]> Git Repo - qemu.git/blob - target-ppc/fpu_helper.c
target-ppc: Altivec 2.07: Vector Doubleword Rotate and Shift Instructions
[qemu.git] / target-ppc / fpu_helper.c
1 /*
2  *  PowerPC floating point and SPE emulation helpers for QEMU.
3  *
4  *  Copyright (c) 2003-2007 Jocelyn Mayer
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "cpu.h"
20 #include "helper.h"
21
22 /*****************************************************************************/
23 /* Floating point operations helpers */
24 uint64_t helper_float32_to_float64(CPUPPCState *env, uint32_t arg)
25 {
26     CPU_FloatU f;
27     CPU_DoubleU d;
28
29     f.l = arg;
30     d.d = float32_to_float64(f.f, &env->fp_status);
31     return d.ll;
32 }
33
34 uint32_t helper_float64_to_float32(CPUPPCState *env, uint64_t arg)
35 {
36     CPU_FloatU f;
37     CPU_DoubleU d;
38
39     d.ll = arg;
40     f.f = float64_to_float32(d.d, &env->fp_status);
41     return f.l;
42 }
43
44 static inline int isden(float64 d)
45 {
46     CPU_DoubleU u;
47
48     u.d = d;
49
50     return ((u.ll >> 52) & 0x7FF) == 0;
51 }
52
53 static inline int ppc_float32_get_unbiased_exp(float32 f)
54 {
55     return ((f >> 23) & 0xFF) - 127;
56 }
57
58 static inline int ppc_float64_get_unbiased_exp(float64 f)
59 {
60     return ((f >> 52) & 0x7FF) - 1023;
61 }
62
63 uint32_t helper_compute_fprf(CPUPPCState *env, uint64_t arg, uint32_t set_fprf)
64 {
65     CPU_DoubleU farg;
66     int isneg;
67     int ret;
68
69     farg.ll = arg;
70     isneg = float64_is_neg(farg.d);
71     if (unlikely(float64_is_any_nan(farg.d))) {
72         if (float64_is_signaling_nan(farg.d)) {
73             /* Signaling NaN: flags are undefined */
74             ret = 0x00;
75         } else {
76             /* Quiet NaN */
77             ret = 0x11;
78         }
79     } else if (unlikely(float64_is_infinity(farg.d))) {
80         /* +/- infinity */
81         if (isneg) {
82             ret = 0x09;
83         } else {
84             ret = 0x05;
85         }
86     } else {
87         if (float64_is_zero(farg.d)) {
88             /* +/- zero */
89             if (isneg) {
90                 ret = 0x12;
91             } else {
92                 ret = 0x02;
93             }
94         } else {
95             if (isden(farg.d)) {
96                 /* Denormalized numbers */
97                 ret = 0x10;
98             } else {
99                 /* Normalized numbers */
100                 ret = 0x00;
101             }
102             if (isneg) {
103                 ret |= 0x08;
104             } else {
105                 ret |= 0x04;
106             }
107         }
108     }
109     if (set_fprf) {
110         /* We update FPSCR_FPRF */
111         env->fpscr &= ~(0x1F << FPSCR_FPRF);
112         env->fpscr |= ret << FPSCR_FPRF;
113     }
114     /* We just need fpcc to update Rc1 */
115     return ret & 0xF;
116 }
117
118 /* Floating-point invalid operations exception */
119 static inline uint64_t fload_invalid_op_excp(CPUPPCState *env, int op,
120                                              int set_fpcc)
121 {
122     uint64_t ret = 0;
123     int ve;
124
125     ve = fpscr_ve;
126     switch (op) {
127     case POWERPC_EXCP_FP_VXSNAN:
128         env->fpscr |= 1 << FPSCR_VXSNAN;
129         break;
130     case POWERPC_EXCP_FP_VXSOFT:
131         env->fpscr |= 1 << FPSCR_VXSOFT;
132         break;
133     case POWERPC_EXCP_FP_VXISI:
134         /* Magnitude subtraction of infinities */
135         env->fpscr |= 1 << FPSCR_VXISI;
136         goto update_arith;
137     case POWERPC_EXCP_FP_VXIDI:
138         /* Division of infinity by infinity */
139         env->fpscr |= 1 << FPSCR_VXIDI;
140         goto update_arith;
141     case POWERPC_EXCP_FP_VXZDZ:
142         /* Division of zero by zero */
143         env->fpscr |= 1 << FPSCR_VXZDZ;
144         goto update_arith;
145     case POWERPC_EXCP_FP_VXIMZ:
146         /* Multiplication of zero by infinity */
147         env->fpscr |= 1 << FPSCR_VXIMZ;
148         goto update_arith;
149     case POWERPC_EXCP_FP_VXVC:
150         /* Ordered comparison of NaN */
151         env->fpscr |= 1 << FPSCR_VXVC;
152         if (set_fpcc) {
153             env->fpscr &= ~(0xF << FPSCR_FPCC);
154             env->fpscr |= 0x11 << FPSCR_FPCC;
155         }
156         /* We must update the target FPR before raising the exception */
157         if (ve != 0) {
158             env->exception_index = POWERPC_EXCP_PROGRAM;
159             env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
160             /* Update the floating-point enabled exception summary */
161             env->fpscr |= 1 << FPSCR_FEX;
162             /* Exception is differed */
163             ve = 0;
164         }
165         break;
166     case POWERPC_EXCP_FP_VXSQRT:
167         /* Square root of a negative number */
168         env->fpscr |= 1 << FPSCR_VXSQRT;
169     update_arith:
170         env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
171         if (ve == 0) {
172             /* Set the result to quiet NaN */
173             ret = 0x7FF8000000000000ULL;
174             if (set_fpcc) {
175                 env->fpscr &= ~(0xF << FPSCR_FPCC);
176                 env->fpscr |= 0x11 << FPSCR_FPCC;
177             }
178         }
179         break;
180     case POWERPC_EXCP_FP_VXCVI:
181         /* Invalid conversion */
182         env->fpscr |= 1 << FPSCR_VXCVI;
183         env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
184         if (ve == 0) {
185             /* Set the result to quiet NaN */
186             ret = 0x7FF8000000000000ULL;
187             if (set_fpcc) {
188                 env->fpscr &= ~(0xF << FPSCR_FPCC);
189                 env->fpscr |= 0x11 << FPSCR_FPCC;
190             }
191         }
192         break;
193     }
194     /* Update the floating-point invalid operation summary */
195     env->fpscr |= 1 << FPSCR_VX;
196     /* Update the floating-point exception summary */
197     env->fpscr |= 1 << FPSCR_FX;
198     if (ve != 0) {
199         /* Update the floating-point enabled exception summary */
200         env->fpscr |= 1 << FPSCR_FEX;
201         if (msr_fe0 != 0 || msr_fe1 != 0) {
202             helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
203                                        POWERPC_EXCP_FP | op);
204         }
205     }
206     return ret;
207 }
208
209 static inline void float_zero_divide_excp(CPUPPCState *env)
210 {
211     env->fpscr |= 1 << FPSCR_ZX;
212     env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
213     /* Update the floating-point exception summary */
214     env->fpscr |= 1 << FPSCR_FX;
215     if (fpscr_ze != 0) {
216         /* Update the floating-point enabled exception summary */
217         env->fpscr |= 1 << FPSCR_FEX;
218         if (msr_fe0 != 0 || msr_fe1 != 0) {
219             helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
220                                        POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
221         }
222     }
223 }
224
225 static inline void float_overflow_excp(CPUPPCState *env)
226 {
227     env->fpscr |= 1 << FPSCR_OX;
228     /* Update the floating-point exception summary */
229     env->fpscr |= 1 << FPSCR_FX;
230     if (fpscr_oe != 0) {
231         /* XXX: should adjust the result */
232         /* Update the floating-point enabled exception summary */
233         env->fpscr |= 1 << FPSCR_FEX;
234         /* We must update the target FPR before raising the exception */
235         env->exception_index = POWERPC_EXCP_PROGRAM;
236         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
237     } else {
238         env->fpscr |= 1 << FPSCR_XX;
239         env->fpscr |= 1 << FPSCR_FI;
240     }
241 }
242
243 static inline void float_underflow_excp(CPUPPCState *env)
244 {
245     env->fpscr |= 1 << FPSCR_UX;
246     /* Update the floating-point exception summary */
247     env->fpscr |= 1 << FPSCR_FX;
248     if (fpscr_ue != 0) {
249         /* XXX: should adjust the result */
250         /* Update the floating-point enabled exception summary */
251         env->fpscr |= 1 << FPSCR_FEX;
252         /* We must update the target FPR before raising the exception */
253         env->exception_index = POWERPC_EXCP_PROGRAM;
254         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
255     }
256 }
257
258 static inline void float_inexact_excp(CPUPPCState *env)
259 {
260     env->fpscr |= 1 << FPSCR_XX;
261     /* Update the floating-point exception summary */
262     env->fpscr |= 1 << FPSCR_FX;
263     if (fpscr_xe != 0) {
264         /* Update the floating-point enabled exception summary */
265         env->fpscr |= 1 << FPSCR_FEX;
266         /* We must update the target FPR before raising the exception */
267         env->exception_index = POWERPC_EXCP_PROGRAM;
268         env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
269     }
270 }
271
272 static inline void fpscr_set_rounding_mode(CPUPPCState *env)
273 {
274     int rnd_type;
275
276     /* Set rounding mode */
277     switch (fpscr_rn) {
278     case 0:
279         /* Best approximation (round to nearest) */
280         rnd_type = float_round_nearest_even;
281         break;
282     case 1:
283         /* Smaller magnitude (round toward zero) */
284         rnd_type = float_round_to_zero;
285         break;
286     case 2:
287         /* Round toward +infinite */
288         rnd_type = float_round_up;
289         break;
290     default:
291     case 3:
292         /* Round toward -infinite */
293         rnd_type = float_round_down;
294         break;
295     }
296     set_float_rounding_mode(rnd_type, &env->fp_status);
297 }
298
299 void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
300 {
301     int prev;
302
303     prev = (env->fpscr >> bit) & 1;
304     env->fpscr &= ~(1 << bit);
305     if (prev == 1) {
306         switch (bit) {
307         case FPSCR_RN1:
308         case FPSCR_RN:
309             fpscr_set_rounding_mode(env);
310             break;
311         default:
312             break;
313         }
314     }
315 }
316
317 void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
318 {
319     int prev;
320
321     prev = (env->fpscr >> bit) & 1;
322     env->fpscr |= 1 << bit;
323     if (prev == 0) {
324         switch (bit) {
325         case FPSCR_VX:
326             env->fpscr |= 1 << FPSCR_FX;
327             if (fpscr_ve) {
328                 goto raise_ve;
329             }
330             break;
331         case FPSCR_OX:
332             env->fpscr |= 1 << FPSCR_FX;
333             if (fpscr_oe) {
334                 goto raise_oe;
335             }
336             break;
337         case FPSCR_UX:
338             env->fpscr |= 1 << FPSCR_FX;
339             if (fpscr_ue) {
340                 goto raise_ue;
341             }
342             break;
343         case FPSCR_ZX:
344             env->fpscr |= 1 << FPSCR_FX;
345             if (fpscr_ze) {
346                 goto raise_ze;
347             }
348             break;
349         case FPSCR_XX:
350             env->fpscr |= 1 << FPSCR_FX;
351             if (fpscr_xe) {
352                 goto raise_xe;
353             }
354             break;
355         case FPSCR_VXSNAN:
356         case FPSCR_VXISI:
357         case FPSCR_VXIDI:
358         case FPSCR_VXZDZ:
359         case FPSCR_VXIMZ:
360         case FPSCR_VXVC:
361         case FPSCR_VXSOFT:
362         case FPSCR_VXSQRT:
363         case FPSCR_VXCVI:
364             env->fpscr |= 1 << FPSCR_VX;
365             env->fpscr |= 1 << FPSCR_FX;
366             if (fpscr_ve != 0) {
367                 goto raise_ve;
368             }
369             break;
370         case FPSCR_VE:
371             if (fpscr_vx != 0) {
372             raise_ve:
373                 env->error_code = POWERPC_EXCP_FP;
374                 if (fpscr_vxsnan) {
375                     env->error_code |= POWERPC_EXCP_FP_VXSNAN;
376                 }
377                 if (fpscr_vxisi) {
378                     env->error_code |= POWERPC_EXCP_FP_VXISI;
379                 }
380                 if (fpscr_vxidi) {
381                     env->error_code |= POWERPC_EXCP_FP_VXIDI;
382                 }
383                 if (fpscr_vxzdz) {
384                     env->error_code |= POWERPC_EXCP_FP_VXZDZ;
385                 }
386                 if (fpscr_vximz) {
387                     env->error_code |= POWERPC_EXCP_FP_VXIMZ;
388                 }
389                 if (fpscr_vxvc) {
390                     env->error_code |= POWERPC_EXCP_FP_VXVC;
391                 }
392                 if (fpscr_vxsoft) {
393                     env->error_code |= POWERPC_EXCP_FP_VXSOFT;
394                 }
395                 if (fpscr_vxsqrt) {
396                     env->error_code |= POWERPC_EXCP_FP_VXSQRT;
397                 }
398                 if (fpscr_vxcvi) {
399                     env->error_code |= POWERPC_EXCP_FP_VXCVI;
400                 }
401                 goto raise_excp;
402             }
403             break;
404         case FPSCR_OE:
405             if (fpscr_ox != 0) {
406             raise_oe:
407                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
408                 goto raise_excp;
409             }
410             break;
411         case FPSCR_UE:
412             if (fpscr_ux != 0) {
413             raise_ue:
414                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
415                 goto raise_excp;
416             }
417             break;
418         case FPSCR_ZE:
419             if (fpscr_zx != 0) {
420             raise_ze:
421                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
422                 goto raise_excp;
423             }
424             break;
425         case FPSCR_XE:
426             if (fpscr_xx != 0) {
427             raise_xe:
428                 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
429                 goto raise_excp;
430             }
431             break;
432         case FPSCR_RN1:
433         case FPSCR_RN:
434             fpscr_set_rounding_mode(env);
435             break;
436         default:
437             break;
438         raise_excp:
439             /* Update the floating-point enabled exception summary */
440             env->fpscr |= 1 << FPSCR_FEX;
441             /* We have to update Rc1 before raising the exception */
442             env->exception_index = POWERPC_EXCP_PROGRAM;
443             break;
444         }
445     }
446 }
447
448 void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
449 {
450     target_ulong prev, new;
451     int i;
452
453     prev = env->fpscr;
454     new = (target_ulong)arg;
455     new &= ~0x60000000LL;
456     new |= prev & 0x60000000LL;
457     for (i = 0; i < sizeof(target_ulong) * 2; i++) {
458         if (mask & (1 << i)) {
459             env->fpscr &= ~(0xFLL << (4 * i));
460             env->fpscr |= new & (0xFLL << (4 * i));
461         }
462     }
463     /* Update VX and FEX */
464     if (fpscr_ix != 0) {
465         env->fpscr |= 1 << FPSCR_VX;
466     } else {
467         env->fpscr &= ~(1 << FPSCR_VX);
468     }
469     if ((fpscr_ex & fpscr_eex) != 0) {
470         env->fpscr |= 1 << FPSCR_FEX;
471         env->exception_index = POWERPC_EXCP_PROGRAM;
472         /* XXX: we should compute it properly */
473         env->error_code = POWERPC_EXCP_FP;
474     } else {
475         env->fpscr &= ~(1 << FPSCR_FEX);
476     }
477     fpscr_set_rounding_mode(env);
478 }
479
480 void store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
481 {
482     helper_store_fpscr(env, arg, mask);
483 }
484
485 void helper_float_check_status(CPUPPCState *env)
486 {
487     int status = get_float_exception_flags(&env->fp_status);
488
489     if (status & float_flag_divbyzero) {
490         float_zero_divide_excp(env);
491     } else if (status & float_flag_overflow) {
492         float_overflow_excp(env);
493     } else if (status & float_flag_underflow) {
494         float_underflow_excp(env);
495     } else if (status & float_flag_inexact) {
496         float_inexact_excp(env);
497     }
498
499     if (env->exception_index == POWERPC_EXCP_PROGRAM &&
500         (env->error_code & POWERPC_EXCP_FP)) {
501         /* Differred floating-point exception after target FPR update */
502         if (msr_fe0 != 0 || msr_fe1 != 0) {
503             helper_raise_exception_err(env, env->exception_index,
504                                        env->error_code);
505         }
506     }
507 }
508
509 void helper_reset_fpstatus(CPUPPCState *env)
510 {
511     set_float_exception_flags(0, &env->fp_status);
512 }
513
514 /* fadd - fadd. */
515 uint64_t helper_fadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
516 {
517     CPU_DoubleU farg1, farg2;
518
519     farg1.ll = arg1;
520     farg2.ll = arg2;
521
522     if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
523                  float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
524         /* Magnitude subtraction of infinities */
525         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
526     } else {
527         if (unlikely(float64_is_signaling_nan(farg1.d) ||
528                      float64_is_signaling_nan(farg2.d))) {
529             /* sNaN addition */
530             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
531         }
532         farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
533     }
534
535     return farg1.ll;
536 }
537
538 /* fsub - fsub. */
539 uint64_t helper_fsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
540 {
541     CPU_DoubleU farg1, farg2;
542
543     farg1.ll = arg1;
544     farg2.ll = arg2;
545
546     if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
547                  float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
548         /* Magnitude subtraction of infinities */
549         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
550     } else {
551         if (unlikely(float64_is_signaling_nan(farg1.d) ||
552                      float64_is_signaling_nan(farg2.d))) {
553             /* sNaN subtraction */
554             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
555         }
556         farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
557     }
558
559     return farg1.ll;
560 }
561
562 /* fmul - fmul. */
563 uint64_t helper_fmul(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
564 {
565     CPU_DoubleU farg1, farg2;
566
567     farg1.ll = arg1;
568     farg2.ll = arg2;
569
570     if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
571                  (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
572         /* Multiplication of zero by infinity */
573         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
574     } else {
575         if (unlikely(float64_is_signaling_nan(farg1.d) ||
576                      float64_is_signaling_nan(farg2.d))) {
577             /* sNaN multiplication */
578             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
579         }
580         farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
581     }
582
583     return farg1.ll;
584 }
585
586 /* fdiv - fdiv. */
587 uint64_t helper_fdiv(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
588 {
589     CPU_DoubleU farg1, farg2;
590
591     farg1.ll = arg1;
592     farg2.ll = arg2;
593
594     if (unlikely(float64_is_infinity(farg1.d) &&
595                  float64_is_infinity(farg2.d))) {
596         /* Division of infinity by infinity */
597         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, 1);
598     } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) {
599         /* Division of zero by zero */
600         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, 1);
601     } else {
602         if (unlikely(float64_is_signaling_nan(farg1.d) ||
603                      float64_is_signaling_nan(farg2.d))) {
604             /* sNaN division */
605             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
606         }
607         farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
608     }
609
610     return farg1.ll;
611 }
612
613
614 #define FPU_FCTI(op, cvt, nanval)                                      \
615 uint64_t helper_##op(CPUPPCState *env, uint64_t arg)                   \
616 {                                                                      \
617     CPU_DoubleU farg;                                                  \
618                                                                        \
619     farg.ll = arg;                                                     \
620     farg.ll = float64_to_##cvt(farg.d, &env->fp_status);               \
621                                                                        \
622     if (unlikely(env->fp_status.float_exception_flags)) {              \
623         if (float64_is_any_nan(arg)) {                                 \
624             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1);      \
625             if (float64_is_signaling_nan(arg)) {                       \
626                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1); \
627             }                                                          \
628             farg.ll = nanval;                                          \
629         } else if (env->fp_status.float_exception_flags &              \
630                    float_flag_invalid) {                               \
631             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 1);      \
632         }                                                              \
633         helper_float_check_status(env);                                \
634     }                                                                  \
635     return farg.ll;                                                    \
636  }
637
638 FPU_FCTI(fctiw, int32, 0x80000000)
639 FPU_FCTI(fctiwz, int32_round_to_zero, 0x80000000)
640 FPU_FCTI(fctiwu, uint32, 0x00000000)
641 FPU_FCTI(fctiwuz, uint32_round_to_zero, 0x00000000)
642 #if defined(TARGET_PPC64)
643 FPU_FCTI(fctid, int64, 0x8000000000000000)
644 FPU_FCTI(fctidz, int64_round_to_zero, 0x8000000000000000)
645 FPU_FCTI(fctidu, uint64, 0x0000000000000000)
646 FPU_FCTI(fctiduz, uint64_round_to_zero, 0x0000000000000000)
647 #endif
648
649 #if defined(TARGET_PPC64)
650
651 #define FPU_FCFI(op, cvtr, is_single)                      \
652 uint64_t helper_##op(CPUPPCState *env, uint64_t arg)       \
653 {                                                          \
654     CPU_DoubleU farg;                                      \
655                                                            \
656     if (is_single) {                                       \
657         float32 tmp = cvtr(arg, &env->fp_status);          \
658         farg.d = float32_to_float64(tmp, &env->fp_status); \
659     } else {                                               \
660         farg.d = cvtr(arg, &env->fp_status);               \
661     }                                                      \
662     helper_float_check_status(env);                        \
663     return farg.ll;                                        \
664 }
665
666 FPU_FCFI(fcfid, int64_to_float64, 0)
667 FPU_FCFI(fcfids, int64_to_float32, 1)
668 FPU_FCFI(fcfidu, uint64_to_float64, 0)
669 FPU_FCFI(fcfidus, uint64_to_float32, 1)
670
671 #endif
672
673 static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
674                               int rounding_mode)
675 {
676     CPU_DoubleU farg;
677
678     farg.ll = arg;
679
680     if (unlikely(float64_is_signaling_nan(farg.d))) {
681         /* sNaN round */
682         fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
683         farg.ll = arg | 0x0008000000000000ul;
684     } else {
685         int inexact = get_float_exception_flags(&env->fp_status) &
686                       float_flag_inexact;
687         set_float_rounding_mode(rounding_mode, &env->fp_status);
688         farg.ll = float64_round_to_int(farg.d, &env->fp_status);
689         /* Restore rounding mode from FPSCR */
690         fpscr_set_rounding_mode(env);
691
692         /* fri* does not set FPSCR[XX] */
693         if (!inexact) {
694             env->fp_status.float_exception_flags &= ~float_flag_inexact;
695         }
696     }
697     helper_float_check_status(env);
698     return farg.ll;
699 }
700
701 uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
702 {
703     return do_fri(env, arg, float_round_ties_away);
704 }
705
706 uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
707 {
708     return do_fri(env, arg, float_round_to_zero);
709 }
710
711 uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
712 {
713     return do_fri(env, arg, float_round_up);
714 }
715
716 uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
717 {
718     return do_fri(env, arg, float_round_down);
719 }
720
721 /* fmadd - fmadd. */
722 uint64_t helper_fmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
723                       uint64_t arg3)
724 {
725     CPU_DoubleU farg1, farg2, farg3;
726
727     farg1.ll = arg1;
728     farg2.ll = arg2;
729     farg3.ll = arg3;
730
731     if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
732                  (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
733         /* Multiplication of zero by infinity */
734         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
735     } else {
736         if (unlikely(float64_is_signaling_nan(farg1.d) ||
737                      float64_is_signaling_nan(farg2.d) ||
738                      float64_is_signaling_nan(farg3.d))) {
739             /* sNaN operation */
740             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
741         }
742         /* This is the way the PowerPC specification defines it */
743         float128 ft0_128, ft1_128;
744
745         ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
746         ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
747         ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
748         if (unlikely(float128_is_infinity(ft0_128) &&
749                      float64_is_infinity(farg3.d) &&
750                      float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
751             /* Magnitude subtraction of infinities */
752             farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
753         } else {
754             ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
755             ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
756             farg1.d = float128_to_float64(ft0_128, &env->fp_status);
757         }
758     }
759
760     return farg1.ll;
761 }
762
763 /* fmsub - fmsub. */
764 uint64_t helper_fmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
765                       uint64_t arg3)
766 {
767     CPU_DoubleU farg1, farg2, farg3;
768
769     farg1.ll = arg1;
770     farg2.ll = arg2;
771     farg3.ll = arg3;
772
773     if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
774                  (float64_is_zero(farg1.d) &&
775                   float64_is_infinity(farg2.d)))) {
776         /* Multiplication of zero by infinity */
777         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
778     } else {
779         if (unlikely(float64_is_signaling_nan(farg1.d) ||
780                      float64_is_signaling_nan(farg2.d) ||
781                      float64_is_signaling_nan(farg3.d))) {
782             /* sNaN operation */
783             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
784         }
785         /* This is the way the PowerPC specification defines it */
786         float128 ft0_128, ft1_128;
787
788         ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
789         ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
790         ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
791         if (unlikely(float128_is_infinity(ft0_128) &&
792                      float64_is_infinity(farg3.d) &&
793                      float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
794             /* Magnitude subtraction of infinities */
795             farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
796         } else {
797             ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
798             ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
799             farg1.d = float128_to_float64(ft0_128, &env->fp_status);
800         }
801     }
802     return farg1.ll;
803 }
804
805 /* fnmadd - fnmadd. */
806 uint64_t helper_fnmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
807                        uint64_t arg3)
808 {
809     CPU_DoubleU farg1, farg2, farg3;
810
811     farg1.ll = arg1;
812     farg2.ll = arg2;
813     farg3.ll = arg3;
814
815     if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
816                  (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
817         /* Multiplication of zero by infinity */
818         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
819     } else {
820         if (unlikely(float64_is_signaling_nan(farg1.d) ||
821                      float64_is_signaling_nan(farg2.d) ||
822                      float64_is_signaling_nan(farg3.d))) {
823             /* sNaN operation */
824             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
825         }
826         /* This is the way the PowerPC specification defines it */
827         float128 ft0_128, ft1_128;
828
829         ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
830         ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
831         ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
832         if (unlikely(float128_is_infinity(ft0_128) &&
833                      float64_is_infinity(farg3.d) &&
834                      float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
835             /* Magnitude subtraction of infinities */
836             farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
837         } else {
838             ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
839             ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
840             farg1.d = float128_to_float64(ft0_128, &env->fp_status);
841         }
842         if (likely(!float64_is_any_nan(farg1.d))) {
843             farg1.d = float64_chs(farg1.d);
844         }
845     }
846     return farg1.ll;
847 }
848
849 /* fnmsub - fnmsub. */
850 uint64_t helper_fnmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
851                        uint64_t arg3)
852 {
853     CPU_DoubleU farg1, farg2, farg3;
854
855     farg1.ll = arg1;
856     farg2.ll = arg2;
857     farg3.ll = arg3;
858
859     if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
860                  (float64_is_zero(farg1.d) &&
861                   float64_is_infinity(farg2.d)))) {
862         /* Multiplication of zero by infinity */
863         farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, 1);
864     } else {
865         if (unlikely(float64_is_signaling_nan(farg1.d) ||
866                      float64_is_signaling_nan(farg2.d) ||
867                      float64_is_signaling_nan(farg3.d))) {
868             /* sNaN operation */
869             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
870         }
871         /* This is the way the PowerPC specification defines it */
872         float128 ft0_128, ft1_128;
873
874         ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
875         ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
876         ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
877         if (unlikely(float128_is_infinity(ft0_128) &&
878                      float64_is_infinity(farg3.d) &&
879                      float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
880             /* Magnitude subtraction of infinities */
881             farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, 1);
882         } else {
883             ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
884             ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
885             farg1.d = float128_to_float64(ft0_128, &env->fp_status);
886         }
887         if (likely(!float64_is_any_nan(farg1.d))) {
888             farg1.d = float64_chs(farg1.d);
889         }
890     }
891     return farg1.ll;
892 }
893
894 /* frsp - frsp. */
895 uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
896 {
897     CPU_DoubleU farg;
898     float32 f32;
899
900     farg.ll = arg;
901
902     if (unlikely(float64_is_signaling_nan(farg.d))) {
903         /* sNaN square root */
904         fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
905     }
906     f32 = float64_to_float32(farg.d, &env->fp_status);
907     farg.d = float32_to_float64(f32, &env->fp_status);
908
909     return farg.ll;
910 }
911
912 /* fsqrt - fsqrt. */
913 uint64_t helper_fsqrt(CPUPPCState *env, uint64_t arg)
914 {
915     CPU_DoubleU farg;
916
917     farg.ll = arg;
918
919     if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
920         /* Square root of a negative nonzero number */
921         farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
922     } else {
923         if (unlikely(float64_is_signaling_nan(farg.d))) {
924             /* sNaN square root */
925             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
926         }
927         farg.d = float64_sqrt(farg.d, &env->fp_status);
928     }
929     return farg.ll;
930 }
931
932 /* fre - fre. */
933 uint64_t helper_fre(CPUPPCState *env, uint64_t arg)
934 {
935     CPU_DoubleU farg;
936
937     farg.ll = arg;
938
939     if (unlikely(float64_is_signaling_nan(farg.d))) {
940         /* sNaN reciprocal */
941         fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
942     }
943     farg.d = float64_div(float64_one, farg.d, &env->fp_status);
944     return farg.d;
945 }
946
947 /* fres - fres. */
948 uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
949 {
950     CPU_DoubleU farg;
951     float32 f32;
952
953     farg.ll = arg;
954
955     if (unlikely(float64_is_signaling_nan(farg.d))) {
956         /* sNaN reciprocal */
957         fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
958     }
959     farg.d = float64_div(float64_one, farg.d, &env->fp_status);
960     f32 = float64_to_float32(farg.d, &env->fp_status);
961     farg.d = float32_to_float64(f32, &env->fp_status);
962
963     return farg.ll;
964 }
965
966 /* frsqrte  - frsqrte. */
967 uint64_t helper_frsqrte(CPUPPCState *env, uint64_t arg)
968 {
969     CPU_DoubleU farg;
970     float32 f32;
971
972     farg.ll = arg;
973
974     if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
975         /* Reciprocal square root of a negative nonzero number */
976         farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, 1);
977     } else {
978         if (unlikely(float64_is_signaling_nan(farg.d))) {
979             /* sNaN reciprocal square root */
980             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
981         }
982         farg.d = float64_sqrt(farg.d, &env->fp_status);
983         farg.d = float64_div(float64_one, farg.d, &env->fp_status);
984         f32 = float64_to_float32(farg.d, &env->fp_status);
985         farg.d = float32_to_float64(f32, &env->fp_status);
986     }
987     return farg.ll;
988 }
989
990 /* fsel - fsel. */
991 uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
992                      uint64_t arg3)
993 {
994     CPU_DoubleU farg1;
995
996     farg1.ll = arg1;
997
998     if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
999         !float64_is_any_nan(farg1.d)) {
1000         return arg2;
1001     } else {
1002         return arg3;
1003     }
1004 }
1005
1006 uint32_t helper_ftdiv(uint64_t fra, uint64_t frb)
1007 {
1008     int fe_flag = 0;
1009     int fg_flag = 0;
1010
1011     if (unlikely(float64_is_infinity(fra) ||
1012                  float64_is_infinity(frb) ||
1013                  float64_is_zero(frb))) {
1014         fe_flag = 1;
1015         fg_flag = 1;
1016     } else {
1017         int e_a = ppc_float64_get_unbiased_exp(fra);
1018         int e_b = ppc_float64_get_unbiased_exp(frb);
1019
1020         if (unlikely(float64_is_any_nan(fra) ||
1021                      float64_is_any_nan(frb))) {
1022             fe_flag = 1;
1023         } else if ((e_b <= -1022) || (e_b >= 1021)) {
1024             fe_flag = 1;
1025         } else if (!float64_is_zero(fra) &&
1026                    (((e_a - e_b) >= 1023) ||
1027                     ((e_a - e_b) <= -1021) ||
1028                     (e_a <= -970))) {
1029             fe_flag = 1;
1030         }
1031
1032         if (unlikely(float64_is_zero_or_denormal(frb))) {
1033             /* XB is not zero because of the above check and */
1034             /* so must be denormalized.                      */
1035             fg_flag = 1;
1036         }
1037     }
1038
1039     return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1040 }
1041
1042 uint32_t helper_ftsqrt(uint64_t frb)
1043 {
1044     int fe_flag = 0;
1045     int fg_flag = 0;
1046
1047     if (unlikely(float64_is_infinity(frb) || float64_is_zero(frb))) {
1048         fe_flag = 1;
1049         fg_flag = 1;
1050     } else {
1051         int e_b = ppc_float64_get_unbiased_exp(frb);
1052
1053         if (unlikely(float64_is_any_nan(frb))) {
1054             fe_flag = 1;
1055         } else if (unlikely(float64_is_zero(frb))) {
1056             fe_flag = 1;
1057         } else if (unlikely(float64_is_neg(frb))) {
1058             fe_flag = 1;
1059         } else if (!float64_is_zero(frb) && (e_b <= (-1022+52))) {
1060             fe_flag = 1;
1061         }
1062
1063         if (unlikely(float64_is_zero_or_denormal(frb))) {
1064             /* XB is not zero because of the above check and */
1065             /* therefore must be denormalized.               */
1066             fg_flag = 1;
1067         }
1068     }
1069
1070     return 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0);
1071 }
1072
1073 void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1074                   uint32_t crfD)
1075 {
1076     CPU_DoubleU farg1, farg2;
1077     uint32_t ret = 0;
1078
1079     farg1.ll = arg1;
1080     farg2.ll = arg2;
1081
1082     if (unlikely(float64_is_any_nan(farg1.d) ||
1083                  float64_is_any_nan(farg2.d))) {
1084         ret = 0x01UL;
1085     } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1086         ret = 0x08UL;
1087     } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1088         ret = 0x04UL;
1089     } else {
1090         ret = 0x02UL;
1091     }
1092
1093     env->fpscr &= ~(0x0F << FPSCR_FPRF);
1094     env->fpscr |= ret << FPSCR_FPRF;
1095     env->crf[crfD] = ret;
1096     if (unlikely(ret == 0x01UL
1097                  && (float64_is_signaling_nan(farg1.d) ||
1098                      float64_is_signaling_nan(farg2.d)))) {
1099         /* sNaN comparison */
1100         fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 1);
1101     }
1102 }
1103
1104 void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1105                   uint32_t crfD)
1106 {
1107     CPU_DoubleU farg1, farg2;
1108     uint32_t ret = 0;
1109
1110     farg1.ll = arg1;
1111     farg2.ll = arg2;
1112
1113     if (unlikely(float64_is_any_nan(farg1.d) ||
1114                  float64_is_any_nan(farg2.d))) {
1115         ret = 0x01UL;
1116     } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1117         ret = 0x08UL;
1118     } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1119         ret = 0x04UL;
1120     } else {
1121         ret = 0x02UL;
1122     }
1123
1124     env->fpscr &= ~(0x0F << FPSCR_FPRF);
1125     env->fpscr |= ret << FPSCR_FPRF;
1126     env->crf[crfD] = ret;
1127     if (unlikely(ret == 0x01UL)) {
1128         if (float64_is_signaling_nan(farg1.d) ||
1129             float64_is_signaling_nan(farg2.d)) {
1130             /* sNaN comparison */
1131             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
1132                                   POWERPC_EXCP_FP_VXVC, 1);
1133         } else {
1134             /* qNaN comparison */
1135             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 1);
1136         }
1137     }
1138 }
1139
1140 /* Single-precision floating-point conversions */
1141 static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
1142 {
1143     CPU_FloatU u;
1144
1145     u.f = int32_to_float32(val, &env->vec_status);
1146
1147     return u.l;
1148 }
1149
1150 static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
1151 {
1152     CPU_FloatU u;
1153
1154     u.f = uint32_to_float32(val, &env->vec_status);
1155
1156     return u.l;
1157 }
1158
1159 static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
1160 {
1161     CPU_FloatU u;
1162
1163     u.l = val;
1164     /* NaN are not treated the same way IEEE 754 does */
1165     if (unlikely(float32_is_quiet_nan(u.f))) {
1166         return 0;
1167     }
1168
1169     return float32_to_int32(u.f, &env->vec_status);
1170 }
1171
1172 static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1173 {
1174     CPU_FloatU u;
1175
1176     u.l = val;
1177     /* NaN are not treated the same way IEEE 754 does */
1178     if (unlikely(float32_is_quiet_nan(u.f))) {
1179         return 0;
1180     }
1181
1182     return float32_to_uint32(u.f, &env->vec_status);
1183 }
1184
1185 static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1186 {
1187     CPU_FloatU u;
1188
1189     u.l = val;
1190     /* NaN are not treated the same way IEEE 754 does */
1191     if (unlikely(float32_is_quiet_nan(u.f))) {
1192         return 0;
1193     }
1194
1195     return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1196 }
1197
1198 static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1199 {
1200     CPU_FloatU u;
1201
1202     u.l = val;
1203     /* NaN are not treated the same way IEEE 754 does */
1204     if (unlikely(float32_is_quiet_nan(u.f))) {
1205         return 0;
1206     }
1207
1208     return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1209 }
1210
1211 static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1212 {
1213     CPU_FloatU u;
1214     float32 tmp;
1215
1216     u.f = int32_to_float32(val, &env->vec_status);
1217     tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1218     u.f = float32_div(u.f, tmp, &env->vec_status);
1219
1220     return u.l;
1221 }
1222
1223 static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1224 {
1225     CPU_FloatU u;
1226     float32 tmp;
1227
1228     u.f = uint32_to_float32(val, &env->vec_status);
1229     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1230     u.f = float32_div(u.f, tmp, &env->vec_status);
1231
1232     return u.l;
1233 }
1234
1235 static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1236 {
1237     CPU_FloatU u;
1238     float32 tmp;
1239
1240     u.l = val;
1241     /* NaN are not treated the same way IEEE 754 does */
1242     if (unlikely(float32_is_quiet_nan(u.f))) {
1243         return 0;
1244     }
1245     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1246     u.f = float32_mul(u.f, tmp, &env->vec_status);
1247
1248     return float32_to_int32(u.f, &env->vec_status);
1249 }
1250
1251 static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1252 {
1253     CPU_FloatU u;
1254     float32 tmp;
1255
1256     u.l = val;
1257     /* NaN are not treated the same way IEEE 754 does */
1258     if (unlikely(float32_is_quiet_nan(u.f))) {
1259         return 0;
1260     }
1261     tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1262     u.f = float32_mul(u.f, tmp, &env->vec_status);
1263
1264     return float32_to_uint32(u.f, &env->vec_status);
1265 }
1266
1267 #define HELPER_SPE_SINGLE_CONV(name)                              \
1268     uint32_t helper_e##name(CPUPPCState *env, uint32_t val)       \
1269     {                                                             \
1270         return e##name(env, val);                                 \
1271     }
1272 /* efscfsi */
1273 HELPER_SPE_SINGLE_CONV(fscfsi);
1274 /* efscfui */
1275 HELPER_SPE_SINGLE_CONV(fscfui);
1276 /* efscfuf */
1277 HELPER_SPE_SINGLE_CONV(fscfuf);
1278 /* efscfsf */
1279 HELPER_SPE_SINGLE_CONV(fscfsf);
1280 /* efsctsi */
1281 HELPER_SPE_SINGLE_CONV(fsctsi);
1282 /* efsctui */
1283 HELPER_SPE_SINGLE_CONV(fsctui);
1284 /* efsctsiz */
1285 HELPER_SPE_SINGLE_CONV(fsctsiz);
1286 /* efsctuiz */
1287 HELPER_SPE_SINGLE_CONV(fsctuiz);
1288 /* efsctsf */
1289 HELPER_SPE_SINGLE_CONV(fsctsf);
1290 /* efsctuf */
1291 HELPER_SPE_SINGLE_CONV(fsctuf);
1292
1293 #define HELPER_SPE_VECTOR_CONV(name)                            \
1294     uint64_t helper_ev##name(CPUPPCState *env, uint64_t val)    \
1295     {                                                           \
1296         return ((uint64_t)e##name(env, val >> 32) << 32) |      \
1297             (uint64_t)e##name(env, val);                        \
1298     }
1299 /* evfscfsi */
1300 HELPER_SPE_VECTOR_CONV(fscfsi);
1301 /* evfscfui */
1302 HELPER_SPE_VECTOR_CONV(fscfui);
1303 /* evfscfuf */
1304 HELPER_SPE_VECTOR_CONV(fscfuf);
1305 /* evfscfsf */
1306 HELPER_SPE_VECTOR_CONV(fscfsf);
1307 /* evfsctsi */
1308 HELPER_SPE_VECTOR_CONV(fsctsi);
1309 /* evfsctui */
1310 HELPER_SPE_VECTOR_CONV(fsctui);
1311 /* evfsctsiz */
1312 HELPER_SPE_VECTOR_CONV(fsctsiz);
1313 /* evfsctuiz */
1314 HELPER_SPE_VECTOR_CONV(fsctuiz);
1315 /* evfsctsf */
1316 HELPER_SPE_VECTOR_CONV(fsctsf);
1317 /* evfsctuf */
1318 HELPER_SPE_VECTOR_CONV(fsctuf);
1319
1320 /* Single-precision floating-point arithmetic */
1321 static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1322 {
1323     CPU_FloatU u1, u2;
1324
1325     u1.l = op1;
1326     u2.l = op2;
1327     u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1328     return u1.l;
1329 }
1330
1331 static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1332 {
1333     CPU_FloatU u1, u2;
1334
1335     u1.l = op1;
1336     u2.l = op2;
1337     u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1338     return u1.l;
1339 }
1340
1341 static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1342 {
1343     CPU_FloatU u1, u2;
1344
1345     u1.l = op1;
1346     u2.l = op2;
1347     u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1348     return u1.l;
1349 }
1350
1351 static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1352 {
1353     CPU_FloatU u1, u2;
1354
1355     u1.l = op1;
1356     u2.l = op2;
1357     u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1358     return u1.l;
1359 }
1360
1361 #define HELPER_SPE_SINGLE_ARITH(name)                                   \
1362     uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1363     {                                                                   \
1364         return e##name(env, op1, op2);                                  \
1365     }
1366 /* efsadd */
1367 HELPER_SPE_SINGLE_ARITH(fsadd);
1368 /* efssub */
1369 HELPER_SPE_SINGLE_ARITH(fssub);
1370 /* efsmul */
1371 HELPER_SPE_SINGLE_ARITH(fsmul);
1372 /* efsdiv */
1373 HELPER_SPE_SINGLE_ARITH(fsdiv);
1374
1375 #define HELPER_SPE_VECTOR_ARITH(name)                                   \
1376     uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1377     {                                                                   \
1378         return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) |   \
1379             (uint64_t)e##name(env, op1, op2);                           \
1380     }
1381 /* evfsadd */
1382 HELPER_SPE_VECTOR_ARITH(fsadd);
1383 /* evfssub */
1384 HELPER_SPE_VECTOR_ARITH(fssub);
1385 /* evfsmul */
1386 HELPER_SPE_VECTOR_ARITH(fsmul);
1387 /* evfsdiv */
1388 HELPER_SPE_VECTOR_ARITH(fsdiv);
1389
1390 /* Single-precision floating-point comparisons */
1391 static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1392 {
1393     CPU_FloatU u1, u2;
1394
1395     u1.l = op1;
1396     u2.l = op2;
1397     return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1398 }
1399
1400 static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1401 {
1402     CPU_FloatU u1, u2;
1403
1404     u1.l = op1;
1405     u2.l = op2;
1406     return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1407 }
1408
1409 static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1410 {
1411     CPU_FloatU u1, u2;
1412
1413     u1.l = op1;
1414     u2.l = op2;
1415     return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1416 }
1417
1418 static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1419 {
1420     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1421     return efscmplt(env, op1, op2);
1422 }
1423
1424 static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1425 {
1426     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1427     return efscmpgt(env, op1, op2);
1428 }
1429
1430 static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1431 {
1432     /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1433     return efscmpeq(env, op1, op2);
1434 }
1435
1436 #define HELPER_SINGLE_SPE_CMP(name)                                     \
1437     uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1438     {                                                                   \
1439         return e##name(env, op1, op2) << 2;                             \
1440     }
1441 /* efststlt */
1442 HELPER_SINGLE_SPE_CMP(fststlt);
1443 /* efststgt */
1444 HELPER_SINGLE_SPE_CMP(fststgt);
1445 /* efststeq */
1446 HELPER_SINGLE_SPE_CMP(fststeq);
1447 /* efscmplt */
1448 HELPER_SINGLE_SPE_CMP(fscmplt);
1449 /* efscmpgt */
1450 HELPER_SINGLE_SPE_CMP(fscmpgt);
1451 /* efscmpeq */
1452 HELPER_SINGLE_SPE_CMP(fscmpeq);
1453
1454 static inline uint32_t evcmp_merge(int t0, int t1)
1455 {
1456     return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1457 }
1458
1459 #define HELPER_VECTOR_SPE_CMP(name)                                     \
1460     uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1461     {                                                                   \
1462         return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32),          \
1463                            e##name(env, op1, op2));                     \
1464     }
1465 /* evfststlt */
1466 HELPER_VECTOR_SPE_CMP(fststlt);
1467 /* evfststgt */
1468 HELPER_VECTOR_SPE_CMP(fststgt);
1469 /* evfststeq */
1470 HELPER_VECTOR_SPE_CMP(fststeq);
1471 /* evfscmplt */
1472 HELPER_VECTOR_SPE_CMP(fscmplt);
1473 /* evfscmpgt */
1474 HELPER_VECTOR_SPE_CMP(fscmpgt);
1475 /* evfscmpeq */
1476 HELPER_VECTOR_SPE_CMP(fscmpeq);
1477
1478 /* Double-precision floating-point conversion */
1479 uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1480 {
1481     CPU_DoubleU u;
1482
1483     u.d = int32_to_float64(val, &env->vec_status);
1484
1485     return u.ll;
1486 }
1487
1488 uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1489 {
1490     CPU_DoubleU u;
1491
1492     u.d = int64_to_float64(val, &env->vec_status);
1493
1494     return u.ll;
1495 }
1496
1497 uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1498 {
1499     CPU_DoubleU u;
1500
1501     u.d = uint32_to_float64(val, &env->vec_status);
1502
1503     return u.ll;
1504 }
1505
1506 uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1507 {
1508     CPU_DoubleU u;
1509
1510     u.d = uint64_to_float64(val, &env->vec_status);
1511
1512     return u.ll;
1513 }
1514
1515 uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1516 {
1517     CPU_DoubleU u;
1518
1519     u.ll = val;
1520     /* NaN are not treated the same way IEEE 754 does */
1521     if (unlikely(float64_is_any_nan(u.d))) {
1522         return 0;
1523     }
1524
1525     return float64_to_int32(u.d, &env->vec_status);
1526 }
1527
1528 uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1529 {
1530     CPU_DoubleU u;
1531
1532     u.ll = val;
1533     /* NaN are not treated the same way IEEE 754 does */
1534     if (unlikely(float64_is_any_nan(u.d))) {
1535         return 0;
1536     }
1537
1538     return float64_to_uint32(u.d, &env->vec_status);
1539 }
1540
1541 uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1542 {
1543     CPU_DoubleU u;
1544
1545     u.ll = val;
1546     /* NaN are not treated the same way IEEE 754 does */
1547     if (unlikely(float64_is_any_nan(u.d))) {
1548         return 0;
1549     }
1550
1551     return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1552 }
1553
1554 uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1555 {
1556     CPU_DoubleU u;
1557
1558     u.ll = val;
1559     /* NaN are not treated the same way IEEE 754 does */
1560     if (unlikely(float64_is_any_nan(u.d))) {
1561         return 0;
1562     }
1563
1564     return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1565 }
1566
1567 uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1568 {
1569     CPU_DoubleU u;
1570
1571     u.ll = val;
1572     /* NaN are not treated the same way IEEE 754 does */
1573     if (unlikely(float64_is_any_nan(u.d))) {
1574         return 0;
1575     }
1576
1577     return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1578 }
1579
1580 uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1581 {
1582     CPU_DoubleU u;
1583
1584     u.ll = val;
1585     /* NaN are not treated the same way IEEE 754 does */
1586     if (unlikely(float64_is_any_nan(u.d))) {
1587         return 0;
1588     }
1589
1590     return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1591 }
1592
1593 uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1594 {
1595     CPU_DoubleU u;
1596     float64 tmp;
1597
1598     u.d = int32_to_float64(val, &env->vec_status);
1599     tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1600     u.d = float64_div(u.d, tmp, &env->vec_status);
1601
1602     return u.ll;
1603 }
1604
1605 uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1606 {
1607     CPU_DoubleU u;
1608     float64 tmp;
1609
1610     u.d = uint32_to_float64(val, &env->vec_status);
1611     tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1612     u.d = float64_div(u.d, tmp, &env->vec_status);
1613
1614     return u.ll;
1615 }
1616
1617 uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1618 {
1619     CPU_DoubleU u;
1620     float64 tmp;
1621
1622     u.ll = val;
1623     /* NaN are not treated the same way IEEE 754 does */
1624     if (unlikely(float64_is_any_nan(u.d))) {
1625         return 0;
1626     }
1627     tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1628     u.d = float64_mul(u.d, tmp, &env->vec_status);
1629
1630     return float64_to_int32(u.d, &env->vec_status);
1631 }
1632
1633 uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1634 {
1635     CPU_DoubleU u;
1636     float64 tmp;
1637
1638     u.ll = val;
1639     /* NaN are not treated the same way IEEE 754 does */
1640     if (unlikely(float64_is_any_nan(u.d))) {
1641         return 0;
1642     }
1643     tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1644     u.d = float64_mul(u.d, tmp, &env->vec_status);
1645
1646     return float64_to_uint32(u.d, &env->vec_status);
1647 }
1648
1649 uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1650 {
1651     CPU_DoubleU u1;
1652     CPU_FloatU u2;
1653
1654     u1.ll = val;
1655     u2.f = float64_to_float32(u1.d, &env->vec_status);
1656
1657     return u2.l;
1658 }
1659
1660 uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1661 {
1662     CPU_DoubleU u2;
1663     CPU_FloatU u1;
1664
1665     u1.l = val;
1666     u2.d = float32_to_float64(u1.f, &env->vec_status);
1667
1668     return u2.ll;
1669 }
1670
1671 /* Double precision fixed-point arithmetic */
1672 uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1673 {
1674     CPU_DoubleU u1, u2;
1675
1676     u1.ll = op1;
1677     u2.ll = op2;
1678     u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1679     return u1.ll;
1680 }
1681
1682 uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1683 {
1684     CPU_DoubleU u1, u2;
1685
1686     u1.ll = op1;
1687     u2.ll = op2;
1688     u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1689     return u1.ll;
1690 }
1691
1692 uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1693 {
1694     CPU_DoubleU u1, u2;
1695
1696     u1.ll = op1;
1697     u2.ll = op2;
1698     u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1699     return u1.ll;
1700 }
1701
1702 uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1703 {
1704     CPU_DoubleU u1, u2;
1705
1706     u1.ll = op1;
1707     u2.ll = op2;
1708     u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1709     return u1.ll;
1710 }
1711
1712 /* Double precision floating point helpers */
1713 uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1714 {
1715     CPU_DoubleU u1, u2;
1716
1717     u1.ll = op1;
1718     u2.ll = op2;
1719     return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1720 }
1721
1722 uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1723 {
1724     CPU_DoubleU u1, u2;
1725
1726     u1.ll = op1;
1727     u2.ll = op2;
1728     return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1729 }
1730
1731 uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1732 {
1733     CPU_DoubleU u1, u2;
1734
1735     u1.ll = op1;
1736     u2.ll = op2;
1737     return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1738 }
1739
1740 uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1741 {
1742     /* XXX: TODO: test special values (NaN, infinites, ...) */
1743     return helper_efdtstlt(env, op1, op2);
1744 }
1745
1746 uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1747 {
1748     /* XXX: TODO: test special values (NaN, infinites, ...) */
1749     return helper_efdtstgt(env, op1, op2);
1750 }
1751
1752 uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1753 {
1754     /* XXX: TODO: test special values (NaN, infinites, ...) */
1755     return helper_efdtsteq(env, op1, op2);
1756 }
1757
1758 #define DECODE_SPLIT(opcode, shift1, nb1, shift2, nb2) \
1759     (((((opcode) >> (shift1)) & ((1 << (nb1)) - 1)) << nb2) |    \
1760      (((opcode) >> (shift2)) & ((1 << (nb2)) - 1)))
1761
1762 #define xT(opcode) DECODE_SPLIT(opcode, 0, 1, 21, 5)
1763 #define xA(opcode) DECODE_SPLIT(opcode, 2, 1, 16, 5)
1764 #define xB(opcode) DECODE_SPLIT(opcode, 1, 1, 11, 5)
1765 #define xC(opcode) DECODE_SPLIT(opcode, 3, 1,  6, 5)
1766 #define BF(opcode) (((opcode) >> (31-8)) & 7)
1767
1768 typedef union _ppc_vsr_t {
1769     uint64_t u64[2];
1770     uint32_t u32[4];
1771     float32 f32[4];
1772     float64 f64[2];
1773 } ppc_vsr_t;
1774
1775 static void getVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env)
1776 {
1777     if (n < 32) {
1778         vsr->f64[0] = env->fpr[n];
1779         vsr->u64[1] = env->vsr[n];
1780     } else {
1781         vsr->u64[0] = env->avr[n-32].u64[0];
1782         vsr->u64[1] = env->avr[n-32].u64[1];
1783     }
1784 }
1785
1786 static void putVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env)
1787 {
1788     if (n < 32) {
1789         env->fpr[n] = vsr->f64[0];
1790         env->vsr[n] = vsr->u64[1];
1791     } else {
1792         env->avr[n-32].u64[0] = vsr->u64[0];
1793         env->avr[n-32].u64[1] = vsr->u64[1];
1794     }
1795 }
1796
1797 #define float64_to_float64(x, env) x
1798
1799
1800 /* VSX_ADD_SUB - VSX floating point add/subract
1801  *   name  - instruction mnemonic
1802  *   op    - operation (add or sub)
1803  *   nels  - number of elements (1, 2 or 4)
1804  *   tp    - type (float32 or float64)
1805  *   fld   - vsr_t field (f32 or f64)
1806  *   sfprf - set FPRF
1807  */
1808 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfprf, r2sp)                    \
1809 void helper_##name(CPUPPCState *env, uint32_t opcode)                        \
1810 {                                                                            \
1811     ppc_vsr_t xt, xa, xb;                                                    \
1812     int i;                                                                   \
1813                                                                              \
1814     getVSR(xA(opcode), &xa, env);                                            \
1815     getVSR(xB(opcode), &xb, env);                                            \
1816     getVSR(xT(opcode), &xt, env);                                            \
1817     helper_reset_fpstatus(env);                                              \
1818                                                                              \
1819     for (i = 0; i < nels; i++) {                                             \
1820         float_status tstat = env->fp_status;                                 \
1821         set_float_exception_flags(0, &tstat);                                \
1822         xt.fld[i] = tp##_##op(xa.fld[i], xb.fld[i], &tstat);                 \
1823         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1824                                                                              \
1825         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1826             if (tp##_is_infinity(xa.fld[i]) && tp##_is_infinity(xb.fld[i])) {\
1827                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf);    \
1828             } else if (tp##_is_signaling_nan(xa.fld[i]) ||                   \
1829                        tp##_is_signaling_nan(xb.fld[i])) {                   \
1830                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
1831             }                                                                \
1832         }                                                                    \
1833                                                                              \
1834         if (r2sp) {                                                          \
1835             xt.fld[i] = helper_frsp(env, xt.fld[i]);                         \
1836         }                                                                    \
1837                                                                              \
1838         if (sfprf) {                                                         \
1839             helper_compute_fprf(env, xt.fld[i], sfprf);                      \
1840         }                                                                    \
1841     }                                                                        \
1842     putVSR(xT(opcode), &xt, env);                                            \
1843     helper_float_check_status(env);                                          \
1844 }
1845
1846 VSX_ADD_SUB(xsadddp, add, 1, float64, f64, 1, 0)
1847 VSX_ADD_SUB(xsaddsp, add, 1, float64, f64, 1, 1)
1848 VSX_ADD_SUB(xvadddp, add, 2, float64, f64, 0, 0)
1849 VSX_ADD_SUB(xvaddsp, add, 4, float32, f32, 0, 0)
1850 VSX_ADD_SUB(xssubdp, sub, 1, float64, f64, 1, 0)
1851 VSX_ADD_SUB(xssubsp, sub, 1, float64, f64, 1, 1)
1852 VSX_ADD_SUB(xvsubdp, sub, 2, float64, f64, 0, 0)
1853 VSX_ADD_SUB(xvsubsp, sub, 4, float32, f32, 0, 0)
1854
1855 /* VSX_MUL - VSX floating point multiply
1856  *   op    - instruction mnemonic
1857  *   nels  - number of elements (1, 2 or 4)
1858  *   tp    - type (float32 or float64)
1859  *   fld   - vsr_t field (f32 or f64)
1860  *   sfprf - set FPRF
1861  */
1862 #define VSX_MUL(op, nels, tp, fld, sfprf, r2sp)                              \
1863 void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
1864 {                                                                            \
1865     ppc_vsr_t xt, xa, xb;                                                    \
1866     int i;                                                                   \
1867                                                                              \
1868     getVSR(xA(opcode), &xa, env);                                            \
1869     getVSR(xB(opcode), &xb, env);                                            \
1870     getVSR(xT(opcode), &xt, env);                                            \
1871     helper_reset_fpstatus(env);                                              \
1872                                                                              \
1873     for (i = 0; i < nels; i++) {                                             \
1874         float_status tstat = env->fp_status;                                 \
1875         set_float_exception_flags(0, &tstat);                                \
1876         xt.fld[i] = tp##_mul(xa.fld[i], xb.fld[i], &tstat);                  \
1877         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1878                                                                              \
1879         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
1880             if ((tp##_is_infinity(xa.fld[i]) && tp##_is_zero(xb.fld[i])) ||  \
1881                 (tp##_is_infinity(xb.fld[i]) && tp##_is_zero(xa.fld[i]))) {  \
1882                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ, sfprf);    \
1883             } else if (tp##_is_signaling_nan(xa.fld[i]) ||                   \
1884                        tp##_is_signaling_nan(xb.fld[i])) {                   \
1885                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
1886             }                                                                \
1887         }                                                                    \
1888                                                                              \
1889         if (r2sp) {                                                          \
1890             xt.fld[i] = helper_frsp(env, xt.fld[i]);                         \
1891         }                                                                    \
1892                                                                              \
1893         if (sfprf) {                                                         \
1894             helper_compute_fprf(env, xt.fld[i], sfprf);                      \
1895         }                                                                    \
1896     }                                                                        \
1897                                                                              \
1898     putVSR(xT(opcode), &xt, env);                                            \
1899     helper_float_check_status(env);                                          \
1900 }
1901
1902 VSX_MUL(xsmuldp, 1, float64, f64, 1, 0)
1903 VSX_MUL(xsmulsp, 1, float64, f64, 1, 1)
1904 VSX_MUL(xvmuldp, 2, float64, f64, 0, 0)
1905 VSX_MUL(xvmulsp, 4, float32, f32, 0, 0)
1906
1907 /* VSX_DIV - VSX floating point divide
1908  *   op    - instruction mnemonic
1909  *   nels  - number of elements (1, 2 or 4)
1910  *   tp    - type (float32 or float64)
1911  *   fld   - vsr_t field (f32 or f64)
1912  *   sfprf - set FPRF
1913  */
1914 #define VSX_DIV(op, nels, tp, fld, sfprf, r2sp)                               \
1915 void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
1916 {                                                                             \
1917     ppc_vsr_t xt, xa, xb;                                                     \
1918     int i;                                                                    \
1919                                                                               \
1920     getVSR(xA(opcode), &xa, env);                                             \
1921     getVSR(xB(opcode), &xb, env);                                             \
1922     getVSR(xT(opcode), &xt, env);                                             \
1923     helper_reset_fpstatus(env);                                               \
1924                                                                               \
1925     for (i = 0; i < nels; i++) {                                              \
1926         float_status tstat = env->fp_status;                                  \
1927         set_float_exception_flags(0, &tstat);                                 \
1928         xt.fld[i] = tp##_div(xa.fld[i], xb.fld[i], &tstat);                   \
1929         env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
1930                                                                               \
1931         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
1932             if (tp##_is_infinity(xa.fld[i]) && tp##_is_infinity(xb.fld[i])) { \
1933                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI, sfprf);     \
1934             } else if (tp##_is_zero(xa.fld[i]) &&                             \
1935                 tp##_is_zero(xb.fld[i])) {                                    \
1936                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ, sfprf);     \
1937             } else if (tp##_is_signaling_nan(xa.fld[i]) ||                    \
1938                 tp##_is_signaling_nan(xb.fld[i])) {                           \
1939                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);    \
1940             }                                                                 \
1941         }                                                                     \
1942                                                                               \
1943         if (r2sp) {                                                           \
1944             xt.fld[i] = helper_frsp(env, xt.fld[i]);                          \
1945         }                                                                     \
1946                                                                               \
1947         if (sfprf) {                                                          \
1948             helper_compute_fprf(env, xt.fld[i], sfprf);                       \
1949         }                                                                     \
1950     }                                                                         \
1951                                                                               \
1952     putVSR(xT(opcode), &xt, env);                                             \
1953     helper_float_check_status(env);                                           \
1954 }
1955
1956 VSX_DIV(xsdivdp, 1, float64, f64, 1, 0)
1957 VSX_DIV(xsdivsp, 1, float64, f64, 1, 1)
1958 VSX_DIV(xvdivdp, 2, float64, f64, 0, 0)
1959 VSX_DIV(xvdivsp, 4, float32, f32, 0, 0)
1960
1961 /* VSX_RE  - VSX floating point reciprocal estimate
1962  *   op    - instruction mnemonic
1963  *   nels  - number of elements (1, 2 or 4)
1964  *   tp    - type (float32 or float64)
1965  *   fld   - vsr_t field (f32 or f64)
1966  *   sfprf - set FPRF
1967  */
1968 #define VSX_RE(op, nels, tp, fld, sfprf, r2sp)                                \
1969 void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
1970 {                                                                             \
1971     ppc_vsr_t xt, xb;                                                         \
1972     int i;                                                                    \
1973                                                                               \
1974     getVSR(xB(opcode), &xb, env);                                             \
1975     getVSR(xT(opcode), &xt, env);                                             \
1976     helper_reset_fpstatus(env);                                               \
1977                                                                               \
1978     for (i = 0; i < nels; i++) {                                              \
1979         if (unlikely(tp##_is_signaling_nan(xb.fld[i]))) {                     \
1980                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);    \
1981         }                                                                     \
1982         xt.fld[i] = tp##_div(tp##_one, xb.fld[i], &env->fp_status);           \
1983                                                                               \
1984         if (r2sp) {                                                           \
1985             xt.fld[i] = helper_frsp(env, xt.fld[i]);                          \
1986         }                                                                     \
1987                                                                               \
1988         if (sfprf) {                                                          \
1989             helper_compute_fprf(env, xt.fld[0], sfprf);                       \
1990         }                                                                     \
1991     }                                                                         \
1992                                                                               \
1993     putVSR(xT(opcode), &xt, env);                                             \
1994     helper_float_check_status(env);                                           \
1995 }
1996
1997 VSX_RE(xsredp, 1, float64, f64, 1, 0)
1998 VSX_RE(xsresp, 1, float64, f64, 1, 1)
1999 VSX_RE(xvredp, 2, float64, f64, 0, 0)
2000 VSX_RE(xvresp, 4, float32, f32, 0, 0)
2001
2002 /* VSX_SQRT - VSX floating point square root
2003  *   op    - instruction mnemonic
2004  *   nels  - number of elements (1, 2 or 4)
2005  *   tp    - type (float32 or float64)
2006  *   fld   - vsr_t field (f32 or f64)
2007  *   sfprf - set FPRF
2008  */
2009 #define VSX_SQRT(op, nels, tp, fld, sfprf, r2sp)                             \
2010 void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
2011 {                                                                            \
2012     ppc_vsr_t xt, xb;                                                        \
2013     int i;                                                                   \
2014                                                                              \
2015     getVSR(xB(opcode), &xb, env);                                            \
2016     getVSR(xT(opcode), &xt, env);                                            \
2017     helper_reset_fpstatus(env);                                              \
2018                                                                              \
2019     for (i = 0; i < nels; i++) {                                             \
2020         float_status tstat = env->fp_status;                                 \
2021         set_float_exception_flags(0, &tstat);                                \
2022         xt.fld[i] = tp##_sqrt(xb.fld[i], &tstat);                            \
2023         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2024                                                                              \
2025         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
2026             if (tp##_is_neg(xb.fld[i]) && !tp##_is_zero(xb.fld[i])) {        \
2027                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf);   \
2028             } else if (tp##_is_signaling_nan(xb.fld[i])) {                   \
2029                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
2030             }                                                                \
2031         }                                                                    \
2032                                                                              \
2033         if (r2sp) {                                                          \
2034             xt.fld[i] = helper_frsp(env, xt.fld[i]);                         \
2035         }                                                                    \
2036                                                                              \
2037         if (sfprf) {                                                         \
2038             helper_compute_fprf(env, xt.fld[i], sfprf);                      \
2039         }                                                                    \
2040     }                                                                        \
2041                                                                              \
2042     putVSR(xT(opcode), &xt, env);                                            \
2043     helper_float_check_status(env);                                          \
2044 }
2045
2046 VSX_SQRT(xssqrtdp, 1, float64, f64, 1, 0)
2047 VSX_SQRT(xssqrtsp, 1, float64, f64, 1, 1)
2048 VSX_SQRT(xvsqrtdp, 2, float64, f64, 0, 0)
2049 VSX_SQRT(xvsqrtsp, 4, float32, f32, 0, 0)
2050
2051 /* VSX_RSQRTE - VSX floating point reciprocal square root estimate
2052  *   op    - instruction mnemonic
2053  *   nels  - number of elements (1, 2 or 4)
2054  *   tp    - type (float32 or float64)
2055  *   fld   - vsr_t field (f32 or f64)
2056  *   sfprf - set FPRF
2057  */
2058 #define VSX_RSQRTE(op, nels, tp, fld, sfprf, r2sp)                           \
2059 void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
2060 {                                                                            \
2061     ppc_vsr_t xt, xb;                                                        \
2062     int i;                                                                   \
2063                                                                              \
2064     getVSR(xB(opcode), &xb, env);                                            \
2065     getVSR(xT(opcode), &xt, env);                                            \
2066     helper_reset_fpstatus(env);                                              \
2067                                                                              \
2068     for (i = 0; i < nels; i++) {                                             \
2069         float_status tstat = env->fp_status;                                 \
2070         set_float_exception_flags(0, &tstat);                                \
2071         xt.fld[i] = tp##_sqrt(xb.fld[i], &tstat);                            \
2072         xt.fld[i] = tp##_div(tp##_one, xt.fld[i], &tstat);                   \
2073         env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2074                                                                              \
2075         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {    \
2076             if (tp##_is_neg(xb.fld[i]) && !tp##_is_zero(xb.fld[i])) {        \
2077                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT, sfprf);   \
2078             } else if (tp##_is_signaling_nan(xb.fld[i])) {                   \
2079                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);   \
2080             }                                                                \
2081         }                                                                    \
2082                                                                              \
2083         if (r2sp) {                                                          \
2084             xt.fld[i] = helper_frsp(env, xt.fld[i]);                         \
2085         }                                                                    \
2086                                                                              \
2087         if (sfprf) {                                                         \
2088             helper_compute_fprf(env, xt.fld[i], sfprf);                      \
2089         }                                                                    \
2090     }                                                                        \
2091                                                                              \
2092     putVSR(xT(opcode), &xt, env);                                            \
2093     helper_float_check_status(env);                                          \
2094 }
2095
2096 VSX_RSQRTE(xsrsqrtedp, 1, float64, f64, 1, 0)
2097 VSX_RSQRTE(xsrsqrtesp, 1, float64, f64, 1, 1)
2098 VSX_RSQRTE(xvrsqrtedp, 2, float64, f64, 0, 0)
2099 VSX_RSQRTE(xvrsqrtesp, 4, float32, f32, 0, 0)
2100
2101 /* VSX_TDIV - VSX floating point test for divide
2102  *   op    - instruction mnemonic
2103  *   nels  - number of elements (1, 2 or 4)
2104  *   tp    - type (float32 or float64)
2105  *   fld   - vsr_t field (f32 or f64)
2106  *   emin  - minimum unbiased exponent
2107  *   emax  - maximum unbiased exponent
2108  *   nbits - number of fraction bits
2109  */
2110 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits)                  \
2111 void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
2112 {                                                                       \
2113     ppc_vsr_t xa, xb;                                                   \
2114     int i;                                                              \
2115     int fe_flag = 0;                                                    \
2116     int fg_flag = 0;                                                    \
2117                                                                         \
2118     getVSR(xA(opcode), &xa, env);                                       \
2119     getVSR(xB(opcode), &xb, env);                                       \
2120                                                                         \
2121     for (i = 0; i < nels; i++) {                                        \
2122         if (unlikely(tp##_is_infinity(xa.fld[i]) ||                     \
2123                      tp##_is_infinity(xb.fld[i]) ||                     \
2124                      tp##_is_zero(xb.fld[i]))) {                        \
2125             fe_flag = 1;                                                \
2126             fg_flag = 1;                                                \
2127         } else {                                                        \
2128             int e_a = ppc_##tp##_get_unbiased_exp(xa.fld[i]);           \
2129             int e_b = ppc_##tp##_get_unbiased_exp(xb.fld[i]);           \
2130                                                                         \
2131             if (unlikely(tp##_is_any_nan(xa.fld[i]) ||                  \
2132                          tp##_is_any_nan(xb.fld[i]))) {                 \
2133                 fe_flag = 1;                                            \
2134             } else if ((e_b <= emin) || (e_b >= (emax-2))) {            \
2135                 fe_flag = 1;                                            \
2136             } else if (!tp##_is_zero(xa.fld[i]) &&                      \
2137                        (((e_a - e_b) >= emax) ||                        \
2138                         ((e_a - e_b) <= (emin+1)) ||                    \
2139                          (e_a <= (emin+nbits)))) {                      \
2140                 fe_flag = 1;                                            \
2141             }                                                           \
2142                                                                         \
2143             if (unlikely(tp##_is_zero_or_denormal(xb.fld[i]))) {        \
2144                 /* XB is not zero because of the above check and */     \
2145                 /* so must be denormalized.                      */     \
2146                 fg_flag = 1;                                            \
2147             }                                                           \
2148         }                                                               \
2149     }                                                                   \
2150                                                                         \
2151     env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2152 }
2153
2154 VSX_TDIV(xstdivdp, 1, float64, f64, -1022, 1023, 52)
2155 VSX_TDIV(xvtdivdp, 2, float64, f64, -1022, 1023, 52)
2156 VSX_TDIV(xvtdivsp, 4, float32, f32, -126, 127, 23)
2157
2158 /* VSX_TSQRT - VSX floating point test for square root
2159  *   op    - instruction mnemonic
2160  *   nels  - number of elements (1, 2 or 4)
2161  *   tp    - type (float32 or float64)
2162  *   fld   - vsr_t field (f32 or f64)
2163  *   emin  - minimum unbiased exponent
2164  *   emax  - maximum unbiased exponent
2165  *   nbits - number of fraction bits
2166  */
2167 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits)                       \
2168 void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
2169 {                                                                       \
2170     ppc_vsr_t xa, xb;                                                   \
2171     int i;                                                              \
2172     int fe_flag = 0;                                                    \
2173     int fg_flag = 0;                                                    \
2174                                                                         \
2175     getVSR(xA(opcode), &xa, env);                                       \
2176     getVSR(xB(opcode), &xb, env);                                       \
2177                                                                         \
2178     for (i = 0; i < nels; i++) {                                        \
2179         if (unlikely(tp##_is_infinity(xb.fld[i]) ||                     \
2180                      tp##_is_zero(xb.fld[i]))) {                        \
2181             fe_flag = 1;                                                \
2182             fg_flag = 1;                                                \
2183         } else {                                                        \
2184             int e_b = ppc_##tp##_get_unbiased_exp(xb.fld[i]);           \
2185                                                                         \
2186             if (unlikely(tp##_is_any_nan(xb.fld[i]))) {                 \
2187                 fe_flag = 1;                                            \
2188             } else if (unlikely(tp##_is_zero(xb.fld[i]))) {             \
2189                 fe_flag = 1;                                            \
2190             } else if (unlikely(tp##_is_neg(xb.fld[i]))) {              \
2191                 fe_flag = 1;                                            \
2192             } else if (!tp##_is_zero(xb.fld[i]) &&                      \
2193                       (e_b <= (emin+nbits))) {                          \
2194                 fe_flag = 1;                                            \
2195             }                                                           \
2196                                                                         \
2197             if (unlikely(tp##_is_zero_or_denormal(xb.fld[i]))) {        \
2198                 /* XB is not zero because of the above check and */     \
2199                 /* therefore must be denormalized.               */     \
2200                 fg_flag = 1;                                            \
2201             }                                                           \
2202         }                                                               \
2203     }                                                                   \
2204                                                                         \
2205     env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2206 }
2207
2208 VSX_TSQRT(xstsqrtdp, 1, float64, f64, -1022, 52)
2209 VSX_TSQRT(xvtsqrtdp, 2, float64, f64, -1022, 52)
2210 VSX_TSQRT(xvtsqrtsp, 4, float32, f32, -126, 23)
2211
2212 /* VSX_MADD - VSX floating point muliply/add variations
2213  *   op    - instruction mnemonic
2214  *   nels  - number of elements (1, 2 or 4)
2215  *   tp    - type (float32 or float64)
2216  *   fld   - vsr_t field (f32 or f64)
2217  *   maddflgs - flags for the float*muladd routine that control the
2218  *           various forms (madd, msub, nmadd, nmsub)
2219  *   afrm  - A form (1=A, 0=M)
2220  *   sfprf - set FPRF
2221  */
2222 #define VSX_MADD(op, nels, tp, fld, maddflgs, afrm, sfprf, r2sp)              \
2223 void helper_##op(CPUPPCState *env, uint32_t opcode)                           \
2224 {                                                                             \
2225     ppc_vsr_t xt_in, xa, xb, xt_out;                                          \
2226     ppc_vsr_t *b, *c;                                                         \
2227     int i;                                                                    \
2228                                                                               \
2229     if (afrm) { /* AxB + T */                                                 \
2230         b = &xb;                                                              \
2231         c = &xt_in;                                                           \
2232     } else { /* AxT + B */                                                    \
2233         b = &xt_in;                                                           \
2234         c = &xb;                                                              \
2235     }                                                                         \
2236                                                                               \
2237     getVSR(xA(opcode), &xa, env);                                             \
2238     getVSR(xB(opcode), &xb, env);                                             \
2239     getVSR(xT(opcode), &xt_in, env);                                          \
2240                                                                               \
2241     xt_out = xt_in;                                                           \
2242                                                                               \
2243     helper_reset_fpstatus(env);                                               \
2244                                                                               \
2245     for (i = 0; i < nels; i++) {                                              \
2246         float_status tstat = env->fp_status;                                  \
2247         set_float_exception_flags(0, &tstat);                                 \
2248         if (r2sp && (tstat.float_rounding_mode == float_round_nearest_even)) {\
2249             /* Avoid double rounding errors by rounding the intermediate */   \
2250             /* result to odd.                                            */   \
2251             set_float_rounding_mode(float_round_to_zero, &tstat);             \
2252             xt_out.fld[i] = tp##_muladd(xa.fld[i], b->fld[i], c->fld[i],      \
2253                                        maddflgs, &tstat);                     \
2254             xt_out.fld[i] |= (get_float_exception_flags(&tstat) &             \
2255                               float_flag_inexact) != 0;                       \
2256         } else {                                                              \
2257             xt_out.fld[i] = tp##_muladd(xa.fld[i], b->fld[i], c->fld[i],      \
2258                                         maddflgs, &tstat);                    \
2259         }                                                                     \
2260         env->fp_status.float_exception_flags |= tstat.float_exception_flags;  \
2261                                                                               \
2262         if (unlikely(tstat.float_exception_flags & float_flag_invalid)) {     \
2263             if (tp##_is_signaling_nan(xa.fld[i]) ||                           \
2264                 tp##_is_signaling_nan(b->fld[i]) ||                           \
2265                 tp##_is_signaling_nan(c->fld[i])) {                           \
2266                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, sfprf);    \
2267                 tstat.float_exception_flags &= ~float_flag_invalid;           \
2268             }                                                                 \
2269             if ((tp##_is_infinity(xa.fld[i]) && tp##_is_zero(b->fld[i])) ||   \
2270                 (tp##_is_zero(xa.fld[i]) && tp##_is_infinity(b->fld[i]))) {   \
2271                 xt_out.fld[i] = float64_to_##tp(fload_invalid_op_excp(env,    \
2272                     POWERPC_EXCP_FP_VXIMZ, sfprf), &env->fp_status);          \
2273                 tstat.float_exception_flags &= ~float_flag_invalid;           \
2274             }                                                                 \
2275             if ((tstat.float_exception_flags & float_flag_invalid) &&         \
2276                 ((tp##_is_infinity(xa.fld[i]) ||                              \
2277                   tp##_is_infinity(b->fld[i])) &&                             \
2278                   tp##_is_infinity(c->fld[i]))) {                             \
2279                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI, sfprf);     \
2280             }                                                                 \
2281         }                                                                     \
2282                                                                               \
2283         if (r2sp) {                                                           \
2284             xt_out.fld[i] = helper_frsp(env, xt_out.fld[i]);                  \
2285         }                                                                     \
2286                                                                               \
2287         if (sfprf) {                                                          \
2288             helper_compute_fprf(env, xt_out.fld[i], sfprf);                   \
2289         }                                                                     \
2290     }                                                                         \
2291     putVSR(xT(opcode), &xt_out, env);                                         \
2292     helper_float_check_status(env);                                           \
2293 }
2294
2295 #define MADD_FLGS 0
2296 #define MSUB_FLGS float_muladd_negate_c
2297 #define NMADD_FLGS float_muladd_negate_result
2298 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
2299
2300 VSX_MADD(xsmaddadp, 1, float64, f64, MADD_FLGS, 1, 1, 0)
2301 VSX_MADD(xsmaddmdp, 1, float64, f64, MADD_FLGS, 0, 1, 0)
2302 VSX_MADD(xsmsubadp, 1, float64, f64, MSUB_FLGS, 1, 1, 0)
2303 VSX_MADD(xsmsubmdp, 1, float64, f64, MSUB_FLGS, 0, 1, 0)
2304 VSX_MADD(xsnmaddadp, 1, float64, f64, NMADD_FLGS, 1, 1, 0)
2305 VSX_MADD(xsnmaddmdp, 1, float64, f64, NMADD_FLGS, 0, 1, 0)
2306 VSX_MADD(xsnmsubadp, 1, float64, f64, NMSUB_FLGS, 1, 1, 0)
2307 VSX_MADD(xsnmsubmdp, 1, float64, f64, NMSUB_FLGS, 0, 1, 0)
2308
2309 VSX_MADD(xsmaddasp, 1, float64, f64, MADD_FLGS, 1, 1, 1)
2310 VSX_MADD(xsmaddmsp, 1, float64, f64, MADD_FLGS, 0, 1, 1)
2311 VSX_MADD(xsmsubasp, 1, float64, f64, MSUB_FLGS, 1, 1, 1)
2312 VSX_MADD(xsmsubmsp, 1, float64, f64, MSUB_FLGS, 0, 1, 1)
2313 VSX_MADD(xsnmaddasp, 1, float64, f64, NMADD_FLGS, 1, 1, 1)
2314 VSX_MADD(xsnmaddmsp, 1, float64, f64, NMADD_FLGS, 0, 1, 1)
2315 VSX_MADD(xsnmsubasp, 1, float64, f64, NMSUB_FLGS, 1, 1, 1)
2316 VSX_MADD(xsnmsubmsp, 1, float64, f64, NMSUB_FLGS, 0, 1, 1)
2317
2318 VSX_MADD(xvmaddadp, 2, float64, f64, MADD_FLGS, 1, 0, 0)
2319 VSX_MADD(xvmaddmdp, 2, float64, f64, MADD_FLGS, 0, 0, 0)
2320 VSX_MADD(xvmsubadp, 2, float64, f64, MSUB_FLGS, 1, 0, 0)
2321 VSX_MADD(xvmsubmdp, 2, float64, f64, MSUB_FLGS, 0, 0, 0)
2322 VSX_MADD(xvnmaddadp, 2, float64, f64, NMADD_FLGS, 1, 0, 0)
2323 VSX_MADD(xvnmaddmdp, 2, float64, f64, NMADD_FLGS, 0, 0, 0)
2324 VSX_MADD(xvnmsubadp, 2, float64, f64, NMSUB_FLGS, 1, 0, 0)
2325 VSX_MADD(xvnmsubmdp, 2, float64, f64, NMSUB_FLGS, 0, 0, 0)
2326
2327 VSX_MADD(xvmaddasp, 4, float32, f32, MADD_FLGS, 1, 0, 0)
2328 VSX_MADD(xvmaddmsp, 4, float32, f32, MADD_FLGS, 0, 0, 0)
2329 VSX_MADD(xvmsubasp, 4, float32, f32, MSUB_FLGS, 1, 0, 0)
2330 VSX_MADD(xvmsubmsp, 4, float32, f32, MSUB_FLGS, 0, 0, 0)
2331 VSX_MADD(xvnmaddasp, 4, float32, f32, NMADD_FLGS, 1, 0, 0)
2332 VSX_MADD(xvnmaddmsp, 4, float32, f32, NMADD_FLGS, 0, 0, 0)
2333 VSX_MADD(xvnmsubasp, 4, float32, f32, NMSUB_FLGS, 1, 0, 0)
2334 VSX_MADD(xvnmsubmsp, 4, float32, f32, NMSUB_FLGS, 0, 0, 0)
2335
2336 #define VSX_SCALAR_CMP(op, ordered)                                      \
2337 void helper_##op(CPUPPCState *env, uint32_t opcode)                      \
2338 {                                                                        \
2339     ppc_vsr_t xa, xb;                                                    \
2340     uint32_t cc = 0;                                                     \
2341                                                                          \
2342     getVSR(xA(opcode), &xa, env);                                        \
2343     getVSR(xB(opcode), &xb, env);                                        \
2344                                                                          \
2345     if (unlikely(float64_is_any_nan(xa.f64[0]) ||                        \
2346                  float64_is_any_nan(xb.f64[0]))) {                       \
2347         if (float64_is_signaling_nan(xa.f64[0]) ||                       \
2348             float64_is_signaling_nan(xb.f64[0])) {                       \
2349             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);       \
2350         }                                                                \
2351         if (ordered) {                                                   \
2352             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0);         \
2353         }                                                                \
2354         cc = 1;                                                          \
2355     } else {                                                             \
2356         if (float64_lt(xa.f64[0], xb.f64[0], &env->fp_status)) {         \
2357             cc = 8;                                                      \
2358         } else if (!float64_le(xa.f64[0], xb.f64[0], &env->fp_status)) { \
2359             cc = 4;                                                      \
2360         } else {                                                         \
2361             cc = 2;                                                      \
2362         }                                                                \
2363     }                                                                    \
2364                                                                          \
2365     env->fpscr &= ~(0x0F << FPSCR_FPRF);                                 \
2366     env->fpscr |= cc << FPSCR_FPRF;                                      \
2367     env->crf[BF(opcode)] = cc;                                           \
2368                                                                          \
2369     helper_float_check_status(env);                                      \
2370 }
2371
2372 VSX_SCALAR_CMP(xscmpodp, 1)
2373 VSX_SCALAR_CMP(xscmpudp, 0)
2374
2375 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ul)
2376 #define float32_snan_to_qnan(x) ((x) | 0x00400000)
2377
2378 /* VSX_MAX_MIN - VSX floating point maximum/minimum
2379  *   name  - instruction mnemonic
2380  *   op    - operation (max or min)
2381  *   nels  - number of elements (1, 2 or 4)
2382  *   tp    - type (float32 or float64)
2383  *   fld   - vsr_t field (f32 or f64)
2384  */
2385 #define VSX_MAX_MIN(name, op, nels, tp, fld)                                  \
2386 void helper_##name(CPUPPCState *env, uint32_t opcode)                         \
2387 {                                                                             \
2388     ppc_vsr_t xt, xa, xb;                                                     \
2389     int i;                                                                    \
2390                                                                               \
2391     getVSR(xA(opcode), &xa, env);                                             \
2392     getVSR(xB(opcode), &xb, env);                                             \
2393     getVSR(xT(opcode), &xt, env);                                             \
2394                                                                               \
2395     for (i = 0; i < nels; i++) {                                              \
2396         xt.fld[i] = tp##_##op(xa.fld[i], xb.fld[i], &env->fp_status);         \
2397         if (unlikely(tp##_is_signaling_nan(xa.fld[i]) ||                      \
2398                      tp##_is_signaling_nan(xb.fld[i]))) {                     \
2399             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);            \
2400         }                                                                     \
2401     }                                                                         \
2402                                                                               \
2403     putVSR(xT(opcode), &xt, env);                                             \
2404     helper_float_check_status(env);                                           \
2405 }
2406
2407 VSX_MAX_MIN(xsmaxdp, maxnum, 1, float64, f64)
2408 VSX_MAX_MIN(xvmaxdp, maxnum, 2, float64, f64)
2409 VSX_MAX_MIN(xvmaxsp, maxnum, 4, float32, f32)
2410 VSX_MAX_MIN(xsmindp, minnum, 1, float64, f64)
2411 VSX_MAX_MIN(xvmindp, minnum, 2, float64, f64)
2412 VSX_MAX_MIN(xvminsp, minnum, 4, float32, f32)
2413
2414 /* VSX_CMP - VSX floating point compare
2415  *   op    - instruction mnemonic
2416  *   nels  - number of elements (1, 2 or 4)
2417  *   tp    - type (float32 or float64)
2418  *   fld   - vsr_t field (f32 or f64)
2419  *   cmp   - comparison operation
2420  *   svxvc - set VXVC bit
2421  */
2422 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc)                            \
2423 void helper_##op(CPUPPCState *env, uint32_t opcode)                       \
2424 {                                                                         \
2425     ppc_vsr_t xt, xa, xb;                                                 \
2426     int i;                                                                \
2427     int all_true = 1;                                                     \
2428     int all_false = 1;                                                    \
2429                                                                           \
2430     getVSR(xA(opcode), &xa, env);                                         \
2431     getVSR(xB(opcode), &xb, env);                                         \
2432     getVSR(xT(opcode), &xt, env);                                         \
2433                                                                           \
2434     for (i = 0; i < nels; i++) {                                          \
2435         if (unlikely(tp##_is_any_nan(xa.fld[i]) ||                        \
2436                      tp##_is_any_nan(xb.fld[i]))) {                       \
2437             if (tp##_is_signaling_nan(xa.fld[i]) ||                       \
2438                 tp##_is_signaling_nan(xb.fld[i])) {                       \
2439                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);    \
2440             }                                                             \
2441             if (svxvc) {                                                  \
2442                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC, 0);      \
2443             }                                                             \
2444             xt.fld[i] = 0;                                                \
2445             all_true = 0;                                                 \
2446         } else {                                                          \
2447             if (tp##_##cmp(xb.fld[i], xa.fld[i], &env->fp_status) == 1) { \
2448                 xt.fld[i] = -1;                                           \
2449                 all_false = 0;                                            \
2450             } else {                                                      \
2451                 xt.fld[i] = 0;                                            \
2452                 all_true = 0;                                             \
2453             }                                                             \
2454         }                                                                 \
2455     }                                                                     \
2456                                                                           \
2457     putVSR(xT(opcode), &xt, env);                                         \
2458     if ((opcode >> (31-21)) & 1) {                                        \
2459         env->crf[6] = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0);       \
2460     }                                                                     \
2461     helper_float_check_status(env);                                       \
2462  }
2463
2464 VSX_CMP(xvcmpeqdp, 2, float64, f64, eq, 0)
2465 VSX_CMP(xvcmpgedp, 2, float64, f64, le, 1)
2466 VSX_CMP(xvcmpgtdp, 2, float64, f64, lt, 1)
2467 VSX_CMP(xvcmpeqsp, 4, float32, f32, eq, 0)
2468 VSX_CMP(xvcmpgesp, 4, float32, f32, le, 1)
2469 VSX_CMP(xvcmpgtsp, 4, float32, f32, lt, 1)
2470
2471 #if defined(HOST_WORDS_BIGENDIAN)
2472 #define JOFFSET 0
2473 #else
2474 #define JOFFSET 1
2475 #endif
2476
2477 /* VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2478  *   op    - instruction mnemonic
2479  *   nels  - number of elements (1, 2 or 4)
2480  *   stp   - source type (float32 or float64)
2481  *   ttp   - target type (float32 or float64)
2482  *   sfld  - source vsr_t field
2483  *   tfld  - target vsr_t field (f32 or f64)
2484  *   sfprf - set FPRF
2485  */
2486 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfprf)    \
2487 void helper_##op(CPUPPCState *env, uint32_t opcode)                \
2488 {                                                                  \
2489     ppc_vsr_t xt, xb;                                              \
2490     int i;                                                         \
2491                                                                    \
2492     getVSR(xB(opcode), &xb, env);                                  \
2493     getVSR(xT(opcode), &xt, env);                                  \
2494                                                                    \
2495     for (i = 0; i < nels; i++) {                                   \
2496         int j = 2*i + JOFFSET;                                     \
2497         xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status);        \
2498         if (unlikely(stp##_is_signaling_nan(xb.sfld))) {           \
2499             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0); \
2500             xt.tfld = ttp##_snan_to_qnan(xt.tfld);                 \
2501         }                                                          \
2502         if (sfprf) {                                               \
2503             helper_compute_fprf(env, ttp##_to_float64(xt.tfld,     \
2504                                 &env->fp_status), sfprf);          \
2505         }                                                          \
2506     }                                                              \
2507                                                                    \
2508     putVSR(xT(opcode), &xt, env);                                  \
2509     helper_float_check_status(env);                                \
2510 }
2511
2512 VSX_CVT_FP_TO_FP(xscvdpsp, 1, float64, float32, f64[i], f32[j], 1)
2513 VSX_CVT_FP_TO_FP(xscvspdp, 1, float32, float64, f32[j], f64[i], 1)
2514 VSX_CVT_FP_TO_FP(xvcvdpsp, 2, float64, float32, f64[i], f32[j], 0)
2515 VSX_CVT_FP_TO_FP(xvcvspdp, 2, float32, float64, f32[j], f64[i], 0)
2516
2517 uint64_t helper_xscvdpspn(CPUPPCState *env, uint64_t xb)
2518 {
2519     float_status tstat = env->fp_status;
2520     set_float_exception_flags(0, &tstat);
2521
2522     return (uint64_t)float64_to_float32(xb, &tstat) << 32;
2523 }
2524
2525 uint64_t helper_xscvspdpn(CPUPPCState *env, uint64_t xb)
2526 {
2527     float_status tstat = env->fp_status;
2528     set_float_exception_flags(0, &tstat);
2529
2530     return float32_to_float64(xb >> 32, &tstat);
2531 }
2532
2533 /* VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2534  *   op    - instruction mnemonic
2535  *   nels  - number of elements (1, 2 or 4)
2536  *   stp   - source type (float32 or float64)
2537  *   ttp   - target type (int32, uint32, int64 or uint64)
2538  *   sfld  - source vsr_t field
2539  *   tfld  - target vsr_t field
2540  *   jdef  - definition of the j index (i or 2*i)
2541  *   rnan  - resulting NaN
2542  */
2543 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, jdef, rnan)        \
2544 void helper_##op(CPUPPCState *env, uint32_t opcode)                          \
2545 {                                                                            \
2546     ppc_vsr_t xt, xb;                                                        \
2547     int i;                                                                   \
2548                                                                              \
2549     getVSR(xB(opcode), &xb, env);                                            \
2550     getVSR(xT(opcode), &xt, env);                                            \
2551                                                                              \
2552     for (i = 0; i < nels; i++) {                                             \
2553         int j = jdef;                                                        \
2554         if (unlikely(stp##_is_any_nan(xb.sfld))) {                           \
2555             if (stp##_is_signaling_nan(xb.sfld)) {                           \
2556                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);       \
2557             }                                                                \
2558             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0);            \
2559             xt.tfld = rnan;                                                  \
2560         } else {                                                             \
2561             xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status);              \
2562             if (env->fp_status.float_exception_flags & float_flag_invalid) { \
2563                 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI, 0);        \
2564             }                                                                \
2565         }                                                                    \
2566     }                                                                        \
2567                                                                              \
2568     putVSR(xT(opcode), &xt, env);                                            \
2569     helper_float_check_status(env);                                          \
2570 }
2571
2572 VSX_CVT_FP_TO_INT(xscvdpsxds, 1, float64, int64, f64[j], u64[i], i, \
2573                   0x8000000000000000ul)
2574 VSX_CVT_FP_TO_INT(xscvdpsxws, 1, float64, int32, f64[i], u32[j], \
2575                   2*i + JOFFSET, 0x80000000l)
2576 VSX_CVT_FP_TO_INT(xscvdpuxds, 1, float64, uint64, f64[j], u64[i], i, 0ul)
2577 VSX_CVT_FP_TO_INT(xscvdpuxws, 1, float64, uint32, f64[i], u32[j], \
2578                   2*i + JOFFSET, 0)
2579 VSX_CVT_FP_TO_INT(xvcvdpsxds, 2, float64, int64, f64[j], u64[i], i, \
2580                   0x8000000000000000ul)
2581 VSX_CVT_FP_TO_INT(xvcvdpsxws, 2, float64, int32, f64[i], u32[j], \
2582                   2*i + JOFFSET, 0x80000000l)
2583 VSX_CVT_FP_TO_INT(xvcvdpuxds, 2, float64, uint64, f64[j], u64[i], i, 0ul)
2584 VSX_CVT_FP_TO_INT(xvcvdpuxws, 2, float64, uint32, f64[i], u32[j], \
2585                   2*i + JOFFSET, 0)
2586 VSX_CVT_FP_TO_INT(xvcvspsxds, 2, float32, int64, f32[j], u64[i], \
2587                   2*i + JOFFSET, 0x8000000000000000ul)
2588 VSX_CVT_FP_TO_INT(xvcvspsxws, 4, float32, int32, f32[j], u32[j], i, \
2589                   0x80000000l)
2590 VSX_CVT_FP_TO_INT(xvcvspuxds, 2, float32, uint64, f32[j], u64[i], \
2591                   2*i + JOFFSET, 0ul)
2592 VSX_CVT_FP_TO_INT(xvcvspuxws, 4, float32, uint32, f32[j], u32[i], i, 0)
2593
2594 /* VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
2595  *   op    - instruction mnemonic
2596  *   nels  - number of elements (1, 2 or 4)
2597  *   stp   - source type (int32, uint32, int64 or uint64)
2598  *   ttp   - target type (float32 or float64)
2599  *   sfld  - source vsr_t field
2600  *   tfld  - target vsr_t field
2601  *   jdef  - definition of the j index (i or 2*i)
2602  *   sfprf - set FPRF
2603  */
2604 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, jdef, sfprf, r2sp) \
2605 void helper_##op(CPUPPCState *env, uint32_t opcode)                     \
2606 {                                                                       \
2607     ppc_vsr_t xt, xb;                                                   \
2608     int i;                                                              \
2609                                                                         \
2610     getVSR(xB(opcode), &xb, env);                                       \
2611     getVSR(xT(opcode), &xt, env);                                       \
2612                                                                         \
2613     for (i = 0; i < nels; i++) {                                        \
2614         int j = jdef;                                                   \
2615         xt.tfld = stp##_to_##ttp(xb.sfld, &env->fp_status);             \
2616         if (r2sp) {                                                     \
2617             xt.tfld = helper_frsp(env, xt.tfld);                        \
2618         }                                                               \
2619         if (sfprf) {                                                    \
2620             helper_compute_fprf(env, xt.tfld, sfprf);                   \
2621         }                                                               \
2622     }                                                                   \
2623                                                                         \
2624     putVSR(xT(opcode), &xt, env);                                       \
2625     helper_float_check_status(env);                                     \
2626 }
2627
2628 VSX_CVT_INT_TO_FP(xscvsxddp, 1, int64, float64, u64[j], f64[i], i, 1, 0)
2629 VSX_CVT_INT_TO_FP(xscvuxddp, 1, uint64, float64, u64[j], f64[i], i, 1, 0)
2630 VSX_CVT_INT_TO_FP(xscvsxdsp, 1, int64, float64, u64[j], f64[i], i, 1, 1)
2631 VSX_CVT_INT_TO_FP(xscvuxdsp, 1, uint64, float64, u64[j], f64[i], i, 1, 1)
2632 VSX_CVT_INT_TO_FP(xvcvsxddp, 2, int64, float64, u64[j], f64[i], i, 0, 0)
2633 VSX_CVT_INT_TO_FP(xvcvuxddp, 2, uint64, float64, u64[j], f64[i], i, 0, 0)
2634 VSX_CVT_INT_TO_FP(xvcvsxwdp, 2, int32, float64, u32[j], f64[i], \
2635                   2*i + JOFFSET, 0, 0)
2636 VSX_CVT_INT_TO_FP(xvcvuxwdp, 2, uint64, float64, u32[j], f64[i], \
2637                   2*i + JOFFSET, 0, 0)
2638 VSX_CVT_INT_TO_FP(xvcvsxdsp, 2, int64, float32, u64[i], f32[j], \
2639                   2*i + JOFFSET, 0, 0)
2640 VSX_CVT_INT_TO_FP(xvcvuxdsp, 2, uint64, float32, u64[i], f32[j], \
2641                   2*i + JOFFSET, 0, 0)
2642 VSX_CVT_INT_TO_FP(xvcvsxwsp, 4, int32, float32, u32[j], f32[i], i, 0, 0)
2643 VSX_CVT_INT_TO_FP(xvcvuxwsp, 4, uint32, float32, u32[j], f32[i], i, 0, 0)
2644
2645 /* For "use current rounding mode", define a value that will not be one of
2646  * the existing rounding model enums.
2647  */
2648 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
2649   float_round_up + float_round_to_zero)
2650
2651 /* VSX_ROUND - VSX floating point round
2652  *   op    - instruction mnemonic
2653  *   nels  - number of elements (1, 2 or 4)
2654  *   tp    - type (float32 or float64)
2655  *   fld   - vsr_t field (f32 or f64)
2656  *   rmode - rounding mode
2657  *   sfprf - set FPRF
2658  */
2659 #define VSX_ROUND(op, nels, tp, fld, rmode, sfprf)                     \
2660 void helper_##op(CPUPPCState *env, uint32_t opcode)                    \
2661 {                                                                      \
2662     ppc_vsr_t xt, xb;                                                  \
2663     int i;                                                             \
2664     getVSR(xB(opcode), &xb, env);                                      \
2665     getVSR(xT(opcode), &xt, env);                                      \
2666                                                                        \
2667     if (rmode != FLOAT_ROUND_CURRENT) {                                \
2668         set_float_rounding_mode(rmode, &env->fp_status);               \
2669     }                                                                  \
2670                                                                        \
2671     for (i = 0; i < nels; i++) {                                       \
2672         if (unlikely(tp##_is_signaling_nan(xb.fld[i]))) {              \
2673             fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN, 0);     \
2674             xt.fld[i] = tp##_snan_to_qnan(xb.fld[i]);                  \
2675         } else {                                                       \
2676             xt.fld[i] = tp##_round_to_int(xb.fld[i], &env->fp_status); \
2677         }                                                              \
2678         if (sfprf) {                                                   \
2679             helper_compute_fprf(env, xt.fld[i], sfprf);                \
2680         }                                                              \
2681     }                                                                  \
2682                                                                        \
2683     /* If this is not a "use current rounding mode" instruction,       \
2684      * then inhibit setting of the XX bit and restore rounding         \
2685      * mode from FPSCR */                                              \
2686     if (rmode != FLOAT_ROUND_CURRENT) {                                \
2687         fpscr_set_rounding_mode(env);                                  \
2688         env->fp_status.float_exception_flags &= ~float_flag_inexact;   \
2689     }                                                                  \
2690                                                                        \
2691     putVSR(xT(opcode), &xt, env);                                      \
2692     helper_float_check_status(env);                                    \
2693 }
2694
2695 VSX_ROUND(xsrdpi, 1, float64, f64, float_round_nearest_even, 1)
2696 VSX_ROUND(xsrdpic, 1, float64, f64, FLOAT_ROUND_CURRENT, 1)
2697 VSX_ROUND(xsrdpim, 1, float64, f64, float_round_down, 1)
2698 VSX_ROUND(xsrdpip, 1, float64, f64, float_round_up, 1)
2699 VSX_ROUND(xsrdpiz, 1, float64, f64, float_round_to_zero, 1)
2700
2701 VSX_ROUND(xvrdpi, 2, float64, f64, float_round_nearest_even, 0)
2702 VSX_ROUND(xvrdpic, 2, float64, f64, FLOAT_ROUND_CURRENT, 0)
2703 VSX_ROUND(xvrdpim, 2, float64, f64, float_round_down, 0)
2704 VSX_ROUND(xvrdpip, 2, float64, f64, float_round_up, 0)
2705 VSX_ROUND(xvrdpiz, 2, float64, f64, float_round_to_zero, 0)
2706
2707 VSX_ROUND(xvrspi, 4, float32, f32, float_round_nearest_even, 0)
2708 VSX_ROUND(xvrspic, 4, float32, f32, FLOAT_ROUND_CURRENT, 0)
2709 VSX_ROUND(xvrspim, 4, float32, f32, float_round_down, 0)
2710 VSX_ROUND(xvrspip, 4, float32, f32, float_round_up, 0)
2711 VSX_ROUND(xvrspiz, 4, float32, f32, float_round_to_zero, 0)
2712
2713 uint64_t helper_xsrsp(CPUPPCState *env, uint64_t xb)
2714 {
2715     helper_reset_fpstatus(env);
2716
2717     uint64_t xt = helper_frsp(env, xb);
2718
2719     helper_compute_fprf(env, xt, 1);
2720     helper_float_check_status(env);
2721     return xt;
2722 }
This page took 0.172554 seconds and 4 git commands to generate.