4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include "standard-headers/asm-x86/kvm_para.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/hw_accel.h"
26 #include "sysemu/kvm_int.h"
27 #include "sysemu/runstate.h"
30 #include "hyperv-proto.h"
32 #include "exec/gdbstub.h"
33 #include "qemu/host-utils.h"
34 #include "qemu/main-loop.h"
35 #include "qemu/config-file.h"
36 #include "qemu/error-report.h"
37 #include "hw/i386/x86.h"
38 #include "hw/i386/apic.h"
39 #include "hw/i386/apic_internal.h"
40 #include "hw/i386/apic-msidef.h"
41 #include "hw/i386/intel_iommu.h"
42 #include "hw/i386/x86-iommu.h"
43 #include "hw/i386/e820_memory_layout.h"
45 #include "hw/pci/pci.h"
46 #include "hw/pci/msi.h"
47 #include "hw/pci/msix.h"
48 #include "migration/blocker.h"
49 #include "exec/memattrs.h"
55 #define DPRINTF(fmt, ...) \
56 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
58 #define DPRINTF(fmt, ...) \
62 /* From arch/x86/kvm/lapic.h */
63 #define KVM_APIC_BUS_CYCLE_NS 1
64 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
66 #define MSR_KVM_WALL_CLOCK 0x11
67 #define MSR_KVM_SYSTEM_TIME 0x12
69 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
70 * 255 kvm_msr_entry structs */
71 #define MSR_BUF_SIZE 4096
73 static void kvm_init_msrs(X86CPU *cpu);
75 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
76 KVM_CAP_INFO(SET_TSS_ADDR),
77 KVM_CAP_INFO(EXT_CPUID),
78 KVM_CAP_INFO(MP_STATE),
82 static bool has_msr_star;
83 static bool has_msr_hsave_pa;
84 static bool has_msr_tsc_aux;
85 static bool has_msr_tsc_adjust;
86 static bool has_msr_tsc_deadline;
87 static bool has_msr_feature_control;
88 static bool has_msr_misc_enable;
89 static bool has_msr_smbase;
90 static bool has_msr_bndcfgs;
91 static int lm_capable_kernel;
92 static bool has_msr_hv_hypercall;
93 static bool has_msr_hv_crash;
94 static bool has_msr_hv_reset;
95 static bool has_msr_hv_vpindex;
96 static bool hv_vpindex_settable;
97 static bool has_msr_hv_runtime;
98 static bool has_msr_hv_synic;
99 static bool has_msr_hv_stimer;
100 static bool has_msr_hv_frequencies;
101 static bool has_msr_hv_reenlightenment;
102 static bool has_msr_xss;
103 static bool has_msr_umwait;
104 static bool has_msr_spec_ctrl;
105 static bool has_msr_tsx_ctrl;
106 static bool has_msr_virt_ssbd;
107 static bool has_msr_smi_count;
108 static bool has_msr_arch_capabs;
109 static bool has_msr_core_capabs;
110 static bool has_msr_vmx_vmfunc;
111 static bool has_msr_ucode_rev;
112 static bool has_msr_vmx_procbased_ctls2;
113 static bool has_msr_perf_capabs;
115 static uint32_t has_architectural_pmu_version;
116 static uint32_t num_architectural_pmu_gp_counters;
117 static uint32_t num_architectural_pmu_fixed_counters;
119 static int has_xsave;
121 static int has_pit_state2;
122 static int has_exception_payload;
124 static bool has_msr_mcg_ext_ctl;
126 static struct kvm_cpuid2 *cpuid_cache;
127 static struct kvm_msr_list *kvm_feature_msrs;
129 int kvm_has_pit_state2(void)
131 return has_pit_state2;
134 bool kvm_has_smm(void)
136 return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
139 bool kvm_has_adjust_clock_stable(void)
141 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
143 return (ret == KVM_CLOCK_TSC_STABLE);
146 bool kvm_has_exception_payload(void)
148 return has_exception_payload;
151 bool kvm_allows_irq0_override(void)
153 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
156 static bool kvm_x2apic_api_set_flags(uint64_t flags)
158 KVMState *s = KVM_STATE(current_accel());
160 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
163 #define MEMORIZE(fn, _result) \
165 static bool _memorized; \
174 static bool has_x2apic_api;
176 bool kvm_has_x2apic_api(void)
178 return has_x2apic_api;
181 bool kvm_enable_x2apic(void)
184 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
185 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
189 bool kvm_hv_vpindex_settable(void)
191 return hv_vpindex_settable;
194 static int kvm_get_tsc(CPUState *cs)
196 X86CPU *cpu = X86_CPU(cs);
197 CPUX86State *env = &cpu->env;
199 struct kvm_msrs info;
200 struct kvm_msr_entry entries[1];
204 if (env->tsc_valid) {
208 memset(&msr_data, 0, sizeof(msr_data));
209 msr_data.info.nmsrs = 1;
210 msr_data.entries[0].index = MSR_IA32_TSC;
211 env->tsc_valid = !runstate_is_running();
213 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
219 env->tsc = msr_data.entries[0].data;
223 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
228 void kvm_synchronize_all_tsc(void)
234 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
239 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
241 struct kvm_cpuid2 *cpuid;
244 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
245 cpuid = g_malloc0(size);
247 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
248 if (r == 0 && cpuid->nent >= max) {
256 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
264 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
267 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
269 struct kvm_cpuid2 *cpuid;
272 if (cpuid_cache != NULL) {
275 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
282 static const struct kvm_para_features {
285 } para_features[] = {
286 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
287 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
288 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
289 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
292 static int get_para_features(KVMState *s)
296 for (i = 0; i < ARRAY_SIZE(para_features); i++) {
297 if (kvm_check_extension(s, para_features[i].cap)) {
298 features |= (1 << para_features[i].feature);
305 static bool host_tsx_blacklisted(void)
307 int family, model, stepping;\
308 char vendor[CPUID_VENDOR_SZ + 1];
310 host_vendor_fms(vendor, &family, &model, &stepping);
312 /* Check if we are running on a Haswell host known to have broken TSX */
313 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
315 ((model == 63 && stepping < 4) ||
316 model == 60 || model == 69 || model == 70);
319 /* Returns the value for a specific register on the cpuid entry
321 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
341 /* Find matching entry for function/index on kvm_cpuid2 struct
343 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
348 for (i = 0; i < cpuid->nent; ++i) {
349 if (cpuid->entries[i].function == function &&
350 cpuid->entries[i].index == index) {
351 return &cpuid->entries[i];
358 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
359 uint32_t index, int reg)
361 struct kvm_cpuid2 *cpuid;
363 uint32_t cpuid_1_edx;
366 cpuid = get_supported_cpuid(s);
368 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
371 ret = cpuid_entry_get_reg(entry, reg);
374 /* Fixups for the data returned by KVM, below */
376 if (function == 1 && reg == R_EDX) {
377 /* KVM before 2.6.30 misreports the following features */
378 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
379 } else if (function == 1 && reg == R_ECX) {
380 /* We can set the hypervisor flag, even if KVM does not return it on
381 * GET_SUPPORTED_CPUID
383 ret |= CPUID_EXT_HYPERVISOR;
384 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
385 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
386 * and the irqchip is in the kernel.
388 if (kvm_irqchip_in_kernel() &&
389 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
390 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
393 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
394 * without the in-kernel irqchip
396 if (!kvm_irqchip_in_kernel()) {
397 ret &= ~CPUID_EXT_X2APIC;
401 int disable_exits = kvm_check_extension(s,
402 KVM_CAP_X86_DISABLE_EXITS);
404 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
405 ret |= CPUID_EXT_MONITOR;
408 } else if (function == 6 && reg == R_EAX) {
409 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
410 } else if (function == 7 && index == 0 && reg == R_EBX) {
411 if (host_tsx_blacklisted()) {
412 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
414 } else if (function == 7 && index == 0 && reg == R_ECX) {
416 ret |= CPUID_7_0_ECX_WAITPKG;
418 ret &= ~CPUID_7_0_ECX_WAITPKG;
420 } else if (function == 7 && index == 0 && reg == R_EDX) {
422 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
423 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
424 * returned by KVM_GET_MSR_INDEX_LIST.
426 if (!has_msr_arch_capabs) {
427 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
429 } else if (function == 0x80000001 && reg == R_ECX) {
431 * It's safe to enable TOPOEXT even if it's not returned by
432 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
433 * us to keep CPU models including TOPOEXT runnable on older kernels.
435 ret |= CPUID_EXT3_TOPOEXT;
436 } else if (function == 0x80000001 && reg == R_EDX) {
437 /* On Intel, kvm returns cpuid according to the Intel spec,
438 * so add missing bits according to the AMD spec:
440 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
441 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
442 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
443 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
444 * be enabled without the in-kernel irqchip
446 if (!kvm_irqchip_in_kernel()) {
447 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
449 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
450 ret |= 1U << KVM_HINTS_REALTIME;
454 /* fallback for older kernels */
455 if ((function == KVM_CPUID_FEATURES) && !found) {
456 ret = get_para_features(s);
462 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
465 struct kvm_msrs info;
466 struct kvm_msr_entry entries[1];
469 uint32_t ret, can_be_one, must_be_one;
471 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
475 /* Check if requested MSR is supported feature MSR */
477 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
478 if (kvm_feature_msrs->indices[i] == index) {
481 if (i == kvm_feature_msrs->nmsrs) {
482 return 0; /* if the feature MSR is not supported, simply return 0 */
485 msr_data.info.nmsrs = 1;
486 msr_data.entries[0].index = index;
488 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
490 error_report("KVM get MSR (index=0x%x) feature failed, %s",
491 index, strerror(-ret));
495 value = msr_data.entries[0].data;
497 case MSR_IA32_VMX_PROCBASED_CTLS2:
498 if (!has_msr_vmx_procbased_ctls2) {
499 /* KVM forgot to add these bits for some time, do this ourselves. */
500 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
501 CPUID_XSAVE_XSAVES) {
502 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
504 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
506 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
508 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
509 CPUID_7_0_EBX_INVPCID) {
510 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
512 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
513 CPUID_7_0_EBX_RDSEED) {
514 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
516 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
518 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
522 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
523 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
524 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
525 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
527 * Return true for bits that can be one, but do not have to be one.
528 * The SDM tells us which bits could have a "must be one" setting,
529 * so we can do the opposite transformation in make_vmx_msr_value.
531 must_be_one = (uint32_t)value;
532 can_be_one = (uint32_t)(value >> 32);
533 return can_be_one & ~must_be_one;
540 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
545 r = kvm_check_extension(s, KVM_CAP_MCE);
548 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
553 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
555 CPUState *cs = CPU(cpu);
556 CPUX86State *env = &cpu->env;
557 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
558 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
559 uint64_t mcg_status = MCG_STATUS_MCIP;
562 if (code == BUS_MCEERR_AR) {
563 status |= MCI_STATUS_AR | 0x134;
564 mcg_status |= MCG_STATUS_EIPV;
567 mcg_status |= MCG_STATUS_RIPV;
570 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
571 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
572 * guest kernel back into env->mcg_ext_ctl.
574 cpu_synchronize_state(cs);
575 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
576 mcg_status |= MCG_STATUS_LMCE;
580 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
581 (MCM_ADDR_PHYS << 6) | 0xc, flags);
584 static void hardware_memory_error(void *host_addr)
586 error_report("QEMU got Hardware memory error at addr %p", host_addr);
590 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
592 X86CPU *cpu = X86_CPU(c);
593 CPUX86State *env = &cpu->env;
597 /* If we get an action required MCE, it has been injected by KVM
598 * while the VM was running. An action optional MCE instead should
599 * be coming from the main thread, which qemu_init_sigbus identifies
600 * as the "early kill" thread.
602 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
604 if ((env->mcg_cap & MCG_SER_P) && addr) {
605 ram_addr = qemu_ram_addr_from_host(addr);
606 if (ram_addr != RAM_ADDR_INVALID &&
607 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
608 kvm_hwpoison_page_add(ram_addr);
609 kvm_mce_inject(cpu, paddr, code);
612 * Use different logging severity based on error type.
613 * If there is additional MCE reporting on the hypervisor, QEMU VA
614 * could be another source to identify the PA and MCE details.
616 if (code == BUS_MCEERR_AR) {
617 error_report("Guest MCE Memory Error at QEMU addr %p and "
618 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
619 addr, paddr, "BUS_MCEERR_AR");
621 warn_report("Guest MCE Memory Error at QEMU addr %p and "
622 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
623 addr, paddr, "BUS_MCEERR_AO");
629 if (code == BUS_MCEERR_AO) {
630 warn_report("Hardware memory error at addr %p of type %s "
631 "for memory used by QEMU itself instead of guest system!",
632 addr, "BUS_MCEERR_AO");
636 if (code == BUS_MCEERR_AR) {
637 hardware_memory_error(addr);
640 /* Hope we are lucky for AO MCE */
643 static void kvm_reset_exception(CPUX86State *env)
645 env->exception_nr = -1;
646 env->exception_pending = 0;
647 env->exception_injected = 0;
648 env->exception_has_payload = false;
649 env->exception_payload = 0;
652 static void kvm_queue_exception(CPUX86State *env,
653 int32_t exception_nr,
654 uint8_t exception_has_payload,
655 uint64_t exception_payload)
657 assert(env->exception_nr == -1);
658 assert(!env->exception_pending);
659 assert(!env->exception_injected);
660 assert(!env->exception_has_payload);
662 env->exception_nr = exception_nr;
664 if (has_exception_payload) {
665 env->exception_pending = 1;
667 env->exception_has_payload = exception_has_payload;
668 env->exception_payload = exception_payload;
670 env->exception_injected = 1;
672 if (exception_nr == EXCP01_DB) {
673 assert(exception_has_payload);
674 env->dr[6] = exception_payload;
675 } else if (exception_nr == EXCP0E_PAGE) {
676 assert(exception_has_payload);
677 env->cr[2] = exception_payload;
679 assert(!exception_has_payload);
684 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
686 CPUX86State *env = &cpu->env;
688 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
689 unsigned int bank, bank_num = env->mcg_cap & 0xff;
690 struct kvm_x86_mce mce;
692 kvm_reset_exception(env);
695 * There must be at least one bank in use if an MCE is pending.
696 * Find it and use its values for the event injection.
698 for (bank = 0; bank < bank_num; bank++) {
699 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
703 assert(bank < bank_num);
706 mce.status = env->mce_banks[bank * 4 + 1];
707 mce.mcg_status = env->mcg_status;
708 mce.addr = env->mce_banks[bank * 4 + 2];
709 mce.misc = env->mce_banks[bank * 4 + 3];
711 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
716 static void cpu_update_state(void *opaque, int running, RunState state)
718 CPUX86State *env = opaque;
721 env->tsc_valid = false;
725 unsigned long kvm_arch_vcpu_id(CPUState *cs)
727 X86CPU *cpu = X86_CPU(cs);
731 #ifndef KVM_CPUID_SIGNATURE_NEXT
732 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
735 static bool hyperv_enabled(X86CPU *cpu)
737 CPUState *cs = CPU(cpu);
738 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
739 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) ||
740 cpu->hyperv_features || cpu->hyperv_passthrough);
743 static int kvm_arch_set_tsc_khz(CPUState *cs)
745 X86CPU *cpu = X86_CPU(cs);
746 CPUX86State *env = &cpu->env;
753 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ?
754 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
757 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
758 * TSC frequency doesn't match the one we want.
760 int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
761 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
763 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
764 warn_report("TSC frequency mismatch between "
765 "VM (%" PRId64 " kHz) and host (%d kHz), "
766 "and TSC scaling unavailable",
767 env->tsc_khz, cur_freq);
775 static bool tsc_is_stable_and_known(CPUX86State *env)
780 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
781 || env->user_tsc_khz;
790 uint64_t dependencies;
791 } kvm_hyperv_properties[] = {
792 [HYPERV_FEAT_RELAXED] = {
793 .desc = "relaxed timing (hv-relaxed)",
795 {.fw = FEAT_HYPERV_EAX,
796 .bits = HV_HYPERCALL_AVAILABLE},
797 {.fw = FEAT_HV_RECOMM_EAX,
798 .bits = HV_RELAXED_TIMING_RECOMMENDED}
801 [HYPERV_FEAT_VAPIC] = {
802 .desc = "virtual APIC (hv-vapic)",
804 {.fw = FEAT_HYPERV_EAX,
805 .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE},
806 {.fw = FEAT_HV_RECOMM_EAX,
807 .bits = HV_APIC_ACCESS_RECOMMENDED}
810 [HYPERV_FEAT_TIME] = {
811 .desc = "clocksources (hv-time)",
813 {.fw = FEAT_HYPERV_EAX,
814 .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE |
815 HV_REFERENCE_TSC_AVAILABLE}
818 [HYPERV_FEAT_CRASH] = {
819 .desc = "crash MSRs (hv-crash)",
821 {.fw = FEAT_HYPERV_EDX,
822 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
825 [HYPERV_FEAT_RESET] = {
826 .desc = "reset MSR (hv-reset)",
828 {.fw = FEAT_HYPERV_EAX,
829 .bits = HV_RESET_AVAILABLE}
832 [HYPERV_FEAT_VPINDEX] = {
833 .desc = "VP_INDEX MSR (hv-vpindex)",
835 {.fw = FEAT_HYPERV_EAX,
836 .bits = HV_VP_INDEX_AVAILABLE}
839 [HYPERV_FEAT_RUNTIME] = {
840 .desc = "VP_RUNTIME MSR (hv-runtime)",
842 {.fw = FEAT_HYPERV_EAX,
843 .bits = HV_VP_RUNTIME_AVAILABLE}
846 [HYPERV_FEAT_SYNIC] = {
847 .desc = "synthetic interrupt controller (hv-synic)",
849 {.fw = FEAT_HYPERV_EAX,
850 .bits = HV_SYNIC_AVAILABLE}
853 [HYPERV_FEAT_STIMER] = {
854 .desc = "synthetic timers (hv-stimer)",
856 {.fw = FEAT_HYPERV_EAX,
857 .bits = HV_SYNTIMERS_AVAILABLE}
859 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
861 [HYPERV_FEAT_FREQUENCIES] = {
862 .desc = "frequency MSRs (hv-frequencies)",
864 {.fw = FEAT_HYPERV_EAX,
865 .bits = HV_ACCESS_FREQUENCY_MSRS},
866 {.fw = FEAT_HYPERV_EDX,
867 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
870 [HYPERV_FEAT_REENLIGHTENMENT] = {
871 .desc = "reenlightenment MSRs (hv-reenlightenment)",
873 {.fw = FEAT_HYPERV_EAX,
874 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
877 [HYPERV_FEAT_TLBFLUSH] = {
878 .desc = "paravirtualized TLB flush (hv-tlbflush)",
880 {.fw = FEAT_HV_RECOMM_EAX,
881 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
882 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
884 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
886 [HYPERV_FEAT_EVMCS] = {
887 .desc = "enlightened VMCS (hv-evmcs)",
889 {.fw = FEAT_HV_RECOMM_EAX,
890 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
892 .dependencies = BIT(HYPERV_FEAT_VAPIC)
894 [HYPERV_FEAT_IPI] = {
895 .desc = "paravirtualized IPI (hv-ipi)",
897 {.fw = FEAT_HV_RECOMM_EAX,
898 .bits = HV_CLUSTER_IPI_RECOMMENDED |
899 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
901 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
903 [HYPERV_FEAT_STIMER_DIRECT] = {
904 .desc = "direct mode synthetic timers (hv-stimer-direct)",
906 {.fw = FEAT_HYPERV_EDX,
907 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
909 .dependencies = BIT(HYPERV_FEAT_STIMER)
913 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max)
915 struct kvm_cpuid2 *cpuid;
918 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
919 cpuid = g_malloc0(size);
922 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
923 if (r == 0 && cpuid->nent >= max) {
931 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
940 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
943 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
945 struct kvm_cpuid2 *cpuid;
946 int max = 7; /* 0x40000000..0x40000005, 0x4000000A */
949 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
950 * -E2BIG, however, it doesn't report back the right size. Keep increasing
951 * it and re-trying until we succeed.
953 while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) {
960 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
961 * leaves from KVM_CAP_HYPERV* and present MSRs data.
963 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
965 X86CPU *cpu = X86_CPU(cs);
966 struct kvm_cpuid2 *cpuid;
967 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
969 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
970 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
973 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
974 entry_feat = &cpuid->entries[0];
975 entry_feat->function = HV_CPUID_FEATURES;
977 entry_recomm = &cpuid->entries[1];
978 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
979 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
981 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
982 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
983 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
984 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
985 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
986 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
989 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
990 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
991 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
994 if (has_msr_hv_frequencies) {
995 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
996 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
999 if (has_msr_hv_crash) {
1000 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1003 if (has_msr_hv_reenlightenment) {
1004 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1007 if (has_msr_hv_reset) {
1008 entry_feat->eax |= HV_RESET_AVAILABLE;
1011 if (has_msr_hv_vpindex) {
1012 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1015 if (has_msr_hv_runtime) {
1016 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1019 if (has_msr_hv_synic) {
1020 unsigned int cap = cpu->hyperv_synic_kvm_only ?
1021 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1023 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1024 entry_feat->eax |= HV_SYNIC_AVAILABLE;
1028 if (has_msr_hv_stimer) {
1029 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1032 if (kvm_check_extension(cs->kvm_state,
1033 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1034 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1035 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1038 if (kvm_check_extension(cs->kvm_state,
1039 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1040 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1043 if (kvm_check_extension(cs->kvm_state,
1044 KVM_CAP_HYPERV_SEND_IPI) > 0) {
1045 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1046 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1052 static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r)
1054 struct kvm_cpuid_entry2 *entry;
1059 case FEAT_HYPERV_EAX:
1061 func = HV_CPUID_FEATURES;
1063 case FEAT_HYPERV_EDX:
1065 func = HV_CPUID_FEATURES;
1067 case FEAT_HV_RECOMM_EAX:
1069 func = HV_CPUID_ENLIGHTMENT_INFO;
1075 entry = cpuid_find_entry(cpuid, func, 0);
1094 static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid,
1097 X86CPU *cpu = X86_CPU(cs);
1098 CPUX86State *env = &cpu->env;
1099 uint32_t r, fw, bits;
1103 if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) {
1107 deps = kvm_hyperv_properties[feature].dependencies;
1109 dep_feat = ctz64(deps);
1110 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1112 "Hyper-V %s requires Hyper-V %s\n",
1113 kvm_hyperv_properties[feature].desc,
1114 kvm_hyperv_properties[dep_feat].desc);
1117 deps &= ~(1ull << dep_feat);
1120 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1121 fw = kvm_hyperv_properties[feature].flags[i].fw;
1122 bits = kvm_hyperv_properties[feature].flags[i].bits;
1128 if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) {
1129 if (hyperv_feat_enabled(cpu, feature)) {
1131 "Hyper-V %s is not supported by kernel\n",
1132 kvm_hyperv_properties[feature].desc);
1139 env->features[fw] |= bits;
1142 if (cpu->hyperv_passthrough) {
1143 cpu->hyperv_features |= BIT(feature);
1150 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in
1151 * case of success, errno < 0 in case of failure and 0 when no Hyper-V
1152 * extentions are enabled.
1154 static int hyperv_handle_properties(CPUState *cs,
1155 struct kvm_cpuid_entry2 *cpuid_ent)
1157 X86CPU *cpu = X86_CPU(cs);
1158 CPUX86State *env = &cpu->env;
1159 struct kvm_cpuid2 *cpuid;
1160 struct kvm_cpuid_entry2 *c;
1161 uint32_t signature[3];
1162 uint32_t cpuid_i = 0;
1165 if (!hyperv_enabled(cpu))
1168 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ||
1169 cpu->hyperv_passthrough) {
1170 uint16_t evmcs_version;
1172 r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1173 (uintptr_t)&evmcs_version);
1175 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) {
1176 fprintf(stderr, "Hyper-V %s is not supported by kernel\n",
1177 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1182 env->features[FEAT_HV_RECOMM_EAX] |=
1183 HV_ENLIGHTENED_VMCS_RECOMMENDED;
1184 env->features[FEAT_HV_NESTED_EAX] = evmcs_version;
1188 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1189 cpuid = get_supported_hv_cpuid(cs);
1191 cpuid = get_supported_hv_cpuid_legacy(cs);
1194 if (cpu->hyperv_passthrough) {
1195 memcpy(cpuid_ent, &cpuid->entries[0],
1196 cpuid->nent * sizeof(cpuid->entries[0]));
1198 c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0);
1200 env->features[FEAT_HYPERV_EAX] = c->eax;
1201 env->features[FEAT_HYPERV_EBX] = c->ebx;
1202 env->features[FEAT_HYPERV_EDX] = c->eax;
1204 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1206 env->features[FEAT_HV_RECOMM_EAX] = c->eax;
1208 /* hv-spinlocks may have been overriden */
1209 if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) {
1210 c->ebx = cpu->hyperv_spinlock_attempts;
1213 c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0);
1215 env->features[FEAT_HV_NESTED_EAX] = c->eax;
1219 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1220 env->features[FEAT_HV_RECOMM_EAX] |= HV_NO_NONARCH_CORESHARING;
1221 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1222 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1224 env->features[FEAT_HV_RECOMM_EAX] |=
1225 c->eax & HV_NO_NONARCH_CORESHARING;
1230 r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED);
1231 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC);
1232 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME);
1233 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH);
1234 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET);
1235 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX);
1236 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME);
1237 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC);
1238 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER);
1239 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES);
1240 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT);
1241 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH);
1242 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS);
1243 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI);
1244 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT);
1246 /* Additional dependencies not covered by kvm_hyperv_properties[] */
1247 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1248 !cpu->hyperv_synic_kvm_only &&
1249 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1250 fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n",
1251 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1252 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1256 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1257 env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1264 if (cpu->hyperv_passthrough) {
1265 /* We already copied all feature words from KVM as is */
1270 c = &cpuid_ent[cpuid_i++];
1271 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1272 if (!cpu->hyperv_vendor_id) {
1273 memcpy(signature, "Microsoft Hv", 12);
1275 size_t len = strlen(cpu->hyperv_vendor_id);
1278 error_report("hv-vendor-id truncated to 12 characters");
1281 memset(signature, 0, 12);
1282 memcpy(signature, cpu->hyperv_vendor_id, len);
1284 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1285 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1286 c->ebx = signature[0];
1287 c->ecx = signature[1];
1288 c->edx = signature[2];
1290 c = &cpuid_ent[cpuid_i++];
1291 c->function = HV_CPUID_INTERFACE;
1292 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
1293 c->eax = signature[0];
1298 c = &cpuid_ent[cpuid_i++];
1299 c->function = HV_CPUID_VERSION;
1300 c->eax = 0x00001bbc;
1301 c->ebx = 0x00060001;
1303 c = &cpuid_ent[cpuid_i++];
1304 c->function = HV_CPUID_FEATURES;
1305 c->eax = env->features[FEAT_HYPERV_EAX];
1306 c->ebx = env->features[FEAT_HYPERV_EBX];
1307 c->edx = env->features[FEAT_HYPERV_EDX];
1309 c = &cpuid_ent[cpuid_i++];
1310 c->function = HV_CPUID_ENLIGHTMENT_INFO;
1311 c->eax = env->features[FEAT_HV_RECOMM_EAX];
1312 c->ebx = cpu->hyperv_spinlock_attempts;
1314 c = &cpuid_ent[cpuid_i++];
1315 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1316 c->eax = cpu->hv_max_vps;
1319 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1322 /* Create zeroed 0x40000006..0x40000009 leaves */
1323 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1324 function < HV_CPUID_NESTED_FEATURES; function++) {
1325 c = &cpuid_ent[cpuid_i++];
1326 c->function = function;
1329 c = &cpuid_ent[cpuid_i++];
1330 c->function = HV_CPUID_NESTED_FEATURES;
1331 c->eax = env->features[FEAT_HV_NESTED_EAX];
1341 static Error *hv_passthrough_mig_blocker;
1342 static Error *hv_no_nonarch_cs_mig_blocker;
1344 static int hyperv_init_vcpu(X86CPU *cpu)
1346 CPUState *cs = CPU(cpu);
1347 Error *local_err = NULL;
1350 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1351 error_setg(&hv_passthrough_mig_blocker,
1352 "'hv-passthrough' CPU flag prevents migration, use explicit"
1353 " set of hv-* flags instead");
1354 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1356 error_report_err(local_err);
1357 error_free(hv_passthrough_mig_blocker);
1362 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1363 hv_no_nonarch_cs_mig_blocker == NULL) {
1364 error_setg(&hv_no_nonarch_cs_mig_blocker,
1365 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1366 " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1367 " make sure SMT is disabled and/or that vCPUs are properly"
1369 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1371 error_report_err(local_err);
1372 error_free(hv_no_nonarch_cs_mig_blocker);
1377 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1379 * the kernel doesn't support setting vp_index; assert that its value
1383 struct kvm_msrs info;
1384 struct kvm_msr_entry entries[1];
1387 .entries[0].index = HV_X64_MSR_VP_INDEX,
1390 ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
1396 if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
1397 error_report("kernel's vp_index != QEMU's vp_index");
1402 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1403 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1404 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1405 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1407 error_report("failed to turn on HyperV SynIC in KVM: %s",
1412 if (!cpu->hyperv_synic_kvm_only) {
1413 ret = hyperv_x86_synic_add(cpu);
1415 error_report("failed to create HyperV SynIC: %s",
1425 static Error *invtsc_mig_blocker;
1427 #define KVM_MAX_CPUID_ENTRIES 100
1429 int kvm_arch_init_vcpu(CPUState *cs)
1432 struct kvm_cpuid2 cpuid;
1433 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1436 * The kernel defines these structs with padding fields so there
1437 * should be no extra padding in our cpuid_data struct.
1439 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1440 sizeof(struct kvm_cpuid2) +
1441 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1443 X86CPU *cpu = X86_CPU(cs);
1444 CPUX86State *env = &cpu->env;
1445 uint32_t limit, i, j, cpuid_i;
1447 struct kvm_cpuid_entry2 *c;
1448 uint32_t signature[3];
1449 int kvm_base = KVM_CPUID_SIGNATURE;
1450 int max_nested_state_len;
1452 Error *local_err = NULL;
1454 memset(&cpuid_data, 0, sizeof(cpuid_data));
1458 r = kvm_arch_set_tsc_khz(cs);
1463 /* vcpu's TSC frequency is either specified by user, or following
1464 * the value used by KVM if the former is not present. In the
1465 * latter case, we query it from KVM and record in env->tsc_khz,
1466 * so that vcpu's TSC frequency can be migrated later via this field.
1468 if (!env->tsc_khz) {
1469 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1470 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1477 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1479 /* Paravirtualization CPUIDs */
1480 r = hyperv_handle_properties(cs, cpuid_data.entries);
1485 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1486 has_msr_hv_hypercall = true;
1489 if (cpu->expose_kvm) {
1490 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1491 c = &cpuid_data.entries[cpuid_i++];
1492 c->function = KVM_CPUID_SIGNATURE | kvm_base;
1493 c->eax = KVM_CPUID_FEATURES | kvm_base;
1494 c->ebx = signature[0];
1495 c->ecx = signature[1];
1496 c->edx = signature[2];
1498 c = &cpuid_data.entries[cpuid_i++];
1499 c->function = KVM_CPUID_FEATURES | kvm_base;
1500 c->eax = env->features[FEAT_KVM];
1501 c->edx = env->features[FEAT_KVM_HINTS];
1504 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1506 for (i = 0; i <= limit; i++) {
1507 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1508 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1511 c = &cpuid_data.entries[cpuid_i++];
1515 /* Keep reading function 2 till all the input is received */
1519 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1520 KVM_CPUID_FLAG_STATE_READ_NEXT;
1521 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1522 times = c->eax & 0xff;
1524 for (j = 1; j < times; ++j) {
1525 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1526 fprintf(stderr, "cpuid_data is full, no space for "
1527 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1530 c = &cpuid_data.entries[cpuid_i++];
1532 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1533 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1538 if (env->nr_dies < 2) {
1544 for (j = 0; ; j++) {
1545 if (i == 0xd && j == 64) {
1549 if (i == 0x1f && j == 64) {
1554 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1556 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1558 if (i == 4 && c->eax == 0) {
1561 if (i == 0xb && !(c->ecx & 0xff00)) {
1564 if (i == 0x1f && !(c->ecx & 0xff00)) {
1567 if (i == 0xd && c->eax == 0) {
1570 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1571 fprintf(stderr, "cpuid_data is full, no space for "
1572 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1575 c = &cpuid_data.entries[cpuid_i++];
1584 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1585 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1588 for (j = 1; j <= times; ++j) {
1589 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1590 fprintf(stderr, "cpuid_data is full, no space for "
1591 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1594 c = &cpuid_data.entries[cpuid_i++];
1597 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1598 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1605 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1606 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1608 * KVM already returns all zeroes if a CPUID entry is missing,
1609 * so we can omit it and avoid hitting KVM's 80-entry limit.
1617 if (limit >= 0x0a) {
1620 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1622 has_architectural_pmu_version = eax & 0xff;
1623 if (has_architectural_pmu_version > 0) {
1624 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1626 /* Shouldn't be more than 32, since that's the number of bits
1627 * available in EBX to tell us _which_ counters are available.
1630 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1631 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1634 if (has_architectural_pmu_version > 1) {
1635 num_architectural_pmu_fixed_counters = edx & 0x1f;
1637 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1638 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1644 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1646 for (i = 0x80000000; i <= limit; i++) {
1647 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1648 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1651 c = &cpuid_data.entries[cpuid_i++];
1655 /* Query for all AMD cache information leaves */
1656 for (j = 0; ; j++) {
1658 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1660 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1665 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1666 fprintf(stderr, "cpuid_data is full, no space for "
1667 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1670 c = &cpuid_data.entries[cpuid_i++];
1676 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1677 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1679 * KVM already returns all zeroes if a CPUID entry is missing,
1680 * so we can omit it and avoid hitting KVM's 80-entry limit.
1688 /* Call Centaur's CPUID instructions they are supported. */
1689 if (env->cpuid_xlevel2 > 0) {
1690 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1692 for (i = 0xC0000000; i <= limit; i++) {
1693 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1694 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1697 c = &cpuid_data.entries[cpuid_i++];
1701 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1705 cpuid_data.cpuid.nent = cpuid_i;
1707 if (((env->cpuid_version >> 8)&0xF) >= 6
1708 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
1709 (CPUID_MCE | CPUID_MCA)
1710 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
1711 uint64_t mcg_cap, unsupported_caps;
1715 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
1717 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1721 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
1722 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1723 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
1727 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1728 if (unsupported_caps) {
1729 if (unsupported_caps & MCG_LMCE_P) {
1730 error_report("kvm: LMCE not supported");
1733 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1737 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1738 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
1740 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1745 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
1747 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1749 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1750 !!(c->ecx & CPUID_EXT_SMX);
1753 if (env->mcg_cap & MCG_LMCE_P) {
1754 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1757 if (!env->user_tsc_khz) {
1758 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1759 invtsc_mig_blocker == NULL) {
1760 error_setg(&invtsc_mig_blocker,
1761 "State blocked by non-migratable CPU device"
1763 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1765 error_report_err(local_err);
1766 error_free(invtsc_mig_blocker);
1772 if (cpu->vmware_cpuid_freq
1773 /* Guests depend on 0x40000000 to detect this feature, so only expose
1774 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1776 && kvm_base == KVM_CPUID_SIGNATURE
1777 /* TSC clock must be stable and known for this feature. */
1778 && tsc_is_stable_and_known(env)) {
1780 c = &cpuid_data.entries[cpuid_i++];
1781 c->function = KVM_CPUID_SIGNATURE | 0x10;
1782 c->eax = env->tsc_khz;
1783 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
1784 c->ecx = c->edx = 0;
1786 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1787 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1790 cpuid_data.cpuid.nent = cpuid_i;
1792 cpuid_data.cpuid.padding = 0;
1793 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1799 env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
1800 memset(env->xsave_buf, 0, sizeof(struct kvm_xsave));
1803 max_nested_state_len = kvm_max_nested_state_length();
1804 if (max_nested_state_len > 0) {
1805 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
1807 if (cpu_has_vmx(env)) {
1808 struct kvm_vmx_nested_state_hdr *vmx_hdr;
1810 env->nested_state = g_malloc0(max_nested_state_len);
1811 env->nested_state->size = max_nested_state_len;
1812 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1814 vmx_hdr = &env->nested_state->hdr.vmx;
1815 vmx_hdr->vmxon_pa = -1ull;
1816 vmx_hdr->vmcs12_pa = -1ull;
1820 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
1822 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1823 has_msr_tsc_aux = false;
1828 r = hyperv_init_vcpu(cpu);
1836 migrate_del_blocker(invtsc_mig_blocker);
1841 int kvm_arch_destroy_vcpu(CPUState *cs)
1843 X86CPU *cpu = X86_CPU(cs);
1844 CPUX86State *env = &cpu->env;
1846 if (cpu->kvm_msr_buf) {
1847 g_free(cpu->kvm_msr_buf);
1848 cpu->kvm_msr_buf = NULL;
1851 if (env->nested_state) {
1852 g_free(env->nested_state);
1853 env->nested_state = NULL;
1856 qemu_del_vm_change_state_handler(cpu->vmsentry);
1861 void kvm_arch_reset_vcpu(X86CPU *cpu)
1863 CPUX86State *env = &cpu->env;
1866 if (kvm_irqchip_in_kernel()) {
1867 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
1868 KVM_MP_STATE_UNINITIALIZED;
1870 env->mp_state = KVM_MP_STATE_RUNNABLE;
1873 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1875 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
1876 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
1879 hyperv_x86_synic_reset(cpu);
1881 /* enabled by default */
1882 env->poll_control_msr = 1;
1885 void kvm_arch_do_init_vcpu(X86CPU *cpu)
1887 CPUX86State *env = &cpu->env;
1889 /* APs get directly into wait-for-SIPI state. */
1890 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1891 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1895 static int kvm_get_supported_feature_msrs(KVMState *s)
1899 if (kvm_feature_msrs != NULL) {
1903 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
1907 struct kvm_msr_list msr_list;
1910 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
1911 if (ret < 0 && ret != -E2BIG) {
1912 error_report("Fetch KVM feature MSR list failed: %s",
1917 assert(msr_list.nmsrs > 0);
1918 kvm_feature_msrs = (struct kvm_msr_list *) \
1919 g_malloc0(sizeof(msr_list) +
1920 msr_list.nmsrs * sizeof(msr_list.indices[0]));
1922 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
1923 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
1926 error_report("Fetch KVM feature MSR list failed: %s",
1928 g_free(kvm_feature_msrs);
1929 kvm_feature_msrs = NULL;
1936 static int kvm_get_supported_msrs(KVMState *s)
1939 struct kvm_msr_list msr_list, *kvm_msr_list;
1942 * Obtain MSR list from KVM. These are the MSRs that we must
1946 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
1947 if (ret < 0 && ret != -E2BIG) {
1951 * Old kernel modules had a bug and could write beyond the provided
1952 * memory. Allocate at least a safe amount of 1K.
1954 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
1956 sizeof(msr_list.indices[0])));
1958 kvm_msr_list->nmsrs = msr_list.nmsrs;
1959 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
1963 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
1964 switch (kvm_msr_list->indices[i]) {
1966 has_msr_star = true;
1968 case MSR_VM_HSAVE_PA:
1969 has_msr_hsave_pa = true;
1972 has_msr_tsc_aux = true;
1974 case MSR_TSC_ADJUST:
1975 has_msr_tsc_adjust = true;
1977 case MSR_IA32_TSCDEADLINE:
1978 has_msr_tsc_deadline = true;
1980 case MSR_IA32_SMBASE:
1981 has_msr_smbase = true;
1984 has_msr_smi_count = true;
1986 case MSR_IA32_MISC_ENABLE:
1987 has_msr_misc_enable = true;
1989 case MSR_IA32_BNDCFGS:
1990 has_msr_bndcfgs = true;
1995 case MSR_IA32_UMWAIT_CONTROL:
1996 has_msr_umwait = true;
1998 case HV_X64_MSR_CRASH_CTL:
1999 has_msr_hv_crash = true;
2001 case HV_X64_MSR_RESET:
2002 has_msr_hv_reset = true;
2004 case HV_X64_MSR_VP_INDEX:
2005 has_msr_hv_vpindex = true;
2007 case HV_X64_MSR_VP_RUNTIME:
2008 has_msr_hv_runtime = true;
2010 case HV_X64_MSR_SCONTROL:
2011 has_msr_hv_synic = true;
2013 case HV_X64_MSR_STIMER0_CONFIG:
2014 has_msr_hv_stimer = true;
2016 case HV_X64_MSR_TSC_FREQUENCY:
2017 has_msr_hv_frequencies = true;
2019 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2020 has_msr_hv_reenlightenment = true;
2022 case MSR_IA32_SPEC_CTRL:
2023 has_msr_spec_ctrl = true;
2025 case MSR_IA32_TSX_CTRL:
2026 has_msr_tsx_ctrl = true;
2029 has_msr_virt_ssbd = true;
2031 case MSR_IA32_ARCH_CAPABILITIES:
2032 has_msr_arch_capabs = true;
2034 case MSR_IA32_CORE_CAPABILITY:
2035 has_msr_core_capabs = true;
2037 case MSR_IA32_PERF_CAPABILITIES:
2038 has_msr_perf_capabs = true;
2040 case MSR_IA32_VMX_VMFUNC:
2041 has_msr_vmx_vmfunc = true;
2043 case MSR_IA32_UCODE_REV:
2044 has_msr_ucode_rev = true;
2046 case MSR_IA32_VMX_PROCBASED_CTLS2:
2047 has_msr_vmx_procbased_ctls2 = true;
2053 g_free(kvm_msr_list);
2058 static Notifier smram_machine_done;
2059 static KVMMemoryListener smram_listener;
2060 static AddressSpace smram_address_space;
2061 static MemoryRegion smram_as_root;
2062 static MemoryRegion smram_as_mem;
2064 static void register_smram_listener(Notifier *n, void *unused)
2066 MemoryRegion *smram =
2067 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2069 /* Outer container... */
2070 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2071 memory_region_set_enabled(&smram_as_root, true);
2073 /* ... with two regions inside: normal system memory with low
2076 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2077 get_system_memory(), 0, ~0ull);
2078 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2079 memory_region_set_enabled(&smram_as_mem, true);
2082 /* ... SMRAM with higher priority */
2083 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2084 memory_region_set_enabled(smram, true);
2087 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2088 kvm_memory_listener_register(kvm_state, &smram_listener,
2089 &smram_address_space, 1);
2092 int kvm_arch_init(MachineState *ms, KVMState *s)
2094 uint64_t identity_base = 0xfffbc000;
2095 uint64_t shadow_mem;
2097 struct utsname utsname;
2099 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
2100 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2101 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
2103 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2105 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2106 if (has_exception_payload) {
2107 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2109 error_report("kvm: Failed to enable exception payload cap: %s",
2115 ret = kvm_get_supported_msrs(s);
2120 kvm_get_supported_feature_msrs(s);
2123 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2126 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2127 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2128 * Since these must be part of guest physical memory, we need to allocate
2129 * them, both by setting their start addresses in the kernel and by
2130 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2132 * Older KVM versions may not support setting the identity map base. In
2133 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2136 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2137 /* Allows up to 16M BIOSes. */
2138 identity_base = 0xfeffc000;
2140 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2146 /* Set TSS base one page after EPT identity map. */
2147 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2152 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2153 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2155 fprintf(stderr, "e820_add_entry() table is full\n");
2159 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2160 if (shadow_mem != -1) {
2162 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2168 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2169 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2170 x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2171 smram_machine_done.notify = register_smram_listener;
2172 qemu_add_machine_init_done_notifier(&smram_machine_done);
2175 if (enable_cpu_pm) {
2176 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2179 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2180 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2181 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2183 if (disable_exits) {
2184 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2185 KVM_X86_DISABLE_EXITS_HLT |
2186 KVM_X86_DISABLE_EXITS_PAUSE |
2187 KVM_X86_DISABLE_EXITS_CSTATE);
2190 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2193 error_report("kvm: guest stopping CPU not supported: %s",
2201 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2203 lhs->selector = rhs->selector;
2204 lhs->base = rhs->base;
2205 lhs->limit = rhs->limit;
2217 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2219 unsigned flags = rhs->flags;
2220 lhs->selector = rhs->selector;
2221 lhs->base = rhs->base;
2222 lhs->limit = rhs->limit;
2223 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2224 lhs->present = (flags & DESC_P_MASK) != 0;
2225 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2226 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2227 lhs->s = (flags & DESC_S_MASK) != 0;
2228 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2229 lhs->g = (flags & DESC_G_MASK) != 0;
2230 lhs->avl = (flags & DESC_AVL_MASK) != 0;
2231 lhs->unusable = !lhs->present;
2235 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2237 lhs->selector = rhs->selector;
2238 lhs->base = rhs->base;
2239 lhs->limit = rhs->limit;
2240 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2241 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2242 (rhs->dpl << DESC_DPL_SHIFT) |
2243 (rhs->db << DESC_B_SHIFT) |
2244 (rhs->s * DESC_S_MASK) |
2245 (rhs->l << DESC_L_SHIFT) |
2246 (rhs->g * DESC_G_MASK) |
2247 (rhs->avl * DESC_AVL_MASK);
2250 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2253 *kvm_reg = *qemu_reg;
2255 *qemu_reg = *kvm_reg;
2259 static int kvm_getput_regs(X86CPU *cpu, int set)
2261 CPUX86State *env = &cpu->env;
2262 struct kvm_regs regs;
2266 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s);
2272 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set);
2273 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set);
2274 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set);
2275 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set);
2276 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set);
2277 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set);
2278 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set);
2279 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set);
2280 #ifdef TARGET_X86_64
2281 kvm_getput_reg(®s.r8, &env->regs[8], set);
2282 kvm_getput_reg(®s.r9, &env->regs[9], set);
2283 kvm_getput_reg(®s.r10, &env->regs[10], set);
2284 kvm_getput_reg(®s.r11, &env->regs[11], set);
2285 kvm_getput_reg(®s.r12, &env->regs[12], set);
2286 kvm_getput_reg(®s.r13, &env->regs[13], set);
2287 kvm_getput_reg(®s.r14, &env->regs[14], set);
2288 kvm_getput_reg(®s.r15, &env->regs[15], set);
2291 kvm_getput_reg(®s.rflags, &env->eflags, set);
2292 kvm_getput_reg(®s.rip, &env->eip, set);
2295 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s);
2301 static int kvm_put_fpu(X86CPU *cpu)
2303 CPUX86State *env = &cpu->env;
2307 memset(&fpu, 0, sizeof fpu);
2308 fpu.fsw = env->fpus & ~(7 << 11);
2309 fpu.fsw |= (env->fpstt & 7) << 11;
2310 fpu.fcw = env->fpuc;
2311 fpu.last_opcode = env->fpop;
2312 fpu.last_ip = env->fpip;
2313 fpu.last_dp = env->fpdp;
2314 for (i = 0; i < 8; ++i) {
2315 fpu.ftwx |= (!env->fptags[i]) << i;
2317 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2318 for (i = 0; i < CPU_NB_REGS; i++) {
2319 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2320 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2322 fpu.mxcsr = env->mxcsr;
2324 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2327 #define XSAVE_FCW_FSW 0
2328 #define XSAVE_FTW_FOP 1
2329 #define XSAVE_CWD_RIP 2
2330 #define XSAVE_CWD_RDP 4
2331 #define XSAVE_MXCSR 6
2332 #define XSAVE_ST_SPACE 8
2333 #define XSAVE_XMM_SPACE 40
2334 #define XSAVE_XSTATE_BV 128
2335 #define XSAVE_YMMH_SPACE 144
2336 #define XSAVE_BNDREGS 240
2337 #define XSAVE_BNDCSR 256
2338 #define XSAVE_OPMASK 272
2339 #define XSAVE_ZMM_Hi256 288
2340 #define XSAVE_Hi16_ZMM 416
2341 #define XSAVE_PKRU 672
2343 #define XSAVE_BYTE_OFFSET(word_offset) \
2344 ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
2346 #define ASSERT_OFFSET(word_offset, field) \
2347 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
2348 offsetof(X86XSaveArea, field))
2350 ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
2351 ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
2352 ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
2353 ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
2354 ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
2355 ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
2356 ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
2357 ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
2358 ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
2359 ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
2360 ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
2361 ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
2362 ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
2363 ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
2364 ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
2366 static int kvm_put_xsave(X86CPU *cpu)
2368 CPUX86State *env = &cpu->env;
2369 X86XSaveArea *xsave = env->xsave_buf;
2372 return kvm_put_fpu(cpu);
2374 x86_cpu_xsave_all_areas(cpu, xsave);
2376 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2379 static int kvm_put_xcrs(X86CPU *cpu)
2381 CPUX86State *env = &cpu->env;
2382 struct kvm_xcrs xcrs = {};
2390 xcrs.xcrs[0].xcr = 0;
2391 xcrs.xcrs[0].value = env->xcr0;
2392 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2395 static int kvm_put_sregs(X86CPU *cpu)
2397 CPUX86State *env = &cpu->env;
2398 struct kvm_sregs sregs;
2400 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2401 if (env->interrupt_injected >= 0) {
2402 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
2403 (uint64_t)1 << (env->interrupt_injected % 64);
2406 if ((env->eflags & VM_MASK)) {
2407 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2408 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2409 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2410 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2411 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2412 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2414 set_seg(&sregs.cs, &env->segs[R_CS]);
2415 set_seg(&sregs.ds, &env->segs[R_DS]);
2416 set_seg(&sregs.es, &env->segs[R_ES]);
2417 set_seg(&sregs.fs, &env->segs[R_FS]);
2418 set_seg(&sregs.gs, &env->segs[R_GS]);
2419 set_seg(&sregs.ss, &env->segs[R_SS]);
2422 set_seg(&sregs.tr, &env->tr);
2423 set_seg(&sregs.ldt, &env->ldt);
2425 sregs.idt.limit = env->idt.limit;
2426 sregs.idt.base = env->idt.base;
2427 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2428 sregs.gdt.limit = env->gdt.limit;
2429 sregs.gdt.base = env->gdt.base;
2430 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2432 sregs.cr0 = env->cr[0];
2433 sregs.cr2 = env->cr[2];
2434 sregs.cr3 = env->cr[3];
2435 sregs.cr4 = env->cr[4];
2437 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2438 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2440 sregs.efer = env->efer;
2442 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2445 static void kvm_msr_buf_reset(X86CPU *cpu)
2447 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2450 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2452 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2453 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2454 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2456 assert((void *)(entry + 1) <= limit);
2458 entry->index = index;
2459 entry->reserved = 0;
2460 entry->data = value;
2464 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2466 kvm_msr_buf_reset(cpu);
2467 kvm_msr_entry_add(cpu, index, value);
2469 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2472 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2476 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2480 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2482 CPUX86State *env = &cpu->env;
2485 if (!has_msr_tsc_deadline) {
2489 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
2499 * Provide a separate write service for the feature control MSR in order to
2500 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2501 * before writing any other state because forcibly leaving nested mode
2502 * invalidates the VCPU state.
2504 static int kvm_put_msr_feature_control(X86CPU *cpu)
2508 if (!has_msr_feature_control) {
2512 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2513 cpu->env.msr_ia32_feature_control);
2522 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
2524 uint32_t default1, can_be_one, can_be_zero;
2525 uint32_t must_be_one;
2528 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2529 default1 = 0x00000016;
2531 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2532 default1 = 0x0401e172;
2534 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2535 default1 = 0x000011ff;
2537 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2538 default1 = 0x00036dff;
2540 case MSR_IA32_VMX_PROCBASED_CTLS2:
2547 /* If a feature bit is set, the control can be either set or clear.
2548 * Otherwise the value is limited to either 0 or 1 by default1.
2550 can_be_one = features | default1;
2551 can_be_zero = features | ~default1;
2552 must_be_one = ~can_be_zero;
2555 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2556 * Bit 32:63 -> 1 if the control bit can be one.
2558 return must_be_one | (((uint64_t)can_be_one) << 32);
2561 #define VMCS12_MAX_FIELD_INDEX (0x17)
2563 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
2565 uint64_t kvm_vmx_basic =
2566 kvm_arch_get_supported_msr_feature(kvm_state,
2567 MSR_IA32_VMX_BASIC);
2569 if (!kvm_vmx_basic) {
2570 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
2571 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
2576 uint64_t kvm_vmx_misc =
2577 kvm_arch_get_supported_msr_feature(kvm_state,
2579 uint64_t kvm_vmx_ept_vpid =
2580 kvm_arch_get_supported_msr_feature(kvm_state,
2581 MSR_IA32_VMX_EPT_VPID_CAP);
2584 * If the guest is 64-bit, a value of 1 is allowed for the host address
2585 * space size vmexit control.
2587 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
2588 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
2591 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should
2592 * not change them for backwards compatibility.
2594 uint64_t fixed_vmx_basic = kvm_vmx_basic &
2595 (MSR_VMX_BASIC_VMCS_REVISION_MASK |
2596 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
2597 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
2600 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can
2601 * change in the future but are always zero for now, clear them to be
2602 * future proof. Bits 32-63 in theory could change, though KVM does
2603 * not support dual-monitor treatment and probably never will; mask
2606 uint64_t fixed_vmx_misc = kvm_vmx_misc &
2607 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
2608 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
2611 * EPT memory types should not change either, so we do not bother
2612 * adding features for them.
2614 uint64_t fixed_vmx_ept_mask =
2615 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
2616 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
2617 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
2619 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2620 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2621 f[FEAT_VMX_PROCBASED_CTLS]));
2622 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2623 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2624 f[FEAT_VMX_PINBASED_CTLS]));
2625 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2626 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
2627 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
2628 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2629 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2630 f[FEAT_VMX_ENTRY_CTLS]));
2631 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
2632 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
2633 f[FEAT_VMX_SECONDARY_CTLS]));
2634 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
2635 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
2636 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
2637 f[FEAT_VMX_BASIC] | fixed_vmx_basic);
2638 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
2639 f[FEAT_VMX_MISC] | fixed_vmx_misc);
2640 if (has_msr_vmx_vmfunc) {
2641 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
2645 * Just to be safe, write these with constant values. The CRn_FIXED1
2646 * MSRs are generated by KVM based on the vCPU's CPUID.
2648 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
2649 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
2650 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
2652 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM,
2653 VMCS12_MAX_FIELD_INDEX << 1);
2656 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
2658 uint64_t kvm_perf_cap =
2659 kvm_arch_get_supported_msr_feature(kvm_state,
2660 MSR_IA32_PERF_CAPABILITIES);
2663 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
2664 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
2668 static int kvm_buf_set_msrs(X86CPU *cpu)
2670 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2675 if (ret < cpu->kvm_msr_buf->nmsrs) {
2676 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2677 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2678 (uint32_t)e->index, (uint64_t)e->data);
2681 assert(ret == cpu->kvm_msr_buf->nmsrs);
2685 static void kvm_init_msrs(X86CPU *cpu)
2687 CPUX86State *env = &cpu->env;
2689 kvm_msr_buf_reset(cpu);
2690 if (has_msr_arch_capabs) {
2691 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2692 env->features[FEAT_ARCH_CAPABILITIES]);
2695 if (has_msr_core_capabs) {
2696 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
2697 env->features[FEAT_CORE_CAPABILITY]);
2700 if (has_msr_perf_capabs && cpu->enable_pmu) {
2701 kvm_msr_entry_add_perf(cpu, env->features);
2704 if (has_msr_ucode_rev) {
2705 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
2709 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
2710 * all kernels with MSR features should have them.
2712 if (kvm_feature_msrs && cpu_has_vmx(env)) {
2713 kvm_msr_entry_add_vmx(cpu, env->features);
2716 assert(kvm_buf_set_msrs(cpu) == 0);
2719 static int kvm_put_msrs(X86CPU *cpu, int level)
2721 CPUX86State *env = &cpu->env;
2724 kvm_msr_buf_reset(cpu);
2726 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
2727 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
2728 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
2729 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
2731 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
2733 if (has_msr_hsave_pa) {
2734 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
2736 if (has_msr_tsc_aux) {
2737 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
2739 if (has_msr_tsc_adjust) {
2740 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
2742 if (has_msr_misc_enable) {
2743 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
2744 env->msr_ia32_misc_enable);
2746 if (has_msr_smbase) {
2747 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
2749 if (has_msr_smi_count) {
2750 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
2752 if (has_msr_bndcfgs) {
2753 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
2756 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
2758 if (has_msr_umwait) {
2759 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
2761 if (has_msr_spec_ctrl) {
2762 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2764 if (has_msr_tsx_ctrl) {
2765 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
2767 if (has_msr_virt_ssbd) {
2768 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2771 #ifdef TARGET_X86_64
2772 if (lm_capable_kernel) {
2773 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2774 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2775 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2776 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
2781 * The following MSRs have side effects on the guest or are too heavy
2782 * for normal writeback. Limit them to reset or full state updates.
2784 if (level >= KVM_PUT_RESET_STATE) {
2785 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
2786 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
2787 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
2788 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2789 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
2791 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2792 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
2794 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2795 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
2798 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
2799 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
2802 if (has_architectural_pmu_version > 0) {
2803 if (has_architectural_pmu_version > 1) {
2804 /* Stop the counter. */
2805 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2806 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2809 /* Set the counter values. */
2810 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2811 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
2812 env->msr_fixed_counters[i]);
2814 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2815 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
2816 env->msr_gp_counters[i]);
2817 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
2818 env->msr_gp_evtsel[i]);
2820 if (has_architectural_pmu_version > 1) {
2821 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
2822 env->msr_global_status);
2823 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
2824 env->msr_global_ovf_ctrl);
2826 /* Now start the PMU. */
2827 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
2828 env->msr_fixed_ctr_ctrl);
2829 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
2830 env->msr_global_ctrl);
2834 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
2835 * only sync them to KVM on the first cpu
2837 if (current_cpu == first_cpu) {
2838 if (has_msr_hv_hypercall) {
2839 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
2840 env->msr_hv_guest_os_id);
2841 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
2842 env->msr_hv_hypercall);
2844 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
2845 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
2848 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
2849 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
2850 env->msr_hv_reenlightenment_control);
2851 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
2852 env->msr_hv_tsc_emulation_control);
2853 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
2854 env->msr_hv_tsc_emulation_status);
2857 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
2858 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
2861 if (has_msr_hv_crash) {
2864 for (j = 0; j < HV_CRASH_PARAMS; j++)
2865 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
2866 env->msr_hv_crash_params[j]);
2868 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
2870 if (has_msr_hv_runtime) {
2871 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
2873 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
2874 && hv_vpindex_settable) {
2875 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
2876 hyperv_vp_index(CPU(cpu)));
2878 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2881 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
2883 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
2884 env->msr_hv_synic_control);
2885 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
2886 env->msr_hv_synic_evt_page);
2887 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
2888 env->msr_hv_synic_msg_page);
2890 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
2891 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
2892 env->msr_hv_synic_sint[j]);
2895 if (has_msr_hv_stimer) {
2898 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
2899 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
2900 env->msr_hv_stimer_config[j]);
2903 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
2904 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
2905 env->msr_hv_stimer_count[j]);
2908 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2909 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
2911 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
2912 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
2913 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
2914 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
2915 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
2916 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
2917 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
2918 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
2919 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
2920 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
2921 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
2922 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
2923 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2924 /* The CPU GPs if we write to a bit above the physical limit of
2925 * the host CPU (and KVM emulates that)
2927 uint64_t mask = env->mtrr_var[i].mask;
2930 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
2931 env->mtrr_var[i].base);
2932 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
2935 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2936 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
2937 0x14, 1, R_EAX) & 0x7;
2939 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
2940 env->msr_rtit_ctrl);
2941 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
2942 env->msr_rtit_status);
2943 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
2944 env->msr_rtit_output_base);
2945 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
2946 env->msr_rtit_output_mask);
2947 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
2948 env->msr_rtit_cr3_match);
2949 for (i = 0; i < addr_num; i++) {
2950 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
2951 env->msr_rtit_addrs[i]);
2955 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
2956 * kvm_put_msr_feature_control. */
2962 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
2963 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
2964 if (has_msr_mcg_ext_ctl) {
2965 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
2967 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
2968 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
2972 return kvm_buf_set_msrs(cpu);
2976 static int kvm_get_fpu(X86CPU *cpu)
2978 CPUX86State *env = &cpu->env;
2982 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
2987 env->fpstt = (fpu.fsw >> 11) & 7;
2988 env->fpus = fpu.fsw;
2989 env->fpuc = fpu.fcw;
2990 env->fpop = fpu.last_opcode;
2991 env->fpip = fpu.last_ip;
2992 env->fpdp = fpu.last_dp;
2993 for (i = 0; i < 8; ++i) {
2994 env->fptags[i] = !((fpu.ftwx >> i) & 1);
2996 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
2997 for (i = 0; i < CPU_NB_REGS; i++) {
2998 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
2999 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
3001 env->mxcsr = fpu.mxcsr;
3006 static int kvm_get_xsave(X86CPU *cpu)
3008 CPUX86State *env = &cpu->env;
3009 X86XSaveArea *xsave = env->xsave_buf;
3013 return kvm_get_fpu(cpu);
3016 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
3020 x86_cpu_xrstor_all_areas(cpu, xsave);
3025 static int kvm_get_xcrs(X86CPU *cpu)
3027 CPUX86State *env = &cpu->env;
3029 struct kvm_xcrs xcrs;
3035 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3040 for (i = 0; i < xcrs.nr_xcrs; i++) {
3041 /* Only support xcr0 now */
3042 if (xcrs.xcrs[i].xcr == 0) {
3043 env->xcr0 = xcrs.xcrs[i].value;
3050 static int kvm_get_sregs(X86CPU *cpu)
3052 CPUX86State *env = &cpu->env;
3053 struct kvm_sregs sregs;
3056 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3061 /* There can only be one pending IRQ set in the bitmap at a time, so try
3062 to find it and save its number instead (-1 for none). */
3063 env->interrupt_injected = -1;
3064 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
3065 if (sregs.interrupt_bitmap[i]) {
3066 bit = ctz64(sregs.interrupt_bitmap[i]);
3067 env->interrupt_injected = i * 64 + bit;
3072 get_seg(&env->segs[R_CS], &sregs.cs);
3073 get_seg(&env->segs[R_DS], &sregs.ds);
3074 get_seg(&env->segs[R_ES], &sregs.es);
3075 get_seg(&env->segs[R_FS], &sregs.fs);
3076 get_seg(&env->segs[R_GS], &sregs.gs);
3077 get_seg(&env->segs[R_SS], &sregs.ss);
3079 get_seg(&env->tr, &sregs.tr);
3080 get_seg(&env->ldt, &sregs.ldt);
3082 env->idt.limit = sregs.idt.limit;
3083 env->idt.base = sregs.idt.base;
3084 env->gdt.limit = sregs.gdt.limit;
3085 env->gdt.base = sregs.gdt.base;
3087 env->cr[0] = sregs.cr0;
3088 env->cr[2] = sregs.cr2;
3089 env->cr[3] = sregs.cr3;
3090 env->cr[4] = sregs.cr4;
3092 env->efer = sregs.efer;
3094 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3095 x86_update_hflags(env);
3100 static int kvm_get_msrs(X86CPU *cpu)
3102 CPUX86State *env = &cpu->env;
3103 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3105 uint64_t mtrr_top_bits;
3107 kvm_msr_buf_reset(cpu);
3109 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3110 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3111 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3112 kvm_msr_entry_add(cpu, MSR_PAT, 0);
3114 kvm_msr_entry_add(cpu, MSR_STAR, 0);
3116 if (has_msr_hsave_pa) {
3117 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3119 if (has_msr_tsc_aux) {
3120 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3122 if (has_msr_tsc_adjust) {
3123 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3125 if (has_msr_tsc_deadline) {
3126 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3128 if (has_msr_misc_enable) {
3129 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3131 if (has_msr_smbase) {
3132 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3134 if (has_msr_smi_count) {
3135 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3137 if (has_msr_feature_control) {
3138 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3140 if (has_msr_bndcfgs) {
3141 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3144 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3146 if (has_msr_umwait) {
3147 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3149 if (has_msr_spec_ctrl) {
3150 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3152 if (has_msr_tsx_ctrl) {
3153 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3155 if (has_msr_virt_ssbd) {
3156 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3158 if (!env->tsc_valid) {
3159 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3160 env->tsc_valid = !runstate_is_running();
3163 #ifdef TARGET_X86_64
3164 if (lm_capable_kernel) {
3165 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3166 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3167 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3168 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3171 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3172 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3173 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3174 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3176 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3177 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3179 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3180 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3182 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3183 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3185 if (has_architectural_pmu_version > 0) {
3186 if (has_architectural_pmu_version > 1) {
3187 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3188 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3189 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3190 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3192 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3193 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3195 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3196 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3197 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3202 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3203 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3204 if (has_msr_mcg_ext_ctl) {
3205 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3207 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3208 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3212 if (has_msr_hv_hypercall) {
3213 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3214 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3216 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3217 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3219 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3220 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3222 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3223 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3224 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3225 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3227 if (has_msr_hv_crash) {
3230 for (j = 0; j < HV_CRASH_PARAMS; j++) {
3231 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3234 if (has_msr_hv_runtime) {
3235 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3237 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3240 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3241 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3242 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3243 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3244 kvm_msr_entry_add(cpu, msr, 0);
3247 if (has_msr_hv_stimer) {
3250 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3252 kvm_msr_entry_add(cpu, msr, 0);
3255 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3256 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3257 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3258 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3259 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3260 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3261 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3262 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3263 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3264 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3265 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3266 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3267 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
3268 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3269 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3270 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
3274 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3276 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3278 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3279 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3280 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3281 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3282 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3283 for (i = 0; i < addr_num; i++) {
3284 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3288 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
3293 if (ret < cpu->kvm_msr_buf->nmsrs) {
3294 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3295 error_report("error: failed to get MSR 0x%" PRIx32,
3296 (uint32_t)e->index);
3299 assert(ret == cpu->kvm_msr_buf->nmsrs);
3301 * MTRR masks: Each mask consists of 5 parts
3302 * a 10..0: must be zero
3304 * c n-1.12: actual mask bits
3305 * d 51..n: reserved must be zero
3306 * e 63.52: reserved must be zero
3308 * 'n' is the number of physical bits supported by the CPU and is
3309 * apparently always <= 52. We know our 'n' but don't know what
3310 * the destinations 'n' is; it might be smaller, in which case
3311 * it masks (c) on loading. It might be larger, in which case
3312 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3313 * we're migrating to.
3316 if (cpu->fill_mtrr_mask) {
3317 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3318 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3319 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3324 for (i = 0; i < ret; i++) {
3325 uint32_t index = msrs[i].index;
3327 case MSR_IA32_SYSENTER_CS:
3328 env->sysenter_cs = msrs[i].data;
3330 case MSR_IA32_SYSENTER_ESP:
3331 env->sysenter_esp = msrs[i].data;
3333 case MSR_IA32_SYSENTER_EIP:
3334 env->sysenter_eip = msrs[i].data;
3337 env->pat = msrs[i].data;
3340 env->star = msrs[i].data;
3342 #ifdef TARGET_X86_64
3344 env->cstar = msrs[i].data;
3346 case MSR_KERNELGSBASE:
3347 env->kernelgsbase = msrs[i].data;
3350 env->fmask = msrs[i].data;
3353 env->lstar = msrs[i].data;
3357 env->tsc = msrs[i].data;
3360 env->tsc_aux = msrs[i].data;
3362 case MSR_TSC_ADJUST:
3363 env->tsc_adjust = msrs[i].data;
3365 case MSR_IA32_TSCDEADLINE:
3366 env->tsc_deadline = msrs[i].data;
3368 case MSR_VM_HSAVE_PA:
3369 env->vm_hsave = msrs[i].data;
3371 case MSR_KVM_SYSTEM_TIME:
3372 env->system_time_msr = msrs[i].data;
3374 case MSR_KVM_WALL_CLOCK:
3375 env->wall_clock_msr = msrs[i].data;
3377 case MSR_MCG_STATUS:
3378 env->mcg_status = msrs[i].data;
3381 env->mcg_ctl = msrs[i].data;
3383 case MSR_MCG_EXT_CTL:
3384 env->mcg_ext_ctl = msrs[i].data;
3386 case MSR_IA32_MISC_ENABLE:
3387 env->msr_ia32_misc_enable = msrs[i].data;
3389 case MSR_IA32_SMBASE:
3390 env->smbase = msrs[i].data;
3393 env->msr_smi_count = msrs[i].data;
3395 case MSR_IA32_FEATURE_CONTROL:
3396 env->msr_ia32_feature_control = msrs[i].data;
3398 case MSR_IA32_BNDCFGS:
3399 env->msr_bndcfgs = msrs[i].data;
3402 env->xss = msrs[i].data;
3404 case MSR_IA32_UMWAIT_CONTROL:
3405 env->umwait = msrs[i].data;
3408 if (msrs[i].index >= MSR_MC0_CTL &&
3409 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3410 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
3413 case MSR_KVM_ASYNC_PF_EN:
3414 env->async_pf_en_msr = msrs[i].data;
3416 case MSR_KVM_PV_EOI_EN:
3417 env->pv_eoi_en_msr = msrs[i].data;
3419 case MSR_KVM_STEAL_TIME:
3420 env->steal_time_msr = msrs[i].data;
3422 case MSR_KVM_POLL_CONTROL: {
3423 env->poll_control_msr = msrs[i].data;
3426 case MSR_CORE_PERF_FIXED_CTR_CTRL:
3427 env->msr_fixed_ctr_ctrl = msrs[i].data;
3429 case MSR_CORE_PERF_GLOBAL_CTRL:
3430 env->msr_global_ctrl = msrs[i].data;
3432 case MSR_CORE_PERF_GLOBAL_STATUS:
3433 env->msr_global_status = msrs[i].data;
3435 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3436 env->msr_global_ovf_ctrl = msrs[i].data;
3438 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3439 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3441 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3442 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3444 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3445 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3447 case HV_X64_MSR_HYPERCALL:
3448 env->msr_hv_hypercall = msrs[i].data;
3450 case HV_X64_MSR_GUEST_OS_ID:
3451 env->msr_hv_guest_os_id = msrs[i].data;
3453 case HV_X64_MSR_APIC_ASSIST_PAGE:
3454 env->msr_hv_vapic = msrs[i].data;
3456 case HV_X64_MSR_REFERENCE_TSC:
3457 env->msr_hv_tsc = msrs[i].data;
3459 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3460 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3462 case HV_X64_MSR_VP_RUNTIME:
3463 env->msr_hv_runtime = msrs[i].data;
3465 case HV_X64_MSR_SCONTROL:
3466 env->msr_hv_synic_control = msrs[i].data;
3468 case HV_X64_MSR_SIEFP:
3469 env->msr_hv_synic_evt_page = msrs[i].data;
3471 case HV_X64_MSR_SIMP:
3472 env->msr_hv_synic_msg_page = msrs[i].data;
3474 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3475 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
3477 case HV_X64_MSR_STIMER0_CONFIG:
3478 case HV_X64_MSR_STIMER1_CONFIG:
3479 case HV_X64_MSR_STIMER2_CONFIG:
3480 case HV_X64_MSR_STIMER3_CONFIG:
3481 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3484 case HV_X64_MSR_STIMER0_COUNT:
3485 case HV_X64_MSR_STIMER1_COUNT:
3486 case HV_X64_MSR_STIMER2_COUNT:
3487 case HV_X64_MSR_STIMER3_COUNT:
3488 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3491 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3492 env->msr_hv_reenlightenment_control = msrs[i].data;
3494 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3495 env->msr_hv_tsc_emulation_control = msrs[i].data;
3497 case HV_X64_MSR_TSC_EMULATION_STATUS:
3498 env->msr_hv_tsc_emulation_status = msrs[i].data;
3500 case MSR_MTRRdefType:
3501 env->mtrr_deftype = msrs[i].data;
3503 case MSR_MTRRfix64K_00000:
3504 env->mtrr_fixed[0] = msrs[i].data;
3506 case MSR_MTRRfix16K_80000:
3507 env->mtrr_fixed[1] = msrs[i].data;
3509 case MSR_MTRRfix16K_A0000:
3510 env->mtrr_fixed[2] = msrs[i].data;
3512 case MSR_MTRRfix4K_C0000:
3513 env->mtrr_fixed[3] = msrs[i].data;
3515 case MSR_MTRRfix4K_C8000:
3516 env->mtrr_fixed[4] = msrs[i].data;
3518 case MSR_MTRRfix4K_D0000:
3519 env->mtrr_fixed[5] = msrs[i].data;
3521 case MSR_MTRRfix4K_D8000:
3522 env->mtrr_fixed[6] = msrs[i].data;
3524 case MSR_MTRRfix4K_E0000:
3525 env->mtrr_fixed[7] = msrs[i].data;
3527 case MSR_MTRRfix4K_E8000:
3528 env->mtrr_fixed[8] = msrs[i].data;
3530 case MSR_MTRRfix4K_F0000:
3531 env->mtrr_fixed[9] = msrs[i].data;
3533 case MSR_MTRRfix4K_F8000:
3534 env->mtrr_fixed[10] = msrs[i].data;
3536 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3538 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3541 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3544 case MSR_IA32_SPEC_CTRL:
3545 env->spec_ctrl = msrs[i].data;
3547 case MSR_IA32_TSX_CTRL:
3548 env->tsx_ctrl = msrs[i].data;
3551 env->virt_ssbd = msrs[i].data;
3553 case MSR_IA32_RTIT_CTL:
3554 env->msr_rtit_ctrl = msrs[i].data;
3556 case MSR_IA32_RTIT_STATUS:
3557 env->msr_rtit_status = msrs[i].data;
3559 case MSR_IA32_RTIT_OUTPUT_BASE:
3560 env->msr_rtit_output_base = msrs[i].data;
3562 case MSR_IA32_RTIT_OUTPUT_MASK:
3563 env->msr_rtit_output_mask = msrs[i].data;
3565 case MSR_IA32_RTIT_CR3_MATCH:
3566 env->msr_rtit_cr3_match = msrs[i].data;
3568 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3569 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3577 static int kvm_put_mp_state(X86CPU *cpu)
3579 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
3581 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
3584 static int kvm_get_mp_state(X86CPU *cpu)
3586 CPUState *cs = CPU(cpu);
3587 CPUX86State *env = &cpu->env;
3588 struct kvm_mp_state mp_state;
3591 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
3595 env->mp_state = mp_state.mp_state;
3596 if (kvm_irqchip_in_kernel()) {
3597 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
3602 static int kvm_get_apic(X86CPU *cpu)
3604 DeviceState *apic = cpu->apic_state;
3605 struct kvm_lapic_state kapic;
3608 if (apic && kvm_irqchip_in_kernel()) {
3609 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
3614 kvm_get_apic_state(apic, &kapic);
3619 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
3621 CPUState *cs = CPU(cpu);
3622 CPUX86State *env = &cpu->env;
3623 struct kvm_vcpu_events events = {};
3625 if (!kvm_has_vcpu_events()) {
3631 if (has_exception_payload) {
3632 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3633 events.exception.pending = env->exception_pending;
3634 events.exception_has_payload = env->exception_has_payload;
3635 events.exception_payload = env->exception_payload;
3637 events.exception.nr = env->exception_nr;
3638 events.exception.injected = env->exception_injected;
3639 events.exception.has_error_code = env->has_error_code;
3640 events.exception.error_code = env->error_code;
3642 events.interrupt.injected = (env->interrupt_injected >= 0);
3643 events.interrupt.nr = env->interrupt_injected;
3644 events.interrupt.soft = env->soft_interrupt;
3646 events.nmi.injected = env->nmi_injected;
3647 events.nmi.pending = env->nmi_pending;
3648 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
3650 events.sipi_vector = env->sipi_vector;
3652 if (has_msr_smbase) {
3653 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
3654 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
3655 if (kvm_irqchip_in_kernel()) {
3656 /* As soon as these are moved to the kernel, remove them
3657 * from cs->interrupt_request.
3659 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
3660 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
3661 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
3663 /* Keep these in cs->interrupt_request. */
3664 events.smi.pending = 0;
3665 events.smi.latched_init = 0;
3667 /* Stop SMI delivery on old machine types to avoid a reboot
3668 * on an inward migration of an old VM.
3670 if (!cpu->kvm_no_smi_migration) {
3671 events.flags |= KVM_VCPUEVENT_VALID_SMM;
3675 if (level >= KVM_PUT_RESET_STATE) {
3676 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
3677 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
3678 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
3682 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
3685 static int kvm_get_vcpu_events(X86CPU *cpu)
3687 CPUX86State *env = &cpu->env;
3688 struct kvm_vcpu_events events;
3691 if (!kvm_has_vcpu_events()) {
3695 memset(&events, 0, sizeof(events));
3696 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
3701 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3702 env->exception_pending = events.exception.pending;
3703 env->exception_has_payload = events.exception_has_payload;
3704 env->exception_payload = events.exception_payload;
3706 env->exception_pending = 0;
3707 env->exception_has_payload = false;
3709 env->exception_injected = events.exception.injected;
3711 (env->exception_pending || env->exception_injected) ?
3712 events.exception.nr : -1;
3713 env->has_error_code = events.exception.has_error_code;
3714 env->error_code = events.exception.error_code;
3716 env->interrupt_injected =
3717 events.interrupt.injected ? events.interrupt.nr : -1;
3718 env->soft_interrupt = events.interrupt.soft;
3720 env->nmi_injected = events.nmi.injected;
3721 env->nmi_pending = events.nmi.pending;
3722 if (events.nmi.masked) {
3723 env->hflags2 |= HF2_NMI_MASK;
3725 env->hflags2 &= ~HF2_NMI_MASK;
3728 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
3729 if (events.smi.smm) {
3730 env->hflags |= HF_SMM_MASK;
3732 env->hflags &= ~HF_SMM_MASK;
3734 if (events.smi.pending) {
3735 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3737 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3739 if (events.smi.smm_inside_nmi) {
3740 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
3742 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
3744 if (events.smi.latched_init) {
3745 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3747 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3751 env->sipi_vector = events.sipi_vector;
3756 static int kvm_guest_debug_workarounds(X86CPU *cpu)
3758 CPUState *cs = CPU(cpu);
3759 CPUX86State *env = &cpu->env;
3761 unsigned long reinject_trap = 0;
3763 if (!kvm_has_vcpu_events()) {
3764 if (env->exception_nr == EXCP01_DB) {
3765 reinject_trap = KVM_GUESTDBG_INJECT_DB;
3766 } else if (env->exception_injected == EXCP03_INT3) {
3767 reinject_trap = KVM_GUESTDBG_INJECT_BP;
3769 kvm_reset_exception(env);
3773 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
3774 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
3775 * by updating the debug state once again if single-stepping is on.
3776 * Another reason to call kvm_update_guest_debug here is a pending debug
3777 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
3778 * reinject them via SET_GUEST_DEBUG.
3780 if (reinject_trap ||
3781 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
3782 ret = kvm_update_guest_debug(cs, reinject_trap);
3787 static int kvm_put_debugregs(X86CPU *cpu)
3789 CPUX86State *env = &cpu->env;
3790 struct kvm_debugregs dbgregs;
3793 if (!kvm_has_debugregs()) {
3797 memset(&dbgregs, 0, sizeof(dbgregs));
3798 for (i = 0; i < 4; i++) {
3799 dbgregs.db[i] = env->dr[i];
3801 dbgregs.dr6 = env->dr[6];
3802 dbgregs.dr7 = env->dr[7];
3805 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
3808 static int kvm_get_debugregs(X86CPU *cpu)
3810 CPUX86State *env = &cpu->env;
3811 struct kvm_debugregs dbgregs;
3814 if (!kvm_has_debugregs()) {
3818 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
3822 for (i = 0; i < 4; i++) {
3823 env->dr[i] = dbgregs.db[i];
3825 env->dr[4] = env->dr[6] = dbgregs.dr6;
3826 env->dr[5] = env->dr[7] = dbgregs.dr7;
3831 static int kvm_put_nested_state(X86CPU *cpu)
3833 CPUX86State *env = &cpu->env;
3834 int max_nested_state_len = kvm_max_nested_state_length();
3836 if (!env->nested_state) {
3840 assert(env->nested_state->size <= max_nested_state_len);
3841 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
3844 static int kvm_get_nested_state(X86CPU *cpu)
3846 CPUX86State *env = &cpu->env;
3847 int max_nested_state_len = kvm_max_nested_state_length();
3850 if (!env->nested_state) {
3855 * It is possible that migration restored a smaller size into
3856 * nested_state->hdr.size than what our kernel support.
3857 * We preserve migration origin nested_state->hdr.size for
3858 * call to KVM_SET_NESTED_STATE but wish that our next call
3859 * to KVM_GET_NESTED_STATE will use max size our kernel support.
3861 env->nested_state->size = max_nested_state_len;
3863 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
3868 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
3869 env->hflags |= HF_GUEST_MASK;
3871 env->hflags &= ~HF_GUEST_MASK;
3877 int kvm_arch_put_registers(CPUState *cpu, int level)
3879 X86CPU *x86_cpu = X86_CPU(cpu);
3882 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
3884 if (level >= KVM_PUT_RESET_STATE) {
3885 ret = kvm_put_nested_state(x86_cpu);
3890 ret = kvm_put_msr_feature_control(x86_cpu);
3896 if (level == KVM_PUT_FULL_STATE) {
3897 /* We don't check for kvm_arch_set_tsc_khz() errors here,
3898 * because TSC frequency mismatch shouldn't abort migration,
3899 * unless the user explicitly asked for a more strict TSC
3900 * setting (e.g. using an explicit "tsc-freq" option).
3902 kvm_arch_set_tsc_khz(cpu);
3905 ret = kvm_getput_regs(x86_cpu, 1);
3909 ret = kvm_put_xsave(x86_cpu);
3913 ret = kvm_put_xcrs(x86_cpu);
3917 ret = kvm_put_sregs(x86_cpu);
3921 /* must be before kvm_put_msrs */
3922 ret = kvm_inject_mce_oldstyle(x86_cpu);
3926 ret = kvm_put_msrs(x86_cpu, level);
3930 ret = kvm_put_vcpu_events(x86_cpu, level);
3934 if (level >= KVM_PUT_RESET_STATE) {
3935 ret = kvm_put_mp_state(x86_cpu);
3941 ret = kvm_put_tscdeadline_msr(x86_cpu);
3945 ret = kvm_put_debugregs(x86_cpu);
3950 ret = kvm_guest_debug_workarounds(x86_cpu);
3957 int kvm_arch_get_registers(CPUState *cs)
3959 X86CPU *cpu = X86_CPU(cs);
3962 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
3964 ret = kvm_get_vcpu_events(cpu);
3969 * KVM_GET_MPSTATE can modify CS and RIP, call it before
3970 * KVM_GET_REGS and KVM_GET_SREGS.
3972 ret = kvm_get_mp_state(cpu);
3976 ret = kvm_getput_regs(cpu, 0);
3980 ret = kvm_get_xsave(cpu);
3984 ret = kvm_get_xcrs(cpu);
3988 ret = kvm_get_sregs(cpu);
3992 ret = kvm_get_msrs(cpu);
3996 ret = kvm_get_apic(cpu);
4000 ret = kvm_get_debugregs(cpu);
4004 ret = kvm_get_nested_state(cpu);
4010 cpu_sync_bndcs_hflags(&cpu->env);
4014 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4016 X86CPU *x86_cpu = X86_CPU(cpu);
4017 CPUX86State *env = &x86_cpu->env;
4021 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4022 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4023 qemu_mutex_lock_iothread();
4024 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4025 qemu_mutex_unlock_iothread();
4026 DPRINTF("injected NMI\n");
4027 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4029 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4033 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4034 qemu_mutex_lock_iothread();
4035 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4036 qemu_mutex_unlock_iothread();
4037 DPRINTF("injected SMI\n");
4038 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4040 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4046 if (!kvm_pic_in_kernel()) {
4047 qemu_mutex_lock_iothread();
4050 /* Force the VCPU out of its inner loop to process any INIT requests
4051 * or (for userspace APIC, but it is cheap to combine the checks here)
4052 * pending TPR access reports.
4054 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4055 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4056 !(env->hflags & HF_SMM_MASK)) {
4057 cpu->exit_request = 1;
4059 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4060 cpu->exit_request = 1;
4064 if (!kvm_pic_in_kernel()) {
4065 /* Try to inject an interrupt if the guest can accept it */
4066 if (run->ready_for_interrupt_injection &&
4067 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4068 (env->eflags & IF_MASK)) {
4071 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4072 irq = cpu_get_pic_interrupt(env);
4074 struct kvm_interrupt intr;
4077 DPRINTF("injected interrupt %d\n", irq);
4078 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4081 "KVM: injection failed, interrupt lost (%s)\n",
4087 /* If we have an interrupt but the guest is not ready to receive an
4088 * interrupt, request an interrupt window exit. This will
4089 * cause a return to userspace as soon as the guest is ready to
4090 * receive interrupts. */
4091 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4092 run->request_interrupt_window = 1;
4094 run->request_interrupt_window = 0;
4097 DPRINTF("setting tpr\n");
4098 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4100 qemu_mutex_unlock_iothread();
4104 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4106 X86CPU *x86_cpu = X86_CPU(cpu);
4107 CPUX86State *env = &x86_cpu->env;
4109 if (run->flags & KVM_RUN_X86_SMM) {
4110 env->hflags |= HF_SMM_MASK;
4112 env->hflags &= ~HF_SMM_MASK;
4115 env->eflags |= IF_MASK;
4117 env->eflags &= ~IF_MASK;
4120 /* We need to protect the apic state against concurrent accesses from
4121 * different threads in case the userspace irqchip is used. */
4122 if (!kvm_irqchip_in_kernel()) {
4123 qemu_mutex_lock_iothread();
4125 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4126 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4127 if (!kvm_irqchip_in_kernel()) {
4128 qemu_mutex_unlock_iothread();
4130 return cpu_get_mem_attrs(env);
4133 int kvm_arch_process_async_events(CPUState *cs)
4135 X86CPU *cpu = X86_CPU(cs);
4136 CPUX86State *env = &cpu->env;
4138 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
4139 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4140 assert(env->mcg_cap);
4142 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
4144 kvm_cpu_synchronize_state(cs);
4146 if (env->exception_nr == EXCP08_DBLE) {
4147 /* this means triple fault */
4148 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
4149 cs->exit_request = 1;
4152 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
4153 env->has_error_code = 0;
4156 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4157 env->mp_state = KVM_MP_STATE_RUNNABLE;
4161 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4162 !(env->hflags & HF_SMM_MASK)) {
4163 kvm_cpu_synchronize_state(cs);
4167 if (kvm_irqchip_in_kernel()) {
4171 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4172 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
4173 apic_poll_irq(cpu->apic_state);
4175 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4176 (env->eflags & IF_MASK)) ||
4177 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4180 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
4181 kvm_cpu_synchronize_state(cs);
4184 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4185 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
4186 kvm_cpu_synchronize_state(cs);
4187 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
4188 env->tpr_access_type);
4194 static int kvm_handle_halt(X86CPU *cpu)
4196 CPUState *cs = CPU(cpu);
4197 CPUX86State *env = &cpu->env;
4199 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4200 (env->eflags & IF_MASK)) &&
4201 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4209 static int kvm_handle_tpr_access(X86CPU *cpu)
4211 CPUState *cs = CPU(cpu);
4212 struct kvm_run *run = cs->kvm_run;
4214 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
4215 run->tpr_access.is_write ? TPR_ACCESS_WRITE
4220 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4222 static const uint8_t int3 = 0xcc;
4224 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4225 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
4231 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4235 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
4236 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
4248 static int nb_hw_breakpoint;
4250 static int find_hw_breakpoint(target_ulong addr, int len, int type)
4254 for (n = 0; n < nb_hw_breakpoint; n++) {
4255 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
4256 (hw_breakpoint[n].len == len || len == -1)) {
4263 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
4264 target_ulong len, int type)
4267 case GDB_BREAKPOINT_HW:
4270 case GDB_WATCHPOINT_WRITE:
4271 case GDB_WATCHPOINT_ACCESS:
4278 if (addr & (len - 1)) {
4290 if (nb_hw_breakpoint == 4) {
4293 if (find_hw_breakpoint(addr, len, type) >= 0) {
4296 hw_breakpoint[nb_hw_breakpoint].addr = addr;
4297 hw_breakpoint[nb_hw_breakpoint].len = len;
4298 hw_breakpoint[nb_hw_breakpoint].type = type;
4304 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4305 target_ulong len, int type)
4309 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
4314 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4319 void kvm_arch_remove_all_hw_breakpoints(void)
4321 nb_hw_breakpoint = 0;
4324 static CPUWatchpoint hw_watchpoint;
4326 static int kvm_handle_debug(X86CPU *cpu,
4327 struct kvm_debug_exit_arch *arch_info)
4329 CPUState *cs = CPU(cpu);
4330 CPUX86State *env = &cpu->env;
4334 if (arch_info->exception == EXCP01_DB) {
4335 if (arch_info->dr6 & DR6_BS) {
4336 if (cs->singlestep_enabled) {
4340 for (n = 0; n < 4; n++) {
4341 if (arch_info->dr6 & (1 << n)) {
4342 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4348 cs->watchpoint_hit = &hw_watchpoint;
4349 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4350 hw_watchpoint.flags = BP_MEM_WRITE;
4354 cs->watchpoint_hit = &hw_watchpoint;
4355 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4356 hw_watchpoint.flags = BP_MEM_ACCESS;
4362 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
4366 cpu_synchronize_state(cs);
4367 assert(env->exception_nr == -1);
4370 kvm_queue_exception(env, arch_info->exception,
4371 arch_info->exception == EXCP01_DB,
4373 env->has_error_code = 0;
4379 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
4381 const uint8_t type_code[] = {
4382 [GDB_BREAKPOINT_HW] = 0x0,
4383 [GDB_WATCHPOINT_WRITE] = 0x1,
4384 [GDB_WATCHPOINT_ACCESS] = 0x3
4386 const uint8_t len_code[] = {
4387 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4391 if (kvm_sw_breakpoints_active(cpu)) {
4392 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
4394 if (nb_hw_breakpoint > 0) {
4395 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4396 dbg->arch.debugreg[7] = 0x0600;
4397 for (n = 0; n < nb_hw_breakpoint; n++) {
4398 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4399 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4400 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
4401 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
4406 static bool host_supports_vmx(void)
4408 uint32_t ecx, unused;
4410 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4411 return ecx & CPUID_EXT_VMX;
4414 #define VMX_INVALID_GUEST_STATE 0x80000021
4416 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
4418 X86CPU *cpu = X86_CPU(cs);
4422 switch (run->exit_reason) {
4424 DPRINTF("handle_hlt\n");
4425 qemu_mutex_lock_iothread();
4426 ret = kvm_handle_halt(cpu);
4427 qemu_mutex_unlock_iothread();
4429 case KVM_EXIT_SET_TPR:
4432 case KVM_EXIT_TPR_ACCESS:
4433 qemu_mutex_lock_iothread();
4434 ret = kvm_handle_tpr_access(cpu);
4435 qemu_mutex_unlock_iothread();
4437 case KVM_EXIT_FAIL_ENTRY:
4438 code = run->fail_entry.hardware_entry_failure_reason;
4439 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4441 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4443 "\nIf you're running a guest on an Intel machine without "
4444 "unrestricted mode\n"
4445 "support, the failure can be most likely due to the guest "
4446 "entering an invalid\n"
4447 "state for Intel VT. For example, the guest maybe running "
4448 "in big real mode\n"
4449 "which is not supported on less recent Intel processors."
4454 case KVM_EXIT_EXCEPTION:
4455 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4456 run->ex.exception, run->ex.error_code);
4459 case KVM_EXIT_DEBUG:
4460 DPRINTF("kvm_exit_debug\n");
4461 qemu_mutex_lock_iothread();
4462 ret = kvm_handle_debug(cpu, &run->debug.arch);
4463 qemu_mutex_unlock_iothread();
4465 case KVM_EXIT_HYPERV:
4466 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4468 case KVM_EXIT_IOAPIC_EOI:
4469 ioapic_eoi_broadcast(run->eoi.vector);
4473 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4481 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4483 X86CPU *cpu = X86_CPU(cs);
4484 CPUX86State *env = &cpu->env;
4486 kvm_cpu_synchronize_state(cs);
4487 return !(env->cr[0] & CR0_PE_MASK) ||
4488 ((env->segs[R_CS].selector & 3) != 3);
4491 void kvm_arch_init_irq_routing(KVMState *s)
4493 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
4494 /* If kernel can't do irq routing, interrupt source
4495 * override 0->2 cannot be set up as required by HPET.
4496 * So we have to disable it.
4500 /* We know at this point that we're using the in-kernel
4501 * irqchip, so we can use irqfds, and on x86 we know
4502 * we can use msi via irqfd and GSI routing.
4504 kvm_msi_via_irqfd_allowed = true;
4505 kvm_gsi_routing_allowed = true;
4507 if (kvm_irqchip_is_split()) {
4510 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
4511 MSI routes for signaling interrupts to the local apics. */
4512 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
4513 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
4514 error_report("Could not enable split IRQ mode.");
4521 int kvm_arch_irqchip_create(KVMState *s)
4524 if (kvm_kernel_irqchip_split()) {
4525 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
4527 error_report("Could not enable split irqchip mode: %s",
4531 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
4532 kvm_split_irqchip = true;
4540 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
4541 uint64_t address, uint32_t data, PCIDevice *dev)
4543 X86IOMMUState *iommu = x86_iommu_get_default();
4547 MSIMessage src, dst;
4548 X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu);
4550 if (!class->int_remap) {
4554 src.address = route->u.msi.address_hi;
4555 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
4556 src.address |= route->u.msi.address_lo;
4557 src.data = route->u.msi.data;
4559 ret = class->int_remap(iommu, &src, &dst, dev ? \
4560 pci_requester_id(dev) : \
4561 X86_IOMMU_SID_INVALID);
4563 trace_kvm_x86_fixup_msi_error(route->gsi);
4567 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
4568 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
4569 route->u.msi.data = dst.data;
4575 typedef struct MSIRouteEntry MSIRouteEntry;
4577 struct MSIRouteEntry {
4578 PCIDevice *dev; /* Device pointer */
4579 int vector; /* MSI/MSIX vector index */
4580 int virq; /* Virtual IRQ index */
4581 QLIST_ENTRY(MSIRouteEntry) list;
4584 /* List of used GSI routes */
4585 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
4586 QLIST_HEAD_INITIALIZER(msi_route_list);
4588 static void kvm_update_msi_routes_all(void *private, bool global,
4589 uint32_t index, uint32_t mask)
4591 int cnt = 0, vector;
4592 MSIRouteEntry *entry;
4596 /* TODO: explicit route update */
4597 QLIST_FOREACH(entry, &msi_route_list, list) {
4599 vector = entry->vector;
4601 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
4602 msg = msix_get_message(dev, vector);
4603 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
4604 msg = msi_get_message(dev, vector);
4607 * Either MSI/MSIX is disabled for the device, or the
4608 * specific message was masked out. Skip this one.
4612 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
4614 kvm_irqchip_commit_routes(kvm_state);
4615 trace_kvm_x86_update_msi_routes(cnt);
4618 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
4619 int vector, PCIDevice *dev)
4621 static bool notify_list_inited = false;
4622 MSIRouteEntry *entry;
4625 /* These are (possibly) IOAPIC routes only used for split
4626 * kernel irqchip mode, while what we are housekeeping are
4627 * PCI devices only. */
4631 entry = g_new0(MSIRouteEntry, 1);
4633 entry->vector = vector;
4634 entry->virq = route->gsi;
4635 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
4637 trace_kvm_x86_add_msi_route(route->gsi);
4639 if (!notify_list_inited) {
4640 /* For the first time we do add route, add ourselves into
4641 * IOMMU's IEC notify list if needed. */
4642 X86IOMMUState *iommu = x86_iommu_get_default();
4644 x86_iommu_iec_register_notifier(iommu,
4645 kvm_update_msi_routes_all,
4648 notify_list_inited = true;
4653 int kvm_arch_release_virq_post(int virq)
4655 MSIRouteEntry *entry, *next;
4656 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
4657 if (entry->virq == virq) {
4658 trace_kvm_x86_remove_msi_route(virq);
4659 QLIST_REMOVE(entry, list);
4667 int kvm_arch_msi_data_to_gsi(uint32_t data)