2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qemu-common.h"
30 #include "block/block_int.h"
31 #include "block/qcow2.h"
32 #include "qemu/bswap.h"
35 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
38 BDRVQcow2State *s = bs->opaque;
39 int new_l1_size2, ret, i;
40 uint64_t *new_l1_table;
41 int64_t old_l1_table_offset, old_l1_size;
42 int64_t new_l1_table_offset, new_l1_size;
45 if (min_size <= s->l1_size)
48 /* Do a sanity check on min_size before trying to calculate new_l1_size
49 * (this prevents overflows during the while loop for the calculation of
51 if (min_size > INT_MAX / sizeof(uint64_t)) {
56 new_l1_size = min_size;
58 /* Bump size up to reduce the number of times we have to grow */
59 new_l1_size = s->l1_size;
60 if (new_l1_size == 0) {
63 while (min_size > new_l1_size) {
64 new_l1_size = (new_l1_size * 3 + 1) / 2;
68 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
69 if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
74 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
75 s->l1_size, new_l1_size);
78 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
79 new_l1_table = qemu_try_blockalign(bs->file->bs,
80 align_offset(new_l1_size2, 512));
81 if (new_l1_table == NULL) {
84 memset(new_l1_table, 0, align_offset(new_l1_size2, 512));
87 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
90 /* write new table (align to cluster) */
91 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
92 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
93 if (new_l1_table_offset < 0) {
94 qemu_vfree(new_l1_table);
95 return new_l1_table_offset;
98 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
103 /* the L1 position has not yet been updated, so these clusters must
104 * indeed be completely free */
105 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
111 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
112 for(i = 0; i < s->l1_size; i++)
113 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
114 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
115 new_l1_table, new_l1_size2);
118 for(i = 0; i < s->l1_size; i++)
119 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
122 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
123 stl_be_p(data, new_l1_size);
124 stq_be_p(data + 4, new_l1_table_offset);
125 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
130 qemu_vfree(s->l1_table);
131 old_l1_table_offset = s->l1_table_offset;
132 s->l1_table_offset = new_l1_table_offset;
133 s->l1_table = new_l1_table;
134 old_l1_size = s->l1_size;
135 s->l1_size = new_l1_size;
136 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
137 QCOW2_DISCARD_OTHER);
140 qemu_vfree(new_l1_table);
141 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
142 QCOW2_DISCARD_OTHER);
149 * Loads a L2 table into memory. If the table is in the cache, the cache
150 * is used; otherwise the L2 table is loaded from the image file.
152 * Returns a pointer to the L2 table on success, or NULL if the read from
153 * the image file failed.
156 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
159 BDRVQcow2State *s = bs->opaque;
161 return qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
166 * Writes one sector of the L1 table to the disk (can't update single entries
167 * and we really don't want bdrv_pread to perform a read-modify-write)
169 #define L1_ENTRIES_PER_SECTOR (512 / 8)
170 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
172 BDRVQcow2State *s = bs->opaque;
173 uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
177 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
178 for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
181 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
184 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
185 s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
190 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
191 ret = bdrv_pwrite_sync(bs->file,
192 s->l1_table_offset + 8 * l1_start_index,
204 * Allocate a new l2 entry in the file. If l1_index points to an already
205 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
206 * table) copy the contents of the old L2 table into the newly allocated one.
207 * Otherwise the new table is initialized with zeros.
211 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
213 BDRVQcow2State *s = bs->opaque;
214 uint64_t old_l2_offset;
215 uint64_t *l2_table = NULL;
219 old_l2_offset = s->l1_table[l1_index];
221 trace_qcow2_l2_allocate(bs, l1_index);
223 /* allocate a new l2 entry */
225 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
231 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
236 /* allocate a new entry in the l2 cache */
238 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
239 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
246 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
247 /* if there was no old l2 table, clear the new table */
248 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
252 /* if there was an old l2 table, read it from the disk */
253 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
254 ret = qcow2_cache_get(bs, s->l2_table_cache,
255 old_l2_offset & L1E_OFFSET_MASK,
256 (void**) &old_table);
261 memcpy(l2_table, old_table, s->cluster_size);
263 qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table);
266 /* write the l2 table to the file */
267 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
269 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
270 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
271 ret = qcow2_cache_flush(bs, s->l2_table_cache);
276 /* update the L1 entry */
277 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
278 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
279 ret = qcow2_write_l1_entry(bs, l1_index);
285 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
289 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
290 if (l2_table != NULL) {
291 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
293 s->l1_table[l1_index] = old_l2_offset;
295 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
296 QCOW2_DISCARD_ALWAYS);
302 * Checks how many clusters in a given L2 table are contiguous in the image
303 * file. As soon as one of the flags in the bitmask stop_flags changes compared
304 * to the first cluster, the search is stopped and the cluster is not counted
305 * as contiguous. (This allows it, for example, to stop at the first compressed
306 * cluster which may require a different handling)
308 static int count_contiguous_clusters(int nb_clusters, int cluster_size,
309 uint64_t *l2_table, uint64_t stop_flags)
312 int first_cluster_type;
313 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
314 uint64_t first_entry = be64_to_cpu(l2_table[0]);
315 uint64_t offset = first_entry & mask;
321 /* must be allocated */
322 first_cluster_type = qcow2_get_cluster_type(first_entry);
323 assert(first_cluster_type == QCOW2_CLUSTER_NORMAL ||
324 (first_cluster_type == QCOW2_CLUSTER_ZERO &&
325 (first_entry & L2E_OFFSET_MASK) != 0));
327 for (i = 0; i < nb_clusters; i++) {
328 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
329 if (offset + (uint64_t) i * cluster_size != l2_entry) {
337 static int count_contiguous_clusters_by_type(int nb_clusters,
343 for (i = 0; i < nb_clusters; i++) {
344 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
346 if (type != wanted_type) {
354 /* The crypt function is compatible with the linux cryptoloop
355 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
357 int qcow2_encrypt_sectors(BDRVQcow2State *s, int64_t sector_num,
358 uint8_t *out_buf, const uint8_t *in_buf,
359 int nb_sectors, bool enc,
369 for(i = 0; i < nb_sectors; i++) {
370 ivec.ll[0] = cpu_to_le64(sector_num);
372 if (qcrypto_cipher_setiv(s->cipher,
373 ivec.b, G_N_ELEMENTS(ivec.b),
378 ret = qcrypto_cipher_encrypt(s->cipher,
384 ret = qcrypto_cipher_decrypt(s->cipher,
400 static int coroutine_fn do_perform_cow(BlockDriverState *bs,
401 uint64_t src_cluster_offset,
402 uint64_t cluster_offset,
403 int offset_in_cluster,
406 BDRVQcow2State *s = bs->opaque;
412 iov.iov_base = qemu_try_blockalign(bs, iov.iov_len);
413 if (iov.iov_base == NULL) {
417 qemu_iovec_init_external(&qiov, &iov, 1);
419 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
426 /* Call .bdrv_co_readv() directly instead of using the public block-layer
427 * interface. This avoids double I/O throttling and request tracking,
428 * which can lead to deadlock when block layer copy-on-read is enabled.
430 ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster,
438 int64_t sector = (src_cluster_offset + offset_in_cluster)
441 assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0);
442 assert((bytes & ~BDRV_SECTOR_MASK) == 0);
443 if (qcow2_encrypt_sectors(s, sector, iov.iov_base, iov.iov_base,
444 bytes >> BDRV_SECTOR_BITS, true, &err) < 0) {
451 ret = qcow2_pre_write_overlap_check(bs, 0,
452 cluster_offset + offset_in_cluster, bytes);
457 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
458 ret = bdrv_co_pwritev(bs->file, cluster_offset + offset_in_cluster,
466 qemu_vfree(iov.iov_base);
474 * For a given offset of the virtual disk, find the cluster type and offset in
475 * the qcow2 file. The offset is stored in *cluster_offset.
477 * On entry, *bytes is the maximum number of contiguous bytes starting at
478 * offset that we are interested in.
480 * On exit, *bytes is the number of bytes starting at offset that have the same
481 * cluster type and (if applicable) are stored contiguously in the image file.
482 * Compressed clusters are always returned one by one.
484 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
487 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
488 unsigned int *bytes, uint64_t *cluster_offset)
490 BDRVQcow2State *s = bs->opaque;
491 unsigned int l2_index;
492 uint64_t l1_index, l2_offset, *l2_table;
494 unsigned int offset_in_cluster;
495 uint64_t bytes_available, bytes_needed, nb_clusters;
498 offset_in_cluster = offset_into_cluster(s, offset);
499 bytes_needed = (uint64_t) *bytes + offset_in_cluster;
501 l1_bits = s->l2_bits + s->cluster_bits;
503 /* compute how many bytes there are between the start of the cluster
504 * containing offset and the end of the l1 entry */
505 bytes_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1))
508 if (bytes_needed > bytes_available) {
509 bytes_needed = bytes_available;
514 /* seek to the l2 offset in the l1 table */
516 l1_index = offset >> l1_bits;
517 if (l1_index >= s->l1_size) {
518 ret = QCOW2_CLUSTER_UNALLOCATED;
522 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
524 ret = QCOW2_CLUSTER_UNALLOCATED;
528 if (offset_into_cluster(s, l2_offset)) {
529 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
530 " unaligned (L1 index: %#" PRIx64 ")",
531 l2_offset, l1_index);
535 /* load the l2 table in memory */
537 ret = l2_load(bs, l2_offset, &l2_table);
542 /* find the cluster offset for the given disk offset */
544 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
545 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
547 nb_clusters = size_to_clusters(s, bytes_needed);
548 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
549 * integers; the minimum cluster size is 512, so this assertion is always
551 assert(nb_clusters <= INT_MAX);
553 ret = qcow2_get_cluster_type(*cluster_offset);
555 case QCOW2_CLUSTER_COMPRESSED:
556 /* Compressed clusters can only be processed one by one */
558 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
560 case QCOW2_CLUSTER_ZERO:
561 if (s->qcow_version < 3) {
562 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
563 " in pre-v3 image (L2 offset: %#" PRIx64
564 ", L2 index: %#x)", l2_offset, l2_index);
568 c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index],
572 case QCOW2_CLUSTER_UNALLOCATED:
573 /* how many empty clusters ? */
574 c = count_contiguous_clusters_by_type(nb_clusters, &l2_table[l2_index],
575 QCOW2_CLUSTER_UNALLOCATED);
578 case QCOW2_CLUSTER_NORMAL:
579 /* how many allocated clusters ? */
580 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
581 &l2_table[l2_index], QCOW_OFLAG_ZERO);
582 *cluster_offset &= L2E_OFFSET_MASK;
583 if (offset_into_cluster(s, *cluster_offset)) {
584 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset %#"
585 PRIx64 " unaligned (L2 offset: %#" PRIx64
586 ", L2 index: %#x)", *cluster_offset,
587 l2_offset, l2_index);
596 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
598 bytes_available = (int64_t)c * s->cluster_size;
601 if (bytes_available > bytes_needed) {
602 bytes_available = bytes_needed;
605 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
606 * subtracting offset_in_cluster will therefore definitely yield something
607 * not exceeding UINT_MAX */
608 assert(bytes_available - offset_in_cluster <= UINT_MAX);
609 *bytes = bytes_available - offset_in_cluster;
614 qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
621 * for a given disk offset, load (and allocate if needed)
624 * the l2 table offset in the qcow2 file and the cluster index
625 * in the l2 table are given to the caller.
627 * Returns 0 on success, -errno in failure case
629 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
630 uint64_t **new_l2_table,
633 BDRVQcow2State *s = bs->opaque;
634 unsigned int l2_index;
635 uint64_t l1_index, l2_offset;
636 uint64_t *l2_table = NULL;
639 /* seek to the l2 offset in the l1 table */
641 l1_index = offset >> (s->l2_bits + s->cluster_bits);
642 if (l1_index >= s->l1_size) {
643 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
649 assert(l1_index < s->l1_size);
650 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
651 if (offset_into_cluster(s, l2_offset)) {
652 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
653 " unaligned (L1 index: %#" PRIx64 ")",
654 l2_offset, l1_index);
658 /* seek the l2 table of the given l2 offset */
660 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
661 /* load the l2 table in memory */
662 ret = l2_load(bs, l2_offset, &l2_table);
667 /* First allocate a new L2 table (and do COW if needed) */
668 ret = l2_allocate(bs, l1_index, &l2_table);
673 /* Then decrease the refcount of the old table */
675 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
676 QCOW2_DISCARD_OTHER);
680 /* find the cluster offset for the given disk offset */
682 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
684 *new_l2_table = l2_table;
685 *new_l2_index = l2_index;
691 * alloc_compressed_cluster_offset
693 * For a given offset of the disk image, return cluster offset in
696 * If the offset is not found, allocate a new compressed cluster.
698 * Return the cluster offset if successful,
699 * Return 0, otherwise.
703 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
707 BDRVQcow2State *s = bs->opaque;
710 int64_t cluster_offset;
713 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
718 /* Compression can't overwrite anything. Fail if the cluster was already
720 cluster_offset = be64_to_cpu(l2_table[l2_index]);
721 if (cluster_offset & L2E_OFFSET_MASK) {
722 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
726 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
727 if (cluster_offset < 0) {
728 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
732 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
733 (cluster_offset >> 9);
735 cluster_offset |= QCOW_OFLAG_COMPRESSED |
736 ((uint64_t)nb_csectors << s->csize_shift);
738 /* update L2 table */
740 /* compressed clusters never have the copied flag */
742 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
743 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
744 l2_table[l2_index] = cpu_to_be64(cluster_offset);
745 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
747 return cluster_offset;
750 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
752 BDRVQcow2State *s = bs->opaque;
755 if (r->nb_bytes == 0) {
759 qemu_co_mutex_unlock(&s->lock);
760 ret = do_perform_cow(bs, m->offset, m->alloc_offset, r->offset, r->nb_bytes);
761 qemu_co_mutex_lock(&s->lock);
768 * Before we update the L2 table to actually point to the new cluster, we
769 * need to be sure that the refcounts have been increased and COW was
772 qcow2_cache_depends_on_flush(s->l2_table_cache);
777 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
779 BDRVQcow2State *s = bs->opaque;
780 int i, j = 0, l2_index, ret;
781 uint64_t *old_cluster, *l2_table;
782 uint64_t cluster_offset = m->alloc_offset;
784 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
785 assert(m->nb_clusters > 0);
787 old_cluster = g_try_new(uint64_t, m->nb_clusters);
788 if (old_cluster == NULL) {
793 /* copy content of unmodified sectors */
794 ret = perform_cow(bs, m, &m->cow_start);
799 ret = perform_cow(bs, m, &m->cow_end);
804 /* Update L2 table. */
805 if (s->use_lazy_refcounts) {
806 qcow2_mark_dirty(bs);
808 if (qcow2_need_accurate_refcounts(s)) {
809 qcow2_cache_set_dependency(bs, s->l2_table_cache,
810 s->refcount_block_cache);
813 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
817 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
819 assert(l2_index + m->nb_clusters <= s->l2_size);
820 for (i = 0; i < m->nb_clusters; i++) {
821 /* if two concurrent writes happen to the same unallocated cluster
822 * each write allocates separate cluster and writes data concurrently.
823 * The first one to complete updates l2 table with pointer to its
824 * cluster the second one has to do RMW (which is done above by
825 * perform_cow()), update l2 table with its cluster pointer and free
826 * old cluster. This is what this loop does */
827 if (l2_table[l2_index + i] != 0) {
828 old_cluster[j++] = l2_table[l2_index + i];
831 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
832 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
836 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
839 * If this was a COW, we need to decrease the refcount of the old cluster.
841 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
842 * clusters), the next write will reuse them anyway.
844 if (!m->keep_old_clusters && j != 0) {
845 for (i = 0; i < j; i++) {
846 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
847 QCOW2_DISCARD_NEVER);
858 * Returns the number of contiguous clusters that can be used for an allocating
859 * write, but require COW to be performed (this includes yet unallocated space,
860 * which must copy from the backing file)
862 static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters,
863 uint64_t *l2_table, int l2_index)
867 for (i = 0; i < nb_clusters; i++) {
868 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
869 int cluster_type = qcow2_get_cluster_type(l2_entry);
871 switch(cluster_type) {
872 case QCOW2_CLUSTER_NORMAL:
873 if (l2_entry & QCOW_OFLAG_COPIED) {
877 case QCOW2_CLUSTER_UNALLOCATED:
878 case QCOW2_CLUSTER_COMPRESSED:
879 case QCOW2_CLUSTER_ZERO:
887 assert(i <= nb_clusters);
892 * Check if there already is an AIO write request in flight which allocates
893 * the same cluster. In this case we need to wait until the previous
894 * request has completed and updated the L2 table accordingly.
897 * 0 if there was no dependency. *cur_bytes indicates the number of
898 * bytes from guest_offset that can be read before the next
899 * dependency must be processed (or the request is complete)
901 * -EAGAIN if we had to wait for another request, previously gathered
902 * information on cluster allocation may be invalid now. The caller
903 * must start over anyway, so consider *cur_bytes undefined.
905 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
906 uint64_t *cur_bytes, QCowL2Meta **m)
908 BDRVQcow2State *s = bs->opaque;
909 QCowL2Meta *old_alloc;
910 uint64_t bytes = *cur_bytes;
912 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
914 uint64_t start = guest_offset;
915 uint64_t end = start + bytes;
916 uint64_t old_start = l2meta_cow_start(old_alloc);
917 uint64_t old_end = l2meta_cow_end(old_alloc);
919 if (end <= old_start || start >= old_end) {
920 /* No intersection */
922 if (start < old_start) {
923 /* Stop at the start of a running allocation */
924 bytes = old_start - start;
929 /* Stop if already an l2meta exists. After yielding, it wouldn't
930 * be valid any more, so we'd have to clean up the old L2Metas
931 * and deal with requests depending on them before starting to
932 * gather new ones. Not worth the trouble. */
933 if (bytes == 0 && *m) {
939 /* Wait for the dependency to complete. We need to recheck
940 * the free/allocated clusters when we continue. */
941 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
947 /* Make sure that existing clusters and new allocations are only used up to
948 * the next dependency if we shortened the request above */
955 * Checks how many already allocated clusters that don't require a copy on
956 * write there are at the given guest_offset (up to *bytes). If
957 * *host_offset is not zero, only physically contiguous clusters beginning at
958 * this host offset are counted.
960 * Note that guest_offset may not be cluster aligned. In this case, the
961 * returned *host_offset points to exact byte referenced by guest_offset and
962 * therefore isn't cluster aligned as well.
965 * 0: if no allocated clusters are available at the given offset.
966 * *bytes is normally unchanged. It is set to 0 if the cluster
967 * is allocated and doesn't need COW, but doesn't have the right
970 * 1: if allocated clusters that don't require a COW are available at
971 * the requested offset. *bytes may have decreased and describes
972 * the length of the area that can be written to.
974 * -errno: in error cases
976 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
977 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
979 BDRVQcow2State *s = bs->opaque;
981 uint64_t cluster_offset;
983 uint64_t nb_clusters;
984 unsigned int keep_clusters;
987 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
990 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset)
991 == offset_into_cluster(s, *host_offset));
994 * Calculate the number of clusters to look for. We stop at L2 table
995 * boundaries to keep things simple.
998 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1000 l2_index = offset_to_l2_index(s, guest_offset);
1001 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1002 assert(nb_clusters <= INT_MAX);
1004 /* Find L2 entry for the first involved cluster */
1005 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1010 cluster_offset = be64_to_cpu(l2_table[l2_index]);
1012 /* Check how many clusters are already allocated and don't need COW */
1013 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
1014 && (cluster_offset & QCOW_OFLAG_COPIED))
1016 /* If a specific host_offset is required, check it */
1017 bool offset_matches =
1018 (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1020 if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1021 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1022 "%#llx unaligned (guest offset: %#" PRIx64
1023 ")", cluster_offset & L2E_OFFSET_MASK,
1029 if (*host_offset != 0 && !offset_matches) {
1035 /* We keep all QCOW_OFLAG_COPIED clusters */
1037 count_contiguous_clusters(nb_clusters, s->cluster_size,
1038 &l2_table[l2_index],
1039 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1040 assert(keep_clusters <= nb_clusters);
1042 *bytes = MIN(*bytes,
1043 keep_clusters * s->cluster_size
1044 - offset_into_cluster(s, guest_offset));
1053 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1055 /* Only return a host offset if we actually made progress. Otherwise we
1056 * would make requirements for handle_alloc() that it can't fulfill */
1058 *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1059 + offset_into_cluster(s, guest_offset);
1066 * Allocates new clusters for the given guest_offset.
1068 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1069 * contain the number of clusters that have been allocated and are contiguous
1070 * in the image file.
1072 * If *host_offset is non-zero, it specifies the offset in the image file at
1073 * which the new clusters must start. *nb_clusters can be 0 on return in this
1074 * case if the cluster at host_offset is already in use. If *host_offset is
1075 * zero, the clusters can be allocated anywhere in the image file.
1077 * *host_offset is updated to contain the offset into the image file at which
1078 * the first allocated cluster starts.
1080 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1081 * function has been waiting for another request and the allocation must be
1082 * restarted, but the whole request should not be failed.
1084 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1085 uint64_t *host_offset, uint64_t *nb_clusters)
1087 BDRVQcow2State *s = bs->opaque;
1089 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1090 *host_offset, *nb_clusters);
1092 /* Allocate new clusters */
1093 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1094 if (*host_offset == 0) {
1095 int64_t cluster_offset =
1096 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1097 if (cluster_offset < 0) {
1098 return cluster_offset;
1100 *host_offset = cluster_offset;
1103 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1113 * Allocates new clusters for an area that either is yet unallocated or needs a
1114 * copy on write. If *host_offset is non-zero, clusters are only allocated if
1115 * the new allocation can match the specified host offset.
1117 * Note that guest_offset may not be cluster aligned. In this case, the
1118 * returned *host_offset points to exact byte referenced by guest_offset and
1119 * therefore isn't cluster aligned as well.
1122 * 0: if no clusters could be allocated. *bytes is set to 0,
1123 * *host_offset is left unchanged.
1125 * 1: if new clusters were allocated. *bytes may be decreased if the
1126 * new allocation doesn't cover all of the requested area.
1127 * *host_offset is updated to contain the host offset of the first
1128 * newly allocated cluster.
1130 * -errno: in error cases
1132 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1133 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1135 BDRVQcow2State *s = bs->opaque;
1139 uint64_t nb_clusters;
1141 bool keep_old_clusters = false;
1143 uint64_t alloc_cluster_offset = 0;
1145 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1150 * Calculate the number of clusters to look for. We stop at L2 table
1151 * boundaries to keep things simple.
1154 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1156 l2_index = offset_to_l2_index(s, guest_offset);
1157 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1158 assert(nb_clusters <= INT_MAX);
1160 /* Find L2 entry for the first involved cluster */
1161 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1166 entry = be64_to_cpu(l2_table[l2_index]);
1168 /* For the moment, overwrite compressed clusters one by one */
1169 if (entry & QCOW_OFLAG_COMPRESSED) {
1172 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1175 /* This function is only called when there were no non-COW clusters, so if
1176 * we can't find any unallocated or COW clusters either, something is
1177 * wrong with our code. */
1178 assert(nb_clusters > 0);
1180 if (qcow2_get_cluster_type(entry) == QCOW2_CLUSTER_ZERO &&
1181 (entry & L2E_OFFSET_MASK) != 0 && (entry & QCOW_OFLAG_COPIED) &&
1183 start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK)))
1185 /* Try to reuse preallocated zero clusters; contiguous normal clusters
1186 * would be fine, too, but count_cow_clusters() above has limited
1187 * nb_clusters already to a range of COW clusters */
1188 int preallocated_nb_clusters =
1189 count_contiguous_clusters(nb_clusters, s->cluster_size,
1190 &l2_table[l2_index], QCOW_OFLAG_COPIED);
1191 assert(preallocated_nb_clusters > 0);
1193 nb_clusters = preallocated_nb_clusters;
1194 alloc_cluster_offset = entry & L2E_OFFSET_MASK;
1196 /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2()
1197 * should not free them. */
1198 keep_old_clusters = true;
1201 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1203 if (!alloc_cluster_offset) {
1204 /* Allocate, if necessary at a given offset in the image file */
1205 alloc_cluster_offset = start_of_cluster(s, *host_offset);
1206 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1212 /* Can't extend contiguous allocation */
1213 if (nb_clusters == 0) {
1218 /* !*host_offset would overwrite the image header and is reserved for
1219 * "no host offset preferred". If 0 was a valid host offset, it'd
1220 * trigger the following overlap check; do that now to avoid having an
1221 * invalid value in *host_offset. */
1222 if (!alloc_cluster_offset) {
1223 ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset,
1224 nb_clusters * s->cluster_size);
1231 * Save info needed for meta data update.
1233 * requested_bytes: Number of bytes from the start of the first
1234 * newly allocated cluster to the end of the (possibly shortened
1235 * before) write request.
1237 * avail_bytes: Number of bytes from the start of the first
1238 * newly allocated to the end of the last newly allocated cluster.
1240 * nb_bytes: The number of bytes from the start of the first
1241 * newly allocated cluster to the end of the area that the write
1242 * request actually writes to (excluding COW at the end)
1244 uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1245 int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits);
1246 int nb_bytes = MIN(requested_bytes, avail_bytes);
1247 QCowL2Meta *old_m = *m;
1249 *m = g_malloc0(sizeof(**m));
1251 **m = (QCowL2Meta) {
1254 .alloc_offset = alloc_cluster_offset,
1255 .offset = start_of_cluster(s, guest_offset),
1256 .nb_clusters = nb_clusters,
1258 .keep_old_clusters = keep_old_clusters,
1262 .nb_bytes = offset_into_cluster(s, guest_offset),
1266 .nb_bytes = avail_bytes - nb_bytes,
1269 qemu_co_queue_init(&(*m)->dependent_requests);
1270 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1272 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1273 *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1274 assert(*bytes != 0);
1279 if (*m && (*m)->nb_clusters > 0) {
1280 QLIST_REMOVE(*m, next_in_flight);
1286 * alloc_cluster_offset
1288 * For a given offset on the virtual disk, find the cluster offset in qcow2
1289 * file. If the offset is not found, allocate a new cluster.
1291 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1292 * other fields in m are meaningless.
1294 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1295 * contiguous clusters that have been allocated. In this case, the other
1296 * fields of m are valid and contain information about the first allocated
1299 * If the request conflicts with another write request in flight, the coroutine
1300 * is queued and will be reentered when the dependency has completed.
1302 * Return 0 on success and -errno in error cases
1304 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1305 unsigned int *bytes, uint64_t *host_offset,
1308 BDRVQcow2State *s = bs->opaque;
1309 uint64_t start, remaining;
1310 uint64_t cluster_offset;
1314 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1326 if (!*host_offset) {
1327 *host_offset = start_of_cluster(s, cluster_offset);
1330 assert(remaining >= cur_bytes);
1333 remaining -= cur_bytes;
1334 cluster_offset += cur_bytes;
1336 if (remaining == 0) {
1340 cur_bytes = remaining;
1343 * Now start gathering as many contiguous clusters as possible:
1345 * 1. Check for overlaps with in-flight allocations
1347 * a) Overlap not in the first cluster -> shorten this request and
1348 * let the caller handle the rest in its next loop iteration.
1350 * b) Real overlaps of two requests. Yield and restart the search
1351 * for contiguous clusters (the situation could have changed
1352 * while we were sleeping)
1354 * c) TODO: Request starts in the same cluster as the in-flight
1355 * allocation ends. Shorten the COW of the in-fight allocation,
1356 * set cluster_offset to write to the same cluster and set up
1357 * the right synchronisation between the in-flight request and
1360 ret = handle_dependencies(bs, start, &cur_bytes, m);
1361 if (ret == -EAGAIN) {
1362 /* Currently handle_dependencies() doesn't yield if we already had
1363 * an allocation. If it did, we would have to clean up the L2Meta
1364 * structs before starting over. */
1367 } else if (ret < 0) {
1369 } else if (cur_bytes == 0) {
1372 /* handle_dependencies() may have decreased cur_bytes (shortened
1373 * the allocations below) so that the next dependency is processed
1374 * correctly during the next loop iteration. */
1378 * 2. Count contiguous COPIED clusters.
1380 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1385 } else if (cur_bytes == 0) {
1390 * 3. If the request still hasn't completed, allocate new clusters,
1391 * considering any cluster_offset of steps 1c or 2.
1393 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1399 assert(cur_bytes == 0);
1404 *bytes -= remaining;
1406 assert(*host_offset != 0);
1411 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1412 const uint8_t *buf, int buf_size)
1414 z_stream strm1, *strm = &strm1;
1417 memset(strm, 0, sizeof(*strm));
1419 strm->next_in = (uint8_t *)buf;
1420 strm->avail_in = buf_size;
1421 strm->next_out = out_buf;
1422 strm->avail_out = out_buf_size;
1424 ret = inflateInit2(strm, -12);
1427 ret = inflate(strm, Z_FINISH);
1428 out_len = strm->next_out - out_buf;
1429 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1430 out_len != out_buf_size) {
1438 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1440 BDRVQcow2State *s = bs->opaque;
1441 int ret, csize, nb_csectors, sector_offset;
1444 coffset = cluster_offset & s->cluster_offset_mask;
1445 if (s->cluster_cache_offset != coffset) {
1446 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1447 sector_offset = coffset & 511;
1448 csize = nb_csectors * 512 - sector_offset;
1449 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1450 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data,
1455 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1456 s->cluster_data + sector_offset, csize) < 0) {
1459 s->cluster_cache_offset = coffset;
1465 * This discards as many clusters of nb_clusters as possible at once (i.e.
1466 * all clusters in the same L2 table) and returns the number of discarded
1469 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1470 uint64_t nb_clusters, enum qcow2_discard_type type,
1473 BDRVQcow2State *s = bs->opaque;
1479 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1484 /* Limit nb_clusters to one L2 table */
1485 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1486 assert(nb_clusters <= INT_MAX);
1488 for (i = 0; i < nb_clusters; i++) {
1489 uint64_t old_l2_entry;
1491 old_l2_entry = be64_to_cpu(l2_table[l2_index + i]);
1494 * If full_discard is false, make sure that a discarded area reads back
1495 * as zeroes for v3 images (we cannot do it for v2 without actually
1496 * writing a zero-filled buffer). We can skip the operation if the
1497 * cluster is already marked as zero, or if it's unallocated and we
1498 * don't have a backing file.
1500 * TODO We might want to use bdrv_get_block_status(bs) here, but we're
1501 * holding s->lock, so that doesn't work today.
1503 * If full_discard is true, the sector should not read back as zeroes,
1504 * but rather fall through to the backing file.
1506 switch (qcow2_get_cluster_type(old_l2_entry)) {
1507 case QCOW2_CLUSTER_UNALLOCATED:
1508 if (full_discard || !bs->backing) {
1513 case QCOW2_CLUSTER_ZERO:
1514 /* Preallocated zero clusters should be discarded in any case */
1515 if (!full_discard && (old_l2_entry & L2E_OFFSET_MASK) == 0) {
1520 case QCOW2_CLUSTER_NORMAL:
1521 case QCOW2_CLUSTER_COMPRESSED:
1528 /* First remove L2 entries */
1529 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1530 if (!full_discard && s->qcow_version >= 3) {
1531 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1533 l2_table[l2_index + i] = cpu_to_be64(0);
1536 /* Then decrease the refcount */
1537 qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1540 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1545 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1546 int nb_sectors, enum qcow2_discard_type type, bool full_discard)
1548 BDRVQcow2State *s = bs->opaque;
1549 uint64_t end_offset;
1550 uint64_t nb_clusters;
1553 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1555 /* The caller must cluster-align start; round end down except at EOF */
1556 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1557 if (end_offset != bs->total_sectors * BDRV_SECTOR_SIZE) {
1558 end_offset = start_of_cluster(s, end_offset);
1561 nb_clusters = size_to_clusters(s, end_offset - offset);
1563 s->cache_discards = true;
1565 /* Each L2 table is handled by its own loop iteration */
1566 while (nb_clusters > 0) {
1567 ret = discard_single_l2(bs, offset, nb_clusters, type, full_discard);
1573 offset += (ret * s->cluster_size);
1578 s->cache_discards = false;
1579 qcow2_process_discards(bs, ret);
1585 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1586 * all clusters in the same L2 table) and returns the number of zeroed
1589 static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1590 uint64_t nb_clusters, int flags)
1592 BDRVQcow2State *s = bs->opaque;
1598 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1603 /* Limit nb_clusters to one L2 table */
1604 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1605 assert(nb_clusters <= INT_MAX);
1607 for (i = 0; i < nb_clusters; i++) {
1608 uint64_t old_offset;
1610 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1612 /* Update L2 entries */
1613 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1614 if (old_offset & QCOW_OFLAG_COMPRESSED || flags & BDRV_REQ_MAY_UNMAP) {
1615 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1616 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1618 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1622 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1627 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors,
1630 BDRVQcow2State *s = bs->opaque;
1631 uint64_t nb_clusters;
1634 /* The zero flag is only supported by version 3 and newer */
1635 if (s->qcow_version < 3) {
1639 /* Each L2 table is handled by its own loop iteration */
1640 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1642 s->cache_discards = true;
1644 while (nb_clusters > 0) {
1645 ret = zero_single_l2(bs, offset, nb_clusters, flags);
1651 offset += (ret * s->cluster_size);
1656 s->cache_discards = false;
1657 qcow2_process_discards(bs, ret);
1663 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1664 * non-backed non-pre-allocated zero clusters).
1666 * l1_entries and *visited_l1_entries are used to keep track of progress for
1667 * status_cb(). l1_entries contains the total number of L1 entries and
1668 * *visited_l1_entries counts all visited L1 entries.
1670 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1671 int l1_size, int64_t *visited_l1_entries,
1673 BlockDriverAmendStatusCB *status_cb,
1676 BDRVQcow2State *s = bs->opaque;
1677 bool is_active_l1 = (l1_table == s->l1_table);
1678 uint64_t *l2_table = NULL;
1682 if (!is_active_l1) {
1683 /* inactive L2 tables require a buffer to be stored in when loading
1685 l2_table = qemu_try_blockalign(bs->file->bs, s->cluster_size);
1686 if (l2_table == NULL) {
1691 for (i = 0; i < l1_size; i++) {
1692 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1693 bool l2_dirty = false;
1694 uint64_t l2_refcount;
1698 (*visited_l1_entries)++;
1700 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1705 if (offset_into_cluster(s, l2_offset)) {
1706 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1707 PRIx64 " unaligned (L1 index: %#x)",
1714 /* get active L2 tables from cache */
1715 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1716 (void **)&l2_table);
1718 /* load inactive L2 tables from disk */
1719 ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1720 (void *)l2_table, s->cluster_sectors);
1726 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1732 for (j = 0; j < s->l2_size; j++) {
1733 uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1734 int64_t offset = l2_entry & L2E_OFFSET_MASK;
1735 int cluster_type = qcow2_get_cluster_type(l2_entry);
1736 bool preallocated = offset != 0;
1738 if (cluster_type != QCOW2_CLUSTER_ZERO) {
1742 if (!preallocated) {
1744 /* not backed; therefore we can simply deallocate the
1751 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1757 if (l2_refcount > 1) {
1758 /* For shared L2 tables, set the refcount accordingly (it is
1759 * already 1 and needs to be l2_refcount) */
1760 ret = qcow2_update_cluster_refcount(bs,
1761 offset >> s->cluster_bits,
1762 refcount_diff(1, l2_refcount), false,
1763 QCOW2_DISCARD_OTHER);
1765 qcow2_free_clusters(bs, offset, s->cluster_size,
1766 QCOW2_DISCARD_OTHER);
1772 if (offset_into_cluster(s, offset)) {
1773 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1774 "%#" PRIx64 " unaligned (L2 offset: %#"
1775 PRIx64 ", L2 index: %#x)", offset,
1777 if (!preallocated) {
1778 qcow2_free_clusters(bs, offset, s->cluster_size,
1779 QCOW2_DISCARD_ALWAYS);
1785 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
1787 if (!preallocated) {
1788 qcow2_free_clusters(bs, offset, s->cluster_size,
1789 QCOW2_DISCARD_ALWAYS);
1794 ret = bdrv_pwrite_zeroes(bs->file, offset, s->cluster_size, 0);
1796 if (!preallocated) {
1797 qcow2_free_clusters(bs, offset, s->cluster_size,
1798 QCOW2_DISCARD_ALWAYS);
1803 if (l2_refcount == 1) {
1804 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1806 l2_table[j] = cpu_to_be64(offset);
1813 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1814 qcow2_cache_depends_on_flush(s->l2_table_cache);
1816 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1819 ret = qcow2_pre_write_overlap_check(bs,
1820 QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset,
1826 ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1827 (void *)l2_table, s->cluster_sectors);
1834 (*visited_l1_entries)++;
1836 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1844 if (!is_active_l1) {
1845 qemu_vfree(l2_table);
1847 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1854 * For backed images, expands all zero clusters on the image. For non-backed
1855 * images, deallocates all non-pre-allocated zero clusters (and claims the
1856 * allocation for pre-allocated ones). This is important for downgrading to a
1857 * qcow2 version which doesn't yet support metadata zero clusters.
1859 int qcow2_expand_zero_clusters(BlockDriverState *bs,
1860 BlockDriverAmendStatusCB *status_cb,
1863 BDRVQcow2State *s = bs->opaque;
1864 uint64_t *l1_table = NULL;
1865 int64_t l1_entries = 0, visited_l1_entries = 0;
1870 l1_entries = s->l1_size;
1871 for (i = 0; i < s->nb_snapshots; i++) {
1872 l1_entries += s->snapshots[i].l1_size;
1876 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
1877 &visited_l1_entries, l1_entries,
1878 status_cb, cb_opaque);
1883 /* Inactive L1 tables may point to active L2 tables - therefore it is
1884 * necessary to flush the L2 table cache before trying to access the L2
1885 * tables pointed to by inactive L1 entries (else we might try to expand
1886 * zero clusters that have already been expanded); furthermore, it is also
1887 * necessary to empty the L2 table cache, since it may contain tables which
1888 * are now going to be modified directly on disk, bypassing the cache.
1889 * qcow2_cache_empty() does both for us. */
1890 ret = qcow2_cache_empty(bs, s->l2_table_cache);
1895 for (i = 0; i < s->nb_snapshots; i++) {
1896 int l1_sectors = DIV_ROUND_UP(s->snapshots[i].l1_size *
1897 sizeof(uint64_t), BDRV_SECTOR_SIZE);
1899 l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
1901 ret = bdrv_read(bs->file,
1902 s->snapshots[i].l1_table_offset / BDRV_SECTOR_SIZE,
1903 (void *)l1_table, l1_sectors);
1908 for (j = 0; j < s->snapshots[i].l1_size; j++) {
1909 be64_to_cpus(&l1_table[j]);
1912 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
1913 &visited_l1_entries, l1_entries,
1914 status_cb, cb_opaque);