]> Git Repo - qemu.git/blob - dump.c
qmp: dump-guest-memory: don't spin if non-blocking fd would block
[qemu.git] / dump.c
1 /*
2  * QEMU dump
3  *
4  * Copyright Fujitsu, Corp. 2011, 2012
5  *
6  * Authors:
7  *     Wen Congyang <[email protected]>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13
14 #include "qemu-common.h"
15 #include "elf.h"
16 #include "cpu.h"
17 #include "cpu-all.h"
18 #include "targphys.h"
19 #include "monitor.h"
20 #include "kvm.h"
21 #include "dump.h"
22 #include "sysemu.h"
23 #include "memory_mapping.h"
24 #include "error.h"
25 #include "qmp-commands.h"
26 #include "gdbstub.h"
27
28 static uint16_t cpu_convert_to_target16(uint16_t val, int endian)
29 {
30     if (endian == ELFDATA2LSB) {
31         val = cpu_to_le16(val);
32     } else {
33         val = cpu_to_be16(val);
34     }
35
36     return val;
37 }
38
39 static uint32_t cpu_convert_to_target32(uint32_t val, int endian)
40 {
41     if (endian == ELFDATA2LSB) {
42         val = cpu_to_le32(val);
43     } else {
44         val = cpu_to_be32(val);
45     }
46
47     return val;
48 }
49
50 static uint64_t cpu_convert_to_target64(uint64_t val, int endian)
51 {
52     if (endian == ELFDATA2LSB) {
53         val = cpu_to_le64(val);
54     } else {
55         val = cpu_to_be64(val);
56     }
57
58     return val;
59 }
60
61 typedef struct DumpState {
62     ArchDumpInfo dump_info;
63     MemoryMappingList list;
64     uint16_t phdr_num;
65     uint32_t sh_info;
66     bool have_section;
67     bool resume;
68     size_t note_size;
69     target_phys_addr_t memory_offset;
70     int fd;
71
72     RAMBlock *block;
73     ram_addr_t start;
74     bool has_filter;
75     int64_t begin;
76     int64_t length;
77     Error **errp;
78 } DumpState;
79
80 static int dump_cleanup(DumpState *s)
81 {
82     int ret = 0;
83
84     memory_mapping_list_free(&s->list);
85     if (s->fd != -1) {
86         close(s->fd);
87     }
88     if (s->resume) {
89         vm_start();
90     }
91
92     return ret;
93 }
94
95 static void dump_error(DumpState *s, const char *reason)
96 {
97     dump_cleanup(s);
98 }
99
100 static int fd_write_vmcore(void *buf, size_t size, void *opaque)
101 {
102     DumpState *s = opaque;
103     size_t written_size;
104
105     written_size = qemu_write_full(s->fd, buf, size);
106     if (written_size != size) {
107         return -1;
108     }
109
110     return 0;
111 }
112
113 static int write_elf64_header(DumpState *s)
114 {
115     Elf64_Ehdr elf_header;
116     int ret;
117     int endian = s->dump_info.d_endian;
118
119     memset(&elf_header, 0, sizeof(Elf64_Ehdr));
120     memcpy(&elf_header, ELFMAG, SELFMAG);
121     elf_header.e_ident[EI_CLASS] = ELFCLASS64;
122     elf_header.e_ident[EI_DATA] = s->dump_info.d_endian;
123     elf_header.e_ident[EI_VERSION] = EV_CURRENT;
124     elf_header.e_type = cpu_convert_to_target16(ET_CORE, endian);
125     elf_header.e_machine = cpu_convert_to_target16(s->dump_info.d_machine,
126                                                    endian);
127     elf_header.e_version = cpu_convert_to_target32(EV_CURRENT, endian);
128     elf_header.e_ehsize = cpu_convert_to_target16(sizeof(elf_header), endian);
129     elf_header.e_phoff = cpu_convert_to_target64(sizeof(Elf64_Ehdr), endian);
130     elf_header.e_phentsize = cpu_convert_to_target16(sizeof(Elf64_Phdr),
131                                                      endian);
132     elf_header.e_phnum = cpu_convert_to_target16(s->phdr_num, endian);
133     if (s->have_section) {
134         uint64_t shoff = sizeof(Elf64_Ehdr) + sizeof(Elf64_Phdr) * s->sh_info;
135
136         elf_header.e_shoff = cpu_convert_to_target64(shoff, endian);
137         elf_header.e_shentsize = cpu_convert_to_target16(sizeof(Elf64_Shdr),
138                                                          endian);
139         elf_header.e_shnum = cpu_convert_to_target16(1, endian);
140     }
141
142     ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s);
143     if (ret < 0) {
144         dump_error(s, "dump: failed to write elf header.\n");
145         return -1;
146     }
147
148     return 0;
149 }
150
151 static int write_elf32_header(DumpState *s)
152 {
153     Elf32_Ehdr elf_header;
154     int ret;
155     int endian = s->dump_info.d_endian;
156
157     memset(&elf_header, 0, sizeof(Elf32_Ehdr));
158     memcpy(&elf_header, ELFMAG, SELFMAG);
159     elf_header.e_ident[EI_CLASS] = ELFCLASS32;
160     elf_header.e_ident[EI_DATA] = endian;
161     elf_header.e_ident[EI_VERSION] = EV_CURRENT;
162     elf_header.e_type = cpu_convert_to_target16(ET_CORE, endian);
163     elf_header.e_machine = cpu_convert_to_target16(s->dump_info.d_machine,
164                                                    endian);
165     elf_header.e_version = cpu_convert_to_target32(EV_CURRENT, endian);
166     elf_header.e_ehsize = cpu_convert_to_target16(sizeof(elf_header), endian);
167     elf_header.e_phoff = cpu_convert_to_target32(sizeof(Elf32_Ehdr), endian);
168     elf_header.e_phentsize = cpu_convert_to_target16(sizeof(Elf32_Phdr),
169                                                      endian);
170     elf_header.e_phnum = cpu_convert_to_target16(s->phdr_num, endian);
171     if (s->have_section) {
172         uint32_t shoff = sizeof(Elf32_Ehdr) + sizeof(Elf32_Phdr) * s->sh_info;
173
174         elf_header.e_shoff = cpu_convert_to_target32(shoff, endian);
175         elf_header.e_shentsize = cpu_convert_to_target16(sizeof(Elf32_Shdr),
176                                                          endian);
177         elf_header.e_shnum = cpu_convert_to_target16(1, endian);
178     }
179
180     ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s);
181     if (ret < 0) {
182         dump_error(s, "dump: failed to write elf header.\n");
183         return -1;
184     }
185
186     return 0;
187 }
188
189 static int write_elf64_load(DumpState *s, MemoryMapping *memory_mapping,
190                             int phdr_index, target_phys_addr_t offset)
191 {
192     Elf64_Phdr phdr;
193     int ret;
194     int endian = s->dump_info.d_endian;
195
196     memset(&phdr, 0, sizeof(Elf64_Phdr));
197     phdr.p_type = cpu_convert_to_target32(PT_LOAD, endian);
198     phdr.p_offset = cpu_convert_to_target64(offset, endian);
199     phdr.p_paddr = cpu_convert_to_target64(memory_mapping->phys_addr, endian);
200     if (offset == -1) {
201         /* When the memory is not stored into vmcore, offset will be -1 */
202         phdr.p_filesz = 0;
203     } else {
204         phdr.p_filesz = cpu_convert_to_target64(memory_mapping->length, endian);
205     }
206     phdr.p_memsz = cpu_convert_to_target64(memory_mapping->length, endian);
207     phdr.p_vaddr = cpu_convert_to_target64(memory_mapping->virt_addr, endian);
208
209     ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
210     if (ret < 0) {
211         dump_error(s, "dump: failed to write program header table.\n");
212         return -1;
213     }
214
215     return 0;
216 }
217
218 static int write_elf32_load(DumpState *s, MemoryMapping *memory_mapping,
219                             int phdr_index, target_phys_addr_t offset)
220 {
221     Elf32_Phdr phdr;
222     int ret;
223     int endian = s->dump_info.d_endian;
224
225     memset(&phdr, 0, sizeof(Elf32_Phdr));
226     phdr.p_type = cpu_convert_to_target32(PT_LOAD, endian);
227     phdr.p_offset = cpu_convert_to_target32(offset, endian);
228     phdr.p_paddr = cpu_convert_to_target32(memory_mapping->phys_addr, endian);
229     if (offset == -1) {
230         /* When the memory is not stored into vmcore, offset will be -1 */
231         phdr.p_filesz = 0;
232     } else {
233         phdr.p_filesz = cpu_convert_to_target32(memory_mapping->length, endian);
234     }
235     phdr.p_memsz = cpu_convert_to_target32(memory_mapping->length, endian);
236     phdr.p_vaddr = cpu_convert_to_target32(memory_mapping->virt_addr, endian);
237
238     ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
239     if (ret < 0) {
240         dump_error(s, "dump: failed to write program header table.\n");
241         return -1;
242     }
243
244     return 0;
245 }
246
247 static int write_elf64_note(DumpState *s)
248 {
249     Elf64_Phdr phdr;
250     int endian = s->dump_info.d_endian;
251     target_phys_addr_t begin = s->memory_offset - s->note_size;
252     int ret;
253
254     memset(&phdr, 0, sizeof(Elf64_Phdr));
255     phdr.p_type = cpu_convert_to_target32(PT_NOTE, endian);
256     phdr.p_offset = cpu_convert_to_target64(begin, endian);
257     phdr.p_paddr = 0;
258     phdr.p_filesz = cpu_convert_to_target64(s->note_size, endian);
259     phdr.p_memsz = cpu_convert_to_target64(s->note_size, endian);
260     phdr.p_vaddr = 0;
261
262     ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
263     if (ret < 0) {
264         dump_error(s, "dump: failed to write program header table.\n");
265         return -1;
266     }
267
268     return 0;
269 }
270
271 static int write_elf64_notes(DumpState *s)
272 {
273     CPUArchState *env;
274     int ret;
275     int id;
276
277     for (env = first_cpu; env != NULL; env = env->next_cpu) {
278         id = cpu_index(env);
279         ret = cpu_write_elf64_note(fd_write_vmcore, env, id, s);
280         if (ret < 0) {
281             dump_error(s, "dump: failed to write elf notes.\n");
282             return -1;
283         }
284     }
285
286     for (env = first_cpu; env != NULL; env = env->next_cpu) {
287         ret = cpu_write_elf64_qemunote(fd_write_vmcore, env, s);
288         if (ret < 0) {
289             dump_error(s, "dump: failed to write CPU status.\n");
290             return -1;
291         }
292     }
293
294     return 0;
295 }
296
297 static int write_elf32_note(DumpState *s)
298 {
299     target_phys_addr_t begin = s->memory_offset - s->note_size;
300     Elf32_Phdr phdr;
301     int endian = s->dump_info.d_endian;
302     int ret;
303
304     memset(&phdr, 0, sizeof(Elf32_Phdr));
305     phdr.p_type = cpu_convert_to_target32(PT_NOTE, endian);
306     phdr.p_offset = cpu_convert_to_target32(begin, endian);
307     phdr.p_paddr = 0;
308     phdr.p_filesz = cpu_convert_to_target32(s->note_size, endian);
309     phdr.p_memsz = cpu_convert_to_target32(s->note_size, endian);
310     phdr.p_vaddr = 0;
311
312     ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
313     if (ret < 0) {
314         dump_error(s, "dump: failed to write program header table.\n");
315         return -1;
316     }
317
318     return 0;
319 }
320
321 static int write_elf32_notes(DumpState *s)
322 {
323     CPUArchState *env;
324     int ret;
325     int id;
326
327     for (env = first_cpu; env != NULL; env = env->next_cpu) {
328         id = cpu_index(env);
329         ret = cpu_write_elf32_note(fd_write_vmcore, env, id, s);
330         if (ret < 0) {
331             dump_error(s, "dump: failed to write elf notes.\n");
332             return -1;
333         }
334     }
335
336     for (env = first_cpu; env != NULL; env = env->next_cpu) {
337         ret = cpu_write_elf32_qemunote(fd_write_vmcore, env, s);
338         if (ret < 0) {
339             dump_error(s, "dump: failed to write CPU status.\n");
340             return -1;
341         }
342     }
343
344     return 0;
345 }
346
347 static int write_elf_section(DumpState *s, int type)
348 {
349     Elf32_Shdr shdr32;
350     Elf64_Shdr shdr64;
351     int endian = s->dump_info.d_endian;
352     int shdr_size;
353     void *shdr;
354     int ret;
355
356     if (type == 0) {
357         shdr_size = sizeof(Elf32_Shdr);
358         memset(&shdr32, 0, shdr_size);
359         shdr32.sh_info = cpu_convert_to_target32(s->sh_info, endian);
360         shdr = &shdr32;
361     } else {
362         shdr_size = sizeof(Elf64_Shdr);
363         memset(&shdr64, 0, shdr_size);
364         shdr64.sh_info = cpu_convert_to_target32(s->sh_info, endian);
365         shdr = &shdr64;
366     }
367
368     ret = fd_write_vmcore(&shdr, shdr_size, s);
369     if (ret < 0) {
370         dump_error(s, "dump: failed to write section header table.\n");
371         return -1;
372     }
373
374     return 0;
375 }
376
377 static int write_data(DumpState *s, void *buf, int length)
378 {
379     int ret;
380
381     ret = fd_write_vmcore(buf, length, s);
382     if (ret < 0) {
383         dump_error(s, "dump: failed to save memory.\n");
384         return -1;
385     }
386
387     return 0;
388 }
389
390 /* write the memroy to vmcore. 1 page per I/O. */
391 static int write_memory(DumpState *s, RAMBlock *block, ram_addr_t start,
392                         int64_t size)
393 {
394     int64_t i;
395     int ret;
396
397     for (i = 0; i < size / TARGET_PAGE_SIZE; i++) {
398         ret = write_data(s, block->host + start + i * TARGET_PAGE_SIZE,
399                          TARGET_PAGE_SIZE);
400         if (ret < 0) {
401             return ret;
402         }
403     }
404
405     if ((size % TARGET_PAGE_SIZE) != 0) {
406         ret = write_data(s, block->host + start + i * TARGET_PAGE_SIZE,
407                          size % TARGET_PAGE_SIZE);
408         if (ret < 0) {
409             return ret;
410         }
411     }
412
413     return 0;
414 }
415
416 /* get the memory's offset in the vmcore */
417 static target_phys_addr_t get_offset(target_phys_addr_t phys_addr,
418                                      DumpState *s)
419 {
420     RAMBlock *block;
421     target_phys_addr_t offset = s->memory_offset;
422     int64_t size_in_block, start;
423
424     if (s->has_filter) {
425         if (phys_addr < s->begin || phys_addr >= s->begin + s->length) {
426             return -1;
427         }
428     }
429
430     QLIST_FOREACH(block, &ram_list.blocks, next) {
431         if (s->has_filter) {
432             if (block->offset >= s->begin + s->length ||
433                 block->offset + block->length <= s->begin) {
434                 /* This block is out of the range */
435                 continue;
436             }
437
438             if (s->begin <= block->offset) {
439                 start = block->offset;
440             } else {
441                 start = s->begin;
442             }
443
444             size_in_block = block->length - (start - block->offset);
445             if (s->begin + s->length < block->offset + block->length) {
446                 size_in_block -= block->offset + block->length -
447                                  (s->begin + s->length);
448             }
449         } else {
450             start = block->offset;
451             size_in_block = block->length;
452         }
453
454         if (phys_addr >= start && phys_addr < start + size_in_block) {
455             return phys_addr - start + offset;
456         }
457
458         offset += size_in_block;
459     }
460
461     return -1;
462 }
463
464 static int write_elf_loads(DumpState *s)
465 {
466     target_phys_addr_t offset;
467     MemoryMapping *memory_mapping;
468     uint32_t phdr_index = 1;
469     int ret;
470     uint32_t max_index;
471
472     if (s->have_section) {
473         max_index = s->sh_info;
474     } else {
475         max_index = s->phdr_num;
476     }
477
478     QTAILQ_FOREACH(memory_mapping, &s->list.head, next) {
479         offset = get_offset(memory_mapping->phys_addr, s);
480         if (s->dump_info.d_class == ELFCLASS64) {
481             ret = write_elf64_load(s, memory_mapping, phdr_index++, offset);
482         } else {
483             ret = write_elf32_load(s, memory_mapping, phdr_index++, offset);
484         }
485
486         if (ret < 0) {
487             return -1;
488         }
489
490         if (phdr_index >= max_index) {
491             break;
492         }
493     }
494
495     return 0;
496 }
497
498 /* write elf header, PT_NOTE and elf note to vmcore. */
499 static int dump_begin(DumpState *s)
500 {
501     int ret;
502
503     /*
504      * the vmcore's format is:
505      *   --------------
506      *   |  elf header |
507      *   --------------
508      *   |  PT_NOTE    |
509      *   --------------
510      *   |  PT_LOAD    |
511      *   --------------
512      *   |  ......     |
513      *   --------------
514      *   |  PT_LOAD    |
515      *   --------------
516      *   |  sec_hdr    |
517      *   --------------
518      *   |  elf note   |
519      *   --------------
520      *   |  memory     |
521      *   --------------
522      *
523      * we only know where the memory is saved after we write elf note into
524      * vmcore.
525      */
526
527     /* write elf header to vmcore */
528     if (s->dump_info.d_class == ELFCLASS64) {
529         ret = write_elf64_header(s);
530     } else {
531         ret = write_elf32_header(s);
532     }
533     if (ret < 0) {
534         return -1;
535     }
536
537     if (s->dump_info.d_class == ELFCLASS64) {
538         /* write PT_NOTE to vmcore */
539         if (write_elf64_note(s) < 0) {
540             return -1;
541         }
542
543         /* write all PT_LOAD to vmcore */
544         if (write_elf_loads(s) < 0) {
545             return -1;
546         }
547
548         /* write section to vmcore */
549         if (s->have_section) {
550             if (write_elf_section(s, 1) < 0) {
551                 return -1;
552             }
553         }
554
555         /* write notes to vmcore */
556         if (write_elf64_notes(s) < 0) {
557             return -1;
558         }
559
560     } else {
561         /* write PT_NOTE to vmcore */
562         if (write_elf32_note(s) < 0) {
563             return -1;
564         }
565
566         /* write all PT_LOAD to vmcore */
567         if (write_elf_loads(s) < 0) {
568             return -1;
569         }
570
571         /* write section to vmcore */
572         if (s->have_section) {
573             if (write_elf_section(s, 0) < 0) {
574                 return -1;
575             }
576         }
577
578         /* write notes to vmcore */
579         if (write_elf32_notes(s) < 0) {
580             return -1;
581         }
582     }
583
584     return 0;
585 }
586
587 /* write PT_LOAD to vmcore */
588 static int dump_completed(DumpState *s)
589 {
590     dump_cleanup(s);
591     return 0;
592 }
593
594 static int get_next_block(DumpState *s, RAMBlock *block)
595 {
596     while (1) {
597         block = QLIST_NEXT(block, next);
598         if (!block) {
599             /* no more block */
600             return 1;
601         }
602
603         s->start = 0;
604         s->block = block;
605         if (s->has_filter) {
606             if (block->offset >= s->begin + s->length ||
607                 block->offset + block->length <= s->begin) {
608                 /* This block is out of the range */
609                 continue;
610             }
611
612             if (s->begin > block->offset) {
613                 s->start = s->begin - block->offset;
614             }
615         }
616
617         return 0;
618     }
619 }
620
621 /* write all memory to vmcore */
622 static int dump_iterate(DumpState *s)
623 {
624     RAMBlock *block;
625     int64_t size;
626     int ret;
627
628     while (1) {
629         block = s->block;
630
631         size = block->length;
632         if (s->has_filter) {
633             size -= s->start;
634             if (s->begin + s->length < block->offset + block->length) {
635                 size -= block->offset + block->length - (s->begin + s->length);
636             }
637         }
638         ret = write_memory(s, block, s->start, size);
639         if (ret == -1) {
640             return ret;
641         }
642
643         ret = get_next_block(s, block);
644         if (ret == 1) {
645             dump_completed(s);
646             return 0;
647         }
648     }
649 }
650
651 static int create_vmcore(DumpState *s)
652 {
653     int ret;
654
655     ret = dump_begin(s);
656     if (ret < 0) {
657         return -1;
658     }
659
660     ret = dump_iterate(s);
661     if (ret < 0) {
662         return -1;
663     }
664
665     return 0;
666 }
667
668 static ram_addr_t get_start_block(DumpState *s)
669 {
670     RAMBlock *block;
671
672     if (!s->has_filter) {
673         s->block = QLIST_FIRST(&ram_list.blocks);
674         return 0;
675     }
676
677     QLIST_FOREACH(block, &ram_list.blocks, next) {
678         if (block->offset >= s->begin + s->length ||
679             block->offset + block->length <= s->begin) {
680             /* This block is out of the range */
681             continue;
682         }
683
684         s->block = block;
685         if (s->begin > block->offset) {
686             s->start = s->begin - block->offset;
687         } else {
688             s->start = 0;
689         }
690         return s->start;
691     }
692
693     return -1;
694 }
695
696 static int dump_init(DumpState *s, int fd, bool paging, bool has_filter,
697                      int64_t begin, int64_t length, Error **errp)
698 {
699     CPUArchState *env;
700     int nr_cpus;
701     int ret;
702
703     if (runstate_is_running()) {
704         vm_stop(RUN_STATE_SAVE_VM);
705         s->resume = true;
706     } else {
707         s->resume = false;
708     }
709
710     s->errp = errp;
711     s->fd = fd;
712     s->has_filter = has_filter;
713     s->begin = begin;
714     s->length = length;
715     s->start = get_start_block(s);
716     if (s->start == -1) {
717         error_set(errp, QERR_INVALID_PARAMETER, "begin");
718         goto cleanup;
719     }
720
721     /*
722      * get dump info: endian, class and architecture.
723      * If the target architecture is not supported, cpu_get_dump_info() will
724      * return -1.
725      *
726      * if we use kvm, we should synchronize the register before we get dump
727      * info.
728      */
729     nr_cpus = 0;
730     for (env = first_cpu; env != NULL; env = env->next_cpu) {
731         cpu_synchronize_state(env);
732         nr_cpus++;
733     }
734
735     ret = cpu_get_dump_info(&s->dump_info);
736     if (ret < 0) {
737         error_set(errp, QERR_UNSUPPORTED);
738         goto cleanup;
739     }
740
741     s->note_size = cpu_get_note_size(s->dump_info.d_class,
742                                      s->dump_info.d_machine, nr_cpus);
743     if (ret < 0) {
744         error_set(errp, QERR_UNSUPPORTED);
745         goto cleanup;
746     }
747
748     /* get memory mapping */
749     memory_mapping_list_init(&s->list);
750     if (paging) {
751         qemu_get_guest_memory_mapping(&s->list);
752     } else {
753         qemu_get_guest_simple_memory_mapping(&s->list);
754     }
755
756     if (s->has_filter) {
757         memory_mapping_filter(&s->list, s->begin, s->length);
758     }
759
760     /*
761      * calculate phdr_num
762      *
763      * the type of ehdr->e_phnum is uint16_t, so we should avoid overflow
764      */
765     s->phdr_num = 1; /* PT_NOTE */
766     if (s->list.num < UINT16_MAX - 2) {
767         s->phdr_num += s->list.num;
768         s->have_section = false;
769     } else {
770         s->have_section = true;
771         s->phdr_num = PN_XNUM;
772         s->sh_info = 1; /* PT_NOTE */
773
774         /* the type of shdr->sh_info is uint32_t, so we should avoid overflow */
775         if (s->list.num <= UINT32_MAX - 1) {
776             s->sh_info += s->list.num;
777         } else {
778             s->sh_info = UINT32_MAX;
779         }
780     }
781
782     if (s->dump_info.d_class == ELFCLASS64) {
783         if (s->have_section) {
784             s->memory_offset = sizeof(Elf64_Ehdr) +
785                                sizeof(Elf64_Phdr) * s->sh_info +
786                                sizeof(Elf64_Shdr) + s->note_size;
787         } else {
788             s->memory_offset = sizeof(Elf64_Ehdr) +
789                                sizeof(Elf64_Phdr) * s->phdr_num + s->note_size;
790         }
791     } else {
792         if (s->have_section) {
793             s->memory_offset = sizeof(Elf32_Ehdr) +
794                                sizeof(Elf32_Phdr) * s->sh_info +
795                                sizeof(Elf32_Shdr) + s->note_size;
796         } else {
797             s->memory_offset = sizeof(Elf32_Ehdr) +
798                                sizeof(Elf32_Phdr) * s->phdr_num + s->note_size;
799         }
800     }
801
802     return 0;
803
804 cleanup:
805     if (s->resume) {
806         vm_start();
807     }
808
809     return -1;
810 }
811
812 void qmp_dump_guest_memory(bool paging, const char *file, bool has_begin,
813                            int64_t begin, bool has_length, int64_t length,
814                            Error **errp)
815 {
816     const char *p;
817     int fd = -1;
818     DumpState *s;
819     int ret;
820
821     if (has_begin && !has_length) {
822         error_set(errp, QERR_MISSING_PARAMETER, "length");
823         return;
824     }
825     if (!has_begin && has_length) {
826         error_set(errp, QERR_MISSING_PARAMETER, "begin");
827         return;
828     }
829
830 #if !defined(WIN32)
831     if (strstart(file, "fd:", &p)) {
832         fd = monitor_get_fd(cur_mon, p, errp);
833         if (fd == -1) {
834             return;
835         }
836     }
837 #endif
838
839     if  (strstart(file, "file:", &p)) {
840         fd = qemu_open(p, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR);
841         if (fd < 0) {
842             error_set(errp, QERR_OPEN_FILE_FAILED, p);
843             return;
844         }
845     }
846
847     if (fd == -1) {
848         error_set(errp, QERR_INVALID_PARAMETER, "protocol");
849         return;
850     }
851
852     s = g_malloc(sizeof(DumpState));
853
854     ret = dump_init(s, fd, paging, has_begin, begin, length, errp);
855     if (ret < 0) {
856         g_free(s);
857         return;
858     }
859
860     if (create_vmcore(s) < 0 && !error_is_set(s->errp)) {
861         error_set(errp, QERR_IO_ERROR);
862     }
863
864     g_free(s);
865 }
This page took 0.080113 seconds and 4 git commands to generate.