2 * QEMU M48T59 and M48T08 NVRAM emulation for PPC PREP and Sparc platforms
4 * Copyright (c) 2003-2005, 2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu-timer.h"
32 #if defined(DEBUG_NVRAM)
33 #define NVRAM_PRINTF(fmt, args...) do { printf(fmt , ##args); } while (0)
35 #define NVRAM_PRINTF(fmt, args...) do { } while (0)
39 * The M48T02, M48T08 and M48T59 chips are very similar. The newer '59 has
40 * alarm and a watchdog timer and related control registers. In the
41 * PPC platform there is also a nvram lock function.
44 /* Model parameters */
45 int type; // 2 = m48t02, 8 = m48t08, 59 = m48t59
46 /* Hardware parameters */
49 target_phys_addr_t mem_base;
55 /* Alarm & watchdog */
57 struct QEMUTimer *alrm_timer;
58 struct QEMUTimer *wd_timer;
65 /* Fake timer functions */
66 /* Generic helpers for BCD */
67 static inline uint8_t toBCD (uint8_t value)
69 return (((value / 10) % 10) << 4) | (value % 10);
72 static inline uint8_t fromBCD (uint8_t BCD)
74 return ((BCD >> 4) * 10) + (BCD & 0x0F);
77 /* Alarm management */
78 static void alarm_cb (void *opaque)
82 m48t59_t *NVRAM = opaque;
84 qemu_set_irq(NVRAM->IRQ, 1);
85 if ((NVRAM->buffer[0x1FF5] & 0x80) == 0 &&
86 (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
87 (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
88 (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
89 /* Repeat once a month */
90 qemu_get_timedate(&tm, NVRAM->time_offset);
92 if (tm.tm_mon == 13) {
96 next_time = qemu_timedate_diff(&tm) - NVRAM->time_offset;
97 } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
98 (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
99 (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
100 (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
101 /* Repeat once a day */
102 next_time = 24 * 60 * 60;
103 } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
104 (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
105 (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
106 (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
107 /* Repeat once an hour */
109 } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
110 (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
111 (NVRAM->buffer[0x1FF3] & 0x80) != 0 &&
112 (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
113 /* Repeat once a minute */
116 /* Repeat once a second */
119 qemu_mod_timer(NVRAM->alrm_timer, qemu_get_clock(vm_clock) +
121 qemu_set_irq(NVRAM->IRQ, 0);
124 static void set_alarm (m48t59_t *NVRAM)
127 if (NVRAM->alrm_timer != NULL) {
128 qemu_del_timer(NVRAM->alrm_timer);
129 diff = qemu_timedate_diff(&NVRAM->alarm) - NVRAM->time_offset;
131 qemu_mod_timer(NVRAM->alrm_timer, diff * 1000);
135 /* RTC management helpers */
136 static inline void get_time (m48t59_t *NVRAM, struct tm *tm)
138 qemu_get_timedate(tm, NVRAM->time_offset);
141 static void set_time (m48t59_t *NVRAM, struct tm *tm)
143 NVRAM->time_offset = qemu_timedate_diff(tm);
147 /* Watchdog management */
148 static void watchdog_cb (void *opaque)
150 m48t59_t *NVRAM = opaque;
152 NVRAM->buffer[0x1FF0] |= 0x80;
153 if (NVRAM->buffer[0x1FF7] & 0x80) {
154 NVRAM->buffer[0x1FF7] = 0x00;
155 NVRAM->buffer[0x1FFC] &= ~0x40;
156 /* May it be a hw CPU Reset instead ? */
157 qemu_system_reset_request();
159 qemu_set_irq(NVRAM->IRQ, 1);
160 qemu_set_irq(NVRAM->IRQ, 0);
164 static void set_up_watchdog (m48t59_t *NVRAM, uint8_t value)
166 uint64_t interval; /* in 1/16 seconds */
168 NVRAM->buffer[0x1FF0] &= ~0x80;
169 if (NVRAM->wd_timer != NULL) {
170 qemu_del_timer(NVRAM->wd_timer);
172 interval = (1 << (2 * (value & 0x03))) * ((value >> 2) & 0x1F);
173 qemu_mod_timer(NVRAM->wd_timer, ((uint64_t)time(NULL) * 1000) +
174 ((interval * 1000) >> 4));
179 /* Direct access to NVRAM */
180 void m48t59_write (void *opaque, uint32_t addr, uint32_t val)
182 m48t59_t *NVRAM = opaque;
186 if (addr > 0x1FF8 && addr < 0x2000)
187 NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val);
189 /* check for NVRAM access */
190 if ((NVRAM->type == 2 && addr < 0x7f8) ||
191 (NVRAM->type == 8 && addr < 0x1ff8) ||
192 (NVRAM->type == 59 && addr < 0x1ff0))
198 /* flags register : read-only */
205 tmp = fromBCD(val & 0x7F);
206 if (tmp >= 0 && tmp <= 59) {
207 NVRAM->alarm.tm_sec = tmp;
208 NVRAM->buffer[0x1FF2] = val;
214 tmp = fromBCD(val & 0x7F);
215 if (tmp >= 0 && tmp <= 59) {
216 NVRAM->alarm.tm_min = tmp;
217 NVRAM->buffer[0x1FF3] = val;
223 tmp = fromBCD(val & 0x3F);
224 if (tmp >= 0 && tmp <= 23) {
225 NVRAM->alarm.tm_hour = tmp;
226 NVRAM->buffer[0x1FF4] = val;
232 tmp = fromBCD(val & 0x1F);
234 NVRAM->alarm.tm_mday = tmp;
235 NVRAM->buffer[0x1FF5] = val;
241 NVRAM->buffer[0x1FF6] = val;
245 NVRAM->buffer[0x1FF7] = val;
246 set_up_watchdog(NVRAM, val);
251 NVRAM->buffer[addr] = (val & ~0xA0) | 0x90;
256 tmp = fromBCD(val & 0x7F);
257 if (tmp >= 0 && tmp <= 59) {
258 get_time(NVRAM, &tm);
260 set_time(NVRAM, &tm);
262 if ((val & 0x80) ^ (NVRAM->buffer[addr] & 0x80)) {
264 NVRAM->stop_time = time(NULL);
266 NVRAM->time_offset += NVRAM->stop_time - time(NULL);
267 NVRAM->stop_time = 0;
270 NVRAM->buffer[addr] = val & 0x80;
275 tmp = fromBCD(val & 0x7F);
276 if (tmp >= 0 && tmp <= 59) {
277 get_time(NVRAM, &tm);
279 set_time(NVRAM, &tm);
285 tmp = fromBCD(val & 0x3F);
286 if (tmp >= 0 && tmp <= 23) {
287 get_time(NVRAM, &tm);
289 set_time(NVRAM, &tm);
294 /* day of the week / century */
295 tmp = fromBCD(val & 0x07);
296 get_time(NVRAM, &tm);
298 set_time(NVRAM, &tm);
299 NVRAM->buffer[addr] = val & 0x40;
304 tmp = fromBCD(val & 0x1F);
306 get_time(NVRAM, &tm);
308 set_time(NVRAM, &tm);
314 tmp = fromBCD(val & 0x1F);
315 if (tmp >= 1 && tmp <= 12) {
316 get_time(NVRAM, &tm);
318 set_time(NVRAM, &tm);
325 if (tmp >= 0 && tmp <= 99) {
326 get_time(NVRAM, &tm);
327 if (NVRAM->type == 8)
328 tm.tm_year = fromBCD(val) + 68; // Base year is 1968
330 tm.tm_year = fromBCD(val);
331 set_time(NVRAM, &tm);
335 /* Check lock registers state */
336 if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
338 if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
341 if (addr < NVRAM->size) {
342 NVRAM->buffer[addr] = val & 0xFF;
348 uint32_t m48t59_read (void *opaque, uint32_t addr)
350 m48t59_t *NVRAM = opaque;
352 uint32_t retval = 0xFF;
354 /* check for NVRAM access */
355 if ((NVRAM->type == 2 && addr < 0x078f) ||
356 (NVRAM->type == 8 && addr < 0x1ff8) ||
357 (NVRAM->type == 59 && addr < 0x1ff0))
385 /* A read resets the watchdog */
386 set_up_watchdog(NVRAM, NVRAM->buffer[0x1FF7]);
395 get_time(NVRAM, &tm);
396 retval = (NVRAM->buffer[addr] & 0x80) | toBCD(tm.tm_sec);
401 get_time(NVRAM, &tm);
402 retval = toBCD(tm.tm_min);
407 get_time(NVRAM, &tm);
408 retval = toBCD(tm.tm_hour);
412 /* day of the week / century */
413 get_time(NVRAM, &tm);
414 retval = NVRAM->buffer[addr] | tm.tm_wday;
419 get_time(NVRAM, &tm);
420 retval = toBCD(tm.tm_mday);
425 get_time(NVRAM, &tm);
426 retval = toBCD(tm.tm_mon + 1);
431 get_time(NVRAM, &tm);
432 if (NVRAM->type == 8)
433 retval = toBCD(tm.tm_year - 68); // Base year is 1968
435 retval = toBCD(tm.tm_year);
438 /* Check lock registers state */
439 if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
441 if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
444 if (addr < NVRAM->size) {
445 retval = NVRAM->buffer[addr];
449 if (addr > 0x1FF9 && addr < 0x2000)
450 NVRAM_PRINTF("%s: 0x%08x <= 0x%08x\n", __func__, addr, retval);
455 void m48t59_set_addr (void *opaque, uint32_t addr)
457 m48t59_t *NVRAM = opaque;
462 void m48t59_toggle_lock (void *opaque, int lock)
464 m48t59_t *NVRAM = opaque;
466 NVRAM->lock ^= 1 << lock;
469 /* IO access to NVRAM */
470 static void NVRAM_writeb (void *opaque, uint32_t addr, uint32_t val)
472 m48t59_t *NVRAM = opaque;
474 addr -= NVRAM->io_base;
475 NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val);
478 NVRAM->addr &= ~0x00FF;
482 NVRAM->addr &= ~0xFF00;
483 NVRAM->addr |= val << 8;
486 m48t59_write(NVRAM, val, NVRAM->addr);
487 NVRAM->addr = 0x0000;
494 static uint32_t NVRAM_readb (void *opaque, uint32_t addr)
496 m48t59_t *NVRAM = opaque;
499 addr -= NVRAM->io_base;
502 retval = m48t59_read(NVRAM, NVRAM->addr);
508 NVRAM_PRINTF("%s: 0x%08x <= 0x%08x\n", __func__, addr, retval);
513 static void nvram_writeb (void *opaque, target_phys_addr_t addr, uint32_t value)
515 m48t59_t *NVRAM = opaque;
517 addr -= NVRAM->mem_base;
518 m48t59_write(NVRAM, addr, value & 0xff);
521 static void nvram_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
523 m48t59_t *NVRAM = opaque;
525 addr -= NVRAM->mem_base;
526 m48t59_write(NVRAM, addr, (value >> 8) & 0xff);
527 m48t59_write(NVRAM, addr + 1, value & 0xff);
530 static void nvram_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
532 m48t59_t *NVRAM = opaque;
534 addr -= NVRAM->mem_base;
535 m48t59_write(NVRAM, addr, (value >> 24) & 0xff);
536 m48t59_write(NVRAM, addr + 1, (value >> 16) & 0xff);
537 m48t59_write(NVRAM, addr + 2, (value >> 8) & 0xff);
538 m48t59_write(NVRAM, addr + 3, value & 0xff);
541 static uint32_t nvram_readb (void *opaque, target_phys_addr_t addr)
543 m48t59_t *NVRAM = opaque;
546 addr -= NVRAM->mem_base;
547 retval = m48t59_read(NVRAM, addr);
551 static uint32_t nvram_readw (void *opaque, target_phys_addr_t addr)
553 m48t59_t *NVRAM = opaque;
556 addr -= NVRAM->mem_base;
557 retval = m48t59_read(NVRAM, addr) << 8;
558 retval |= m48t59_read(NVRAM, addr + 1);
562 static uint32_t nvram_readl (void *opaque, target_phys_addr_t addr)
564 m48t59_t *NVRAM = opaque;
567 addr -= NVRAM->mem_base;
568 retval = m48t59_read(NVRAM, addr) << 24;
569 retval |= m48t59_read(NVRAM, addr + 1) << 16;
570 retval |= m48t59_read(NVRAM, addr + 2) << 8;
571 retval |= m48t59_read(NVRAM, addr + 3);
575 static CPUWriteMemoryFunc *nvram_write[] = {
581 static CPUReadMemoryFunc *nvram_read[] = {
587 static void m48t59_save(QEMUFile *f, void *opaque)
589 m48t59_t *s = opaque;
591 qemu_put_8s(f, &s->lock);
592 qemu_put_be16s(f, &s->addr);
593 qemu_put_buffer(f, s->buffer, s->size);
596 static int m48t59_load(QEMUFile *f, void *opaque, int version_id)
598 m48t59_t *s = opaque;
603 qemu_get_8s(f, &s->lock);
604 qemu_get_be16s(f, &s->addr);
605 qemu_get_buffer(f, s->buffer, s->size);
610 static void m48t59_reset(void *opaque)
612 m48t59_t *NVRAM = opaque;
614 if (NVRAM->alrm_timer != NULL)
615 qemu_del_timer(NVRAM->alrm_timer);
617 if (NVRAM->wd_timer != NULL)
618 qemu_del_timer(NVRAM->wd_timer);
621 /* Initialisation routine */
622 m48t59_t *m48t59_init (qemu_irq IRQ, target_phys_addr_t mem_base,
623 uint32_t io_base, uint16_t size,
627 target_phys_addr_t save_base;
629 s = qemu_mallocz(sizeof(m48t59_t));
632 s->buffer = qemu_mallocz(size);
639 s->mem_base = mem_base;
640 s->io_base = io_base;
644 register_ioport_read(io_base, 0x04, 1, NVRAM_readb, s);
645 register_ioport_write(io_base, 0x04, 1, NVRAM_writeb, s);
648 s->mem_index = cpu_register_io_memory(0, nvram_read, nvram_write, s);
649 cpu_register_physical_memory(mem_base, size, s->mem_index);
652 s->alrm_timer = qemu_new_timer(vm_clock, &alarm_cb, s);
653 s->wd_timer = qemu_new_timer(vm_clock, &watchdog_cb, s);
656 qemu_get_timedate(&s->alarm, 0);
658 qemu_register_reset(m48t59_reset, s);
659 save_base = mem_base ? mem_base : io_base;
660 register_savevm("m48t59", save_base, 1, m48t59_save, m48t59_load, s);