3 #include "exec/gdbstub.h"
4 #include "exec/helper-proto.h"
5 #include "qemu/host-utils.h"
6 #include "sysemu/arch_init.h"
7 #include "sysemu/sysemu.h"
8 #include "qemu/bitops.h"
9 #include "qemu/crc32c.h"
10 #include "exec/cpu_ldst.h"
12 #include <zlib.h> /* For crc32 */
13 #include "exec/semihost.h"
15 #ifndef CONFIG_USER_ONLY
16 static inline bool get_phys_addr(CPUARMState *env, target_ulong address,
17 int access_type, ARMMMUIdx mmu_idx,
18 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
19 target_ulong *page_size, uint32_t *fsr);
21 /* Definitions for the PMCCNTR and PMCR registers */
27 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
31 /* VFP data registers are always little-endian. */
32 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
34 stfq_le_p(buf, env->vfp.regs[reg]);
37 if (arm_feature(env, ARM_FEATURE_NEON)) {
38 /* Aliases for Q regs. */
41 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
42 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
46 switch (reg - nregs) {
47 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
48 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
49 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
54 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
58 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
60 env->vfp.regs[reg] = ldfq_le_p(buf);
63 if (arm_feature(env, ARM_FEATURE_NEON)) {
66 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
67 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
71 switch (reg - nregs) {
72 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
73 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
74 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
79 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
83 /* 128 bit FP register */
84 stfq_le_p(buf, env->vfp.regs[reg * 2]);
85 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
89 stl_p(buf, vfp_get_fpsr(env));
93 stl_p(buf, vfp_get_fpcr(env));
100 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
104 /* 128 bit FP register */
105 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
106 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
110 vfp_set_fpsr(env, ldl_p(buf));
114 vfp_set_fpcr(env, ldl_p(buf));
121 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
123 assert(ri->fieldoffset);
124 if (cpreg_field_is_64bit(ri)) {
125 return CPREG_FIELD64(env, ri);
127 return CPREG_FIELD32(env, ri);
131 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
134 assert(ri->fieldoffset);
135 if (cpreg_field_is_64bit(ri)) {
136 CPREG_FIELD64(env, ri) = value;
138 CPREG_FIELD32(env, ri) = value;
142 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
144 return (char *)env + ri->fieldoffset;
147 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
149 /* Raw read of a coprocessor register (as needed for migration, etc). */
150 if (ri->type & ARM_CP_CONST) {
151 return ri->resetvalue;
152 } else if (ri->raw_readfn) {
153 return ri->raw_readfn(env, ri);
154 } else if (ri->readfn) {
155 return ri->readfn(env, ri);
157 return raw_read(env, ri);
161 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
164 /* Raw write of a coprocessor register (as needed for migration, etc).
165 * Note that constant registers are treated as write-ignored; the
166 * caller should check for success by whether a readback gives the
169 if (ri->type & ARM_CP_CONST) {
171 } else if (ri->raw_writefn) {
172 ri->raw_writefn(env, ri, v);
173 } else if (ri->writefn) {
174 ri->writefn(env, ri, v);
176 raw_write(env, ri, v);
180 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
182 /* Return true if the regdef would cause an assertion if you called
183 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
184 * program bug for it not to have the NO_RAW flag).
185 * NB that returning false here doesn't necessarily mean that calling
186 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
187 * read/write access functions which are safe for raw use" from "has
188 * read/write access functions which have side effects but has forgotten
189 * to provide raw access functions".
190 * The tests here line up with the conditions in read/write_raw_cp_reg()
191 * and assertions in raw_read()/raw_write().
193 if ((ri->type & ARM_CP_CONST) ||
195 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
201 bool write_cpustate_to_list(ARMCPU *cpu)
203 /* Write the coprocessor state from cpu->env to the (index,value) list. */
207 for (i = 0; i < cpu->cpreg_array_len; i++) {
208 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
209 const ARMCPRegInfo *ri;
211 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
216 if (ri->type & ARM_CP_NO_RAW) {
219 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
224 bool write_list_to_cpustate(ARMCPU *cpu)
229 for (i = 0; i < cpu->cpreg_array_len; i++) {
230 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
231 uint64_t v = cpu->cpreg_values[i];
232 const ARMCPRegInfo *ri;
234 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
239 if (ri->type & ARM_CP_NO_RAW) {
242 /* Write value and confirm it reads back as written
243 * (to catch read-only registers and partially read-only
244 * registers where the incoming migration value doesn't match)
246 write_raw_cp_reg(&cpu->env, ri, v);
247 if (read_raw_cp_reg(&cpu->env, ri) != v) {
254 static void add_cpreg_to_list(gpointer key, gpointer opaque)
256 ARMCPU *cpu = opaque;
258 const ARMCPRegInfo *ri;
260 regidx = *(uint32_t *)key;
261 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
263 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
264 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
265 /* The value array need not be initialized at this point */
266 cpu->cpreg_array_len++;
270 static void count_cpreg(gpointer key, gpointer opaque)
272 ARMCPU *cpu = opaque;
274 const ARMCPRegInfo *ri;
276 regidx = *(uint32_t *)key;
277 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
279 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
280 cpu->cpreg_array_len++;
284 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
286 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
287 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
298 void init_cpreg_list(ARMCPU *cpu)
300 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
301 * Note that we require cpreg_tuples[] to be sorted by key ID.
306 keys = g_hash_table_get_keys(cpu->cp_regs);
307 keys = g_list_sort(keys, cpreg_key_compare);
309 cpu->cpreg_array_len = 0;
311 g_list_foreach(keys, count_cpreg, cpu);
313 arraylen = cpu->cpreg_array_len;
314 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
315 cpu->cpreg_values = g_new(uint64_t, arraylen);
316 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
317 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
318 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
319 cpu->cpreg_array_len = 0;
321 g_list_foreach(keys, add_cpreg_to_list, cpu);
323 assert(cpu->cpreg_array_len == arraylen);
328 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
330 ARMCPU *cpu = arm_env_get_cpu(env);
332 raw_write(env, ri, value);
333 tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
336 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
338 ARMCPU *cpu = arm_env_get_cpu(env);
340 if (raw_read(env, ri) != value) {
341 /* Unlike real hardware the qemu TLB uses virtual addresses,
342 * not modified virtual addresses, so this causes a TLB flush.
344 tlb_flush(CPU(cpu), 1);
345 raw_write(env, ri, value);
349 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
352 ARMCPU *cpu = arm_env_get_cpu(env);
354 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
355 && !extended_addresses_enabled(env)) {
356 /* For VMSA (when not using the LPAE long descriptor page table
357 * format) this register includes the ASID, so do a TLB flush.
358 * For PMSA it is purely a process ID and no action is needed.
360 tlb_flush(CPU(cpu), 1);
362 raw_write(env, ri, value);
365 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
368 /* Invalidate all (TLBIALL) */
369 ARMCPU *cpu = arm_env_get_cpu(env);
371 tlb_flush(CPU(cpu), 1);
374 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
377 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
378 ARMCPU *cpu = arm_env_get_cpu(env);
380 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
383 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
386 /* Invalidate by ASID (TLBIASID) */
387 ARMCPU *cpu = arm_env_get_cpu(env);
389 tlb_flush(CPU(cpu), value == 0);
392 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
395 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
396 ARMCPU *cpu = arm_env_get_cpu(env);
398 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
401 /* IS variants of TLB operations must affect all cores */
402 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
407 CPU_FOREACH(other_cs) {
408 tlb_flush(other_cs, 1);
412 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
417 CPU_FOREACH(other_cs) {
418 tlb_flush(other_cs, value == 0);
422 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
427 CPU_FOREACH(other_cs) {
428 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
432 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
437 CPU_FOREACH(other_cs) {
438 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
442 static const ARMCPRegInfo cp_reginfo[] = {
443 /* Define the secure and non-secure FCSE identifier CP registers
444 * separately because there is no secure bank in V8 (no _EL3). This allows
445 * the secure register to be properly reset and migrated. There is also no
446 * v8 EL1 version of the register so the non-secure instance stands alone.
448 { .name = "FCSEIDR(NS)",
449 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
450 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
451 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
452 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
453 { .name = "FCSEIDR(S)",
454 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
455 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
456 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
457 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
458 /* Define the secure and non-secure context identifier CP registers
459 * separately because there is no secure bank in V8 (no _EL3). This allows
460 * the secure register to be properly reset and migrated. In the
461 * non-secure case, the 32-bit register will have reset and migration
462 * disabled during registration as it is handled by the 64-bit instance.
464 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
465 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
466 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
467 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
468 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
469 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
470 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
471 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
472 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
473 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
477 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
478 /* NB: Some of these registers exist in v8 but with more precise
479 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
481 /* MMU Domain access control / MPU write buffer control */
483 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
484 .access = PL1_RW, .resetvalue = 0,
485 .writefn = dacr_write, .raw_writefn = raw_write,
486 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
487 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
488 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
489 * For v6 and v5, these mappings are overly broad.
491 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
492 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
493 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
494 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
495 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
496 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
497 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
498 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
499 /* Cache maintenance ops; some of this space may be overridden later. */
500 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
501 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
502 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
506 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
507 /* Not all pre-v6 cores implemented this WFI, so this is slightly
510 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
511 .access = PL1_W, .type = ARM_CP_WFI },
515 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
516 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
517 * is UNPREDICTABLE; we choose to NOP as most implementations do).
519 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
520 .access = PL1_W, .type = ARM_CP_WFI },
521 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
522 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
523 * OMAPCP will override this space.
525 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
526 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
528 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
529 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
531 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
532 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
533 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
535 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
536 * implementing it as RAZ means the "debug architecture version" bits
537 * will read as a reserved value, which should cause Linux to not try
538 * to use the debug hardware.
540 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
541 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
542 /* MMU TLB control. Note that the wildcarding means we cover not just
543 * the unified TLB ops but also the dside/iside/inner-shareable variants.
545 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
546 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
547 .type = ARM_CP_NO_RAW },
548 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
549 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
550 .type = ARM_CP_NO_RAW },
551 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
552 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
553 .type = ARM_CP_NO_RAW },
554 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
555 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
556 .type = ARM_CP_NO_RAW },
557 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
558 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
559 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
560 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
564 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
569 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
570 if (!arm_feature(env, ARM_FEATURE_V8)) {
571 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
572 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
573 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
575 if (arm_feature(env, ARM_FEATURE_VFP)) {
576 /* VFP coprocessor: cp10 & cp11 [23:20] */
577 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
579 if (!arm_feature(env, ARM_FEATURE_NEON)) {
580 /* ASEDIS [31] bit is RAO/WI */
584 /* VFPv3 and upwards with NEON implement 32 double precision
585 * registers (D0-D31).
587 if (!arm_feature(env, ARM_FEATURE_NEON) ||
588 !arm_feature(env, ARM_FEATURE_VFP3)) {
589 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
595 env->cp15.cpacr_el1 = value;
598 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri)
600 if (arm_feature(env, ARM_FEATURE_V8)) {
601 /* Check if CPACR accesses are to be trapped to EL2 */
602 if (arm_current_el(env) == 1 &&
603 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
604 return CP_ACCESS_TRAP_EL2;
605 /* Check if CPACR accesses are to be trapped to EL3 */
606 } else if (arm_current_el(env) < 3 &&
607 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
608 return CP_ACCESS_TRAP_EL3;
615 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri)
617 /* Check if CPTR accesses are set to trap to EL3 */
618 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
619 return CP_ACCESS_TRAP_EL3;
625 static const ARMCPRegInfo v6_cp_reginfo[] = {
626 /* prefetch by MVA in v6, NOP in v7 */
627 { .name = "MVA_prefetch",
628 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
629 .access = PL1_W, .type = ARM_CP_NOP },
630 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
631 .access = PL0_W, .type = ARM_CP_NOP },
632 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
633 .access = PL0_W, .type = ARM_CP_NOP },
634 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
635 .access = PL0_W, .type = ARM_CP_NOP },
636 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
638 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
639 offsetof(CPUARMState, cp15.ifar_ns) },
641 /* Watchpoint Fault Address Register : should actually only be present
642 * for 1136, 1176, 11MPCore.
644 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
645 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
646 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
647 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
648 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
649 .resetvalue = 0, .writefn = cpacr_write },
653 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
655 /* Performance monitor registers user accessibility is controlled
658 if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) {
659 return CP_ACCESS_TRAP;
664 #ifndef CONFIG_USER_ONLY
666 static inline bool arm_ccnt_enabled(CPUARMState *env)
668 /* This does not support checking PMCCFILTR_EL0 register */
670 if (!(env->cp15.c9_pmcr & PMCRE)) {
677 void pmccntr_sync(CPUARMState *env)
681 temp_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
682 get_ticks_per_sec(), 1000000);
684 if (env->cp15.c9_pmcr & PMCRD) {
685 /* Increment once every 64 processor clock cycles */
689 if (arm_ccnt_enabled(env)) {
690 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
694 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
700 /* The counter has been reset */
701 env->cp15.c15_ccnt = 0;
704 /* only the DP, X, D and E bits are writable */
705 env->cp15.c9_pmcr &= ~0x39;
706 env->cp15.c9_pmcr |= (value & 0x39);
711 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
713 uint64_t total_ticks;
715 if (!arm_ccnt_enabled(env)) {
716 /* Counter is disabled, do not change value */
717 return env->cp15.c15_ccnt;
720 total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
721 get_ticks_per_sec(), 1000000);
723 if (env->cp15.c9_pmcr & PMCRD) {
724 /* Increment once every 64 processor clock cycles */
727 return total_ticks - env->cp15.c15_ccnt;
730 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
733 uint64_t total_ticks;
735 if (!arm_ccnt_enabled(env)) {
736 /* Counter is disabled, set the absolute value */
737 env->cp15.c15_ccnt = value;
741 total_ticks = muldiv64(qemu_clock_get_us(QEMU_CLOCK_VIRTUAL),
742 get_ticks_per_sec(), 1000000);
744 if (env->cp15.c9_pmcr & PMCRD) {
745 /* Increment once every 64 processor clock cycles */
748 env->cp15.c15_ccnt = total_ticks - value;
751 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
754 uint64_t cur_val = pmccntr_read(env, NULL);
756 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
759 #else /* CONFIG_USER_ONLY */
761 void pmccntr_sync(CPUARMState *env)
767 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
771 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
775 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
779 env->cp15.c9_pmcnten |= value;
782 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
786 env->cp15.c9_pmcnten &= ~value;
789 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
792 env->cp15.c9_pmovsr &= ~value;
795 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
798 env->cp15.c9_pmxevtyper = value & 0xff;
801 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
804 env->cp15.c9_pmuserenr = value & 1;
807 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
810 /* We have no event counters so only the C bit can be changed */
812 env->cp15.c9_pminten |= value;
815 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
819 env->cp15.c9_pminten &= ~value;
822 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
825 /* Note that even though the AArch64 view of this register has bits
826 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
827 * architectural requirements for bits which are RES0 only in some
828 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
829 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
831 raw_write(env, ri, value & ~0x1FULL);
834 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
836 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
837 * For bits that vary between AArch32/64, code needs to check the
838 * current execution mode before directly using the feature bit.
840 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
842 if (!arm_feature(env, ARM_FEATURE_EL2)) {
843 valid_mask &= ~SCR_HCE;
845 /* On ARMv7, SMD (or SCD as it is called in v7) is only
846 * supported if EL2 exists. The bit is UNK/SBZP when
847 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
848 * when EL2 is unavailable.
849 * On ARMv8, this bit is always available.
851 if (arm_feature(env, ARM_FEATURE_V7) &&
852 !arm_feature(env, ARM_FEATURE_V8)) {
853 valid_mask &= ~SCR_SMD;
857 /* Clear all-context RES0 bits. */
859 raw_write(env, ri, value);
862 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
864 ARMCPU *cpu = arm_env_get_cpu(env);
866 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
869 uint32_t index = A32_BANKED_REG_GET(env, csselr,
870 ri->secure & ARM_CP_SECSTATE_S);
872 return cpu->ccsidr[index];
875 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
878 raw_write(env, ri, value & 0xf);
881 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
883 CPUState *cs = ENV_GET_CPU(env);
886 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
889 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
892 /* External aborts are not possible in QEMU so A bit is always clear */
896 static const ARMCPRegInfo v7_cp_reginfo[] = {
897 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
898 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
899 .access = PL1_W, .type = ARM_CP_NOP },
900 /* Performance monitors are implementation defined in v7,
901 * but with an ARM recommended set of registers, which we
902 * follow (although we don't actually implement any counters)
904 * Performance registers fall into three categories:
905 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
906 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
907 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
908 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
909 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
911 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
912 .access = PL0_RW, .type = ARM_CP_ALIAS,
913 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
914 .writefn = pmcntenset_write,
915 .accessfn = pmreg_access,
916 .raw_writefn = raw_write },
917 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
918 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
919 .access = PL0_RW, .accessfn = pmreg_access,
920 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
921 .writefn = pmcntenset_write, .raw_writefn = raw_write },
922 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
924 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
925 .accessfn = pmreg_access,
926 .writefn = pmcntenclr_write,
927 .type = ARM_CP_ALIAS },
928 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
929 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
930 .access = PL0_RW, .accessfn = pmreg_access,
931 .type = ARM_CP_ALIAS,
932 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
933 .writefn = pmcntenclr_write },
934 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
935 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
936 .accessfn = pmreg_access,
937 .writefn = pmovsr_write,
938 .raw_writefn = raw_write },
939 /* Unimplemented so WI. */
940 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
941 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
942 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
943 * We choose to RAZ/WI.
945 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
946 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
947 .accessfn = pmreg_access },
948 #ifndef CONFIG_USER_ONLY
949 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
950 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
951 .readfn = pmccntr_read, .writefn = pmccntr_write32,
952 .accessfn = pmreg_access },
953 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
954 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
955 .access = PL0_RW, .accessfn = pmreg_access,
957 .readfn = pmccntr_read, .writefn = pmccntr_write, },
959 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
960 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
961 .writefn = pmccfiltr_write,
962 .access = PL0_RW, .accessfn = pmreg_access,
964 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
966 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
968 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
969 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
970 .raw_writefn = raw_write },
971 /* Unimplemented, RAZ/WI. */
972 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
973 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
974 .accessfn = pmreg_access },
975 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
976 .access = PL0_R | PL1_RW,
977 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
979 .writefn = pmuserenr_write, .raw_writefn = raw_write },
980 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
982 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
984 .writefn = pmintenset_write, .raw_writefn = raw_write },
985 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
986 .access = PL1_RW, .type = ARM_CP_ALIAS,
987 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
988 .writefn = pmintenclr_write, },
989 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
990 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
991 .access = PL1_RW, .writefn = vbar_write,
992 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
993 offsetof(CPUARMState, cp15.vbar_ns) },
995 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
996 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
997 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
998 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
999 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1000 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1001 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1002 offsetof(CPUARMState, cp15.csselr_ns) } },
1003 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1004 * just RAZ for all cores:
1006 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1007 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1008 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1009 /* Auxiliary fault status registers: these also are IMPDEF, and we
1010 * choose to RAZ/WI for all cores.
1012 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1013 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1014 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1015 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1016 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1017 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1018 /* MAIR can just read-as-written because we don't implement caches
1019 * and so don't need to care about memory attributes.
1021 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1022 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1023 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1025 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1026 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1027 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1029 /* For non-long-descriptor page tables these are PRRR and NMRR;
1030 * regardless they still act as reads-as-written for QEMU.
1032 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1033 * allows them to assign the correct fieldoffset based on the endianness
1034 * handled in the field definitions.
1036 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1037 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1038 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1039 offsetof(CPUARMState, cp15.mair0_ns) },
1040 .resetfn = arm_cp_reset_ignore },
1041 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1042 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1043 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1044 offsetof(CPUARMState, cp15.mair1_ns) },
1045 .resetfn = arm_cp_reset_ignore },
1046 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1047 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1048 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1049 /* 32 bit ITLB invalidates */
1050 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1051 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1052 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1053 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1054 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1055 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1056 /* 32 bit DTLB invalidates */
1057 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1058 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1059 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1060 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1061 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1062 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1063 /* 32 bit TLB invalidates */
1064 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1065 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1066 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1067 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1068 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1069 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1070 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1071 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1075 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1076 /* 32 bit TLB invalidates, Inner Shareable */
1077 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1078 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1079 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1080 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1081 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1082 .type = ARM_CP_NO_RAW, .access = PL1_W,
1083 .writefn = tlbiasid_is_write },
1084 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1085 .type = ARM_CP_NO_RAW, .access = PL1_W,
1086 .writefn = tlbimvaa_is_write },
1090 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1097 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
1099 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1100 return CP_ACCESS_TRAP;
1102 return CP_ACCESS_OK;
1105 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1106 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1107 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1109 .writefn = teecr_write },
1110 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1111 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1112 .accessfn = teehbr_access, .resetvalue = 0 },
1116 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1117 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1118 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1120 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1121 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1123 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1124 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1125 .resetfn = arm_cp_reset_ignore },
1126 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1127 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1128 .access = PL0_R|PL1_W,
1129 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1131 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1132 .access = PL0_R|PL1_W,
1133 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1134 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1135 .resetfn = arm_cp_reset_ignore },
1136 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1137 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1139 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1140 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1142 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1143 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1148 #ifndef CONFIG_USER_ONLY
1150 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
1152 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
1153 if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
1154 return CP_ACCESS_TRAP;
1156 return CP_ACCESS_OK;
1159 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
1161 unsigned int cur_el = arm_current_el(env);
1162 bool secure = arm_is_secure(env);
1164 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1166 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1167 return CP_ACCESS_TRAP;
1170 if (arm_feature(env, ARM_FEATURE_EL2) &&
1171 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1172 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1173 return CP_ACCESS_TRAP_EL2;
1175 return CP_ACCESS_OK;
1178 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
1180 unsigned int cur_el = arm_current_el(env);
1181 bool secure = arm_is_secure(env);
1183 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1184 * EL0[PV]TEN is zero.
1187 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1188 return CP_ACCESS_TRAP;
1191 if (arm_feature(env, ARM_FEATURE_EL2) &&
1192 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1193 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1194 return CP_ACCESS_TRAP_EL2;
1196 return CP_ACCESS_OK;
1199 static CPAccessResult gt_pct_access(CPUARMState *env,
1200 const ARMCPRegInfo *ri)
1202 return gt_counter_access(env, GTIMER_PHYS);
1205 static CPAccessResult gt_vct_access(CPUARMState *env,
1206 const ARMCPRegInfo *ri)
1208 return gt_counter_access(env, GTIMER_VIRT);
1211 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1213 return gt_timer_access(env, GTIMER_PHYS);
1216 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
1218 return gt_timer_access(env, GTIMER_VIRT);
1221 static CPAccessResult gt_stimer_access(CPUARMState *env,
1222 const ARMCPRegInfo *ri)
1224 /* The AArch64 register view of the secure physical timer is
1225 * always accessible from EL3, and configurably accessible from
1228 switch (arm_current_el(env)) {
1230 if (!arm_is_secure(env)) {
1231 return CP_ACCESS_TRAP;
1233 if (!(env->cp15.scr_el3 & SCR_ST)) {
1234 return CP_ACCESS_TRAP_EL3;
1236 return CP_ACCESS_OK;
1239 return CP_ACCESS_TRAP;
1241 return CP_ACCESS_OK;
1243 g_assert_not_reached();
1247 static uint64_t gt_get_countervalue(CPUARMState *env)
1249 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1252 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1254 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1257 /* Timer enabled: calculate and set current ISTATUS, irq, and
1258 * reset timer to when ISTATUS next has to change
1260 uint64_t offset = timeridx == GTIMER_VIRT ?
1261 cpu->env.cp15.cntvoff_el2 : 0;
1262 uint64_t count = gt_get_countervalue(&cpu->env);
1263 /* Note that this must be unsigned 64 bit arithmetic: */
1264 int istatus = count - offset >= gt->cval;
1267 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1268 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1269 (istatus && !(gt->ctl & 2)));
1271 /* Next transition is when count rolls back over to zero */
1272 nexttick = UINT64_MAX;
1274 /* Next transition is when we hit cval */
1275 nexttick = gt->cval + offset;
1277 /* Note that the desired next expiry time might be beyond the
1278 * signed-64-bit range of a QEMUTimer -- in this case we just
1279 * set the timer for as far in the future as possible. When the
1280 * timer expires we will reset the timer for any remaining period.
1282 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1283 nexttick = INT64_MAX / GTIMER_SCALE;
1285 timer_mod(cpu->gt_timer[timeridx], nexttick);
1287 /* Timer disabled: ISTATUS and timer output always clear */
1289 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1290 timer_del(cpu->gt_timer[timeridx]);
1294 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1297 ARMCPU *cpu = arm_env_get_cpu(env);
1299 timer_del(cpu->gt_timer[timeridx]);
1302 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1304 return gt_get_countervalue(env);
1307 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1309 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1312 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1316 env->cp15.c14_timer[timeridx].cval = value;
1317 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1320 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1323 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1325 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1326 (gt_get_countervalue(env) - offset));
1329 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1333 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1335 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1336 sextract64(value, 0, 32);
1337 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1340 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1344 ARMCPU *cpu = arm_env_get_cpu(env);
1345 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1347 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1348 if ((oldval ^ value) & 1) {
1349 /* Enable toggled */
1350 gt_recalc_timer(cpu, timeridx);
1351 } else if ((oldval ^ value) & 2) {
1352 /* IMASK toggled: don't need to recalculate,
1353 * just set the interrupt line based on ISTATUS
1355 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1356 (oldval & 4) && !(value & 2));
1360 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1362 gt_timer_reset(env, ri, GTIMER_PHYS);
1365 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1368 gt_cval_write(env, ri, GTIMER_PHYS, value);
1371 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1373 return gt_tval_read(env, ri, GTIMER_PHYS);
1376 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1379 gt_tval_write(env, ri, GTIMER_PHYS, value);
1382 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1385 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1388 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1390 gt_timer_reset(env, ri, GTIMER_VIRT);
1393 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1396 gt_cval_write(env, ri, GTIMER_VIRT, value);
1399 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1401 return gt_tval_read(env, ri, GTIMER_VIRT);
1404 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1407 gt_tval_write(env, ri, GTIMER_VIRT, value);
1410 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1413 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1416 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1419 ARMCPU *cpu = arm_env_get_cpu(env);
1421 raw_write(env, ri, value);
1422 gt_recalc_timer(cpu, GTIMER_VIRT);
1425 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1427 gt_timer_reset(env, ri, GTIMER_HYP);
1430 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1433 gt_cval_write(env, ri, GTIMER_HYP, value);
1436 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1438 return gt_tval_read(env, ri, GTIMER_HYP);
1441 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1444 gt_tval_write(env, ri, GTIMER_HYP, value);
1447 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1450 gt_ctl_write(env, ri, GTIMER_HYP, value);
1453 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1455 gt_timer_reset(env, ri, GTIMER_SEC);
1458 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1461 gt_cval_write(env, ri, GTIMER_SEC, value);
1464 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1466 return gt_tval_read(env, ri, GTIMER_SEC);
1469 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1472 gt_tval_write(env, ri, GTIMER_SEC, value);
1475 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1478 gt_ctl_write(env, ri, GTIMER_SEC, value);
1481 void arm_gt_ptimer_cb(void *opaque)
1483 ARMCPU *cpu = opaque;
1485 gt_recalc_timer(cpu, GTIMER_PHYS);
1488 void arm_gt_vtimer_cb(void *opaque)
1490 ARMCPU *cpu = opaque;
1492 gt_recalc_timer(cpu, GTIMER_VIRT);
1495 void arm_gt_htimer_cb(void *opaque)
1497 ARMCPU *cpu = opaque;
1499 gt_recalc_timer(cpu, GTIMER_HYP);
1502 void arm_gt_stimer_cb(void *opaque)
1504 ARMCPU *cpu = opaque;
1506 gt_recalc_timer(cpu, GTIMER_SEC);
1509 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1510 /* Note that CNTFRQ is purely reads-as-written for the benefit
1511 * of software; writing it doesn't actually change the timer frequency.
1512 * Our reset value matches the fixed frequency we implement the timer at.
1514 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1515 .type = ARM_CP_ALIAS,
1516 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1517 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1519 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1520 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1521 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1522 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1523 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1525 /* overall control: mostly access permissions */
1526 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1527 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1529 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1532 /* per-timer control */
1533 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1534 .secure = ARM_CP_SECSTATE_NS,
1535 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1536 .accessfn = gt_ptimer_access,
1537 .fieldoffset = offsetoflow32(CPUARMState,
1538 cp15.c14_timer[GTIMER_PHYS].ctl),
1539 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1541 { .name = "CNTP_CTL(S)",
1542 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1543 .secure = ARM_CP_SECSTATE_S,
1544 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1545 .accessfn = gt_ptimer_access,
1546 .fieldoffset = offsetoflow32(CPUARMState,
1547 cp15.c14_timer[GTIMER_SEC].ctl),
1548 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1550 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1551 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1552 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1553 .accessfn = gt_ptimer_access,
1554 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1556 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1558 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1559 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1560 .accessfn = gt_vtimer_access,
1561 .fieldoffset = offsetoflow32(CPUARMState,
1562 cp15.c14_timer[GTIMER_VIRT].ctl),
1563 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1565 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1566 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1567 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1568 .accessfn = gt_vtimer_access,
1569 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1571 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1573 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1574 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1575 .secure = ARM_CP_SECSTATE_NS,
1576 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1577 .accessfn = gt_ptimer_access,
1578 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1580 { .name = "CNTP_TVAL(S)",
1581 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1582 .secure = ARM_CP_SECSTATE_S,
1583 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1584 .accessfn = gt_ptimer_access,
1585 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1587 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1588 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1589 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1590 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1591 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1593 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1594 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1595 .accessfn = gt_vtimer_access,
1596 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1598 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1599 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1600 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1601 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
1602 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1604 /* The counter itself */
1605 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1606 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1607 .accessfn = gt_pct_access,
1608 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1610 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1611 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1612 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1613 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
1615 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1616 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1617 .accessfn = gt_vct_access,
1618 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
1620 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1621 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1622 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1623 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
1625 /* Comparison value, indicating when the timer goes off */
1626 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1627 .secure = ARM_CP_SECSTATE_NS,
1628 .access = PL1_RW | PL0_R,
1629 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1630 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1631 .accessfn = gt_ptimer_access,
1632 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1634 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
1635 .secure = ARM_CP_SECSTATE_S,
1636 .access = PL1_RW | PL0_R,
1637 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1638 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1639 .accessfn = gt_ptimer_access,
1640 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1642 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1643 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1644 .access = PL1_RW | PL0_R,
1646 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1647 .resetvalue = 0, .accessfn = gt_ptimer_access,
1648 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1650 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1651 .access = PL1_RW | PL0_R,
1652 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1653 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1654 .accessfn = gt_vtimer_access,
1655 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1657 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1658 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1659 .access = PL1_RW | PL0_R,
1661 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1662 .resetvalue = 0, .accessfn = gt_vtimer_access,
1663 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1665 /* Secure timer -- this is actually restricted to only EL3
1666 * and configurably Secure-EL1 via the accessfn.
1668 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
1669 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
1670 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
1671 .accessfn = gt_stimer_access,
1672 .readfn = gt_sec_tval_read,
1673 .writefn = gt_sec_tval_write,
1674 .resetfn = gt_sec_timer_reset,
1676 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
1677 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
1678 .type = ARM_CP_IO, .access = PL1_RW,
1679 .accessfn = gt_stimer_access,
1680 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
1682 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1684 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
1685 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
1686 .type = ARM_CP_IO, .access = PL1_RW,
1687 .accessfn = gt_stimer_access,
1688 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1689 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1695 /* In user-mode none of the generic timer registers are accessible,
1696 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1697 * so instead just don't register any of them.
1699 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1705 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1707 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1708 raw_write(env, ri, value);
1709 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1710 raw_write(env, ri, value & 0xfffff6ff);
1712 raw_write(env, ri, value & 0xfffff1ff);
1716 #ifndef CONFIG_USER_ONLY
1717 /* get_phys_addr() isn't present for user-mode-only targets */
1719 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
1722 /* The ATS12NSO* operations must trap to EL3 if executed in
1723 * Secure EL1 (which can only happen if EL3 is AArch64).
1724 * They are simply UNDEF if executed from NS EL1.
1725 * They function normally from EL2 or EL3.
1727 if (arm_current_el(env) == 1) {
1728 if (arm_is_secure_below_el3(env)) {
1729 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
1731 return CP_ACCESS_TRAP_UNCATEGORIZED;
1734 return CP_ACCESS_OK;
1737 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
1738 int access_type, ARMMMUIdx mmu_idx)
1741 target_ulong page_size;
1746 MemTxAttrs attrs = {};
1748 ret = get_phys_addr(env, value, access_type, mmu_idx,
1749 &phys_addr, &attrs, &prot, &page_size, &fsr);
1750 if (extended_addresses_enabled(env)) {
1751 /* fsr is a DFSR/IFSR value for the long descriptor
1752 * translation table format, but with WnR always clear.
1753 * Convert it to a 64-bit PAR.
1755 par64 = (1 << 11); /* LPAE bit always set */
1757 par64 |= phys_addr & ~0xfffULL;
1758 if (!attrs.secure) {
1759 par64 |= (1 << 9); /* NS */
1761 /* We don't set the ATTR or SH fields in the PAR. */
1764 par64 |= (fsr & 0x3f) << 1; /* FS */
1765 /* Note that S2WLK and FSTAGE are always zero, because we don't
1766 * implement virtualization and therefore there can't be a stage 2
1771 /* fsr is a DFSR/IFSR value for the short descriptor
1772 * translation table format (with WnR always clear).
1773 * Convert it to a 32-bit PAR.
1776 /* We do not set any attribute bits in the PAR */
1777 if (page_size == (1 << 24)
1778 && arm_feature(env, ARM_FEATURE_V7)) {
1779 par64 = (phys_addr & 0xff000000) | (1 << 1);
1781 par64 = phys_addr & 0xfffff000;
1783 if (!attrs.secure) {
1784 par64 |= (1 << 9); /* NS */
1787 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
1788 ((fsr & 0xf) << 1) | 1;
1794 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1796 int access_type = ri->opc2 & 1;
1799 int el = arm_current_el(env);
1800 bool secure = arm_is_secure_below_el3(env);
1802 switch (ri->opc2 & 6) {
1804 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
1807 mmu_idx = ARMMMUIdx_S1E3;
1810 mmu_idx = ARMMMUIdx_S1NSE1;
1813 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
1816 g_assert_not_reached();
1820 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
1823 mmu_idx = ARMMMUIdx_S1SE0;
1826 mmu_idx = ARMMMUIdx_S1NSE0;
1829 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
1832 g_assert_not_reached();
1836 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
1837 mmu_idx = ARMMMUIdx_S12NSE1;
1840 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
1841 mmu_idx = ARMMMUIdx_S12NSE0;
1844 g_assert_not_reached();
1847 par64 = do_ats_write(env, value, access_type, mmu_idx);
1849 A32_BANKED_CURRENT_REG_SET(env, par, par64);
1852 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
1855 int access_type = ri->opc2 & 1;
1858 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
1860 A32_BANKED_CURRENT_REG_SET(env, par, par64);
1863 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri)
1865 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
1866 return CP_ACCESS_TRAP;
1868 return CP_ACCESS_OK;
1871 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
1874 int access_type = ri->opc2 & 1;
1876 int secure = arm_is_secure_below_el3(env);
1878 switch (ri->opc2 & 6) {
1881 case 0: /* AT S1E1R, AT S1E1W */
1882 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
1884 case 4: /* AT S1E2R, AT S1E2W */
1885 mmu_idx = ARMMMUIdx_S1E2;
1887 case 6: /* AT S1E3R, AT S1E3W */
1888 mmu_idx = ARMMMUIdx_S1E3;
1891 g_assert_not_reached();
1894 case 2: /* AT S1E0R, AT S1E0W */
1895 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
1897 case 4: /* AT S12E1R, AT S12E1W */
1898 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
1900 case 6: /* AT S12E0R, AT S12E0W */
1901 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
1904 g_assert_not_reached();
1907 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
1911 static const ARMCPRegInfo vapa_cp_reginfo[] = {
1912 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
1913 .access = PL1_RW, .resetvalue = 0,
1914 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
1915 offsetoflow32(CPUARMState, cp15.par_ns) },
1916 .writefn = par_write },
1917 #ifndef CONFIG_USER_ONLY
1918 /* This underdecoding is safe because the reginfo is NO_RAW. */
1919 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1920 .access = PL1_W, .accessfn = ats_access,
1921 .writefn = ats_write, .type = ARM_CP_NO_RAW },
1926 /* Return basic MPU access permission bits. */
1927 static uint32_t simple_mpu_ap_bits(uint32_t val)
1934 for (i = 0; i < 16; i += 2) {
1935 ret |= (val >> i) & mask;
1941 /* Pad basic MPU access permission bits to extended format. */
1942 static uint32_t extended_mpu_ap_bits(uint32_t val)
1949 for (i = 0; i < 16; i += 2) {
1950 ret |= (val & mask) << i;
1956 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1959 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
1962 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1964 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
1967 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1970 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
1973 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1975 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
1978 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
1980 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
1986 u32p += env->cp15.c6_rgnr;
1990 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
1993 ARMCPU *cpu = arm_env_get_cpu(env);
1994 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2000 u32p += env->cp15.c6_rgnr;
2001 tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */
2005 static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2007 ARMCPU *cpu = arm_env_get_cpu(env);
2008 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2014 memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
2017 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2020 ARMCPU *cpu = arm_env_get_cpu(env);
2021 uint32_t nrgs = cpu->pmsav7_dregion;
2023 if (value >= nrgs) {
2024 qemu_log_mask(LOG_GUEST_ERROR,
2025 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2026 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2030 raw_write(env, ri, value);
2033 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2034 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2035 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2036 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2037 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2038 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2039 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2040 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2041 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2042 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2043 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2044 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2045 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2046 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2048 .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
2049 .writefn = pmsav7_rgnr_write },
2053 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2054 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2055 .access = PL1_RW, .type = ARM_CP_ALIAS,
2056 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2057 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2058 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2059 .access = PL1_RW, .type = ARM_CP_ALIAS,
2060 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2061 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2062 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2064 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2066 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2068 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2070 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2072 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2073 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2075 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2076 /* Protection region base and size registers */
2077 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2078 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2079 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2080 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2081 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2082 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2083 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2084 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2085 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2086 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2087 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2088 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2089 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2090 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2091 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2092 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2093 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2094 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2095 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2096 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2097 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2098 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2099 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2100 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2104 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2107 TCR *tcr = raw_ptr(env, ri);
2108 int maskshift = extract32(value, 0, 3);
2110 if (!arm_feature(env, ARM_FEATURE_V8)) {
2111 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2112 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2113 * using Long-desciptor translation table format */
2114 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2115 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2116 /* In an implementation that includes the Security Extensions
2117 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2118 * Short-descriptor translation table format.
2120 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2126 /* Update the masks corresponding to the the TCR bank being written
2127 * Note that we always calculate mask and base_mask, but
2128 * they are only used for short-descriptor tables (ie if EAE is 0);
2129 * for long-descriptor tables the TCR fields are used differently
2130 * and the mask and base_mask values are meaningless.
2132 tcr->raw_tcr = value;
2133 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2134 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2137 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2140 ARMCPU *cpu = arm_env_get_cpu(env);
2142 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2143 /* With LPAE the TTBCR could result in a change of ASID
2144 * via the TTBCR.A1 bit, so do a TLB flush.
2146 tlb_flush(CPU(cpu), 1);
2148 vmsa_ttbcr_raw_write(env, ri, value);
2151 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2153 TCR *tcr = raw_ptr(env, ri);
2155 /* Reset both the TCR as well as the masks corresponding to the bank of
2156 * the TCR being reset.
2160 tcr->base_mask = 0xffffc000u;
2163 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2166 ARMCPU *cpu = arm_env_get_cpu(env);
2167 TCR *tcr = raw_ptr(env, ri);
2169 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2170 tlb_flush(CPU(cpu), 1);
2171 tcr->raw_tcr = value;
2174 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2177 /* 64 bit accesses to the TTBRs can change the ASID and so we
2178 * must flush the TLB.
2180 if (cpreg_field_is_64bit(ri)) {
2181 ARMCPU *cpu = arm_env_get_cpu(env);
2183 tlb_flush(CPU(cpu), 1);
2185 raw_write(env, ri, value);
2188 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2189 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2190 .access = PL1_RW, .type = ARM_CP_ALIAS,
2191 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2192 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2193 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2194 .access = PL1_RW, .resetvalue = 0,
2195 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2196 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2197 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2198 .access = PL1_RW, .resetvalue = 0,
2199 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2200 offsetof(CPUARMState, cp15.dfar_ns) } },
2201 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2202 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2203 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2208 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2209 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2210 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2212 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2213 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2214 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2215 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2216 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2217 offsetof(CPUARMState, cp15.ttbr0_ns) } },
2218 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2219 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2220 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2221 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2222 offsetof(CPUARMState, cp15.ttbr1_ns) } },
2223 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2224 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2225 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2226 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2227 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2228 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2229 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2230 .raw_writefn = vmsa_ttbcr_raw_write,
2231 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2232 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2236 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2239 env->cp15.c15_ticonfig = value & 0xe7;
2240 /* The OS_TYPE bit in this register changes the reported CPUID! */
2241 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2242 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2245 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2248 env->cp15.c15_threadid = value & 0xffff;
2251 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2254 /* Wait-for-interrupt (deprecated) */
2255 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2258 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2261 /* On OMAP there are registers indicating the max/min index of dcache lines
2262 * containing a dirty line; cache flush operations have to reset these.
2264 env->cp15.c15_i_max = 0x000;
2265 env->cp15.c15_i_min = 0xff0;
2268 static const ARMCPRegInfo omap_cp_reginfo[] = {
2269 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2270 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2271 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2273 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2274 .access = PL1_RW, .type = ARM_CP_NOP },
2275 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2277 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2278 .writefn = omap_ticonfig_write },
2279 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2281 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2282 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2283 .access = PL1_RW, .resetvalue = 0xff0,
2284 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2285 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2287 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2288 .writefn = omap_threadid_write },
2289 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2290 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2291 .type = ARM_CP_NO_RAW,
2292 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2293 /* TODO: Peripheral port remap register:
2294 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2295 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2298 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2299 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2300 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2301 .writefn = omap_cachemaint_write },
2302 { .name = "C9", .cp = 15, .crn = 9,
2303 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2304 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2308 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2311 env->cp15.c15_cpar = value & 0x3fff;
2314 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2315 { .name = "XSCALE_CPAR",
2316 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2317 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2318 .writefn = xscale_cpar_write, },
2319 { .name = "XSCALE_AUXCR",
2320 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2321 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2323 /* XScale specific cache-lockdown: since we have no cache we NOP these
2324 * and hope the guest does not really rely on cache behaviour.
2326 { .name = "XSCALE_LOCK_ICACHE_LINE",
2327 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2328 .access = PL1_W, .type = ARM_CP_NOP },
2329 { .name = "XSCALE_UNLOCK_ICACHE",
2330 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2331 .access = PL1_W, .type = ARM_CP_NOP },
2332 { .name = "XSCALE_DCACHE_LOCK",
2333 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2334 .access = PL1_RW, .type = ARM_CP_NOP },
2335 { .name = "XSCALE_UNLOCK_DCACHE",
2336 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2337 .access = PL1_W, .type = ARM_CP_NOP },
2341 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2342 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2343 * implementation of this implementation-defined space.
2344 * Ideally this should eventually disappear in favour of actually
2345 * implementing the correct behaviour for all cores.
2347 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2348 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2350 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2355 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2356 /* Cache status: RAZ because we have no cache so it's always clean */
2357 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2358 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2363 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2364 /* We never have a a block transfer operation in progress */
2365 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2366 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2368 /* The cache ops themselves: these all NOP for QEMU */
2369 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2370 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2371 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2372 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2373 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2374 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2375 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2376 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2377 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2378 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2379 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2380 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2384 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2385 /* The cache test-and-clean instructions always return (1 << 30)
2386 * to indicate that there are no dirty cache lines.
2388 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2389 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2390 .resetvalue = (1 << 30) },
2391 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2392 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2393 .resetvalue = (1 << 30) },
2397 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2398 /* Ignore ReadBuffer accesses */
2399 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2400 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2401 .access = PL1_RW, .resetvalue = 0,
2402 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2406 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2408 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2409 uint64_t mpidr = cpu->mp_affinity;
2411 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2412 mpidr |= (1U << 31);
2413 /* Cores which are uniprocessor (non-coherent)
2414 * but still implement the MP extensions set
2415 * bit 30. (For instance, Cortex-R5).
2417 if (cpu->mp_is_up) {
2418 mpidr |= (1u << 30);
2424 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2425 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2426 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2427 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2431 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2433 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2434 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2435 .access = PL1_RW, .type = ARM_CP_CONST,
2437 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2438 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2439 .access = PL1_RW, .type = ARM_CP_CONST,
2441 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2442 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2443 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2444 offsetof(CPUARMState, cp15.par_ns)} },
2445 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2446 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2447 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2448 offsetof(CPUARMState, cp15.ttbr0_ns) },
2449 .writefn = vmsa_ttbr_write, },
2450 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2451 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2452 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2453 offsetof(CPUARMState, cp15.ttbr1_ns) },
2454 .writefn = vmsa_ttbr_write, },
2458 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2460 return vfp_get_fpcr(env);
2463 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2466 vfp_set_fpcr(env, value);
2469 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2471 return vfp_get_fpsr(env);
2474 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2477 vfp_set_fpsr(env, value);
2480 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri)
2482 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2483 return CP_ACCESS_TRAP;
2485 return CP_ACCESS_OK;
2488 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2491 env->daif = value & PSTATE_DAIF;
2494 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2495 const ARMCPRegInfo *ri)
2497 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2498 * SCTLR_EL1.UCI is set.
2500 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2501 return CP_ACCESS_TRAP;
2503 return CP_ACCESS_OK;
2506 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2507 * Page D4-1736 (DDI0487A.b)
2510 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2513 ARMCPU *cpu = arm_env_get_cpu(env);
2514 CPUState *cs = CPU(cpu);
2516 if (arm_is_secure_below_el3(env)) {
2517 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2519 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2523 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2526 bool sec = arm_is_secure_below_el3(env);
2529 CPU_FOREACH(other_cs) {
2531 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2533 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2534 ARMMMUIdx_S12NSE0, -1);
2539 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2542 /* Note that the 'ALL' scope must invalidate both stage 1 and
2543 * stage 2 translations, whereas most other scopes only invalidate
2544 * stage 1 translations.
2546 ARMCPU *cpu = arm_env_get_cpu(env);
2547 CPUState *cs = CPU(cpu);
2549 if (arm_is_secure_below_el3(env)) {
2550 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2552 if (arm_feature(env, ARM_FEATURE_EL2)) {
2553 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2554 ARMMMUIdx_S2NS, -1);
2556 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2561 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2564 ARMCPU *cpu = arm_env_get_cpu(env);
2565 CPUState *cs = CPU(cpu);
2567 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
2570 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2573 /* Note that the 'ALL' scope must invalidate both stage 1 and
2574 * stage 2 translations, whereas most other scopes only invalidate
2575 * stage 1 translations.
2577 bool sec = arm_is_secure_below_el3(env);
2578 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
2581 CPU_FOREACH(other_cs) {
2583 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2584 } else if (has_el2) {
2585 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2586 ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
2588 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2589 ARMMMUIdx_S12NSE0, -1);
2594 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2599 CPU_FOREACH(other_cs) {
2600 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
2604 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2607 /* Invalidate by VA, EL1&0 (AArch64 version).
2608 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
2609 * since we don't support flush-for-specific-ASID-only or
2610 * flush-last-level-only.
2612 ARMCPU *cpu = arm_env_get_cpu(env);
2613 CPUState *cs = CPU(cpu);
2614 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2616 if (arm_is_secure_below_el3(env)) {
2617 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1,
2618 ARMMMUIdx_S1SE0, -1);
2620 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1,
2621 ARMMMUIdx_S12NSE0, -1);
2625 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2628 /* Invalidate by VA, EL2
2629 * Currently handles both VAE2 and VALE2, since we don't support
2630 * flush-last-level-only.
2632 ARMCPU *cpu = arm_env_get_cpu(env);
2633 CPUState *cs = CPU(cpu);
2634 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2636 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
2639 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2642 bool sec = arm_is_secure_below_el3(env);
2644 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2646 CPU_FOREACH(other_cs) {
2648 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1,
2649 ARMMMUIdx_S1SE0, -1);
2651 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1,
2652 ARMMMUIdx_S12NSE0, -1);
2657 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2661 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2663 CPU_FOREACH(other_cs) {
2664 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
2668 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri)
2670 /* We don't implement EL2, so the only control on DC ZVA is the
2671 * bit in the SCTLR which can prohibit access for EL0.
2673 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
2674 return CP_ACCESS_TRAP;
2676 return CP_ACCESS_OK;
2679 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
2681 ARMCPU *cpu = arm_env_get_cpu(env);
2682 int dzp_bit = 1 << 4;
2684 /* DZP indicates whether DC ZVA access is allowed */
2685 if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) {
2688 return cpu->dcz_blocksize | dzp_bit;
2691 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
2693 if (!(env->pstate & PSTATE_SP)) {
2694 /* Access to SP_EL0 is undefined if it's being used as
2695 * the stack pointer.
2697 return CP_ACCESS_TRAP_UNCATEGORIZED;
2699 return CP_ACCESS_OK;
2702 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
2704 return env->pstate & PSTATE_SP;
2707 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
2709 update_spsel(env, val);
2712 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2715 ARMCPU *cpu = arm_env_get_cpu(env);
2717 if (raw_read(env, ri) == value) {
2718 /* Skip the TLB flush if nothing actually changed; Linux likes
2719 * to do a lot of pointless SCTLR writes.
2724 raw_write(env, ri, value);
2725 /* ??? Lots of these bits are not implemented. */
2726 /* This may enable/disable the MMU, so do a TLB flush. */
2727 tlb_flush(CPU(cpu), 1);
2730 static const ARMCPRegInfo v8_cp_reginfo[] = {
2731 /* Minimal set of EL0-visible registers. This will need to be expanded
2732 * significantly for system emulation of AArch64 CPUs.
2734 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
2735 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
2736 .access = PL0_RW, .type = ARM_CP_NZCV },
2737 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
2738 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
2739 .type = ARM_CP_NO_RAW,
2740 .access = PL0_RW, .accessfn = aa64_daif_access,
2741 .fieldoffset = offsetof(CPUARMState, daif),
2742 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
2743 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
2744 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
2745 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
2746 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
2747 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
2748 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
2749 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
2750 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
2751 .access = PL0_R, .type = ARM_CP_NO_RAW,
2752 .readfn = aa64_dczid_read },
2753 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
2754 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
2755 .access = PL0_W, .type = ARM_CP_DC_ZVA,
2756 #ifndef CONFIG_USER_ONLY
2757 /* Avoid overhead of an access check that always passes in user-mode */
2758 .accessfn = aa64_zva_access,
2761 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
2762 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
2763 .access = PL1_R, .type = ARM_CP_CURRENTEL },
2764 /* Cache ops: all NOPs since we don't emulate caches */
2765 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
2766 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
2767 .access = PL1_W, .type = ARM_CP_NOP },
2768 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
2769 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
2770 .access = PL1_W, .type = ARM_CP_NOP },
2771 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
2772 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
2773 .access = PL0_W, .type = ARM_CP_NOP,
2774 .accessfn = aa64_cacheop_access },
2775 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
2776 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
2777 .access = PL1_W, .type = ARM_CP_NOP },
2778 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
2779 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
2780 .access = PL1_W, .type = ARM_CP_NOP },
2781 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
2782 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
2783 .access = PL0_W, .type = ARM_CP_NOP,
2784 .accessfn = aa64_cacheop_access },
2785 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
2786 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
2787 .access = PL1_W, .type = ARM_CP_NOP },
2788 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
2789 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
2790 .access = PL0_W, .type = ARM_CP_NOP,
2791 .accessfn = aa64_cacheop_access },
2792 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
2793 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
2794 .access = PL0_W, .type = ARM_CP_NOP,
2795 .accessfn = aa64_cacheop_access },
2796 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
2797 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
2798 .access = PL1_W, .type = ARM_CP_NOP },
2799 /* TLBI operations */
2800 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
2801 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2802 .access = PL1_W, .type = ARM_CP_NO_RAW,
2803 .writefn = tlbi_aa64_vmalle1is_write },
2804 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
2805 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2806 .access = PL1_W, .type = ARM_CP_NO_RAW,
2807 .writefn = tlbi_aa64_vae1is_write },
2808 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
2809 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2810 .access = PL1_W, .type = ARM_CP_NO_RAW,
2811 .writefn = tlbi_aa64_vmalle1is_write },
2812 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
2813 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2814 .access = PL1_W, .type = ARM_CP_NO_RAW,
2815 .writefn = tlbi_aa64_vae1is_write },
2816 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
2817 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2818 .access = PL1_W, .type = ARM_CP_NO_RAW,
2819 .writefn = tlbi_aa64_vae1is_write },
2820 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
2821 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2822 .access = PL1_W, .type = ARM_CP_NO_RAW,
2823 .writefn = tlbi_aa64_vae1is_write },
2824 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
2825 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2826 .access = PL1_W, .type = ARM_CP_NO_RAW,
2827 .writefn = tlbi_aa64_vmalle1_write },
2828 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
2829 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2830 .access = PL1_W, .type = ARM_CP_NO_RAW,
2831 .writefn = tlbi_aa64_vae1_write },
2832 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
2833 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2834 .access = PL1_W, .type = ARM_CP_NO_RAW,
2835 .writefn = tlbi_aa64_vmalle1_write },
2836 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
2837 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2838 .access = PL1_W, .type = ARM_CP_NO_RAW,
2839 .writefn = tlbi_aa64_vae1_write },
2840 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
2841 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
2842 .access = PL1_W, .type = ARM_CP_NO_RAW,
2843 .writefn = tlbi_aa64_vae1_write },
2844 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
2845 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
2846 .access = PL1_W, .type = ARM_CP_NO_RAW,
2847 .writefn = tlbi_aa64_vae1_write },
2848 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
2849 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
2850 .access = PL2_W, .type = ARM_CP_NO_RAW,
2851 .writefn = tlbi_aa64_alle1is_write },
2852 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
2853 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
2854 .access = PL2_W, .type = ARM_CP_NO_RAW,
2855 .writefn = tlbi_aa64_alle1_write },
2856 #ifndef CONFIG_USER_ONLY
2857 /* 64 bit address translation operations */
2858 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
2859 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
2860 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2861 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
2862 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
2863 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2864 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
2865 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
2866 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2867 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
2868 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
2869 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2870 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
2871 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 4,
2872 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2873 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
2874 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 5,
2875 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2876 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
2877 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 6,
2878 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2879 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
2880 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 7,
2881 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2882 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
2883 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
2884 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
2885 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2886 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
2887 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
2888 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
2890 /* TLB invalidate last level of translation table walk */
2891 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
2892 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2893 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
2894 .type = ARM_CP_NO_RAW, .access = PL1_W,
2895 .writefn = tlbimvaa_is_write },
2896 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
2897 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2898 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
2899 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2900 /* 32 bit cache operations */
2901 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
2902 .type = ARM_CP_NOP, .access = PL1_W },
2903 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
2904 .type = ARM_CP_NOP, .access = PL1_W },
2905 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
2906 .type = ARM_CP_NOP, .access = PL1_W },
2907 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
2908 .type = ARM_CP_NOP, .access = PL1_W },
2909 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
2910 .type = ARM_CP_NOP, .access = PL1_W },
2911 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
2912 .type = ARM_CP_NOP, .access = PL1_W },
2913 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
2914 .type = ARM_CP_NOP, .access = PL1_W },
2915 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
2916 .type = ARM_CP_NOP, .access = PL1_W },
2917 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
2918 .type = ARM_CP_NOP, .access = PL1_W },
2919 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
2920 .type = ARM_CP_NOP, .access = PL1_W },
2921 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
2922 .type = ARM_CP_NOP, .access = PL1_W },
2923 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
2924 .type = ARM_CP_NOP, .access = PL1_W },
2925 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
2926 .type = ARM_CP_NOP, .access = PL1_W },
2927 /* MMU Domain access control / MPU write buffer control */
2928 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
2929 .access = PL1_RW, .resetvalue = 0,
2930 .writefn = dacr_write, .raw_writefn = raw_write,
2931 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
2932 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
2933 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
2934 .type = ARM_CP_ALIAS,
2935 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
2937 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
2938 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
2939 .type = ARM_CP_ALIAS,
2940 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
2941 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[1]) },
2942 /* We rely on the access checks not allowing the guest to write to the
2943 * state field when SPSel indicates that it's being used as the stack
2946 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
2947 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
2948 .access = PL1_RW, .accessfn = sp_el0_access,
2949 .type = ARM_CP_ALIAS,
2950 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
2951 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
2952 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
2953 .access = PL2_RW, .type = ARM_CP_ALIAS,
2954 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
2955 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
2956 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
2957 .type = ARM_CP_NO_RAW,
2958 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
2962 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
2963 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
2964 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
2965 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
2967 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
2968 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
2969 .type = ARM_CP_NO_RAW,
2970 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
2972 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
2973 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
2974 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
2975 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2976 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
2977 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
2978 .access = PL2_RW, .type = ARM_CP_CONST,
2980 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
2981 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
2982 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2983 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
2984 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
2985 .access = PL2_RW, .type = ARM_CP_CONST,
2987 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
2988 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
2989 .access = PL2_RW, .type = ARM_CP_CONST,
2991 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
2992 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
2993 .access = PL2_RW, .type = ARM_CP_CONST,
2995 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
2996 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
2997 .access = PL2_RW, .type = ARM_CP_CONST,
2999 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3000 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3001 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3002 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3003 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3004 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3005 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3006 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3007 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3008 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3009 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3010 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3011 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3012 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3014 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3015 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3016 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3017 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3018 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3019 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3020 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3021 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3023 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3024 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3025 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3026 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3027 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3029 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3030 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3031 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3032 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3033 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3034 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3038 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3040 ARMCPU *cpu = arm_env_get_cpu(env);
3041 uint64_t valid_mask = HCR_MASK;
3043 if (arm_feature(env, ARM_FEATURE_EL3)) {
3044 valid_mask &= ~HCR_HCD;
3046 valid_mask &= ~HCR_TSC;
3049 /* Clear RES0 bits. */
3050 value &= valid_mask;
3052 /* These bits change the MMU setup:
3053 * HCR_VM enables stage 2 translation
3054 * HCR_PTW forbids certain page-table setups
3055 * HCR_DC Disables stage1 and enables stage2 translation
3057 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3058 tlb_flush(CPU(cpu), 1);
3060 raw_write(env, ri, value);
3063 static const ARMCPRegInfo el2_cp_reginfo[] = {
3064 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3065 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3066 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3067 .writefn = hcr_write },
3068 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3069 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3070 .access = PL2_RW, .resetvalue = 0,
3071 .writefn = dacr_write, .raw_writefn = raw_write,
3072 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3073 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3074 .type = ARM_CP_ALIAS,
3075 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3077 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3078 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3079 .type = ARM_CP_ALIAS,
3080 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3081 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3082 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3083 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3084 .access = PL2_RW, .resetvalue = 0,
3085 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3086 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3087 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3088 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3089 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3090 .type = ARM_CP_ALIAS,
3091 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3092 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) },
3093 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3094 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3095 .access = PL2_RW, .writefn = vbar_write,
3096 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3098 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3099 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3100 .access = PL3_RW, .type = ARM_CP_ALIAS,
3101 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3102 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3103 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3104 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3105 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3106 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3107 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3108 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3110 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3111 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3112 .access = PL2_RW, .type = ARM_CP_ALIAS,
3113 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3114 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3115 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3116 .access = PL2_RW, .type = ARM_CP_CONST,
3118 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3119 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3120 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3121 .access = PL2_RW, .type = ARM_CP_CONST,
3123 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3124 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3125 .access = PL2_RW, .type = ARM_CP_CONST,
3127 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3128 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3129 .access = PL2_RW, .type = ARM_CP_CONST,
3131 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3132 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3133 .access = PL2_RW, .writefn = vmsa_tcr_el1_write,
3134 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3135 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3136 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3137 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3138 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3139 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3140 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3141 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3142 .access = PL2_RW, .resetvalue = 0,
3143 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3144 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3145 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3146 .access = PL2_RW, .resetvalue = 0,
3147 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3148 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3149 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3150 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3151 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3152 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3153 .type = ARM_CP_NO_RAW, .access = PL2_W,
3154 .writefn = tlbi_aa64_alle2_write },
3155 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3156 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3157 .type = ARM_CP_NO_RAW, .access = PL2_W,
3158 .writefn = tlbi_aa64_vae2_write },
3159 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3160 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3161 .access = PL2_W, .type = ARM_CP_NO_RAW,
3162 .writefn = tlbi_aa64_vae2_write },
3163 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3164 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3165 .access = PL2_W, .type = ARM_CP_NO_RAW,
3166 .writefn = tlbi_aa64_alle2is_write },
3167 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3168 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3169 .type = ARM_CP_NO_RAW, .access = PL2_W,
3170 .writefn = tlbi_aa64_vae2is_write },
3171 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3172 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3173 .access = PL2_W, .type = ARM_CP_NO_RAW,
3174 .writefn = tlbi_aa64_vae2is_write },
3175 #ifndef CONFIG_USER_ONLY
3176 /* Unlike the other EL2-related AT operations, these must
3177 * UNDEF from EL3 if EL2 is not implemented, which is why we
3178 * define them here rather than with the rest of the AT ops.
3180 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3181 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3182 .access = PL2_W, .accessfn = at_s1e2_access,
3183 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3184 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3185 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3186 .access = PL2_W, .accessfn = at_s1e2_access,
3187 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3188 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3189 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3190 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3191 * to behave as if SCR.NS was 1.
3193 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3195 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3196 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3198 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3199 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3200 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3201 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3202 * reset values as IMPDEF. We choose to reset to 3 to comply with
3203 * both ARMv7 and ARMv8.
3205 .access = PL2_RW, .resetvalue = 3,
3206 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3207 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3208 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3209 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3210 .writefn = gt_cntvoff_write,
3211 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3212 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3213 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3214 .writefn = gt_cntvoff_write,
3215 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3216 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3217 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3218 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3219 .type = ARM_CP_IO, .access = PL2_RW,
3220 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3221 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3222 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3223 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3224 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3225 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3226 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3227 .type = ARM_CP_IO, .access = PL2_RW,
3228 .resetfn = gt_hyp_timer_reset,
3229 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3230 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3232 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3234 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3236 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
3241 static const ARMCPRegInfo el3_cp_reginfo[] = {
3242 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
3243 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
3244 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
3245 .resetvalue = 0, .writefn = scr_write },
3246 { .name = "SCR", .type = ARM_CP_ALIAS,
3247 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
3248 .access = PL3_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
3249 .writefn = scr_write },
3250 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
3251 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
3252 .access = PL3_RW, .resetvalue = 0,
3253 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
3255 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
3256 .access = PL3_RW, .resetvalue = 0,
3257 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
3258 /* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
3259 { .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
3260 .access = PL3_W | PL1_R, .resetvalue = 0,
3261 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) },
3262 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
3263 .access = PL3_RW, .writefn = vbar_write, .resetvalue = 0,
3264 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
3265 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
3266 .type = ARM_CP_ALIAS, /* reset handled by AArch32 view */
3267 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
3268 .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3269 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) },
3270 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
3271 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
3272 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3273 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
3274 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
3275 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
3276 .access = PL3_RW, .writefn = vmsa_tcr_el1_write,
3277 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3278 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
3279 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
3280 .type = ARM_CP_ALIAS,
3281 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
3283 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
3284 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
3285 .type = ARM_CP_ALIAS,
3286 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
3287 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
3288 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
3289 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
3290 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
3291 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
3292 .type = ARM_CP_ALIAS,
3293 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
3294 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) },
3295 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
3296 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
3297 .access = PL3_RW, .writefn = vbar_write,
3298 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
3300 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
3301 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
3302 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
3303 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
3304 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
3305 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
3306 .access = PL3_RW, .resetvalue = 0,
3307 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
3308 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
3309 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
3310 .access = PL3_RW, .type = ARM_CP_CONST,
3312 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
3313 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
3314 .access = PL3_RW, .type = ARM_CP_CONST,
3316 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
3317 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
3318 .access = PL3_RW, .type = ARM_CP_CONST,
3323 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
3325 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
3326 * but the AArch32 CTR has its own reginfo struct)
3328 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
3329 return CP_ACCESS_TRAP;
3331 return CP_ACCESS_OK;
3334 static const ARMCPRegInfo debug_cp_reginfo[] = {
3335 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
3336 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
3337 * unlike DBGDRAR it is never accessible from EL0.
3338 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
3341 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
3342 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3343 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
3344 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
3345 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3346 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3347 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
3348 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
3349 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
3350 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
3352 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
3354 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
3355 * We don't implement the configurable EL0 access.
3357 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
3358 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
3359 .type = ARM_CP_ALIAS,
3361 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
3362 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
3363 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
3364 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
3365 .access = PL1_W, .type = ARM_CP_NOP },
3366 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
3367 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
3368 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
3369 .access = PL1_RW, .type = ARM_CP_NOP },
3370 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
3371 * implement vector catch debug events yet.
3374 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
3375 .access = PL1_RW, .type = ARM_CP_NOP },
3379 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
3380 /* 64 bit access versions of the (dummy) debug registers */
3381 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
3382 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
3383 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
3384 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
3388 void hw_watchpoint_update(ARMCPU *cpu, int n)
3390 CPUARMState *env = &cpu->env;
3392 vaddr wvr = env->cp15.dbgwvr[n];
3393 uint64_t wcr = env->cp15.dbgwcr[n];
3395 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
3397 if (env->cpu_watchpoint[n]) {
3398 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
3399 env->cpu_watchpoint[n] = NULL;
3402 if (!extract64(wcr, 0, 1)) {
3403 /* E bit clear : watchpoint disabled */
3407 switch (extract64(wcr, 3, 2)) {
3409 /* LSC 00 is reserved and must behave as if the wp is disabled */
3412 flags |= BP_MEM_READ;
3415 flags |= BP_MEM_WRITE;
3418 flags |= BP_MEM_ACCESS;
3422 /* Attempts to use both MASK and BAS fields simultaneously are
3423 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
3424 * thus generating a watchpoint for every byte in the masked region.
3426 mask = extract64(wcr, 24, 4);
3427 if (mask == 1 || mask == 2) {
3428 /* Reserved values of MASK; we must act as if the mask value was
3429 * some non-reserved value, or as if the watchpoint were disabled.
3430 * We choose the latter.
3434 /* Watchpoint covers an aligned area up to 2GB in size */
3436 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
3437 * whether the watchpoint fires when the unmasked bits match; we opt
3438 * to generate the exceptions.
3442 /* Watchpoint covers bytes defined by the byte address select bits */
3443 int bas = extract64(wcr, 5, 8);
3447 /* This must act as if the watchpoint is disabled */
3451 if (extract64(wvr, 2, 1)) {
3452 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
3453 * ignored, and BAS[3:0] define which bytes to watch.
3457 /* The BAS bits are supposed to be programmed to indicate a contiguous
3458 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
3459 * we fire for each byte in the word/doubleword addressed by the WVR.
3460 * We choose to ignore any non-zero bits after the first range of 1s.
3462 basstart = ctz32(bas);
3463 len = cto32(bas >> basstart);
3467 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
3468 &env->cpu_watchpoint[n]);
3471 void hw_watchpoint_update_all(ARMCPU *cpu)
3474 CPUARMState *env = &cpu->env;
3476 /* Completely clear out existing QEMU watchpoints and our array, to
3477 * avoid possible stale entries following migration load.
3479 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
3480 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
3482 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
3483 hw_watchpoint_update(cpu, i);
3487 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3490 ARMCPU *cpu = arm_env_get_cpu(env);
3493 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
3494 * register reads and behaves as if values written are sign extended.
3495 * Bits [1:0] are RES0.
3497 value = sextract64(value, 0, 49) & ~3ULL;
3499 raw_write(env, ri, value);
3500 hw_watchpoint_update(cpu, i);
3503 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3506 ARMCPU *cpu = arm_env_get_cpu(env);
3509 raw_write(env, ri, value);
3510 hw_watchpoint_update(cpu, i);
3513 void hw_breakpoint_update(ARMCPU *cpu, int n)
3515 CPUARMState *env = &cpu->env;
3516 uint64_t bvr = env->cp15.dbgbvr[n];
3517 uint64_t bcr = env->cp15.dbgbcr[n];
3522 if (env->cpu_breakpoint[n]) {
3523 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
3524 env->cpu_breakpoint[n] = NULL;
3527 if (!extract64(bcr, 0, 1)) {
3528 /* E bit clear : watchpoint disabled */
3532 bt = extract64(bcr, 20, 4);
3535 case 4: /* unlinked address mismatch (reserved if AArch64) */
3536 case 5: /* linked address mismatch (reserved if AArch64) */
3537 qemu_log_mask(LOG_UNIMP,
3538 "arm: address mismatch breakpoint types not implemented");
3540 case 0: /* unlinked address match */
3541 case 1: /* linked address match */
3543 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
3544 * we behave as if the register was sign extended. Bits [1:0] are
3545 * RES0. The BAS field is used to allow setting breakpoints on 16
3546 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
3547 * a bp will fire if the addresses covered by the bp and the addresses
3548 * covered by the insn overlap but the insn doesn't start at the
3549 * start of the bp address range. We choose to require the insn and
3550 * the bp to have the same address. The constraints on writing to
3551 * BAS enforced in dbgbcr_write mean we have only four cases:
3552 * 0b0000 => no breakpoint
3553 * 0b0011 => breakpoint on addr
3554 * 0b1100 => breakpoint on addr + 2
3555 * 0b1111 => breakpoint on addr
3556 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
3558 int bas = extract64(bcr, 5, 4);
3559 addr = sextract64(bvr, 0, 49) & ~3ULL;
3568 case 2: /* unlinked context ID match */
3569 case 8: /* unlinked VMID match (reserved if no EL2) */
3570 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
3571 qemu_log_mask(LOG_UNIMP,
3572 "arm: unlinked context breakpoint types not implemented");
3574 case 9: /* linked VMID match (reserved if no EL2) */
3575 case 11: /* linked context ID and VMID match (reserved if no EL2) */
3576 case 3: /* linked context ID match */
3578 /* We must generate no events for Linked context matches (unless
3579 * they are linked to by some other bp/wp, which is handled in
3580 * updates for the linking bp/wp). We choose to also generate no events
3581 * for reserved values.
3586 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
3589 void hw_breakpoint_update_all(ARMCPU *cpu)
3592 CPUARMState *env = &cpu->env;
3594 /* Completely clear out existing QEMU breakpoints and our array, to
3595 * avoid possible stale entries following migration load.
3597 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
3598 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
3600 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
3601 hw_breakpoint_update(cpu, i);
3605 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3608 ARMCPU *cpu = arm_env_get_cpu(env);
3611 raw_write(env, ri, value);
3612 hw_breakpoint_update(cpu, i);
3615 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3618 ARMCPU *cpu = arm_env_get_cpu(env);
3621 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
3624 value = deposit64(value, 6, 1, extract64(value, 5, 1));
3625 value = deposit64(value, 8, 1, extract64(value, 7, 1));
3627 raw_write(env, ri, value);
3628 hw_breakpoint_update(cpu, i);
3631 static void define_debug_regs(ARMCPU *cpu)
3633 /* Define v7 and v8 architectural debug registers.
3634 * These are just dummy implementations for now.
3637 int wrps, brps, ctx_cmps;
3638 ARMCPRegInfo dbgdidr = {
3639 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
3640 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
3643 /* Note that all these register fields hold "number of Xs minus 1". */
3644 brps = extract32(cpu->dbgdidr, 24, 4);
3645 wrps = extract32(cpu->dbgdidr, 28, 4);
3646 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
3648 assert(ctx_cmps <= brps);
3650 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
3651 * of the debug registers such as number of breakpoints;
3652 * check that if they both exist then they agree.
3654 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
3655 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
3656 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
3657 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
3660 define_one_arm_cp_reg(cpu, &dbgdidr);
3661 define_arm_cp_regs(cpu, debug_cp_reginfo);
3663 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
3664 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
3667 for (i = 0; i < brps + 1; i++) {
3668 ARMCPRegInfo dbgregs[] = {
3669 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
3670 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
3672 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
3673 .writefn = dbgbvr_write, .raw_writefn = raw_write
3675 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
3676 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
3678 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
3679 .writefn = dbgbcr_write, .raw_writefn = raw_write
3683 define_arm_cp_regs(cpu, dbgregs);
3686 for (i = 0; i < wrps + 1; i++) {
3687 ARMCPRegInfo dbgregs[] = {
3688 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
3689 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
3691 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
3692 .writefn = dbgwvr_write, .raw_writefn = raw_write
3694 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
3695 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
3697 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
3698 .writefn = dbgwcr_write, .raw_writefn = raw_write
3702 define_arm_cp_regs(cpu, dbgregs);
3706 void register_cp_regs_for_features(ARMCPU *cpu)
3708 /* Register all the coprocessor registers based on feature bits */
3709 CPUARMState *env = &cpu->env;
3710 if (arm_feature(env, ARM_FEATURE_M)) {
3711 /* M profile has no coprocessor registers */
3715 define_arm_cp_regs(cpu, cp_reginfo);
3716 if (!arm_feature(env, ARM_FEATURE_V8)) {
3717 /* Must go early as it is full of wildcards that may be
3718 * overridden by later definitions.
3720 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
3723 if (arm_feature(env, ARM_FEATURE_V6)) {
3724 /* The ID registers all have impdef reset values */
3725 ARMCPRegInfo v6_idregs[] = {
3726 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
3727 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
3728 .access = PL1_R, .type = ARM_CP_CONST,
3729 .resetvalue = cpu->id_pfr0 },
3730 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
3731 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
3732 .access = PL1_R, .type = ARM_CP_CONST,
3733 .resetvalue = cpu->id_pfr1 },
3734 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
3735 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
3736 .access = PL1_R, .type = ARM_CP_CONST,
3737 .resetvalue = cpu->id_dfr0 },
3738 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
3739 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
3740 .access = PL1_R, .type = ARM_CP_CONST,
3741 .resetvalue = cpu->id_afr0 },
3742 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
3743 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
3744 .access = PL1_R, .type = ARM_CP_CONST,
3745 .resetvalue = cpu->id_mmfr0 },
3746 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
3747 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
3748 .access = PL1_R, .type = ARM_CP_CONST,
3749 .resetvalue = cpu->id_mmfr1 },
3750 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
3751 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
3752 .access = PL1_R, .type = ARM_CP_CONST,
3753 .resetvalue = cpu->id_mmfr2 },
3754 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
3755 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
3756 .access = PL1_R, .type = ARM_CP_CONST,
3757 .resetvalue = cpu->id_mmfr3 },
3758 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
3759 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
3760 .access = PL1_R, .type = ARM_CP_CONST,
3761 .resetvalue = cpu->id_isar0 },
3762 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
3763 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
3764 .access = PL1_R, .type = ARM_CP_CONST,
3765 .resetvalue = cpu->id_isar1 },
3766 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
3767 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
3768 .access = PL1_R, .type = ARM_CP_CONST,
3769 .resetvalue = cpu->id_isar2 },
3770 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
3771 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
3772 .access = PL1_R, .type = ARM_CP_CONST,
3773 .resetvalue = cpu->id_isar3 },
3774 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
3775 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
3776 .access = PL1_R, .type = ARM_CP_CONST,
3777 .resetvalue = cpu->id_isar4 },
3778 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
3779 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
3780 .access = PL1_R, .type = ARM_CP_CONST,
3781 .resetvalue = cpu->id_isar5 },
3782 /* 6..7 are as yet unallocated and must RAZ */
3783 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
3784 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
3786 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
3787 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
3791 define_arm_cp_regs(cpu, v6_idregs);
3792 define_arm_cp_regs(cpu, v6_cp_reginfo);
3794 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
3796 if (arm_feature(env, ARM_FEATURE_V6K)) {
3797 define_arm_cp_regs(cpu, v6k_cp_reginfo);
3799 if (arm_feature(env, ARM_FEATURE_V7MP) &&
3800 !arm_feature(env, ARM_FEATURE_MPU)) {
3801 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
3803 if (arm_feature(env, ARM_FEATURE_V7)) {
3804 /* v7 performance monitor control register: same implementor
3805 * field as main ID register, and we implement only the cycle
3808 #ifndef CONFIG_USER_ONLY
3809 ARMCPRegInfo pmcr = {
3810 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
3812 .type = ARM_CP_IO | ARM_CP_ALIAS,
3813 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
3814 .accessfn = pmreg_access, .writefn = pmcr_write,
3815 .raw_writefn = raw_write,
3817 ARMCPRegInfo pmcr64 = {
3818 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
3819 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
3820 .access = PL0_RW, .accessfn = pmreg_access,
3822 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
3823 .resetvalue = cpu->midr & 0xff000000,
3824 .writefn = pmcr_write, .raw_writefn = raw_write,
3826 define_one_arm_cp_reg(cpu, &pmcr);
3827 define_one_arm_cp_reg(cpu, &pmcr64);
3829 ARMCPRegInfo clidr = {
3830 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
3831 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
3832 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
3834 define_one_arm_cp_reg(cpu, &clidr);
3835 define_arm_cp_regs(cpu, v7_cp_reginfo);
3836 define_debug_regs(cpu);
3838 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
3840 if (arm_feature(env, ARM_FEATURE_V8)) {
3841 /* AArch64 ID registers, which all have impdef reset values */
3842 ARMCPRegInfo v8_idregs[] = {
3843 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
3844 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
3845 .access = PL1_R, .type = ARM_CP_CONST,
3846 .resetvalue = cpu->id_aa64pfr0 },
3847 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
3848 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
3849 .access = PL1_R, .type = ARM_CP_CONST,
3850 .resetvalue = cpu->id_aa64pfr1},
3851 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
3852 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
3853 .access = PL1_R, .type = ARM_CP_CONST,
3854 /* We mask out the PMUVer field, because we don't currently
3855 * implement the PMU. Not advertising it prevents the guest
3856 * from trying to use it and getting UNDEFs on registers we
3859 .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
3860 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
3861 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
3862 .access = PL1_R, .type = ARM_CP_CONST,
3863 .resetvalue = cpu->id_aa64dfr1 },
3864 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
3865 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
3866 .access = PL1_R, .type = ARM_CP_CONST,
3867 .resetvalue = cpu->id_aa64afr0 },
3868 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
3869 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
3870 .access = PL1_R, .type = ARM_CP_CONST,
3871 .resetvalue = cpu->id_aa64afr1 },
3872 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
3873 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
3874 .access = PL1_R, .type = ARM_CP_CONST,
3875 .resetvalue = cpu->id_aa64isar0 },
3876 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
3877 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
3878 .access = PL1_R, .type = ARM_CP_CONST,
3879 .resetvalue = cpu->id_aa64isar1 },
3880 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
3881 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
3882 .access = PL1_R, .type = ARM_CP_CONST,
3883 .resetvalue = cpu->id_aa64mmfr0 },
3884 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
3885 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
3886 .access = PL1_R, .type = ARM_CP_CONST,
3887 .resetvalue = cpu->id_aa64mmfr1 },
3888 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
3889 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
3890 .access = PL1_R, .type = ARM_CP_CONST,
3891 .resetvalue = cpu->mvfr0 },
3892 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
3893 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
3894 .access = PL1_R, .type = ARM_CP_CONST,
3895 .resetvalue = cpu->mvfr1 },
3896 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
3897 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
3898 .access = PL1_R, .type = ARM_CP_CONST,
3899 .resetvalue = cpu->mvfr2 },
3902 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
3903 if (!arm_feature(env, ARM_FEATURE_EL3) &&
3904 !arm_feature(env, ARM_FEATURE_EL2)) {
3905 ARMCPRegInfo rvbar = {
3906 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
3907 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
3908 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
3910 define_one_arm_cp_reg(cpu, &rvbar);
3912 define_arm_cp_regs(cpu, v8_idregs);
3913 define_arm_cp_regs(cpu, v8_cp_reginfo);
3915 if (arm_feature(env, ARM_FEATURE_EL2)) {
3916 define_arm_cp_regs(cpu, el2_cp_reginfo);
3917 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
3918 if (!arm_feature(env, ARM_FEATURE_EL3)) {
3919 ARMCPRegInfo rvbar = {
3920 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
3921 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
3922 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
3924 define_one_arm_cp_reg(cpu, &rvbar);
3927 /* If EL2 is missing but higher ELs are enabled, we need to
3928 * register the no_el2 reginfos.
3930 if (arm_feature(env, ARM_FEATURE_EL3)) {
3931 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
3934 if (arm_feature(env, ARM_FEATURE_EL3)) {
3935 define_arm_cp_regs(cpu, el3_cp_reginfo);
3936 ARMCPRegInfo rvbar = {
3937 .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
3938 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
3939 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar
3941 define_one_arm_cp_reg(cpu, &rvbar);
3943 if (arm_feature(env, ARM_FEATURE_MPU)) {
3944 if (arm_feature(env, ARM_FEATURE_V6)) {
3945 /* PMSAv6 not implemented */
3946 assert(arm_feature(env, ARM_FEATURE_V7));
3947 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
3948 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
3950 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
3953 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
3954 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
3956 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
3957 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
3959 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
3960 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
3962 if (arm_feature(env, ARM_FEATURE_VAPA)) {
3963 define_arm_cp_regs(cpu, vapa_cp_reginfo);
3965 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
3966 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
3968 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
3969 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
3971 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
3972 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
3974 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
3975 define_arm_cp_regs(cpu, omap_cp_reginfo);
3977 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
3978 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
3980 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
3981 define_arm_cp_regs(cpu, xscale_cp_reginfo);
3983 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
3984 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
3986 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3987 define_arm_cp_regs(cpu, lpae_cp_reginfo);
3989 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
3990 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
3991 * be read-only (ie write causes UNDEF exception).
3994 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
3995 /* Pre-v8 MIDR space.
3996 * Note that the MIDR isn't a simple constant register because
3997 * of the TI925 behaviour where writes to another register can
3998 * cause the MIDR value to change.
4000 * Unimplemented registers in the c15 0 0 0 space default to
4001 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4002 * and friends override accordingly.
4005 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
4006 .access = PL1_R, .resetvalue = cpu->midr,
4007 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
4008 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4009 .type = ARM_CP_OVERRIDE },
4010 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4012 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
4013 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4015 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
4016 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4018 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
4019 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4021 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
4022 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4024 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
4025 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4028 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
4029 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
4030 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
4031 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->midr },
4032 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
4033 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4034 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4035 .access = PL1_R, .resetvalue = cpu->midr },
4036 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4037 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
4038 .access = PL1_R, .resetvalue = cpu->midr },
4039 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
4040 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
4041 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
4044 ARMCPRegInfo id_cp_reginfo[] = {
4045 /* These are common to v8 and pre-v8 */
4047 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
4048 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4049 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
4050 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
4051 .access = PL0_R, .accessfn = ctr_el0_access,
4052 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4053 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
4055 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
4056 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4059 /* TLBTR is specific to VMSA */
4060 ARMCPRegInfo id_tlbtr_reginfo = {
4062 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
4063 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
4065 /* MPUIR is specific to PMSA V6+ */
4066 ARMCPRegInfo id_mpuir_reginfo = {
4068 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4069 .access = PL1_R, .type = ARM_CP_CONST,
4070 .resetvalue = cpu->pmsav7_dregion << 8
4072 ARMCPRegInfo crn0_wi_reginfo = {
4073 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
4074 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
4075 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
4077 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
4078 arm_feature(env, ARM_FEATURE_STRONGARM)) {
4080 /* Register the blanket "writes ignored" value first to cover the
4081 * whole space. Then update the specific ID registers to allow write
4082 * access, so that they ignore writes rather than causing them to
4085 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
4086 for (r = id_pre_v8_midr_cp_reginfo;
4087 r->type != ARM_CP_SENTINEL; r++) {
4090 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
4093 id_tlbtr_reginfo.access = PL1_RW;
4094 id_tlbtr_reginfo.access = PL1_RW;
4096 if (arm_feature(env, ARM_FEATURE_V8)) {
4097 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
4099 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
4101 define_arm_cp_regs(cpu, id_cp_reginfo);
4102 if (!arm_feature(env, ARM_FEATURE_MPU)) {
4103 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
4104 } else if (arm_feature(env, ARM_FEATURE_V7)) {
4105 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
4109 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
4110 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
4113 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
4114 ARMCPRegInfo auxcr_reginfo[] = {
4115 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
4116 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
4117 .access = PL1_RW, .type = ARM_CP_CONST,
4118 .resetvalue = cpu->reset_auxcr },
4119 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
4120 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
4121 .access = PL2_RW, .type = ARM_CP_CONST,
4123 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
4124 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
4125 .access = PL3_RW, .type = ARM_CP_CONST,
4129 define_arm_cp_regs(cpu, auxcr_reginfo);
4132 if (arm_feature(env, ARM_FEATURE_CBAR)) {
4133 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4134 /* 32 bit view is [31:18] 0...0 [43:32]. */
4135 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
4136 | extract64(cpu->reset_cbar, 32, 12);
4137 ARMCPRegInfo cbar_reginfo[] = {
4139 .type = ARM_CP_CONST,
4140 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
4141 .access = PL1_R, .resetvalue = cpu->reset_cbar },
4142 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
4143 .type = ARM_CP_CONST,
4144 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
4145 .access = PL1_R, .resetvalue = cbar32 },
4148 /* We don't implement a r/w 64 bit CBAR currently */
4149 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
4150 define_arm_cp_regs(cpu, cbar_reginfo);
4152 ARMCPRegInfo cbar = {
4154 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
4155 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
4156 .fieldoffset = offsetof(CPUARMState,
4157 cp15.c15_config_base_address)
4159 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
4160 cbar.access = PL1_R;
4161 cbar.fieldoffset = 0;
4162 cbar.type = ARM_CP_CONST;
4164 define_one_arm_cp_reg(cpu, &cbar);
4168 /* Generic registers whose values depend on the implementation */
4170 ARMCPRegInfo sctlr = {
4171 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
4172 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4174 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
4175 offsetof(CPUARMState, cp15.sctlr_ns) },
4176 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
4177 .raw_writefn = raw_write,
4179 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4180 /* Normally we would always end the TB on an SCTLR write, but Linux
4181 * arch/arm/mach-pxa/sleep.S expects two instructions following
4182 * an MMU enable to execute from cache. Imitate this behaviour.
4184 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
4186 define_one_arm_cp_reg(cpu, &sctlr);
4190 ARMCPU *cpu_arm_init(const char *cpu_model)
4192 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
4195 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
4197 CPUState *cs = CPU(cpu);
4198 CPUARMState *env = &cpu->env;
4200 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4201 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
4202 aarch64_fpu_gdb_set_reg,
4203 34, "aarch64-fpu.xml", 0);
4204 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
4205 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
4206 51, "arm-neon.xml", 0);
4207 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
4208 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
4209 35, "arm-vfp3.xml", 0);
4210 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
4211 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
4212 19, "arm-vfp.xml", 0);
4216 /* Sort alphabetically by type name, except for "any". */
4217 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
4219 ObjectClass *class_a = (ObjectClass *)a;
4220 ObjectClass *class_b = (ObjectClass *)b;
4221 const char *name_a, *name_b;
4223 name_a = object_class_get_name(class_a);
4224 name_b = object_class_get_name(class_b);
4225 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
4227 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
4230 return strcmp(name_a, name_b);
4234 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
4236 ObjectClass *oc = data;
4237 CPUListState *s = user_data;
4238 const char *typename;
4241 typename = object_class_get_name(oc);
4242 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
4243 (*s->cpu_fprintf)(s->file, " %s\n",
4248 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
4252 .cpu_fprintf = cpu_fprintf,
4256 list = object_class_get_list(TYPE_ARM_CPU, false);
4257 list = g_slist_sort(list, arm_cpu_list_compare);
4258 (*cpu_fprintf)(f, "Available CPUs:\n");
4259 g_slist_foreach(list, arm_cpu_list_entry, &s);
4262 /* The 'host' CPU type is dynamically registered only if KVM is
4263 * enabled, so we have to special-case it here:
4265 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
4269 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
4271 ObjectClass *oc = data;
4272 CpuDefinitionInfoList **cpu_list = user_data;
4273 CpuDefinitionInfoList *entry;
4274 CpuDefinitionInfo *info;
4275 const char *typename;
4277 typename = object_class_get_name(oc);
4278 info = g_malloc0(sizeof(*info));
4279 info->name = g_strndup(typename,
4280 strlen(typename) - strlen("-" TYPE_ARM_CPU));
4282 entry = g_malloc0(sizeof(*entry));
4283 entry->value = info;
4284 entry->next = *cpu_list;
4288 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
4290 CpuDefinitionInfoList *cpu_list = NULL;
4293 list = object_class_get_list(TYPE_ARM_CPU, false);
4294 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
4300 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
4301 void *opaque, int state, int secstate,
4302 int crm, int opc1, int opc2)
4304 /* Private utility function for define_one_arm_cp_reg_with_opaque():
4305 * add a single reginfo struct to the hash table.
4307 uint32_t *key = g_new(uint32_t, 1);
4308 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
4309 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
4310 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
4312 /* Reset the secure state to the specific incoming state. This is
4313 * necessary as the register may have been defined with both states.
4315 r2->secure = secstate;
4317 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
4318 /* Register is banked (using both entries in array).
4319 * Overwriting fieldoffset as the array is only used to define
4320 * banked registers but later only fieldoffset is used.
4322 r2->fieldoffset = r->bank_fieldoffsets[ns];
4325 if (state == ARM_CP_STATE_AA32) {
4326 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
4327 /* If the register is banked then we don't need to migrate or
4328 * reset the 32-bit instance in certain cases:
4330 * 1) If the register has both 32-bit and 64-bit instances then we
4331 * can count on the 64-bit instance taking care of the
4333 * 2) If ARMv8 is enabled then we can count on a 64-bit version
4334 * taking care of the secure bank. This requires that separate
4335 * 32 and 64-bit definitions are provided.
4337 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
4338 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
4339 r2->type |= ARM_CP_ALIAS;
4341 } else if ((secstate != r->secure) && !ns) {
4342 /* The register is not banked so we only want to allow migration of
4343 * the non-secure instance.
4345 r2->type |= ARM_CP_ALIAS;
4348 if (r->state == ARM_CP_STATE_BOTH) {
4349 /* We assume it is a cp15 register if the .cp field is left unset.
4355 #ifdef HOST_WORDS_BIGENDIAN
4356 if (r2->fieldoffset) {
4357 r2->fieldoffset += sizeof(uint32_t);
4362 if (state == ARM_CP_STATE_AA64) {
4363 /* To allow abbreviation of ARMCPRegInfo
4364 * definitions, we treat cp == 0 as equivalent to
4365 * the value for "standard guest-visible sysreg".
4366 * STATE_BOTH definitions are also always "standard
4367 * sysreg" in their AArch64 view (the .cp value may
4368 * be non-zero for the benefit of the AArch32 view).
4370 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
4371 r2->cp = CP_REG_ARM64_SYSREG_CP;
4373 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
4374 r2->opc0, opc1, opc2);
4376 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
4379 r2->opaque = opaque;
4381 /* reginfo passed to helpers is correct for the actual access,
4382 * and is never ARM_CP_STATE_BOTH:
4385 /* Make sure reginfo passed to helpers for wildcarded regs
4386 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
4391 /* By convention, for wildcarded registers only the first
4392 * entry is used for migration; the others are marked as
4393 * ALIAS so we don't try to transfer the register
4394 * multiple times. Special registers (ie NOP/WFI) are
4395 * never migratable and not even raw-accessible.
4397 if ((r->type & ARM_CP_SPECIAL)) {
4398 r2->type |= ARM_CP_NO_RAW;
4400 if (((r->crm == CP_ANY) && crm != 0) ||
4401 ((r->opc1 == CP_ANY) && opc1 != 0) ||
4402 ((r->opc2 == CP_ANY) && opc2 != 0)) {
4403 r2->type |= ARM_CP_ALIAS;
4406 /* Check that raw accesses are either forbidden or handled. Note that
4407 * we can't assert this earlier because the setup of fieldoffset for
4408 * banked registers has to be done first.
4410 if (!(r2->type & ARM_CP_NO_RAW)) {
4411 assert(!raw_accessors_invalid(r2));
4414 /* Overriding of an existing definition must be explicitly
4417 if (!(r->type & ARM_CP_OVERRIDE)) {
4418 ARMCPRegInfo *oldreg;
4419 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
4420 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
4421 fprintf(stderr, "Register redefined: cp=%d %d bit "
4422 "crn=%d crm=%d opc1=%d opc2=%d, "
4423 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
4424 r2->crn, r2->crm, r2->opc1, r2->opc2,
4425 oldreg->name, r2->name);
4426 g_assert_not_reached();
4429 g_hash_table_insert(cpu->cp_regs, key, r2);
4433 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
4434 const ARMCPRegInfo *r, void *opaque)
4436 /* Define implementations of coprocessor registers.
4437 * We store these in a hashtable because typically
4438 * there are less than 150 registers in a space which
4439 * is 16*16*16*8*8 = 262144 in size.
4440 * Wildcarding is supported for the crm, opc1 and opc2 fields.
4441 * If a register is defined twice then the second definition is
4442 * used, so this can be used to define some generic registers and
4443 * then override them with implementation specific variations.
4444 * At least one of the original and the second definition should
4445 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
4446 * against accidental use.
4448 * The state field defines whether the register is to be
4449 * visible in the AArch32 or AArch64 execution state. If the
4450 * state is set to ARM_CP_STATE_BOTH then we synthesise a
4451 * reginfo structure for the AArch32 view, which sees the lower
4452 * 32 bits of the 64 bit register.
4454 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
4455 * be wildcarded. AArch64 registers are always considered to be 64
4456 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
4457 * the register, if any.
4459 int crm, opc1, opc2, state;
4460 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
4461 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
4462 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
4463 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
4464 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
4465 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
4466 /* 64 bit registers have only CRm and Opc1 fields */
4467 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
4468 /* op0 only exists in the AArch64 encodings */
4469 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
4470 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
4471 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
4472 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
4473 * encodes a minimum access level for the register. We roll this
4474 * runtime check into our general permission check code, so check
4475 * here that the reginfo's specified permissions are strict enough
4476 * to encompass the generic architectural permission check.
4478 if (r->state != ARM_CP_STATE_AA32) {
4481 case 0: case 1: case 2:
4494 /* unallocated encoding, so not possible */
4502 /* min_EL EL1, secure mode only (we don't check the latter) */
4506 /* broken reginfo with out-of-range opc1 */
4510 /* assert our permissions are not too lax (stricter is fine) */
4511 assert((r->access & ~mask) == 0);
4514 /* Check that the register definition has enough info to handle
4515 * reads and writes if they are permitted.
4517 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
4518 if (r->access & PL3_R) {
4519 assert((r->fieldoffset ||
4520 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
4523 if (r->access & PL3_W) {
4524 assert((r->fieldoffset ||
4525 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
4529 /* Bad type field probably means missing sentinel at end of reg list */
4530 assert(cptype_valid(r->type));
4531 for (crm = crmmin; crm <= crmmax; crm++) {
4532 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
4533 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
4534 for (state = ARM_CP_STATE_AA32;
4535 state <= ARM_CP_STATE_AA64; state++) {
4536 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
4539 if (state == ARM_CP_STATE_AA32) {
4540 /* Under AArch32 CP registers can be common
4541 * (same for secure and non-secure world) or banked.
4543 switch (r->secure) {
4544 case ARM_CP_SECSTATE_S:
4545 case ARM_CP_SECSTATE_NS:
4546 add_cpreg_to_hashtable(cpu, r, opaque, state,
4547 r->secure, crm, opc1, opc2);
4550 add_cpreg_to_hashtable(cpu, r, opaque, state,
4553 add_cpreg_to_hashtable(cpu, r, opaque, state,
4559 /* AArch64 registers get mapped to non-secure instance
4561 add_cpreg_to_hashtable(cpu, r, opaque, state,
4571 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
4572 const ARMCPRegInfo *regs, void *opaque)
4574 /* Define a whole list of registers */
4575 const ARMCPRegInfo *r;
4576 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
4577 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
4581 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
4583 return g_hash_table_lookup(cpregs, &encoded_cp);
4586 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
4589 /* Helper coprocessor write function for write-ignore registers */
4592 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
4594 /* Helper coprocessor write function for read-as-zero registers */
4598 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
4600 /* Helper coprocessor reset function for do-nothing-on-reset registers */
4603 static int bad_mode_switch(CPUARMState *env, int mode)
4605 /* Return true if it is not valid for us to switch to
4606 * this CPU mode (ie all the UNPREDICTABLE cases in
4607 * the ARM ARM CPSRWriteByInstr pseudocode).
4610 case ARM_CPU_MODE_USR:
4611 case ARM_CPU_MODE_SYS:
4612 case ARM_CPU_MODE_SVC:
4613 case ARM_CPU_MODE_ABT:
4614 case ARM_CPU_MODE_UND:
4615 case ARM_CPU_MODE_IRQ:
4616 case ARM_CPU_MODE_FIQ:
4618 case ARM_CPU_MODE_MON:
4619 return !arm_is_secure(env);
4625 uint32_t cpsr_read(CPUARMState *env)
4628 ZF = (env->ZF == 0);
4629 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
4630 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
4631 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
4632 | ((env->condexec_bits & 0xfc) << 8)
4633 | (env->GE << 16) | (env->daif & CPSR_AIF);
4636 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
4638 uint32_t changed_daif;
4640 if (mask & CPSR_NZCV) {
4641 env->ZF = (~val) & CPSR_Z;
4643 env->CF = (val >> 29) & 1;
4644 env->VF = (val << 3) & 0x80000000;
4647 env->QF = ((val & CPSR_Q) != 0);
4649 env->thumb = ((val & CPSR_T) != 0);
4650 if (mask & CPSR_IT_0_1) {
4651 env->condexec_bits &= ~3;
4652 env->condexec_bits |= (val >> 25) & 3;
4654 if (mask & CPSR_IT_2_7) {
4655 env->condexec_bits &= 3;
4656 env->condexec_bits |= (val >> 8) & 0xfc;
4658 if (mask & CPSR_GE) {
4659 env->GE = (val >> 16) & 0xf;
4662 /* In a V7 implementation that includes the security extensions but does
4663 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
4664 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
4665 * bits respectively.
4667 * In a V8 implementation, it is permitted for privileged software to
4668 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
4670 if (!arm_feature(env, ARM_FEATURE_V8) &&
4671 arm_feature(env, ARM_FEATURE_EL3) &&
4672 !arm_feature(env, ARM_FEATURE_EL2) &&
4673 !arm_is_secure(env)) {
4675 changed_daif = (env->daif ^ val) & mask;
4677 if (changed_daif & CPSR_A) {
4678 /* Check to see if we are allowed to change the masking of async
4679 * abort exceptions from a non-secure state.
4681 if (!(env->cp15.scr_el3 & SCR_AW)) {
4682 qemu_log_mask(LOG_GUEST_ERROR,
4683 "Ignoring attempt to switch CPSR_A flag from "
4684 "non-secure world with SCR.AW bit clear\n");
4689 if (changed_daif & CPSR_F) {
4690 /* Check to see if we are allowed to change the masking of FIQ
4691 * exceptions from a non-secure state.
4693 if (!(env->cp15.scr_el3 & SCR_FW)) {
4694 qemu_log_mask(LOG_GUEST_ERROR,
4695 "Ignoring attempt to switch CPSR_F flag from "
4696 "non-secure world with SCR.FW bit clear\n");
4700 /* Check whether non-maskable FIQ (NMFI) support is enabled.
4701 * If this bit is set software is not allowed to mask
4702 * FIQs, but is allowed to set CPSR_F to 0.
4704 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
4706 qemu_log_mask(LOG_GUEST_ERROR,
4707 "Ignoring attempt to enable CPSR_F flag "
4708 "(non-maskable FIQ [NMFI] support enabled)\n");
4714 env->daif &= ~(CPSR_AIF & mask);
4715 env->daif |= val & CPSR_AIF & mask;
4717 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
4718 if (bad_mode_switch(env, val & CPSR_M)) {
4719 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
4720 * We choose to ignore the attempt and leave the CPSR M field
4725 switch_mode(env, val & CPSR_M);
4728 mask &= ~CACHED_CPSR_BITS;
4729 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
4732 /* Sign/zero extend */
4733 uint32_t HELPER(sxtb16)(uint32_t x)
4736 res = (uint16_t)(int8_t)x;
4737 res |= (uint32_t)(int8_t)(x >> 16) << 16;
4741 uint32_t HELPER(uxtb16)(uint32_t x)
4744 res = (uint16_t)(uint8_t)x;
4745 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
4749 uint32_t HELPER(clz)(uint32_t x)
4754 int32_t HELPER(sdiv)(int32_t num, int32_t den)
4758 if (num == INT_MIN && den == -1)
4763 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
4770 uint32_t HELPER(rbit)(uint32_t x)
4772 x = ((x & 0xff000000) >> 24)
4773 | ((x & 0x00ff0000) >> 8)
4774 | ((x & 0x0000ff00) << 8)
4775 | ((x & 0x000000ff) << 24);
4776 x = ((x & 0xf0f0f0f0) >> 4)
4777 | ((x & 0x0f0f0f0f) << 4);
4778 x = ((x & 0x88888888) >> 3)
4779 | ((x & 0x44444444) >> 1)
4780 | ((x & 0x22222222) << 1)
4781 | ((x & 0x11111111) << 3);
4785 #if defined(CONFIG_USER_ONLY)
4787 /* These should probably raise undefined insn exceptions. */
4788 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
4790 ARMCPU *cpu = arm_env_get_cpu(env);
4792 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
4795 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
4797 ARMCPU *cpu = arm_env_get_cpu(env);
4799 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
4803 void switch_mode(CPUARMState *env, int mode)
4805 ARMCPU *cpu = arm_env_get_cpu(env);
4807 if (mode != ARM_CPU_MODE_USR) {
4808 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
4812 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
4814 ARMCPU *cpu = arm_env_get_cpu(env);
4816 cpu_abort(CPU(cpu), "banked r13 write\n");
4819 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
4821 ARMCPU *cpu = arm_env_get_cpu(env);
4823 cpu_abort(CPU(cpu), "banked r13 read\n");
4827 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
4828 uint32_t cur_el, bool secure)
4833 void aarch64_sync_64_to_32(CPUARMState *env)
4835 g_assert_not_reached();
4840 /* Map CPU modes onto saved register banks. */
4841 int bank_number(int mode)
4844 case ARM_CPU_MODE_USR:
4845 case ARM_CPU_MODE_SYS:
4847 case ARM_CPU_MODE_SVC:
4849 case ARM_CPU_MODE_ABT:
4851 case ARM_CPU_MODE_UND:
4853 case ARM_CPU_MODE_IRQ:
4855 case ARM_CPU_MODE_FIQ:
4857 case ARM_CPU_MODE_HYP:
4859 case ARM_CPU_MODE_MON:
4862 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
4865 void switch_mode(CPUARMState *env, int mode)
4870 old_mode = env->uncached_cpsr & CPSR_M;
4871 if (mode == old_mode)
4874 if (old_mode == ARM_CPU_MODE_FIQ) {
4875 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
4876 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
4877 } else if (mode == ARM_CPU_MODE_FIQ) {
4878 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
4879 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
4882 i = bank_number(old_mode);
4883 env->banked_r13[i] = env->regs[13];
4884 env->banked_r14[i] = env->regs[14];
4885 env->banked_spsr[i] = env->spsr;
4887 i = bank_number(mode);
4888 env->regs[13] = env->banked_r13[i];
4889 env->regs[14] = env->banked_r14[i];
4890 env->spsr = env->banked_spsr[i];
4893 /* Physical Interrupt Target EL Lookup Table
4895 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
4897 * The below multi-dimensional table is used for looking up the target
4898 * exception level given numerous condition criteria. Specifically, the
4899 * target EL is based on SCR and HCR routing controls as well as the
4900 * currently executing EL and secure state.
4903 * target_el_table[2][2][2][2][2][4]
4904 * | | | | | +--- Current EL
4905 * | | | | +------ Non-secure(0)/Secure(1)
4906 * | | | +--------- HCR mask override
4907 * | | +------------ SCR exec state control
4908 * | +--------------- SCR mask override
4909 * +------------------ 32-bit(0)/64-bit(1) EL3
4911 * The table values are as such:
4915 * The ARM ARM target EL table includes entries indicating that an "exception
4916 * is not taken". The two cases where this is applicable are:
4917 * 1) An exception is taken from EL3 but the SCR does not have the exception
4919 * 2) An exception is taken from EL2 but the HCR does not have the exception
4921 * In these two cases, the below table contain a target of EL1. This value is
4922 * returned as it is expected that the consumer of the table data will check
4923 * for "target EL >= current EL" to ensure the exception is not taken.
4927 * BIT IRQ IMO Non-secure Secure
4928 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
4930 const int8_t target_el_table[2][2][2][2][2][4] = {
4931 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
4932 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
4933 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
4934 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
4935 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
4936 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
4937 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
4938 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
4939 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
4940 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
4941 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
4942 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
4943 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
4944 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
4945 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
4946 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
4950 * Determine the target EL for physical exceptions
4952 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
4953 uint32_t cur_el, bool secure)
4955 CPUARMState *env = cs->env_ptr;
4956 int rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
4960 int is64 = arm_el_is_aa64(env, 3);
4964 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
4965 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
4968 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
4969 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
4972 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
4973 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
4977 /* If HCR.TGE is set then HCR is treated as being 1 */
4978 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
4980 /* Perform a table-lookup for the target EL given the current state */
4981 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
4983 assert(target_el > 0);
4988 static void v7m_push(CPUARMState *env, uint32_t val)
4990 CPUState *cs = CPU(arm_env_get_cpu(env));
4993 stl_phys(cs->as, env->regs[13], val);
4996 static uint32_t v7m_pop(CPUARMState *env)
4998 CPUState *cs = CPU(arm_env_get_cpu(env));
5001 val = ldl_phys(cs->as, env->regs[13]);
5006 /* Switch to V7M main or process stack pointer. */
5007 static void switch_v7m_sp(CPUARMState *env, int process)
5010 if (env->v7m.current_sp != process) {
5011 tmp = env->v7m.other_sp;
5012 env->v7m.other_sp = env->regs[13];
5013 env->regs[13] = tmp;
5014 env->v7m.current_sp = process;
5018 static void do_v7m_exception_exit(CPUARMState *env)
5023 type = env->regs[15];
5024 if (env->v7m.exception != 0)
5025 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
5027 /* Switch to the target stack. */
5028 switch_v7m_sp(env, (type & 4) != 0);
5029 /* Pop registers. */
5030 env->regs[0] = v7m_pop(env);
5031 env->regs[1] = v7m_pop(env);
5032 env->regs[2] = v7m_pop(env);
5033 env->regs[3] = v7m_pop(env);
5034 env->regs[12] = v7m_pop(env);
5035 env->regs[14] = v7m_pop(env);
5036 env->regs[15] = v7m_pop(env);
5037 if (env->regs[15] & 1) {
5038 qemu_log_mask(LOG_GUEST_ERROR,
5039 "M profile return from interrupt with misaligned "
5040 "PC is UNPREDICTABLE\n");
5041 /* Actual hardware seems to ignore the lsbit, and there are several
5042 * RTOSes out there which incorrectly assume the r15 in the stack
5043 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
5045 env->regs[15] &= ~1U;
5047 xpsr = v7m_pop(env);
5048 xpsr_write(env, xpsr, 0xfffffdff);
5049 /* Undo stack alignment. */
5052 /* ??? The exception return type specifies Thread/Handler mode. However
5053 this is also implied by the xPSR value. Not sure what to do
5054 if there is a mismatch. */
5055 /* ??? Likewise for mismatches between the CONTROL register and the stack
5059 void arm_v7m_cpu_do_interrupt(CPUState *cs)
5061 ARMCPU *cpu = ARM_CPU(cs);
5062 CPUARMState *env = &cpu->env;
5063 uint32_t xpsr = xpsr_read(env);
5067 arm_log_exception(cs->exception_index);
5070 if (env->v7m.current_sp)
5072 if (env->v7m.exception == 0)
5075 /* For exceptions we just mark as pending on the NVIC, and let that
5077 /* TODO: Need to escalate if the current priority is higher than the
5078 one we're raising. */
5079 switch (cs->exception_index) {
5081 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
5084 /* The PC already points to the next instruction. */
5085 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
5087 case EXCP_PREFETCH_ABORT:
5088 case EXCP_DATA_ABORT:
5089 /* TODO: if we implemented the MPU registers, this is where we
5090 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
5092 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
5095 if (semihosting_enabled()) {
5097 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
5100 env->regs[0] = do_arm_semihosting(env);
5101 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
5105 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
5108 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
5110 case EXCP_EXCEPTION_EXIT:
5111 do_v7m_exception_exit(env);
5114 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
5115 return; /* Never happens. Keep compiler happy. */
5118 /* Align stack pointer. */
5119 /* ??? Should only do this if Configuration Control Register
5120 STACKALIGN bit is set. */
5121 if (env->regs[13] & 4) {
5125 /* Switch to the handler mode. */
5126 v7m_push(env, xpsr);
5127 v7m_push(env, env->regs[15]);
5128 v7m_push(env, env->regs[14]);
5129 v7m_push(env, env->regs[12]);
5130 v7m_push(env, env->regs[3]);
5131 v7m_push(env, env->regs[2]);
5132 v7m_push(env, env->regs[1]);
5133 v7m_push(env, env->regs[0]);
5134 switch_v7m_sp(env, 0);
5136 env->condexec_bits = 0;
5138 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
5139 env->regs[15] = addr & 0xfffffffe;
5140 env->thumb = addr & 1;
5143 /* Function used to synchronize QEMU's AArch64 register set with AArch32
5144 * register set. This is necessary when switching between AArch32 and AArch64
5147 void aarch64_sync_32_to_64(CPUARMState *env)
5150 uint32_t mode = env->uncached_cpsr & CPSR_M;
5152 /* We can blanket copy R[0:7] to X[0:7] */
5153 for (i = 0; i < 8; i++) {
5154 env->xregs[i] = env->regs[i];
5157 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
5158 * Otherwise, they come from the banked user regs.
5160 if (mode == ARM_CPU_MODE_FIQ) {
5161 for (i = 8; i < 13; i++) {
5162 env->xregs[i] = env->usr_regs[i - 8];
5165 for (i = 8; i < 13; i++) {
5166 env->xregs[i] = env->regs[i];
5170 /* Registers x13-x23 are the various mode SP and FP registers. Registers
5171 * r13 and r14 are only copied if we are in that mode, otherwise we copy
5172 * from the mode banked register.
5174 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
5175 env->xregs[13] = env->regs[13];
5176 env->xregs[14] = env->regs[14];
5178 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
5179 /* HYP is an exception in that it is copied from r14 */
5180 if (mode == ARM_CPU_MODE_HYP) {
5181 env->xregs[14] = env->regs[14];
5183 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
5187 if (mode == ARM_CPU_MODE_HYP) {
5188 env->xregs[15] = env->regs[13];
5190 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
5193 if (mode == ARM_CPU_MODE_IRQ) {
5194 env->xregs[16] = env->regs[13];
5195 env->xregs[17] = env->regs[14];
5197 env->xregs[16] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
5198 env->xregs[17] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
5201 if (mode == ARM_CPU_MODE_SVC) {
5202 env->xregs[18] = env->regs[13];
5203 env->xregs[19] = env->regs[14];
5205 env->xregs[18] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
5206 env->xregs[19] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
5209 if (mode == ARM_CPU_MODE_ABT) {
5210 env->xregs[20] = env->regs[13];
5211 env->xregs[21] = env->regs[14];
5213 env->xregs[20] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
5214 env->xregs[21] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
5217 if (mode == ARM_CPU_MODE_UND) {
5218 env->xregs[22] = env->regs[13];
5219 env->xregs[23] = env->regs[14];
5221 env->xregs[22] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
5222 env->xregs[23] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
5225 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5226 * mode, then we can copy from r8-r14. Otherwise, we copy from the
5227 * FIQ bank for r8-r14.
5229 if (mode == ARM_CPU_MODE_FIQ) {
5230 for (i = 24; i < 31; i++) {
5231 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
5234 for (i = 24; i < 29; i++) {
5235 env->xregs[i] = env->fiq_regs[i - 24];
5237 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
5238 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
5241 env->pc = env->regs[15];
5244 /* Function used to synchronize QEMU's AArch32 register set with AArch64
5245 * register set. This is necessary when switching between AArch32 and AArch64
5248 void aarch64_sync_64_to_32(CPUARMState *env)
5251 uint32_t mode = env->uncached_cpsr & CPSR_M;
5253 /* We can blanket copy X[0:7] to R[0:7] */
5254 for (i = 0; i < 8; i++) {
5255 env->regs[i] = env->xregs[i];
5258 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
5259 * Otherwise, we copy x8-x12 into the banked user regs.
5261 if (mode == ARM_CPU_MODE_FIQ) {
5262 for (i = 8; i < 13; i++) {
5263 env->usr_regs[i - 8] = env->xregs[i];
5266 for (i = 8; i < 13; i++) {
5267 env->regs[i] = env->xregs[i];
5271 /* Registers r13 & r14 depend on the current mode.
5272 * If we are in a given mode, we copy the corresponding x registers to r13
5273 * and r14. Otherwise, we copy the x register to the banked r13 and r14
5276 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
5277 env->regs[13] = env->xregs[13];
5278 env->regs[14] = env->xregs[14];
5280 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
5282 /* HYP is an exception in that it does not have its own banked r14 but
5283 * shares the USR r14
5285 if (mode == ARM_CPU_MODE_HYP) {
5286 env->regs[14] = env->xregs[14];
5288 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
5292 if (mode == ARM_CPU_MODE_HYP) {
5293 env->regs[13] = env->xregs[15];
5295 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
5298 if (mode == ARM_CPU_MODE_IRQ) {
5299 env->regs[13] = env->xregs[16];
5300 env->regs[14] = env->xregs[17];
5302 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
5303 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
5306 if (mode == ARM_CPU_MODE_SVC) {
5307 env->regs[13] = env->xregs[18];
5308 env->regs[14] = env->xregs[19];
5310 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
5311 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
5314 if (mode == ARM_CPU_MODE_ABT) {
5315 env->regs[13] = env->xregs[20];
5316 env->regs[14] = env->xregs[21];
5318 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
5319 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
5322 if (mode == ARM_CPU_MODE_UND) {
5323 env->regs[13] = env->xregs[22];
5324 env->regs[14] = env->xregs[23];
5326 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
5327 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
5330 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
5331 * mode, then we can copy to r8-r14. Otherwise, we copy to the
5332 * FIQ bank for r8-r14.
5334 if (mode == ARM_CPU_MODE_FIQ) {
5335 for (i = 24; i < 31; i++) {
5336 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
5339 for (i = 24; i < 29; i++) {
5340 env->fiq_regs[i - 24] = env->xregs[i];
5342 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
5343 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
5346 env->regs[15] = env->pc;
5349 /* Handle a CPU exception. */
5350 void arm_cpu_do_interrupt(CPUState *cs)
5352 ARMCPU *cpu = ARM_CPU(cs);
5353 CPUARMState *env = &cpu->env;
5362 arm_log_exception(cs->exception_index);
5364 if (arm_is_psci_call(cpu, cs->exception_index)) {
5365 arm_handle_psci_call(cpu);
5366 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
5370 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
5371 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
5373 case EC_BREAKPOINT_SAME_EL:
5377 case EC_WATCHPOINT_SAME_EL:
5383 case EC_VECTORCATCH:
5392 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
5395 /* TODO: Vectored interrupt controller. */
5396 switch (cs->exception_index) {
5398 new_mode = ARM_CPU_MODE_UND;
5407 if (semihosting_enabled()) {
5408 /* Check for semihosting interrupt. */
5410 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
5413 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
5416 /* Only intercept calls from privileged modes, to provide some
5417 semblance of security. */
5418 if (((mask == 0x123456 && !env->thumb)
5419 || (mask == 0xab && env->thumb))
5420 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
5421 env->regs[0] = do_arm_semihosting(env);
5422 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
5426 new_mode = ARM_CPU_MODE_SVC;
5429 /* The PC already points to the next instruction. */
5433 /* See if this is a semihosting syscall. */
5434 if (env->thumb && semihosting_enabled()) {
5435 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
5437 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
5439 env->regs[0] = do_arm_semihosting(env);
5440 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
5444 env->exception.fsr = 2;
5445 /* Fall through to prefetch abort. */
5446 case EXCP_PREFETCH_ABORT:
5447 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
5448 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
5449 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
5450 env->exception.fsr, (uint32_t)env->exception.vaddress);
5451 new_mode = ARM_CPU_MODE_ABT;
5453 mask = CPSR_A | CPSR_I;
5456 case EXCP_DATA_ABORT:
5457 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
5458 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
5459 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
5461 (uint32_t)env->exception.vaddress);
5462 new_mode = ARM_CPU_MODE_ABT;
5464 mask = CPSR_A | CPSR_I;
5468 new_mode = ARM_CPU_MODE_IRQ;
5470 /* Disable IRQ and imprecise data aborts. */
5471 mask = CPSR_A | CPSR_I;
5473 if (env->cp15.scr_el3 & SCR_IRQ) {
5474 /* IRQ routed to monitor mode */
5475 new_mode = ARM_CPU_MODE_MON;
5480 new_mode = ARM_CPU_MODE_FIQ;
5482 /* Disable FIQ, IRQ and imprecise data aborts. */
5483 mask = CPSR_A | CPSR_I | CPSR_F;
5484 if (env->cp15.scr_el3 & SCR_FIQ) {
5485 /* FIQ routed to monitor mode */
5486 new_mode = ARM_CPU_MODE_MON;
5491 new_mode = ARM_CPU_MODE_MON;
5493 mask = CPSR_A | CPSR_I | CPSR_F;
5497 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
5498 return; /* Never happens. Keep compiler happy. */
5501 if (new_mode == ARM_CPU_MODE_MON) {
5502 addr += env->cp15.mvbar;
5503 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
5504 /* High vectors. When enabled, base address cannot be remapped. */
5507 /* ARM v7 architectures provide a vector base address register to remap
5508 * the interrupt vector table.
5509 * This register is only followed in non-monitor mode, and is banked.
5510 * Note: only bits 31:5 are valid.
5512 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
5515 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
5516 env->cp15.scr_el3 &= ~SCR_NS;
5519 switch_mode (env, new_mode);
5520 /* For exceptions taken to AArch32 we must clear the SS bit in both
5521 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
5523 env->uncached_cpsr &= ~PSTATE_SS;
5524 env->spsr = cpsr_read(env);
5525 /* Clear IT bits. */
5526 env->condexec_bits = 0;
5527 /* Switch to the new mode, and to the correct instruction set. */
5528 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
5530 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
5531 * and we should just guard the thumb mode on V4 */
5532 if (arm_feature(env, ARM_FEATURE_V4T)) {
5533 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
5535 env->regs[14] = env->regs[15] + offset;
5536 env->regs[15] = addr;
5537 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
5541 /* Return the exception level which controls this address translation regime */
5542 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
5545 case ARMMMUIdx_S2NS:
5546 case ARMMMUIdx_S1E2:
5548 case ARMMMUIdx_S1E3:
5550 case ARMMMUIdx_S1SE0:
5551 return arm_el_is_aa64(env, 3) ? 1 : 3;
5552 case ARMMMUIdx_S1SE1:
5553 case ARMMMUIdx_S1NSE0:
5554 case ARMMMUIdx_S1NSE1:
5557 g_assert_not_reached();
5561 /* Return true if this address translation regime is secure */
5562 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
5565 case ARMMMUIdx_S12NSE0:
5566 case ARMMMUIdx_S12NSE1:
5567 case ARMMMUIdx_S1NSE0:
5568 case ARMMMUIdx_S1NSE1:
5569 case ARMMMUIdx_S1E2:
5570 case ARMMMUIdx_S2NS:
5572 case ARMMMUIdx_S1E3:
5573 case ARMMMUIdx_S1SE0:
5574 case ARMMMUIdx_S1SE1:
5577 g_assert_not_reached();
5581 /* Return the SCTLR value which controls this address translation regime */
5582 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
5584 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
5587 /* Return true if the specified stage of address translation is disabled */
5588 static inline bool regime_translation_disabled(CPUARMState *env,
5591 if (mmu_idx == ARMMMUIdx_S2NS) {
5592 return (env->cp15.hcr_el2 & HCR_VM) == 0;
5594 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
5597 /* Return the TCR controlling this translation regime */
5598 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
5600 if (mmu_idx == ARMMMUIdx_S2NS) {
5601 /* TODO: return VTCR_EL2 */
5602 g_assert_not_reached();
5604 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
5607 /* Return the TTBR associated with this translation regime */
5608 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
5611 if (mmu_idx == ARMMMUIdx_S2NS) {
5612 /* TODO: return VTTBR_EL2 */
5613 g_assert_not_reached();
5616 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
5618 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
5622 /* Return true if the translation regime is using LPAE format page tables */
5623 static inline bool regime_using_lpae_format(CPUARMState *env,
5626 int el = regime_el(env, mmu_idx);
5627 if (el == 2 || arm_el_is_aa64(env, el)) {
5630 if (arm_feature(env, ARM_FEATURE_LPAE)
5631 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
5637 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
5640 case ARMMMUIdx_S1SE0:
5641 case ARMMMUIdx_S1NSE0:
5645 case ARMMMUIdx_S12NSE0:
5646 case ARMMMUIdx_S12NSE1:
5647 g_assert_not_reached();
5651 /* Translate section/page access permissions to page
5652 * R/W protection flags
5655 * @mmu_idx: MMU index indicating required translation regime
5656 * @ap: The 3-bit access permissions (AP[2:0])
5657 * @domain_prot: The 2-bit domain access permissions
5659 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
5660 int ap, int domain_prot)
5662 bool is_user = regime_is_user(env, mmu_idx);
5664 if (domain_prot == 3) {
5665 return PAGE_READ | PAGE_WRITE;
5670 if (arm_feature(env, ARM_FEATURE_V7)) {
5673 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
5675 return is_user ? 0 : PAGE_READ;
5682 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
5687 return PAGE_READ | PAGE_WRITE;
5690 return PAGE_READ | PAGE_WRITE;
5691 case 4: /* Reserved. */
5694 return is_user ? 0 : PAGE_READ;
5698 if (!arm_feature(env, ARM_FEATURE_V6K)) {
5703 g_assert_not_reached();
5707 /* Translate section/page access permissions to page
5708 * R/W protection flags.
5710 * @ap: The 2-bit simple AP (AP[2:1])
5711 * @is_user: TRUE if accessing from PL0
5713 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
5717 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
5719 return PAGE_READ | PAGE_WRITE;
5721 return is_user ? 0 : PAGE_READ;
5725 g_assert_not_reached();
5730 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
5732 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
5735 /* Translate section/page access permissions to protection flags
5738 * @mmu_idx: MMU index indicating required translation regime
5739 * @is_aa64: TRUE if AArch64
5740 * @ap: The 2-bit simple AP (AP[2:1])
5741 * @ns: NS (non-secure) bit
5742 * @xn: XN (execute-never) bit
5743 * @pxn: PXN (privileged execute-never) bit
5745 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
5746 int ap, int ns, int xn, int pxn)
5748 bool is_user = regime_is_user(env, mmu_idx);
5749 int prot_rw, user_rw;
5753 assert(mmu_idx != ARMMMUIdx_S2NS);
5755 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
5759 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
5762 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
5766 /* TODO have_wxn should be replaced with
5767 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
5768 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
5769 * compatible processors have EL2, which is required for [U]WXN.
5771 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
5774 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
5778 switch (regime_el(env, mmu_idx)) {
5781 xn = pxn || (user_rw & PAGE_WRITE);
5788 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5789 switch (regime_el(env, mmu_idx)) {
5793 xn = xn || !(user_rw & PAGE_READ);
5797 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
5799 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
5800 (uwxn && (user_rw & PAGE_WRITE));
5810 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
5813 return prot_rw | PAGE_EXEC;
5816 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
5817 uint32_t *table, uint32_t address)
5819 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
5820 TCR *tcr = regime_tcr(env, mmu_idx);
5822 if (address & tcr->mask) {
5823 if (tcr->raw_tcr & TTBCR_PD1) {
5824 /* Translation table walk disabled for TTBR1 */
5827 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
5829 if (tcr->raw_tcr & TTBCR_PD0) {
5830 /* Translation table walk disabled for TTBR0 */
5833 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
5835 *table |= (address >> 18) & 0x3ffc;
5839 /* All loads done in the course of a page table walk go through here.
5840 * TODO: rather than ignoring errors from physical memory reads (which
5841 * are external aborts in ARM terminology) we should propagate this
5842 * error out so that we can turn it into a Data Abort if this walk
5843 * was being done for a CPU load/store or an address translation instruction
5844 * (but not if it was for a debug access).
5846 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure)
5848 MemTxAttrs attrs = {};
5850 attrs.secure = is_secure;
5851 return address_space_ldl(cs->as, addr, attrs, NULL);
5854 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure)
5856 MemTxAttrs attrs = {};
5858 attrs.secure = is_secure;
5859 return address_space_ldq(cs->as, addr, attrs, NULL);
5862 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
5863 int access_type, ARMMMUIdx mmu_idx,
5864 hwaddr *phys_ptr, int *prot,
5865 target_ulong *page_size, uint32_t *fsr)
5867 CPUState *cs = CPU(arm_env_get_cpu(env));
5878 /* Pagetable walk. */
5879 /* Lookup l1 descriptor. */
5880 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
5881 /* Section translation fault if page walk is disabled by PD0 or PD1 */
5885 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
5887 domain = (desc >> 5) & 0x0f;
5888 if (regime_el(env, mmu_idx) == 1) {
5889 dacr = env->cp15.dacr_ns;
5891 dacr = env->cp15.dacr_s;
5893 domain_prot = (dacr >> (domain * 2)) & 3;
5895 /* Section translation fault. */
5899 if (domain_prot == 0 || domain_prot == 2) {
5901 code = 9; /* Section domain fault. */
5903 code = 11; /* Page domain fault. */
5908 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
5909 ap = (desc >> 10) & 3;
5911 *page_size = 1024 * 1024;
5913 /* Lookup l2 entry. */
5915 /* Coarse pagetable. */
5916 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
5918 /* Fine pagetable. */
5919 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
5921 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
5923 case 0: /* Page translation fault. */
5926 case 1: /* 64k page. */
5927 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
5928 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
5929 *page_size = 0x10000;
5931 case 2: /* 4k page. */
5932 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
5933 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
5934 *page_size = 0x1000;
5936 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
5938 /* ARMv6/XScale extended small page format */
5939 if (arm_feature(env, ARM_FEATURE_XSCALE)
5940 || arm_feature(env, ARM_FEATURE_V6)) {
5941 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
5942 *page_size = 0x1000;
5944 /* UNPREDICTABLE in ARMv5; we choose to take a
5945 * page translation fault.
5951 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
5954 ap = (desc >> 4) & 3;
5957 /* Never happens, but compiler isn't smart enough to tell. */
5962 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
5963 *prot |= *prot ? PAGE_EXEC : 0;
5964 if (!(*prot & (1 << access_type))) {
5965 /* Access permission fault. */
5968 *phys_ptr = phys_addr;
5971 *fsr = code | (domain << 4);
5975 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
5976 int access_type, ARMMMUIdx mmu_idx,
5977 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
5978 target_ulong *page_size, uint32_t *fsr)
5980 CPUState *cs = CPU(arm_env_get_cpu(env));
5994 /* Pagetable walk. */
5995 /* Lookup l1 descriptor. */
5996 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
5997 /* Section translation fault if page walk is disabled by PD0 or PD1 */
6001 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
6003 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
6004 /* Section translation fault, or attempt to use the encoding
6005 * which is Reserved on implementations without PXN.
6010 if ((type == 1) || !(desc & (1 << 18))) {
6011 /* Page or Section. */
6012 domain = (desc >> 5) & 0x0f;
6014 if (regime_el(env, mmu_idx) == 1) {
6015 dacr = env->cp15.dacr_ns;
6017 dacr = env->cp15.dacr_s;
6019 domain_prot = (dacr >> (domain * 2)) & 3;
6020 if (domain_prot == 0 || domain_prot == 2) {
6022 code = 9; /* Section domain fault. */
6024 code = 11; /* Page domain fault. */
6029 if (desc & (1 << 18)) {
6031 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
6032 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
6033 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
6034 *page_size = 0x1000000;
6037 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
6038 *page_size = 0x100000;
6040 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
6041 xn = desc & (1 << 4);
6044 ns = extract32(desc, 19, 1);
6046 if (arm_feature(env, ARM_FEATURE_PXN)) {
6047 pxn = (desc >> 2) & 1;
6049 ns = extract32(desc, 3, 1);
6050 /* Lookup l2 entry. */
6051 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
6052 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
6053 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
6055 case 0: /* Page translation fault. */
6058 case 1: /* 64k page. */
6059 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
6060 xn = desc & (1 << 15);
6061 *page_size = 0x10000;
6063 case 2: case 3: /* 4k page. */
6064 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
6066 *page_size = 0x1000;
6069 /* Never happens, but compiler isn't smart enough to tell. */
6074 if (domain_prot == 3) {
6075 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
6077 if (pxn && !regime_is_user(env, mmu_idx)) {
6080 if (xn && access_type == 2)
6083 if (arm_feature(env, ARM_FEATURE_V6K) &&
6084 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
6085 /* The simplified model uses AP[0] as an access control bit. */
6086 if ((ap & 1) == 0) {
6087 /* Access flag fault. */
6088 code = (code == 15) ? 6 : 3;
6091 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
6093 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
6098 if (!(*prot & (1 << access_type))) {
6099 /* Access permission fault. */
6104 /* The NS bit will (as required by the architecture) have no effect if
6105 * the CPU doesn't support TZ or this is a non-secure translation
6106 * regime, because the attribute will already be non-secure.
6108 attrs->secure = false;
6110 *phys_ptr = phys_addr;
6113 *fsr = code | (domain << 4);
6117 /* Fault type for long-descriptor MMU fault reporting; this corresponds
6118 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
6121 translation_fault = 1,
6123 permission_fault = 3,
6126 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
6127 int access_type, ARMMMUIdx mmu_idx,
6128 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
6129 target_ulong *page_size_ptr, uint32_t *fsr)
6131 CPUState *cs = CPU(arm_env_get_cpu(env));
6132 /* Read an LPAE long-descriptor translation table. */
6133 MMUFaultType fault_type = translation_fault;
6140 hwaddr descaddr, descmask;
6141 uint32_t tableattrs;
6142 target_ulong page_size;
6144 int32_t granule_sz = 9;
6145 int32_t va_size = 32;
6147 TCR *tcr = regime_tcr(env, mmu_idx);
6148 int ap, ns, xn, pxn;
6149 uint32_t el = regime_el(env, mmu_idx);
6150 bool ttbr1_valid = true;
6153 * This code does not handle the different format TCR for VTCR_EL2.
6154 * This code also does not support shareability levels.
6155 * Attribute and permission bit handling should also be checked when adding
6156 * support for those page table walks.
6158 if (arm_el_is_aa64(env, el)) {
6161 tbi = extract64(tcr->raw_tcr, 20, 1);
6163 if (extract64(address, 55, 1)) {
6164 tbi = extract64(tcr->raw_tcr, 38, 1);
6166 tbi = extract64(tcr->raw_tcr, 37, 1);
6171 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
6175 ttbr1_valid = false;
6178 /* There is no TTBR1 for EL2 */
6180 ttbr1_valid = false;
6184 /* Determine whether this address is in the region controlled by
6185 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
6186 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
6187 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
6189 uint32_t t0sz = extract32(tcr->raw_tcr, 0, 6);
6190 if (va_size == 64) {
6191 t0sz = MIN(t0sz, 39);
6192 t0sz = MAX(t0sz, 16);
6194 uint32_t t1sz = extract32(tcr->raw_tcr, 16, 6);
6195 if (va_size == 64) {
6196 t1sz = MIN(t1sz, 39);
6197 t1sz = MAX(t1sz, 16);
6199 if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
6200 /* there is a ttbr0 region and we are in it (high bits all zero) */
6202 } else if (ttbr1_valid && t1sz &&
6203 !extract64(~address, va_size - t1sz, t1sz - tbi)) {
6204 /* there is a ttbr1 region and we are in it (high bits all one) */
6207 /* ttbr0 region is "everything not in the ttbr1 region" */
6209 } else if (!t1sz && ttbr1_valid) {
6210 /* ttbr1 region is "everything not in the ttbr0 region" */
6213 /* in the gap between the two regions, this is a Translation fault */
6214 fault_type = translation_fault;
6218 /* Note that QEMU ignores shareability and cacheability attributes,
6219 * so we don't need to do anything with the SH, ORGN, IRGN fields
6220 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
6221 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
6222 * implement any ASID-like capability so we can ignore it (instead
6223 * we will always flush the TLB any time the ASID is changed).
6225 if (ttbr_select == 0) {
6226 ttbr = regime_ttbr(env, mmu_idx, 0);
6227 epd = extract32(tcr->raw_tcr, 7, 1);
6230 tg = extract32(tcr->raw_tcr, 14, 2);
6231 if (tg == 1) { /* 64KB pages */
6234 if (tg == 2) { /* 16KB pages */
6238 /* We should only be here if TTBR1 is valid */
6239 assert(ttbr1_valid);
6241 ttbr = regime_ttbr(env, mmu_idx, 1);
6242 epd = extract32(tcr->raw_tcr, 23, 1);
6245 tg = extract32(tcr->raw_tcr, 30, 2);
6246 if (tg == 3) { /* 64KB pages */
6249 if (tg == 1) { /* 16KB pages */
6254 /* Here we should have set up all the parameters for the translation:
6255 * va_size, ttbr, epd, tsz, granule_sz, tbi
6259 /* Translation table walk disabled => Translation fault on TLB miss
6260 * Note: This is always 0 on 64-bit EL2 and EL3.
6265 /* The starting level depends on the virtual address size (which can be
6266 * up to 48 bits) and the translation granule size. It indicates the number
6267 * of strides (granule_sz bits at a time) needed to consume the bits
6268 * of the input address. In the pseudocode this is:
6269 * level = 4 - RoundUp((inputsize - grainsize) / stride)
6270 * where their 'inputsize' is our 'va_size - tsz', 'grainsize' is
6271 * our 'granule_sz + 3' and 'stride' is our 'granule_sz'.
6272 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
6273 * = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz
6274 * = 4 - (va_size - tsz - 4) / granule_sz;
6276 level = 4 - (va_size - tsz - 4) / granule_sz;
6278 /* Clear the vaddr bits which aren't part of the within-region address,
6279 * so that we don't have to special case things when calculating the
6280 * first descriptor address.
6283 address &= (1ULL << (va_size - tsz)) - 1;
6286 descmask = (1ULL << (granule_sz + 3)) - 1;
6288 /* Now we can extract the actual base address from the TTBR */
6289 descaddr = extract64(ttbr, 0, 48);
6290 descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1);
6292 /* Secure accesses start with the page table in secure memory and
6293 * can be downgraded to non-secure at any step. Non-secure accesses
6294 * remain non-secure. We implement this by just ORing in the NSTable/NS
6295 * bits at each step.
6297 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
6299 uint64_t descriptor;
6302 descaddr |= (address >> (granule_sz * (4 - level))) & descmask;
6304 nstable = extract32(tableattrs, 4, 1);
6305 descriptor = arm_ldq_ptw(cs, descaddr, !nstable);
6306 if (!(descriptor & 1) ||
6307 (!(descriptor & 2) && (level == 3))) {
6308 /* Invalid, or the Reserved level 3 encoding */
6311 descaddr = descriptor & 0xfffffff000ULL;
6313 if ((descriptor & 2) && (level < 3)) {
6314 /* Table entry. The top five bits are attributes which may
6315 * propagate down through lower levels of the table (and
6316 * which are all arranged so that 0 means "no effect", so
6317 * we can gather them up by ORing in the bits at each level).
6319 tableattrs |= extract64(descriptor, 59, 5);
6323 /* Block entry at level 1 or 2, or page entry at level 3.
6324 * These are basically the same thing, although the number
6325 * of bits we pull in from the vaddr varies.
6327 page_size = (1ULL << ((granule_sz * (4 - level)) + 3));
6328 descaddr |= (address & (page_size - 1));
6329 /* Extract attributes from the descriptor and merge with table attrs */
6330 attrs = extract64(descriptor, 2, 10)
6331 | (extract64(descriptor, 52, 12) << 10);
6332 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
6333 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
6334 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
6335 * means "force PL1 access only", which means forcing AP[1] to 0.
6337 if (extract32(tableattrs, 2, 1)) {
6340 attrs |= nstable << 3; /* NS */
6343 /* Here descaddr is the final physical address, and attributes
6346 fault_type = access_fault;
6347 if ((attrs & (1 << 8)) == 0) {
6352 ap = extract32(attrs, 4, 2);
6353 ns = extract32(attrs, 3, 1);
6354 xn = extract32(attrs, 12, 1);
6355 pxn = extract32(attrs, 11, 1);
6357 *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn);
6359 fault_type = permission_fault;
6360 if (!(*prot & (1 << access_type))) {
6365 /* The NS bit will (as required by the architecture) have no effect if
6366 * the CPU doesn't support TZ or this is a non-secure translation
6367 * regime, because the attribute will already be non-secure.
6369 txattrs->secure = false;
6371 *phys_ptr = descaddr;
6372 *page_size_ptr = page_size;
6376 /* Long-descriptor format IFSR/DFSR value */
6377 *fsr = (1 << 9) | (fault_type << 2) | level;
6381 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
6383 int32_t address, int *prot)
6385 *prot = PAGE_READ | PAGE_WRITE;
6387 case 0xF0000000 ... 0xFFFFFFFF:
6388 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
6392 case 0x00000000 ... 0x7FFFFFFF:
6399 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
6400 int access_type, ARMMMUIdx mmu_idx,
6401 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
6403 ARMCPU *cpu = arm_env_get_cpu(env);
6405 bool is_user = regime_is_user(env, mmu_idx);
6407 *phys_ptr = address;
6410 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
6411 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
6412 } else { /* MPU enabled */
6413 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
6415 uint32_t base = env->pmsav7.drbar[n];
6416 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
6420 if (!(env->pmsav7.drsr[n] & 0x1)) {
6425 qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
6429 rmask = (1ull << rsize) - 1;
6432 qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
6433 "to DRSR region size, mask = %" PRIx32,
6438 if (address < base || address > base + rmask) {
6442 /* Region matched */
6444 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
6446 uint32_t srdis_mask;
6448 rsize -= 3; /* sub region size (power of 2) */
6449 snd = ((address - base) >> rsize) & 0x7;
6450 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
6452 srdis_mask = srdis ? 0x3 : 0x0;
6453 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
6454 /* This will check in groups of 2, 4 and then 8, whether
6455 * the subregion bits are consistent. rsize is incremented
6456 * back up to give the region size, considering consistent
6457 * adjacent subregions as one region. Stop testing if rsize
6458 * is already big enough for an entire QEMU page.
6460 int snd_rounded = snd & ~(i - 1);
6461 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
6462 snd_rounded + 8, i);
6463 if (srdis_mask ^ srdis_multi) {
6466 srdis_mask = (srdis_mask << i) | srdis_mask;
6470 if (rsize < TARGET_PAGE_BITS) {
6471 qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
6472 "alignment of %" PRIu32 " bits. Minimum is %d\n",
6473 rsize, TARGET_PAGE_BITS);
6482 if (n == -1) { /* no hits */
6483 if (cpu->pmsav7_dregion &&
6484 (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
6485 /* background fault */
6489 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
6490 } else { /* a MPU hit! */
6491 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
6493 if (is_user) { /* User mode AP bit decoding */
6498 break; /* no access */
6500 *prot |= PAGE_WRITE;
6504 *prot |= PAGE_READ | PAGE_EXEC;
6507 qemu_log_mask(LOG_GUEST_ERROR,
6508 "Bad value for AP bits in DRACR %"
6511 } else { /* Priv. mode AP bits decoding */
6514 break; /* no access */
6518 *prot |= PAGE_WRITE;
6522 *prot |= PAGE_READ | PAGE_EXEC;
6525 qemu_log_mask(LOG_GUEST_ERROR,
6526 "Bad value for AP bits in DRACR %"
6532 if (env->pmsav7.dracr[n] & (1 << 12)) {
6533 *prot &= ~PAGE_EXEC;
6538 *fsr = 0x00d; /* Permission fault */
6539 return !(*prot & (1 << access_type));
6542 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
6543 int access_type, ARMMMUIdx mmu_idx,
6544 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
6549 bool is_user = regime_is_user(env, mmu_idx);
6551 *phys_ptr = address;
6552 for (n = 7; n >= 0; n--) {
6553 base = env->cp15.c6_region[n];
6554 if ((base & 1) == 0) {
6557 mask = 1 << ((base >> 1) & 0x1f);
6558 /* Keep this shift separate from the above to avoid an
6559 (undefined) << 32. */
6560 mask = (mask << 1) - 1;
6561 if (((base ^ address) & ~mask) == 0) {
6570 if (access_type == 2) {
6571 mask = env->cp15.pmsav5_insn_ap;
6573 mask = env->cp15.pmsav5_data_ap;
6575 mask = (mask >> (n * 4)) & 0xf;
6585 *prot = PAGE_READ | PAGE_WRITE;
6590 *prot |= PAGE_WRITE;
6594 *prot = PAGE_READ | PAGE_WRITE;
6607 /* Bad permission. */
6615 /* get_phys_addr - get the physical address for this virtual address
6617 * Find the physical address corresponding to the given virtual address,
6618 * by doing a translation table walk on MMU based systems or using the
6619 * MPU state on MPU based systems.
6621 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
6622 * prot and page_size may not be filled in, and the populated fsr value provides
6623 * information on why the translation aborted, in the format of a
6624 * DFSR/IFSR fault register, with the following caveats:
6625 * * we honour the short vs long DFSR format differences.
6626 * * the WnR bit is never set (the caller must do this).
6627 * * for PSMAv5 based systems we don't bother to return a full FSR format
6631 * @address: virtual address to get physical address for
6632 * @access_type: 0 for read, 1 for write, 2 for execute
6633 * @mmu_idx: MMU index indicating required translation regime
6634 * @phys_ptr: set to the physical address corresponding to the virtual address
6635 * @attrs: set to the memory transaction attributes to use
6636 * @prot: set to the permissions for the page containing phys_ptr
6637 * @page_size: set to the size of the page containing phys_ptr
6638 * @fsr: set to the DFSR/IFSR value on failure
6640 static inline bool get_phys_addr(CPUARMState *env, target_ulong address,
6641 int access_type, ARMMMUIdx mmu_idx,
6642 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
6643 target_ulong *page_size, uint32_t *fsr)
6645 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
6646 /* TODO: when we support EL2 we should here call ourselves recursively
6647 * to do the stage 1 and then stage 2 translations. The arm_ld*_ptw
6648 * functions will also need changing to perform ARMMMUIdx_S2NS loads
6649 * rather than direct physical memory loads when appropriate.
6650 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
6652 assert(!arm_feature(env, ARM_FEATURE_EL2));
6653 mmu_idx += ARMMMUIdx_S1NSE0;
6656 /* The page table entries may downgrade secure to non-secure, but
6657 * cannot upgrade an non-secure translation regime's attributes
6660 attrs->secure = regime_is_secure(env, mmu_idx);
6661 attrs->user = regime_is_user(env, mmu_idx);
6663 /* Fast Context Switch Extension. This doesn't exist at all in v8.
6664 * In v7 and earlier it affects all stage 1 translations.
6666 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
6667 && !arm_feature(env, ARM_FEATURE_V8)) {
6668 if (regime_el(env, mmu_idx) == 3) {
6669 address += env->cp15.fcseidr_s;
6671 address += env->cp15.fcseidr_ns;
6675 /* pmsav7 has special handling for when MPU is disabled so call it before
6676 * the common MMU/MPU disabled check below.
6678 if (arm_feature(env, ARM_FEATURE_MPU) &&
6679 arm_feature(env, ARM_FEATURE_V7)) {
6680 *page_size = TARGET_PAGE_SIZE;
6681 return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
6682 phys_ptr, prot, fsr);
6685 if (regime_translation_disabled(env, mmu_idx)) {
6686 /* MMU/MPU disabled. */
6687 *phys_ptr = address;
6688 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
6689 *page_size = TARGET_PAGE_SIZE;
6693 if (arm_feature(env, ARM_FEATURE_MPU)) {
6695 *page_size = TARGET_PAGE_SIZE;
6696 return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
6697 phys_ptr, prot, fsr);
6700 if (regime_using_lpae_format(env, mmu_idx)) {
6701 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
6702 attrs, prot, page_size, fsr);
6703 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
6704 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
6705 attrs, prot, page_size, fsr);
6707 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
6708 prot, page_size, fsr);
6712 /* Walk the page table and (if the mapping exists) add the page
6713 * to the TLB. Return false on success, or true on failure. Populate
6714 * fsr with ARM DFSR/IFSR fault register format value on failure.
6716 bool arm_tlb_fill(CPUState *cs, vaddr address,
6717 int access_type, int mmu_idx, uint32_t *fsr)
6719 ARMCPU *cpu = ARM_CPU(cs);
6720 CPUARMState *env = &cpu->env;
6722 target_ulong page_size;
6725 MemTxAttrs attrs = {};
6727 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
6728 &attrs, &prot, &page_size, fsr);
6730 /* Map a single [sub]page. */
6731 phys_addr &= TARGET_PAGE_MASK;
6732 address &= TARGET_PAGE_MASK;
6733 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
6734 prot, mmu_idx, page_size);
6741 hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
6743 ARMCPU *cpu = ARM_CPU(cs);
6744 CPUARMState *env = &cpu->env;
6746 target_ulong page_size;
6750 MemTxAttrs attrs = {};
6752 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env), &phys_addr,
6753 &attrs, &prot, &page_size, &fsr);
6762 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
6764 if ((env->uncached_cpsr & CPSR_M) == mode) {
6765 env->regs[13] = val;
6767 env->banked_r13[bank_number(mode)] = val;
6771 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
6773 if ((env->uncached_cpsr & CPSR_M) == mode) {
6774 return env->regs[13];
6776 return env->banked_r13[bank_number(mode)];
6780 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
6782 ARMCPU *cpu = arm_env_get_cpu(env);
6786 return xpsr_read(env) & 0xf8000000;
6788 return xpsr_read(env) & 0xf80001ff;
6790 return xpsr_read(env) & 0xff00fc00;
6792 return xpsr_read(env) & 0xff00fdff;
6794 return xpsr_read(env) & 0x000001ff;
6796 return xpsr_read(env) & 0x0700fc00;
6798 return xpsr_read(env) & 0x0700edff;
6800 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
6802 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
6803 case 16: /* PRIMASK */
6804 return (env->daif & PSTATE_I) != 0;
6805 case 17: /* BASEPRI */
6806 case 18: /* BASEPRI_MAX */
6807 return env->v7m.basepri;
6808 case 19: /* FAULTMASK */
6809 return (env->daif & PSTATE_F) != 0;
6810 case 20: /* CONTROL */
6811 return env->v7m.control;
6813 /* ??? For debugging only. */
6814 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
6819 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
6821 ARMCPU *cpu = arm_env_get_cpu(env);
6825 xpsr_write(env, val, 0xf8000000);
6828 xpsr_write(env, val, 0xf8000000);
6831 xpsr_write(env, val, 0xfe00fc00);
6834 xpsr_write(env, val, 0xfe00fc00);
6837 /* IPSR bits are readonly. */
6840 xpsr_write(env, val, 0x0600fc00);
6843 xpsr_write(env, val, 0x0600fc00);
6846 if (env->v7m.current_sp)
6847 env->v7m.other_sp = val;
6849 env->regs[13] = val;
6852 if (env->v7m.current_sp)
6853 env->regs[13] = val;
6855 env->v7m.other_sp = val;
6857 case 16: /* PRIMASK */
6859 env->daif |= PSTATE_I;
6861 env->daif &= ~PSTATE_I;
6864 case 17: /* BASEPRI */
6865 env->v7m.basepri = val & 0xff;
6867 case 18: /* BASEPRI_MAX */
6869 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
6870 env->v7m.basepri = val;
6872 case 19: /* FAULTMASK */
6874 env->daif |= PSTATE_F;
6876 env->daif &= ~PSTATE_F;
6879 case 20: /* CONTROL */
6880 env->v7m.control = val & 3;
6881 switch_v7m_sp(env, (val & 2) != 0);
6884 /* ??? For debugging only. */
6885 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
6892 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
6894 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
6895 * Note that we do not implement the (architecturally mandated)
6896 * alignment fault for attempts to use this on Device memory
6897 * (which matches the usual QEMU behaviour of not implementing either
6898 * alignment faults or any memory attribute handling).
6901 ARMCPU *cpu = arm_env_get_cpu(env);
6902 uint64_t blocklen = 4 << cpu->dcz_blocksize;
6903 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
6905 #ifndef CONFIG_USER_ONLY
6907 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
6908 * the block size so we might have to do more than one TLB lookup.
6909 * We know that in fact for any v8 CPU the page size is at least 4K
6910 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
6911 * 1K as an artefact of legacy v5 subpage support being present in the
6912 * same QEMU executable.
6914 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
6915 void *hostaddr[maxidx];
6917 unsigned mmu_idx = cpu_mmu_index(env);
6918 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
6920 for (try = 0; try < 2; try++) {
6922 for (i = 0; i < maxidx; i++) {
6923 hostaddr[i] = tlb_vaddr_to_host(env,
6924 vaddr + TARGET_PAGE_SIZE * i,
6931 /* If it's all in the TLB it's fair game for just writing to;
6932 * we know we don't need to update dirty status, etc.
6934 for (i = 0; i < maxidx - 1; i++) {
6935 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
6937 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
6940 /* OK, try a store and see if we can populate the tlb. This
6941 * might cause an exception if the memory isn't writable,
6942 * in which case we will longjmp out of here. We must for
6943 * this purpose use the actual register value passed to us
6944 * so that we get the fault address right.
6946 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA());
6947 /* Now we can populate the other TLB entries, if any */
6948 for (i = 0; i < maxidx; i++) {
6949 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
6950 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
6951 helper_ret_stb_mmu(env, va, 0, oi, GETRA());
6956 /* Slow path (probably attempt to do this to an I/O device or
6957 * similar, or clearing of a block of code we have translations
6958 * cached for). Just do a series of byte writes as the architecture
6959 * demands. It's not worth trying to use a cpu_physical_memory_map(),
6960 * memset(), unmap() sequence here because:
6961 * + we'd need to account for the blocksize being larger than a page
6962 * + the direct-RAM access case is almost always going to be dealt
6963 * with in the fastpath code above, so there's no speed benefit
6964 * + we would have to deal with the map returning NULL because the
6965 * bounce buffer was in use
6967 for (i = 0; i < blocklen; i++) {
6968 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA());
6972 memset(g2h(vaddr), 0, blocklen);
6976 /* Note that signed overflow is undefined in C. The following routines are
6977 careful to use unsigned types where modulo arithmetic is required.
6978 Failure to do so _will_ break on newer gcc. */
6980 /* Signed saturating arithmetic. */
6982 /* Perform 16-bit signed saturating addition. */
6983 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
6988 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
6997 /* Perform 8-bit signed saturating addition. */
6998 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
7003 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
7012 /* Perform 16-bit signed saturating subtraction. */
7013 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
7018 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
7027 /* Perform 8-bit signed saturating subtraction. */
7028 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
7033 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
7042 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
7043 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
7044 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
7045 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
7048 #include "op_addsub.h"
7050 /* Unsigned saturating arithmetic. */
7051 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
7060 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
7068 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
7077 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
7085 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
7086 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
7087 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
7088 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
7091 #include "op_addsub.h"
7093 /* Signed modulo arithmetic. */
7094 #define SARITH16(a, b, n, op) do { \
7096 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
7097 RESULT(sum, n, 16); \
7099 ge |= 3 << (n * 2); \
7102 #define SARITH8(a, b, n, op) do { \
7104 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
7105 RESULT(sum, n, 8); \
7111 #define ADD16(a, b, n) SARITH16(a, b, n, +)
7112 #define SUB16(a, b, n) SARITH16(a, b, n, -)
7113 #define ADD8(a, b, n) SARITH8(a, b, n, +)
7114 #define SUB8(a, b, n) SARITH8(a, b, n, -)
7118 #include "op_addsub.h"
7120 /* Unsigned modulo arithmetic. */
7121 #define ADD16(a, b, n) do { \
7123 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
7124 RESULT(sum, n, 16); \
7125 if ((sum >> 16) == 1) \
7126 ge |= 3 << (n * 2); \
7129 #define ADD8(a, b, n) do { \
7131 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
7132 RESULT(sum, n, 8); \
7133 if ((sum >> 8) == 1) \
7137 #define SUB16(a, b, n) do { \
7139 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
7140 RESULT(sum, n, 16); \
7141 if ((sum >> 16) == 0) \
7142 ge |= 3 << (n * 2); \
7145 #define SUB8(a, b, n) do { \
7147 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
7148 RESULT(sum, n, 8); \
7149 if ((sum >> 8) == 0) \
7156 #include "op_addsub.h"
7158 /* Halved signed arithmetic. */
7159 #define ADD16(a, b, n) \
7160 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
7161 #define SUB16(a, b, n) \
7162 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
7163 #define ADD8(a, b, n) \
7164 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
7165 #define SUB8(a, b, n) \
7166 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
7169 #include "op_addsub.h"
7171 /* Halved unsigned arithmetic. */
7172 #define ADD16(a, b, n) \
7173 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
7174 #define SUB16(a, b, n) \
7175 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
7176 #define ADD8(a, b, n) \
7177 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
7178 #define SUB8(a, b, n) \
7179 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
7182 #include "op_addsub.h"
7184 static inline uint8_t do_usad(uint8_t a, uint8_t b)
7192 /* Unsigned sum of absolute byte differences. */
7193 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
7196 sum = do_usad(a, b);
7197 sum += do_usad(a >> 8, b >> 8);
7198 sum += do_usad(a >> 16, b >>16);
7199 sum += do_usad(a >> 24, b >> 24);
7203 /* For ARMv6 SEL instruction. */
7204 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
7217 return (a & mask) | (b & ~mask);
7220 /* VFP support. We follow the convention used for VFP instructions:
7221 Single precision routines have a "s" suffix, double precision a
7224 /* Convert host exception flags to vfp form. */
7225 static inline int vfp_exceptbits_from_host(int host_bits)
7227 int target_bits = 0;
7229 if (host_bits & float_flag_invalid)
7231 if (host_bits & float_flag_divbyzero)
7233 if (host_bits & float_flag_overflow)
7235 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
7237 if (host_bits & float_flag_inexact)
7238 target_bits |= 0x10;
7239 if (host_bits & float_flag_input_denormal)
7240 target_bits |= 0x80;
7244 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
7249 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
7250 | (env->vfp.vec_len << 16)
7251 | (env->vfp.vec_stride << 20);
7252 i = get_float_exception_flags(&env->vfp.fp_status);
7253 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
7254 fpscr |= vfp_exceptbits_from_host(i);
7258 uint32_t vfp_get_fpscr(CPUARMState *env)
7260 return HELPER(vfp_get_fpscr)(env);
7263 /* Convert vfp exception flags to target form. */
7264 static inline int vfp_exceptbits_to_host(int target_bits)
7268 if (target_bits & 1)
7269 host_bits |= float_flag_invalid;
7270 if (target_bits & 2)
7271 host_bits |= float_flag_divbyzero;
7272 if (target_bits & 4)
7273 host_bits |= float_flag_overflow;
7274 if (target_bits & 8)
7275 host_bits |= float_flag_underflow;
7276 if (target_bits & 0x10)
7277 host_bits |= float_flag_inexact;
7278 if (target_bits & 0x80)
7279 host_bits |= float_flag_input_denormal;
7283 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
7288 changed = env->vfp.xregs[ARM_VFP_FPSCR];
7289 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
7290 env->vfp.vec_len = (val >> 16) & 7;
7291 env->vfp.vec_stride = (val >> 20) & 3;
7294 if (changed & (3 << 22)) {
7295 i = (val >> 22) & 3;
7297 case FPROUNDING_TIEEVEN:
7298 i = float_round_nearest_even;
7300 case FPROUNDING_POSINF:
7303 case FPROUNDING_NEGINF:
7304 i = float_round_down;
7306 case FPROUNDING_ZERO:
7307 i = float_round_to_zero;
7310 set_float_rounding_mode(i, &env->vfp.fp_status);
7312 if (changed & (1 << 24)) {
7313 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
7314 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
7316 if (changed & (1 << 25))
7317 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
7319 i = vfp_exceptbits_to_host(val);
7320 set_float_exception_flags(i, &env->vfp.fp_status);
7321 set_float_exception_flags(0, &env->vfp.standard_fp_status);
7324 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
7326 HELPER(vfp_set_fpscr)(env, val);
7329 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
7331 #define VFP_BINOP(name) \
7332 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
7334 float_status *fpst = fpstp; \
7335 return float32_ ## name(a, b, fpst); \
7337 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
7339 float_status *fpst = fpstp; \
7340 return float64_ ## name(a, b, fpst); \
7352 float32 VFP_HELPER(neg, s)(float32 a)
7354 return float32_chs(a);
7357 float64 VFP_HELPER(neg, d)(float64 a)
7359 return float64_chs(a);
7362 float32 VFP_HELPER(abs, s)(float32 a)
7364 return float32_abs(a);
7367 float64 VFP_HELPER(abs, d)(float64 a)
7369 return float64_abs(a);
7372 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
7374 return float32_sqrt(a, &env->vfp.fp_status);
7377 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
7379 return float64_sqrt(a, &env->vfp.fp_status);
7382 /* XXX: check quiet/signaling case */
7383 #define DO_VFP_cmp(p, type) \
7384 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
7387 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
7388 case 0: flags = 0x6; break; \
7389 case -1: flags = 0x8; break; \
7390 case 1: flags = 0x2; break; \
7391 default: case 2: flags = 0x3; break; \
7393 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
7394 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
7396 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
7399 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
7400 case 0: flags = 0x6; break; \
7401 case -1: flags = 0x8; break; \
7402 case 1: flags = 0x2; break; \
7403 default: case 2: flags = 0x3; break; \
7405 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
7406 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
7408 DO_VFP_cmp(s, float32)
7409 DO_VFP_cmp(d, float64)
7412 /* Integer to float and float to integer conversions */
7414 #define CONV_ITOF(name, fsz, sign) \
7415 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
7417 float_status *fpst = fpstp; \
7418 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
7421 #define CONV_FTOI(name, fsz, sign, round) \
7422 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
7424 float_status *fpst = fpstp; \
7425 if (float##fsz##_is_any_nan(x)) { \
7426 float_raise(float_flag_invalid, fpst); \
7429 return float##fsz##_to_##sign##int32##round(x, fpst); \
7432 #define FLOAT_CONVS(name, p, fsz, sign) \
7433 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
7434 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
7435 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
7437 FLOAT_CONVS(si, s, 32, )
7438 FLOAT_CONVS(si, d, 64, )
7439 FLOAT_CONVS(ui, s, 32, u)
7440 FLOAT_CONVS(ui, d, 64, u)
7446 /* floating point conversion */
7447 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
7449 float64 r = float32_to_float64(x, &env->vfp.fp_status);
7450 /* ARM requires that S<->D conversion of any kind of NaN generates
7451 * a quiet NaN by forcing the most significant frac bit to 1.
7453 return float64_maybe_silence_nan(r);
7456 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
7458 float32 r = float64_to_float32(x, &env->vfp.fp_status);
7459 /* ARM requires that S<->D conversion of any kind of NaN generates
7460 * a quiet NaN by forcing the most significant frac bit to 1.
7462 return float32_maybe_silence_nan(r);
7465 /* VFP3 fixed point conversion. */
7466 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
7467 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
7470 float_status *fpst = fpstp; \
7472 tmp = itype##_to_##float##fsz(x, fpst); \
7473 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
7476 /* Notice that we want only input-denormal exception flags from the
7477 * scalbn operation: the other possible flags (overflow+inexact if
7478 * we overflow to infinity, output-denormal) aren't correct for the
7479 * complete scale-and-convert operation.
7481 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
7482 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
7486 float_status *fpst = fpstp; \
7487 int old_exc_flags = get_float_exception_flags(fpst); \
7489 if (float##fsz##_is_any_nan(x)) { \
7490 float_raise(float_flag_invalid, fpst); \
7493 tmp = float##fsz##_scalbn(x, shift, fpst); \
7494 old_exc_flags |= get_float_exception_flags(fpst) \
7495 & float_flag_input_denormal; \
7496 set_float_exception_flags(old_exc_flags, fpst); \
7497 return float##fsz##_to_##itype##round(tmp, fpst); \
7500 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
7501 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
7502 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
7503 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
7505 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
7506 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
7507 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
7509 VFP_CONV_FIX(sh, d, 64, 64, int16)
7510 VFP_CONV_FIX(sl, d, 64, 64, int32)
7511 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
7512 VFP_CONV_FIX(uh, d, 64, 64, uint16)
7513 VFP_CONV_FIX(ul, d, 64, 64, uint32)
7514 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
7515 VFP_CONV_FIX(sh, s, 32, 32, int16)
7516 VFP_CONV_FIX(sl, s, 32, 32, int32)
7517 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
7518 VFP_CONV_FIX(uh, s, 32, 32, uint16)
7519 VFP_CONV_FIX(ul, s, 32, 32, uint32)
7520 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
7522 #undef VFP_CONV_FIX_FLOAT
7523 #undef VFP_CONV_FLOAT_FIX_ROUND
7525 /* Set the current fp rounding mode and return the old one.
7526 * The argument is a softfloat float_round_ value.
7528 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
7530 float_status *fp_status = &env->vfp.fp_status;
7532 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
7533 set_float_rounding_mode(rmode, fp_status);
7538 /* Set the current fp rounding mode in the standard fp status and return
7539 * the old one. This is for NEON instructions that need to change the
7540 * rounding mode but wish to use the standard FPSCR values for everything
7541 * else. Always set the rounding mode back to the correct value after
7543 * The argument is a softfloat float_round_ value.
7545 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
7547 float_status *fp_status = &env->vfp.standard_fp_status;
7549 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
7550 set_float_rounding_mode(rmode, fp_status);
7555 /* Half precision conversions. */
7556 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
7558 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
7559 float32 r = float16_to_float32(make_float16(a), ieee, s);
7561 return float32_maybe_silence_nan(r);
7566 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
7568 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
7569 float16 r = float32_to_float16(a, ieee, s);
7571 r = float16_maybe_silence_nan(r);
7573 return float16_val(r);
7576 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
7578 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
7581 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
7583 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
7586 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
7588 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
7591 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
7593 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
7596 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
7598 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
7599 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
7601 return float64_maybe_silence_nan(r);
7606 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
7608 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
7609 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
7611 r = float16_maybe_silence_nan(r);
7613 return float16_val(r);
7616 #define float32_two make_float32(0x40000000)
7617 #define float32_three make_float32(0x40400000)
7618 #define float32_one_point_five make_float32(0x3fc00000)
7620 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
7622 float_status *s = &env->vfp.standard_fp_status;
7623 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
7624 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
7625 if (!(float32_is_zero(a) || float32_is_zero(b))) {
7626 float_raise(float_flag_input_denormal, s);
7630 return float32_sub(float32_two, float32_mul(a, b, s), s);
7633 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
7635 float_status *s = &env->vfp.standard_fp_status;
7637 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
7638 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
7639 if (!(float32_is_zero(a) || float32_is_zero(b))) {
7640 float_raise(float_flag_input_denormal, s);
7642 return float32_one_point_five;
7644 product = float32_mul(a, b, s);
7645 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
7650 /* Constants 256 and 512 are used in some helpers; we avoid relying on
7651 * int->float conversions at run-time. */
7652 #define float64_256 make_float64(0x4070000000000000LL)
7653 #define float64_512 make_float64(0x4080000000000000LL)
7654 #define float32_maxnorm make_float32(0x7f7fffff)
7655 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
7657 /* Reciprocal functions
7659 * The algorithm that must be used to calculate the estimate
7660 * is specified by the ARM ARM, see FPRecipEstimate()
7663 static float64 recip_estimate(float64 a, float_status *real_fp_status)
7665 /* These calculations mustn't set any fp exception flags,
7666 * so we use a local copy of the fp_status.
7668 float_status dummy_status = *real_fp_status;
7669 float_status *s = &dummy_status;
7670 /* q = (int)(a * 512.0) */
7671 float64 q = float64_mul(float64_512, a, s);
7672 int64_t q_int = float64_to_int64_round_to_zero(q, s);
7674 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
7675 q = int64_to_float64(q_int, s);
7676 q = float64_add(q, float64_half, s);
7677 q = float64_div(q, float64_512, s);
7678 q = float64_div(float64_one, q, s);
7680 /* s = (int)(256.0 * r + 0.5) */
7681 q = float64_mul(q, float64_256, s);
7682 q = float64_add(q, float64_half, s);
7683 q_int = float64_to_int64_round_to_zero(q, s);
7685 /* return (double)s / 256.0 */
7686 return float64_div(int64_to_float64(q_int, s), float64_256, s);
7689 /* Common wrapper to call recip_estimate */
7690 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
7692 uint64_t val64 = float64_val(num);
7693 uint64_t frac = extract64(val64, 0, 52);
7694 int64_t exp = extract64(val64, 52, 11);
7696 float64 scaled, estimate;
7698 /* Generate the scaled number for the estimate function */
7700 if (extract64(frac, 51, 1) == 0) {
7702 frac = extract64(frac, 0, 50) << 2;
7704 frac = extract64(frac, 0, 51) << 1;
7708 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
7709 scaled = make_float64((0x3feULL << 52)
7710 | extract64(frac, 44, 8) << 44);
7712 estimate = recip_estimate(scaled, fpst);
7714 /* Build new result */
7715 val64 = float64_val(estimate);
7716 sbit = 0x8000000000000000ULL & val64;
7718 frac = extract64(val64, 0, 52);
7721 frac = 1ULL << 51 | extract64(frac, 1, 51);
7722 } else if (exp == -1) {
7723 frac = 1ULL << 50 | extract64(frac, 2, 50);
7727 return make_float64(sbit | (exp << 52) | frac);
7730 static bool round_to_inf(float_status *fpst, bool sign_bit)
7732 switch (fpst->float_rounding_mode) {
7733 case float_round_nearest_even: /* Round to Nearest */
7735 case float_round_up: /* Round to +Inf */
7737 case float_round_down: /* Round to -Inf */
7739 case float_round_to_zero: /* Round to Zero */
7743 g_assert_not_reached();
7746 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
7748 float_status *fpst = fpstp;
7749 float32 f32 = float32_squash_input_denormal(input, fpst);
7750 uint32_t f32_val = float32_val(f32);
7751 uint32_t f32_sbit = 0x80000000ULL & f32_val;
7752 int32_t f32_exp = extract32(f32_val, 23, 8);
7753 uint32_t f32_frac = extract32(f32_val, 0, 23);
7759 if (float32_is_any_nan(f32)) {
7761 if (float32_is_signaling_nan(f32)) {
7762 float_raise(float_flag_invalid, fpst);
7763 nan = float32_maybe_silence_nan(f32);
7765 if (fpst->default_nan_mode) {
7766 nan = float32_default_nan;
7769 } else if (float32_is_infinity(f32)) {
7770 return float32_set_sign(float32_zero, float32_is_neg(f32));
7771 } else if (float32_is_zero(f32)) {
7772 float_raise(float_flag_divbyzero, fpst);
7773 return float32_set_sign(float32_infinity, float32_is_neg(f32));
7774 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
7775 /* Abs(value) < 2.0^-128 */
7776 float_raise(float_flag_overflow | float_flag_inexact, fpst);
7777 if (round_to_inf(fpst, f32_sbit)) {
7778 return float32_set_sign(float32_infinity, float32_is_neg(f32));
7780 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
7782 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
7783 float_raise(float_flag_underflow, fpst);
7784 return float32_set_sign(float32_zero, float32_is_neg(f32));
7788 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
7789 r64 = call_recip_estimate(f64, 253, fpst);
7790 r64_val = float64_val(r64);
7791 r64_exp = extract64(r64_val, 52, 11);
7792 r64_frac = extract64(r64_val, 0, 52);
7794 /* result = sign : result_exp<7:0> : fraction<51:29>; */
7795 return make_float32(f32_sbit |
7796 (r64_exp & 0xff) << 23 |
7797 extract64(r64_frac, 29, 24));
7800 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
7802 float_status *fpst = fpstp;
7803 float64 f64 = float64_squash_input_denormal(input, fpst);
7804 uint64_t f64_val = float64_val(f64);
7805 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
7806 int64_t f64_exp = extract64(f64_val, 52, 11);
7812 /* Deal with any special cases */
7813 if (float64_is_any_nan(f64)) {
7815 if (float64_is_signaling_nan(f64)) {
7816 float_raise(float_flag_invalid, fpst);
7817 nan = float64_maybe_silence_nan(f64);
7819 if (fpst->default_nan_mode) {
7820 nan = float64_default_nan;
7823 } else if (float64_is_infinity(f64)) {
7824 return float64_set_sign(float64_zero, float64_is_neg(f64));
7825 } else if (float64_is_zero(f64)) {
7826 float_raise(float_flag_divbyzero, fpst);
7827 return float64_set_sign(float64_infinity, float64_is_neg(f64));
7828 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
7829 /* Abs(value) < 2.0^-1024 */
7830 float_raise(float_flag_overflow | float_flag_inexact, fpst);
7831 if (round_to_inf(fpst, f64_sbit)) {
7832 return float64_set_sign(float64_infinity, float64_is_neg(f64));
7834 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
7836 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
7837 float_raise(float_flag_underflow, fpst);
7838 return float64_set_sign(float64_zero, float64_is_neg(f64));
7841 r64 = call_recip_estimate(f64, 2045, fpst);
7842 r64_val = float64_val(r64);
7843 r64_exp = extract64(r64_val, 52, 11);
7844 r64_frac = extract64(r64_val, 0, 52);
7846 /* result = sign : result_exp<10:0> : fraction<51:0> */
7847 return make_float64(f64_sbit |
7848 ((r64_exp & 0x7ff) << 52) |
7852 /* The algorithm that must be used to calculate the estimate
7853 * is specified by the ARM ARM.
7855 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
7857 /* These calculations mustn't set any fp exception flags,
7858 * so we use a local copy of the fp_status.
7860 float_status dummy_status = *real_fp_status;
7861 float_status *s = &dummy_status;
7865 if (float64_lt(a, float64_half, s)) {
7866 /* range 0.25 <= a < 0.5 */
7868 /* a in units of 1/512 rounded down */
7869 /* q0 = (int)(a * 512.0); */
7870 q = float64_mul(float64_512, a, s);
7871 q_int = float64_to_int64_round_to_zero(q, s);
7873 /* reciprocal root r */
7874 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
7875 q = int64_to_float64(q_int, s);
7876 q = float64_add(q, float64_half, s);
7877 q = float64_div(q, float64_512, s);
7878 q = float64_sqrt(q, s);
7879 q = float64_div(float64_one, q, s);
7881 /* range 0.5 <= a < 1.0 */
7883 /* a in units of 1/256 rounded down */
7884 /* q1 = (int)(a * 256.0); */
7885 q = float64_mul(float64_256, a, s);
7886 int64_t q_int = float64_to_int64_round_to_zero(q, s);
7888 /* reciprocal root r */
7889 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
7890 q = int64_to_float64(q_int, s);
7891 q = float64_add(q, float64_half, s);
7892 q = float64_div(q, float64_256, s);
7893 q = float64_sqrt(q, s);
7894 q = float64_div(float64_one, q, s);
7896 /* r in units of 1/256 rounded to nearest */
7897 /* s = (int)(256.0 * r + 0.5); */
7899 q = float64_mul(q, float64_256,s );
7900 q = float64_add(q, float64_half, s);
7901 q_int = float64_to_int64_round_to_zero(q, s);
7903 /* return (double)s / 256.0;*/
7904 return float64_div(int64_to_float64(q_int, s), float64_256, s);
7907 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
7909 float_status *s = fpstp;
7910 float32 f32 = float32_squash_input_denormal(input, s);
7911 uint32_t val = float32_val(f32);
7912 uint32_t f32_sbit = 0x80000000 & val;
7913 int32_t f32_exp = extract32(val, 23, 8);
7914 uint32_t f32_frac = extract32(val, 0, 23);
7920 if (float32_is_any_nan(f32)) {
7922 if (float32_is_signaling_nan(f32)) {
7923 float_raise(float_flag_invalid, s);
7924 nan = float32_maybe_silence_nan(f32);
7926 if (s->default_nan_mode) {
7927 nan = float32_default_nan;
7930 } else if (float32_is_zero(f32)) {
7931 float_raise(float_flag_divbyzero, s);
7932 return float32_set_sign(float32_infinity, float32_is_neg(f32));
7933 } else if (float32_is_neg(f32)) {
7934 float_raise(float_flag_invalid, s);
7935 return float32_default_nan;
7936 } else if (float32_is_infinity(f32)) {
7937 return float32_zero;
7940 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
7941 * preserving the parity of the exponent. */
7943 f64_frac = ((uint64_t) f32_frac) << 29;
7945 while (extract64(f64_frac, 51, 1) == 0) {
7946 f64_frac = f64_frac << 1;
7947 f32_exp = f32_exp-1;
7949 f64_frac = extract64(f64_frac, 0, 51) << 1;
7952 if (extract64(f32_exp, 0, 1) == 0) {
7953 f64 = make_float64(((uint64_t) f32_sbit) << 32
7957 f64 = make_float64(((uint64_t) f32_sbit) << 32
7962 result_exp = (380 - f32_exp) / 2;
7964 f64 = recip_sqrt_estimate(f64, s);
7966 val64 = float64_val(f64);
7968 val = ((result_exp & 0xff) << 23)
7969 | ((val64 >> 29) & 0x7fffff);
7970 return make_float32(val);
7973 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
7975 float_status *s = fpstp;
7976 float64 f64 = float64_squash_input_denormal(input, s);
7977 uint64_t val = float64_val(f64);
7978 uint64_t f64_sbit = 0x8000000000000000ULL & val;
7979 int64_t f64_exp = extract64(val, 52, 11);
7980 uint64_t f64_frac = extract64(val, 0, 52);
7982 uint64_t result_frac;
7984 if (float64_is_any_nan(f64)) {
7986 if (float64_is_signaling_nan(f64)) {
7987 float_raise(float_flag_invalid, s);
7988 nan = float64_maybe_silence_nan(f64);
7990 if (s->default_nan_mode) {
7991 nan = float64_default_nan;
7994 } else if (float64_is_zero(f64)) {
7995 float_raise(float_flag_divbyzero, s);
7996 return float64_set_sign(float64_infinity, float64_is_neg(f64));
7997 } else if (float64_is_neg(f64)) {
7998 float_raise(float_flag_invalid, s);
7999 return float64_default_nan;
8000 } else if (float64_is_infinity(f64)) {
8001 return float64_zero;
8004 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
8005 * preserving the parity of the exponent. */
8008 while (extract64(f64_frac, 51, 1) == 0) {
8009 f64_frac = f64_frac << 1;
8010 f64_exp = f64_exp - 1;
8012 f64_frac = extract64(f64_frac, 0, 51) << 1;
8015 if (extract64(f64_exp, 0, 1) == 0) {
8016 f64 = make_float64(f64_sbit
8020 f64 = make_float64(f64_sbit
8025 result_exp = (3068 - f64_exp) / 2;
8027 f64 = recip_sqrt_estimate(f64, s);
8029 result_frac = extract64(float64_val(f64), 0, 52);
8031 return make_float64(f64_sbit |
8032 ((result_exp & 0x7ff) << 52) |
8036 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
8038 float_status *s = fpstp;
8041 if ((a & 0x80000000) == 0) {
8045 f64 = make_float64((0x3feULL << 52)
8046 | ((int64_t)(a & 0x7fffffff) << 21));
8048 f64 = recip_estimate(f64, s);
8050 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
8053 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
8055 float_status *fpst = fpstp;
8058 if ((a & 0xc0000000) == 0) {
8062 if (a & 0x80000000) {
8063 f64 = make_float64((0x3feULL << 52)
8064 | ((uint64_t)(a & 0x7fffffff) << 21));
8065 } else { /* bits 31-30 == '01' */
8066 f64 = make_float64((0x3fdULL << 52)
8067 | ((uint64_t)(a & 0x3fffffff) << 22));
8070 f64 = recip_sqrt_estimate(f64, fpst);
8072 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
8075 /* VFPv4 fused multiply-accumulate */
8076 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
8078 float_status *fpst = fpstp;
8079 return float32_muladd(a, b, c, 0, fpst);
8082 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
8084 float_status *fpst = fpstp;
8085 return float64_muladd(a, b, c, 0, fpst);
8088 /* ARMv8 round to integral */
8089 float32 HELPER(rints_exact)(float32 x, void *fp_status)
8091 return float32_round_to_int(x, fp_status);
8094 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
8096 return float64_round_to_int(x, fp_status);
8099 float32 HELPER(rints)(float32 x, void *fp_status)
8101 int old_flags = get_float_exception_flags(fp_status), new_flags;
8104 ret = float32_round_to_int(x, fp_status);
8106 /* Suppress any inexact exceptions the conversion produced */
8107 if (!(old_flags & float_flag_inexact)) {
8108 new_flags = get_float_exception_flags(fp_status);
8109 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
8115 float64 HELPER(rintd)(float64 x, void *fp_status)
8117 int old_flags = get_float_exception_flags(fp_status), new_flags;
8120 ret = float64_round_to_int(x, fp_status);
8122 new_flags = get_float_exception_flags(fp_status);
8124 /* Suppress any inexact exceptions the conversion produced */
8125 if (!(old_flags & float_flag_inexact)) {
8126 new_flags = get_float_exception_flags(fp_status);
8127 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
8133 /* Convert ARM rounding mode to softfloat */
8134 int arm_rmode_to_sf(int rmode)
8137 case FPROUNDING_TIEAWAY:
8138 rmode = float_round_ties_away;
8140 case FPROUNDING_ODD:
8141 /* FIXME: add support for TIEAWAY and ODD */
8142 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
8144 case FPROUNDING_TIEEVEN:
8146 rmode = float_round_nearest_even;
8148 case FPROUNDING_POSINF:
8149 rmode = float_round_up;
8151 case FPROUNDING_NEGINF:
8152 rmode = float_round_down;
8154 case FPROUNDING_ZERO:
8155 rmode = float_round_to_zero;
8162 * The upper bytes of val (above the number specified by 'bytes') must have
8163 * been zeroed out by the caller.
8165 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
8171 /* zlib crc32 converts the accumulator and output to one's complement. */
8172 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
8175 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
8181 /* Linux crc32c converts the output to one's complement. */
8182 return crc32c(acc, buf, bytes) ^ 0xffffffff;