if needed */
315     if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) {
316         return 0;
317     }
318     for (pos = le32_to_cpu(s->rom_state.fixup_start);
319          pos < le32_to_cpu(s->rom_state.fixup_end);
320          pos += 4) {
321         cpu_physical_memory_read(paddr + pos - s->rom_state.vaddr,
322                                  &offset, sizeof(offset));
323         offset = le32_to_cpu(offset);
324         cpu_physical_memory_read(paddr + offset, &patch, sizeof(patch));
325         patch = le32_to_cpu(patch);
326         patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr);
327         patch = cpu_to_le32(patch);
328         cpu_physical_memory_write(paddr + offset, &patch, sizeof(patch));
329     }
330     read_guest_rom_state(s);
331     s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) -
332         le32_to_cpu(s->rom_state.vaddr);
333
334     return 0;
335 }
336
337 /*
338  * Tries to read the unique processor number from the Kernel Processor Control
339  * Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
340  * cannot be accessed or is considered invalid. This also ensures that we are
341  * not patching the wrong guest.
342  */
343 static int get_kpcr_number(X86CPU *cpu)
344 {
345     CPUX86State *env = &cpu->env;
346     struct kpcr {
347         uint8_t  fill1[0x1c];
348         uint32_t self;
349         uint8_t  fill2[0x31];
350         uint8_t  number;
351     } QEMU_PACKED kpcr;
352
353     if (cpu_memory_rw_debug(CPU(cpu), env->segs[R_FS].base,
354                             (void *)&kpcr, sizeof(kpcr), 0) < 0 ||
355         kpcr.self != env->segs[R_FS].base) {
356         return -1;
357     }
358     return kpcr.number;
359 }
360
361 static int vapic_enable(VAPICROMState *s, X86CPU *cpu)
362 {
363     int cpu_number = get_kpcr_number(cpu);
364     hwaddr vapic_paddr;
365     static const uint8_t enabled = 1;
366
367     if (cpu_number < 0) {
368         return -1;
369     }
370     vapic_paddr = s->vapic_paddr +
371         (((hwaddr)cpu_number) << VAPIC_CPU_SHIFT);
372     cpu_physical_memory_write(vapic_paddr + offsetof(VAPICState, enabled),
373                               &enabled, sizeof(enabled));
374     apic_enable_vapic(cpu->apic_state, vapic_paddr);
375
376     s->state = VAPIC_ACTIVE;
377
378     return 0;
379 }
380
381 static void patch_byte(X86CPU *cpu, target_ulong addr, uint8_t byte)
382 {
383     cpu_memory_rw_debug(CPU(cpu), addr, &byte, 1, 1);
384 }
385
386 static void patch_call(VAPICROMState *s, X86CPU *cpu, target_ulong ip,
387                        uint32_t target)
388 {
389     uint32_t offset;
390
391     offset = cpu_to_le32(target - ip - 5);
392     patch_byte(cpu, ip, 0xe8); /* call near */
393     cpu_memory_rw_debug(CPU(cpu), ip + 1, (void *)&offset, sizeof(offset), 1);
394 }
395
396 static void patch_instruction(VAPICROMState *s, X86CPU *cpu, target_ulong ip)
397 {
398     CPUState *cs = CPU(cpu);
399     CPUX86State *env = &cpu->env;
400     VAPICHandlers *handlers;
401     uint8_t opcode[2];
402     uint32_t imm32 = 0;
403     target_ulong current_pc = 0;
404     target_ulong current_cs_base = 0;
405     uint32_t current_flags = 0;
406
407     if (smp_cpus == 1) {
408         handlers = &s->rom_state.up;
409     } else {
410         handlers = &s->rom_state.mp;
411     }
412
413     if (!kvm_enabled()) {
414         cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
415                              &current_flags);
416         /* Account this instruction, because we will exit the tb.
417            This is the first instruction in the block. Therefore
418            there is no need in restoring CPU state. */
419         if (use_icount) {
420             --cs->icount_decr.u16.low;
421         }
422     }
423
424     pause_all_vcpus();
425
426     cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0);
427
428     switch (opcode[0]) {
429     case 0x89: /* mov r32 to r/m32 */
430         patch_byte(cpu, ip, 0x50 + modrm_reg(opcode[1]));  /* push reg */
431         patch_call(s, cpu, ip + 1, handlers->set_tpr);
432         break;
433     case 0x8b: /* mov r/m32 to r32 */
434         patch_byte(cpu, ip, 0x90);
435         patch_call(s, cpu, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]);
436         break;
437     case 0xa1: /* mov abs to eax */
438         patch_call(s, cpu, ip, handlers->get_tpr[0]);
439         break;
440     case 0xa3: /* mov eax to abs */
441         patch_call(s, cpu, ip, handlers->set_tpr_eax);
442         break;
443     case 0xc7: /* mov imm32, r/m32 (c7/0) */
444         patch_byte(cpu, ip, 0x68);  /* push imm32 */
445         cpu_memory_rw_debug(cs, ip + 6, (void *)&imm32, sizeof(imm32), 0);
446         cpu_memory_rw_debug(cs, ip + 1, (void *)&imm32, sizeof(imm32), 1);
447         patch_call(s, cpu, ip + 5, handlers->set_tpr);
448         break;
449     case 0xff: /* push r/m32 */
450         patch_byte(cpu, ip, 0x50); /* push eax */
451         patch_call(s, cpu, ip + 1, handlers->get_tpr_stack);
452         break;
453     default:
454         abort();
455     }
456
457     resume_all_vcpus();
458
459     if (!kvm_enabled()) {
460         /* Both tb_lock and iothread_mutex will be reset when
461          *  longjmps back into the cpu_exec loop. */
462         tb_lock();
463         tb_gen_code(cs, current_pc, current_cs_base, current_flags, 1);
464         cpu_loop_exit_noexc(cs);
465     }
466 }
467
468 void vapic_report_tpr_access(DeviceState *dev, CPUState *cs, target_ulong ip,
469                              TPRAccess access)
470 {
471     VAPICROMState *s = VAPIC(dev);
472     X86CPU *cpu = X86_CPU(cs);
473     CPUX86State *env = &cpu->env;
474
475     cpu_synchronize_state(cs);
476
477     if (evaluate_tpr_instruction(s, cpu, &ip, access) < 0) {
478         if (s->state == VAPIC_ACTIVE) {
479             vapic_enable(s, cpu);
480         }
481         return;
482     }
483     if (update_rom_mapping(s, env, ip) < 0) {
484         return;
485     }
486     if (vapic_enable(s, cpu) < 0) {
487         return;
488     }
489     patch_instruction(s, cpu, ip);
490 }
491
492 typedef struct VAPICEnableTPRReporting {
493     DeviceState *apic;
494     bool enable;
495 } VAPICEnableTPRReporting;
496
497 static void vapic_do_enable_tpr_reporting(CPUState *cpu, run_on_cpu_data data)
498 {
499     VAPICEnableTPRReporting *info = data.host_ptr;
500     apic_enable_tpr_access_reporting(info->apic, info->enable);
501 }
502
503 static void vapic_enable_tpr_reporting(bool enable)
504 {
505     VAPICEnableTPRReporting info = {
506         .enable = enable,
507     };
508     CPUState *cs;
509     X86CPU *cpu;
510
511     CPU_FOREACH(cs) {
512         cpu = X86_CPU(cs);
513         info.apic = cpu->apic_state;
514         run_on_cpu(cs, vapic_do_enable_tpr_reporting, RUN_ON_CPU_HOST_PTR(&info));
515     }
516 }
517
518 static void vapic_reset(DeviceState *dev)
519 {
520     VAPICROMState *s = VAPIC(dev);
521
522     s->state = VAPIC_INACTIVE;
523     s->rom_state_paddr = 0;
524     vapic_enable_tpr_reporting(false);
525 }
526
527 /*
528  * Set the IRQ polling hypercalls to the supported variant:
529  *  - vmcall if using KVM in-kernel irqchip
530  *  - 32-bit VAPIC port write otherwise
531  */
532 static int patch_hypercalls(VAPICROMState *s)
533 {
534     hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
535     static const uint8_t vmcall_pattern[] = { /* vmcall */
536         0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
537     };
538     static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */
539         0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
540     };
541     uint8_t alternates[2];
542     const uint8_t *pattern;
543     const uint8_t *patch;
544     off_t pos;
545     uint8_t *rom;
546
547     rom = g_malloc(s->rom_size);
548     cpu_physical_memory_read(rom_paddr, rom, s->rom_size);
549
550     for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) {
551         if (kvm_irqchip_in_kernel()) {
552             pattern = outl_pattern;
553             alternates[0] = outl_pattern[7];
554             alternates[1] = outl_pattern[7];
555             patch = &vmcall_pattern[5];
556         } else {
557             pattern = vmcall_pattern;
558             alternates[0] = vmcall_pattern[7];
559             alternates[1] = 0xd9; /* AMD's VMMCALL */
560             patch = &outl_pattern[5];
561         }
562         if (memcmp(rom + pos, pattern, 7) == 0 &&
563             (rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) {
564             cpu_physical_memory_write(rom_paddr + pos + 5, patch, 3);
565             /*
566              * Don't flush the tb here. Under ordinary conditions, the patched
567              * calls are miles away from the current IP. Under malicious
568              * conditions, the guest could trick us to crash.
569              */
570         }
571     }
572
573     g_free(rom);
574     return 0;
575 }
576
577 /*
578  * For TCG mode or the time KVM honors read-only memory regions, we need to
579  * enable write access to the option ROM so that variables can be updated by
580  * the guest.
581  */
582 static int vapic_map_rom_writable(VAPICROMState *s)
583 {
584     hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
585     MemoryRegionSection section;
586     MemoryRegion *as;
587     size_t rom_size;
588     uint8_t *ram;
589
590     as = sysbus_address_space(&s->busdev);
591
592     if (s->rom_mapped_writable) {
593         memory_region_del_subregion(as, &s->rom);
594         object_unparent(OBJECT(&s->rom));
595     }
596
597     /* grab RAM memory region (region @rom_paddr may still be pc.rom) */
598     section = memory_region_find(as, 0, 1);
599
600     /* read ROM size from RAM region */
601     if (rom_paddr + 2 >= memory_region_size(section.mr)) {
602         return -1;
603     }
604     ram = memory_region_get_ram_ptr(section.mr);
605     rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE;
606     if (rom_size == 0) {
607         return -1;
608     }
609     s->rom_size = rom_size;
610
611     /* We need to round to avoid creating subpages
612      * from which we cannot run code. */
613     rom_size += rom_paddr & ~TARGET_PAGE_MASK;
614     rom_paddr &= TARGET_PAGE_MASK;
615     rom_size = TARGET_PAGE_ALIGN(rom_size);
616
617     memory_region_init_alias(&s->rom, OBJECT(s), "kvmvapic-rom", section.mr,
618                              rom_paddr, rom_size);
619     memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000);
620     s->rom_mapped_writable = true;
621     memory_region_unref(section.mr);
622
623     return 0;
624 }
625
626 static int vapic_prepare(VAPICROMState *s)
627 {
628     if (vapic_map_rom_writable(s) < 0) {
629         return -1;
630     }
631
632     if (patch_hypercalls(s) < 0) {
633         return -1;
634     }
635
636     vapic_enable_tpr_reporting(true);
637
638     return 0;
639 }
640
641 static void vapic_write(void *opaque, hwaddr addr, uint64_t data,
642                         unsigned int size)
643 {
644     VAPICROMState *s = opaque;
645     X86CPU *cpu;
646     CPUX86State *env;
647     hwaddr rom_paddr;
648
649     if (!current_cpu) {
650         return;
651     }
652
653     cpu_synchronize_state(current_cpu);
654     cpu = X86_CPU(current_cpu);
655     env = &cpu->env;
656
657     /*
658      * The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
659      *  o 16-bit write access:
660      *    Reports the option ROM initialization to the hypervisor. Written
661      *    value is the offset of the state structure in the ROM.
662      *  o 8-bit write access:
663      *    Reactivates the VAPIC after a guest hibernation, i.e. after the
664      *    option ROM content has been re-initialized by a guest power cycle.
665      *  o 32-bit write access:
666      *    Poll for pending IRQs, considering the current VAPIC state.
667      */
668     switch (size) {
669     case 2:
670         if (s->state == VAPIC_INACTIVE) {
671             rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK;
672             s->rom_state_paddr = rom_paddr + data;
673
674             s->state = VAPIC_STANDBY;
675         }
676         if (vapic_prepare(s) < 0) {
677             s->state = VAPIC_INACTIVE;
678             s->rom_state_paddr = 0;
679             break;
680         }
681         break;
682     case 1:
683         if (kvm_enabled()) {
684             /*
685              * Disable triggering instruction in ROM by writing a NOP.
686              *
687              * We cannot do this in TCG mode as the reported IP is not
688              * accurate.
689              */
690             pause_all_vcpus();
691             patch_byte(cpu, env->eip - 2, 0x66);
692             patch_byte(cpu, env->eip - 1, 0x90);
693             resume_all_vcpus();
694         }
695
696         if (s->state == VAPIC_ACTIVE) {
697             break;
698         }
699         if (update_rom_mapping(s, env, env->eip) < 0) {
700             break;
701         }
702         if (find_real_tpr_addr(s, env) < 0) {
703             break;
704         }
705         vapic_enable(s, cpu);
706         break;
707     default:
708     case 4:
709         if (!kvm_irqchip_in_kernel()) {
710             apic_poll_irq(cpu->apic_state);
711         }
712         break;
713     }
714 }
715
716 static uint64_t vapic_read(void *opaque, hwaddr addr, unsigned size)
717 {
718     return 0xffffffff;
719 }
720
721 static const MemoryRegionOps vapic_ops = {
722     .write = vapic_write,
723     .read = vapic_read,
724     .endianness = DEVICE_NATIVE_ENDIAN,
725 };
726
727 static void vapic_realize(DeviceState *dev, Error **errp)
728 {
729     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
730     VAPICROMState *s = VAPIC(dev);
731
732     memory_region_init_io(&s->io, OBJECT(s), &vapic_ops, s, "kvmvapic", 2);
733     sysbus_add_io(sbd, VAPIC_IO_PORT, &s->io);
734     sysbus_init_ioports(sbd, VAPIC_IO_PORT, 2);
735
736     option_rom[nb_option_roms].name = "kvmvapic.bin";
737     option_rom[nb_option_roms].bootindex = -1;
738     nb_option_roms++;
739 }
740
741 static void do_vapic_enable(CPUState *cs, run_on_cpu_data data)
742 {
743     VAPICROMState *s = data.host_ptr;
744     X86CPU *cpu = X86_CPU(cs);
745
746     static const uint8_t enabled = 1;
747     cpu_physical_memory_write(s->vapic_paddr + offsetof(VAPICState, enabled),
748                               &enabled, sizeof(enabled));
749     apic_enable_vapic(cpu->apic_state, s->vapic_paddr);
750     s->state = VAPIC_ACTIVE;
751 }
752
753 static void kvmvapic_vm_state_change(void *opaque, int running,
754                                      RunState state)
755 {
756     VAPICROMState *s = opaque;
757     uint8_t *zero;
758
759     if (!running) {
760         return;
761     }
762
763     if (s->state == VAPIC_ACTIVE) {
764         if (smp_cpus == 1) {
765             run_on_cpu(first_cpu, do_vapic_enable, RUN_ON_CPU_HOST_PTR(s));
766         } else {
767             zero = g_malloc0(s->rom_state.vapic_size);
768             cpu_physical_memory_write(s->vapic_paddr, zero,
769                                       s->rom_state.vapic_size);
770             g_free(zero);
771         }
772     }
773
774     qemu_del_vm_change_state_handler(s->vmsentry);
775     s->vmsentry = NULL;
776 }
777
778 static int vapic_post_load(void *opaque, int version_id)
779 {
780     VAPICROMState *s = opaque;
781
782     /*
783      * The old implementation of qemu-kvm did not provide the state
784      * VAPIC_STANDBY. Reconstruct it.
785      */
786     if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) {
787         s->state = VAPIC_STANDBY;
788     }
789
790     if (s->state != VAPIC_INACTIVE) {
791         if (vapic_prepare(s) < 0) {
792             return -1;
793         }
794     }
795
796     if (!s->vmsentry) {
797         s->vmsentry =
798             qemu_add_vm_change_state_handler(kvmvapic_vm_state_change, s);
799     }
800     return 0;
801 }
802
803 static const VMStateDescription vmstate_handlers = {
804     .name = "kvmvapic-handlers",
805     .version_id = 1,
806     .minimum_version_id = 1,
807     .fields = (VMStateField[]) {
808         VMSTATE_UINT32(set_tpr, VAPICHandlers),
809         VMSTATE_UINT32(set_tpr_eax, VAPICHandlers),
810         VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8),
811         VMSTATE_UINT32(get_tpr_stack, VAPICHandlers),
812         VMSTATE_END_OF_LIST()
813     }
814 };
815
816 static const VMStateDescription vmstate_guest_rom = {
817     .name = "kvmvapic-guest-rom",
818     .version_id = 1,
819     .minimum_version_id = 1,
820     .fields = (VMStateField[]) {
821         VMSTATE_UNUSED(8),     /* signature */
822         VMSTATE_UINT32(vaddr, GuestROMState),
823         VMSTATE_UINT32(fixup_start, GuestROMState),
824         VMSTATE_UINT32(fixup_end, GuestROMState),
825         VMSTATE_UINT32(vapic_vaddr, GuestROMState),
826         VMSTATE_UINT32(vapic_size, GuestROMState),
827         VMSTATE_UINT32(vcpu_shift, GuestROMState),
828         VMSTATE_UINT32(real_tpr_addr, GuestROMState),
829         VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
830         VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
831         VMSTATE_END_OF_LIST()
832     }
833 };
834
835 static const VMStateDescription vmstate_vapic = {
836     .name = "kvm-tpr-opt",      /* compatible with qemu-kvm VAPIC */
837     .version_id = 1,
838     .minimum_version_id = 1,
839     .post_load = vapic_post_load,
840     .fields = (VMStateField[]) {
841         VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom,
842                        GuestROMState),
843         VMSTATE_UINT32(state, VAPICROMState),
844         VMSTATE_UINT32(real_tpr_addr, VAPICROMState),
845         VMSTATE_UINT32(rom_state_vaddr, VAPICROMState),
846         VMSTATE_UINT32(vapic_paddr, VAPICROMState),
847         VMSTATE_UINT32(rom_state_paddr, VAPICROMState),
848         VMSTATE_END_OF_LIST()
849     }
850 };
851
852 static void vapic_class_init(ObjectClass *klass, void *data)
853 {
854     DeviceClass *dc = DEVICE_CLASS(klass);
855
856     dc->reset   = vapic_reset;
857     dc->vmsd    = &vmstate_vapic;
858     dc->realize = vapic_realize;
859 }
860
861 static const TypeInfo vapic_type = {
862     .name          = TYPE_VAPIC,
863     .parent        = TYPE_SYS_BUS_DEVICE,
864     .instance_size = sizeof(VAPICROMState),
865     .class_init    = vapic_class_init,
866 };
867
868 static void vapic_register(void)
869 {
870     type_register_static(&vapic_type);
871 }
872
873 type_init(vapic_register);
This page took 0.07029 seconds and 4 git commands to generate.