]> Git Repo - qemu.git/blob - cpu-all.h
slirp: Fix spelling in comment (enought -> enough, insure -> ensure)
[qemu.git] / cpu-all.h
1 /*
2  * defines common to all virtual CPUs
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #ifndef CPU_ALL_H
20 #define CPU_ALL_H
21
22 #include "qemu-common.h"
23 #include "qemu-tls.h"
24 #include "cpu-common.h"
25
26 /* some important defines:
27  *
28  * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
29  * memory accesses.
30  *
31  * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
32  * otherwise little endian.
33  *
34  * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
35  *
36  * TARGET_WORDS_BIGENDIAN : same for target cpu
37  */
38
39 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
40 #define BSWAP_NEEDED
41 #endif
42
43 #ifdef BSWAP_NEEDED
44
45 static inline uint16_t tswap16(uint16_t s)
46 {
47     return bswap16(s);
48 }
49
50 static inline uint32_t tswap32(uint32_t s)
51 {
52     return bswap32(s);
53 }
54
55 static inline uint64_t tswap64(uint64_t s)
56 {
57     return bswap64(s);
58 }
59
60 static inline void tswap16s(uint16_t *s)
61 {
62     *s = bswap16(*s);
63 }
64
65 static inline void tswap32s(uint32_t *s)
66 {
67     *s = bswap32(*s);
68 }
69
70 static inline void tswap64s(uint64_t *s)
71 {
72     *s = bswap64(*s);
73 }
74
75 #else
76
77 static inline uint16_t tswap16(uint16_t s)
78 {
79     return s;
80 }
81
82 static inline uint32_t tswap32(uint32_t s)
83 {
84     return s;
85 }
86
87 static inline uint64_t tswap64(uint64_t s)
88 {
89     return s;
90 }
91
92 static inline void tswap16s(uint16_t *s)
93 {
94 }
95
96 static inline void tswap32s(uint32_t *s)
97 {
98 }
99
100 static inline void tswap64s(uint64_t *s)
101 {
102 }
103
104 #endif
105
106 #if TARGET_LONG_SIZE == 4
107 #define tswapl(s) tswap32(s)
108 #define tswapls(s) tswap32s((uint32_t *)(s))
109 #define bswaptls(s) bswap32s(s)
110 #else
111 #define tswapl(s) tswap64(s)
112 #define tswapls(s) tswap64s((uint64_t *)(s))
113 #define bswaptls(s) bswap64s(s)
114 #endif
115
116 /* CPU memory access without any memory or io remapping */
117
118 /*
119  * the generic syntax for the memory accesses is:
120  *
121  * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
122  *
123  * store: st{type}{size}{endian}_{access_type}(ptr, val)
124  *
125  * type is:
126  * (empty): integer access
127  *   f    : float access
128  *
129  * sign is:
130  * (empty): for floats or 32 bit size
131  *   u    : unsigned
132  *   s    : signed
133  *
134  * size is:
135  *   b: 8 bits
136  *   w: 16 bits
137  *   l: 32 bits
138  *   q: 64 bits
139  *
140  * endian is:
141  * (empty): target cpu endianness or 8 bit access
142  *   r    : reversed target cpu endianness (not implemented yet)
143  *   be   : big endian (not implemented yet)
144  *   le   : little endian (not implemented yet)
145  *
146  * access_type is:
147  *   raw    : host memory access
148  *   user   : user mode access using soft MMU
149  *   kernel : kernel mode access using soft MMU
150  */
151
152 /* target-endianness CPU memory access functions */
153 #if defined(TARGET_WORDS_BIGENDIAN)
154 #define lduw_p(p) lduw_be_p(p)
155 #define ldsw_p(p) ldsw_be_p(p)
156 #define ldl_p(p) ldl_be_p(p)
157 #define ldq_p(p) ldq_be_p(p)
158 #define ldfl_p(p) ldfl_be_p(p)
159 #define ldfq_p(p) ldfq_be_p(p)
160 #define stw_p(p, v) stw_be_p(p, v)
161 #define stl_p(p, v) stl_be_p(p, v)
162 #define stq_p(p, v) stq_be_p(p, v)
163 #define stfl_p(p, v) stfl_be_p(p, v)
164 #define stfq_p(p, v) stfq_be_p(p, v)
165 #else
166 #define lduw_p(p) lduw_le_p(p)
167 #define ldsw_p(p) ldsw_le_p(p)
168 #define ldl_p(p) ldl_le_p(p)
169 #define ldq_p(p) ldq_le_p(p)
170 #define ldfl_p(p) ldfl_le_p(p)
171 #define ldfq_p(p) ldfq_le_p(p)
172 #define stw_p(p, v) stw_le_p(p, v)
173 #define stl_p(p, v) stl_le_p(p, v)
174 #define stq_p(p, v) stq_le_p(p, v)
175 #define stfl_p(p, v) stfl_le_p(p, v)
176 #define stfq_p(p, v) stfq_le_p(p, v)
177 #endif
178
179 /* MMU memory access macros */
180
181 #if defined(CONFIG_USER_ONLY)
182 #include <assert.h>
183 #include "qemu-types.h"
184
185 /* On some host systems the guest address space is reserved on the host.
186  * This allows the guest address space to be offset to a convenient location.
187  */
188 #if defined(CONFIG_USE_GUEST_BASE)
189 extern unsigned long guest_base;
190 extern int have_guest_base;
191 extern unsigned long reserved_va;
192 #define GUEST_BASE guest_base
193 #define RESERVED_VA reserved_va
194 #else
195 #define GUEST_BASE 0ul
196 #define RESERVED_VA 0ul
197 #endif
198
199 /* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
200 #define g2h(x) ((void *)((unsigned long)(target_ulong)(x) + GUEST_BASE))
201
202 #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
203 #define h2g_valid(x) 1
204 #else
205 #define h2g_valid(x) ({ \
206     unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
207     (__guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS)) && \
208     (!RESERVED_VA || (__guest < RESERVED_VA)); \
209 })
210 #endif
211
212 #define h2g(x) ({ \
213     unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
214     /* Check if given address fits target address space */ \
215     assert(h2g_valid(x)); \
216     (abi_ulong)__ret; \
217 })
218
219 #define saddr(x) g2h(x)
220 #define laddr(x) g2h(x)
221
222 #else /* !CONFIG_USER_ONLY */
223 /* NOTE: we use double casts if pointers and target_ulong have
224    different sizes */
225 #define saddr(x) (uint8_t *)(intptr_t)(x)
226 #define laddr(x) (uint8_t *)(intptr_t)(x)
227 #endif
228
229 #define ldub_raw(p) ldub_p(laddr((p)))
230 #define ldsb_raw(p) ldsb_p(laddr((p)))
231 #define lduw_raw(p) lduw_p(laddr((p)))
232 #define ldsw_raw(p) ldsw_p(laddr((p)))
233 #define ldl_raw(p) ldl_p(laddr((p)))
234 #define ldq_raw(p) ldq_p(laddr((p)))
235 #define ldfl_raw(p) ldfl_p(laddr((p)))
236 #define ldfq_raw(p) ldfq_p(laddr((p)))
237 #define stb_raw(p, v) stb_p(saddr((p)), v)
238 #define stw_raw(p, v) stw_p(saddr((p)), v)
239 #define stl_raw(p, v) stl_p(saddr((p)), v)
240 #define stq_raw(p, v) stq_p(saddr((p)), v)
241 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
242 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
243
244
245 #if defined(CONFIG_USER_ONLY)
246
247 /* if user mode, no other memory access functions */
248 #define ldub(p) ldub_raw(p)
249 #define ldsb(p) ldsb_raw(p)
250 #define lduw(p) lduw_raw(p)
251 #define ldsw(p) ldsw_raw(p)
252 #define ldl(p) ldl_raw(p)
253 #define ldq(p) ldq_raw(p)
254 #define ldfl(p) ldfl_raw(p)
255 #define ldfq(p) ldfq_raw(p)
256 #define stb(p, v) stb_raw(p, v)
257 #define stw(p, v) stw_raw(p, v)
258 #define stl(p, v) stl_raw(p, v)
259 #define stq(p, v) stq_raw(p, v)
260 #define stfl(p, v) stfl_raw(p, v)
261 #define stfq(p, v) stfq_raw(p, v)
262
263 #define cpu_ldub_code(env1, p) ldub_raw(p)
264 #define cpu_ldsb_code(env1, p) ldsb_raw(p)
265 #define cpu_lduw_code(env1, p) lduw_raw(p)
266 #define cpu_ldsw_code(env1, p) ldsw_raw(p)
267 #define cpu_ldl_code(env1, p) ldl_raw(p)
268 #define cpu_ldq_code(env1, p) ldq_raw(p)
269
270 #define cpu_ldub_data(env, addr) ldub_raw(addr)
271 #define cpu_lduw_data(env, addr) lduw_raw(addr)
272 #define cpu_ldsw_data(env, addr) ldsw_raw(addr)
273 #define cpu_ldl_data(env, addr) ldl_raw(addr)
274 #define cpu_ldq_data(env, addr) ldq_raw(addr)
275
276 #define cpu_stb_data(env, addr, data) stb_raw(addr, data)
277 #define cpu_stw_data(env, addr, data) stw_raw(addr, data)
278 #define cpu_stl_data(env, addr, data) stl_raw(addr, data)
279 #define cpu_stq_data(env, addr, data) stq_raw(addr, data)
280
281 #define cpu_ldub_kernel(env, addr) ldub_raw(addr)
282 #define cpu_lduw_kernel(env, addr) lduw_raw(addr)
283 #define cpu_ldsw_kernel(env, addr) ldsw_raw(addr)
284 #define cpu_ldl_kernel(env, addr) ldl_raw(addr)
285 #define cpu_ldq_kernel(env, addr) ldq_raw(addr)
286
287 #define cpu_stb_kernel(env, addr, data) stb_raw(addr, data)
288 #define cpu_stw_kernel(env, addr, data) stw_raw(addr, data)
289 #define cpu_stl_kernel(env, addr, data) stl_raw(addr, data)
290 #define cpu_stq_kernel(env, addr, data) stq_raw(addr, data)
291
292 #define ldub_kernel(p) ldub_raw(p)
293 #define ldsb_kernel(p) ldsb_raw(p)
294 #define lduw_kernel(p) lduw_raw(p)
295 #define ldsw_kernel(p) ldsw_raw(p)
296 #define ldl_kernel(p) ldl_raw(p)
297 #define ldq_kernel(p) ldq_raw(p)
298 #define ldfl_kernel(p) ldfl_raw(p)
299 #define ldfq_kernel(p) ldfq_raw(p)
300 #define stb_kernel(p, v) stb_raw(p, v)
301 #define stw_kernel(p, v) stw_raw(p, v)
302 #define stl_kernel(p, v) stl_raw(p, v)
303 #define stq_kernel(p, v) stq_raw(p, v)
304 #define stfl_kernel(p, v) stfl_raw(p, v)
305 #define stfq_kernel(p, vt) stfq_raw(p, v)
306
307 #define cpu_ldub_data(env, addr) ldub_raw(addr)
308 #define cpu_lduw_data(env, addr) lduw_raw(addr)
309 #define cpu_ldl_data(env, addr) ldl_raw(addr)
310
311 #define cpu_stb_data(env, addr, data) stb_raw(addr, data)
312 #define cpu_stw_data(env, addr, data) stw_raw(addr, data)
313 #define cpu_stl_data(env, addr, data) stl_raw(addr, data)
314 #endif /* defined(CONFIG_USER_ONLY) */
315
316 /* page related stuff */
317
318 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
319 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
320 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
321
322 /* ??? These should be the larger of uintptr_t and target_ulong.  */
323 extern uintptr_t qemu_real_host_page_size;
324 extern uintptr_t qemu_host_page_size;
325 extern uintptr_t qemu_host_page_mask;
326
327 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
328
329 /* same as PROT_xxx */
330 #define PAGE_READ      0x0001
331 #define PAGE_WRITE     0x0002
332 #define PAGE_EXEC      0x0004
333 #define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
334 #define PAGE_VALID     0x0008
335 /* original state of the write flag (used when tracking self-modifying
336    code */
337 #define PAGE_WRITE_ORG 0x0010
338 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
339 /* FIXME: Code that sets/uses this is broken and needs to go away.  */
340 #define PAGE_RESERVED  0x0020
341 #endif
342
343 #if defined(CONFIG_USER_ONLY)
344 void page_dump(FILE *f);
345
346 typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
347                                       abi_ulong, unsigned long);
348 int walk_memory_regions(void *, walk_memory_regions_fn);
349
350 int page_get_flags(target_ulong address);
351 void page_set_flags(target_ulong start, target_ulong end, int flags);
352 int page_check_range(target_ulong start, target_ulong len, int flags);
353 #endif
354
355 CPUArchState *cpu_copy(CPUArchState *env);
356 CPUArchState *qemu_get_cpu(int cpu);
357
358 #define CPU_DUMP_CODE 0x00010000
359
360 void cpu_dump_state(CPUArchState *env, FILE *f, fprintf_function cpu_fprintf,
361                     int flags);
362 void cpu_dump_statistics(CPUArchState *env, FILE *f, fprintf_function cpu_fprintf,
363                          int flags);
364
365 void QEMU_NORETURN cpu_abort(CPUArchState *env, const char *fmt, ...)
366     GCC_FMT_ATTR(2, 3);
367 extern CPUArchState *first_cpu;
368 DECLARE_TLS(CPUArchState *,cpu_single_env);
369 #define cpu_single_env tls_var(cpu_single_env)
370
371 /* Flags for use in ENV->INTERRUPT_PENDING.
372
373    The numbers assigned here are non-sequential in order to preserve
374    binary compatibility with the vmstate dump.  Bit 0 (0x0001) was
375    previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
376    the vmstate dump.  */
377
378 /* External hardware interrupt pending.  This is typically used for
379    interrupts from devices.  */
380 #define CPU_INTERRUPT_HARD        0x0002
381
382 /* Exit the current TB.  This is typically used when some system-level device
383    makes some change to the memory mapping.  E.g. the a20 line change.  */
384 #define CPU_INTERRUPT_EXITTB      0x0004
385
386 /* Halt the CPU.  */
387 #define CPU_INTERRUPT_HALT        0x0020
388
389 /* Debug event pending.  */
390 #define CPU_INTERRUPT_DEBUG       0x0080
391
392 /* Several target-specific external hardware interrupts.  Each target/cpu.h
393    should define proper names based on these defines.  */
394 #define CPU_INTERRUPT_TGT_EXT_0   0x0008
395 #define CPU_INTERRUPT_TGT_EXT_1   0x0010
396 #define CPU_INTERRUPT_TGT_EXT_2   0x0040
397 #define CPU_INTERRUPT_TGT_EXT_3   0x0200
398 #define CPU_INTERRUPT_TGT_EXT_4   0x1000
399
400 /* Several target-specific internal interrupts.  These differ from the
401    preceding target-specific interrupts in that they are intended to
402    originate from within the cpu itself, typically in response to some
403    instruction being executed.  These, therefore, are not masked while
404    single-stepping within the debugger.  */
405 #define CPU_INTERRUPT_TGT_INT_0   0x0100
406 #define CPU_INTERRUPT_TGT_INT_1   0x0400
407 #define CPU_INTERRUPT_TGT_INT_2   0x0800
408 #define CPU_INTERRUPT_TGT_INT_3   0x2000
409
410 /* First unused bit: 0x4000.  */
411
412 /* The set of all bits that should be masked when single-stepping.  */
413 #define CPU_INTERRUPT_SSTEP_MASK \
414     (CPU_INTERRUPT_HARD          \
415      | CPU_INTERRUPT_TGT_EXT_0   \
416      | CPU_INTERRUPT_TGT_EXT_1   \
417      | CPU_INTERRUPT_TGT_EXT_2   \
418      | CPU_INTERRUPT_TGT_EXT_3   \
419      | CPU_INTERRUPT_TGT_EXT_4)
420
421 #ifndef CONFIG_USER_ONLY
422 typedef void (*CPUInterruptHandler)(CPUArchState *, int);
423
424 extern CPUInterruptHandler cpu_interrupt_handler;
425
426 static inline void cpu_interrupt(CPUArchState *s, int mask)
427 {
428     cpu_interrupt_handler(s, mask);
429 }
430 #else /* USER_ONLY */
431 void cpu_interrupt(CPUArchState *env, int mask);
432 #endif /* USER_ONLY */
433
434 void cpu_reset_interrupt(CPUArchState *env, int mask);
435
436 void cpu_exit(CPUArchState *s);
437
438 bool qemu_cpu_has_work(CPUArchState *env);
439
440 /* Breakpoint/watchpoint flags */
441 #define BP_MEM_READ           0x01
442 #define BP_MEM_WRITE          0x02
443 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
444 #define BP_STOP_BEFORE_ACCESS 0x04
445 #define BP_WATCHPOINT_HIT     0x08
446 #define BP_GDB                0x10
447 #define BP_CPU                0x20
448
449 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
450                           CPUBreakpoint **breakpoint);
451 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags);
452 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint);
453 void cpu_breakpoint_remove_all(CPUArchState *env, int mask);
454 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
455                           int flags, CPUWatchpoint **watchpoint);
456 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr,
457                           target_ulong len, int flags);
458 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint);
459 void cpu_watchpoint_remove_all(CPUArchState *env, int mask);
460
461 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
462 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
463 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
464
465 void cpu_single_step(CPUArchState *env, int enabled);
466 int cpu_is_stopped(CPUArchState *env);
467 void run_on_cpu(CPUArchState *env, void (*func)(void *data), void *data);
468
469 #if !defined(CONFIG_USER_ONLY)
470
471 /* Return the physical page corresponding to a virtual one. Use it
472    only for debugging because no protection checks are done. Return -1
473    if no page found. */
474 target_phys_addr_t cpu_get_phys_page_debug(CPUArchState *env, target_ulong addr);
475
476 /* memory API */
477
478 extern int phys_ram_fd;
479 extern ram_addr_t ram_size;
480
481 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
482 #define RAM_PREALLOC_MASK   (1 << 0)
483
484 typedef struct RAMBlock {
485     struct MemoryRegion *mr;
486     uint8_t *host;
487     ram_addr_t offset;
488     ram_addr_t length;
489     uint32_t flags;
490     char idstr[256];
491     QLIST_ENTRY(RAMBlock) next;
492 #if defined(__linux__) && !defined(TARGET_S390X)
493     int fd;
494 #endif
495 } RAMBlock;
496
497 typedef struct RAMList {
498     uint8_t *phys_dirty;
499     QLIST_HEAD(, RAMBlock) blocks;
500     uint64_t dirty_pages;
501 } RAMList;
502 extern RAMList ram_list;
503
504 extern const char *mem_path;
505 extern int mem_prealloc;
506
507 /* Flags stored in the low bits of the TLB virtual address.  These are
508    defined so that fast path ram access is all zeros.  */
509 /* Zero if TLB entry is valid.  */
510 #define TLB_INVALID_MASK   (1 << 3)
511 /* Set if TLB entry references a clean RAM page.  The iotlb entry will
512    contain the page physical address.  */
513 #define TLB_NOTDIRTY    (1 << 4)
514 /* Set if TLB entry is an IO callback.  */
515 #define TLB_MMIO        (1 << 5)
516
517 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
518 #endif /* !CONFIG_USER_ONLY */
519
520 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
521                         uint8_t *buf, int len, int is_write);
522
523 #endif /* CPU_ALL_H */
This page took 0.056026 seconds and 4 git commands to generate.