]> Git Repo - qemu.git/blob - memory.c
memory: Make eventfd adhere to device endianness
[qemu.git] / memory.c
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <[email protected]>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15
16 #include "memory.h"
17 #include "exec-memory.h"
18 #include "ioport.h"
19 #include "bitops.h"
20 #include "kvm.h"
21 #include <assert.h>
22
23 #define WANT_EXEC_OBSOLETE
24 #include "exec-obsolete.h"
25
26 unsigned memory_region_transaction_depth = 0;
27 static bool global_dirty_log = false;
28
29 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
30     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
31
32 typedef struct AddrRange AddrRange;
33
34 /*
35  * Note using signed integers limits us to physical addresses at most
36  * 63 bits wide.  They are needed for negative offsetting in aliases
37  * (large MemoryRegion::alias_offset).
38  */
39 struct AddrRange {
40     Int128 start;
41     Int128 size;
42 };
43
44 static AddrRange addrrange_make(Int128 start, Int128 size)
45 {
46     return (AddrRange) { start, size };
47 }
48
49 static bool addrrange_equal(AddrRange r1, AddrRange r2)
50 {
51     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
52 }
53
54 static Int128 addrrange_end(AddrRange r)
55 {
56     return int128_add(r.start, r.size);
57 }
58
59 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
60 {
61     int128_addto(&range.start, delta);
62     return range;
63 }
64
65 static bool addrrange_contains(AddrRange range, Int128 addr)
66 {
67     return int128_ge(addr, range.start)
68         && int128_lt(addr, addrrange_end(range));
69 }
70
71 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
72 {
73     return addrrange_contains(r1, r2.start)
74         || addrrange_contains(r2, r1.start);
75 }
76
77 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
78 {
79     Int128 start = int128_max(r1.start, r2.start);
80     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
81     return addrrange_make(start, int128_sub(end, start));
82 }
83
84 enum ListenerDirection { Forward, Reverse };
85
86 static bool memory_listener_match(MemoryListener *listener,
87                                   MemoryRegionSection *section)
88 {
89     return !listener->address_space_filter
90         || listener->address_space_filter == section->address_space;
91 }
92
93 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
94     do {                                                                \
95         MemoryListener *_listener;                                      \
96                                                                         \
97         switch (_direction) {                                           \
98         case Forward:                                                   \
99             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
100                 _listener->_callback(_listener, ##_args);               \
101             }                                                           \
102             break;                                                      \
103         case Reverse:                                                   \
104             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
105                                    memory_listeners, link) {            \
106                 _listener->_callback(_listener, ##_args);               \
107             }                                                           \
108             break;                                                      \
109         default:                                                        \
110             abort();                                                    \
111         }                                                               \
112     } while (0)
113
114 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
115     do {                                                                \
116         MemoryListener *_listener;                                      \
117                                                                         \
118         switch (_direction) {                                           \
119         case Forward:                                                   \
120             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
121                 if (memory_listener_match(_listener, _section)) {       \
122                     _listener->_callback(_listener, _section, ##_args); \
123                 }                                                       \
124             }                                                           \
125             break;                                                      \
126         case Reverse:                                                   \
127             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
128                                    memory_listeners, link) {            \
129                 if (memory_listener_match(_listener, _section)) {       \
130                     _listener->_callback(_listener, _section, ##_args); \
131                 }                                                       \
132             }                                                           \
133             break;                                                      \
134         default:                                                        \
135             abort();                                                    \
136         }                                                               \
137     } while (0)
138
139 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback)            \
140     MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) {       \
141         .mr = (fr)->mr,                                                 \
142         .address_space = (as)->root,                                    \
143         .offset_within_region = (fr)->offset_in_region,                 \
144         .size = int128_get64((fr)->addr.size),                          \
145         .offset_within_address_space = int128_get64((fr)->addr.start),  \
146         .readonly = (fr)->readonly,                                     \
147               }))
148
149 struct CoalescedMemoryRange {
150     AddrRange addr;
151     QTAILQ_ENTRY(CoalescedMemoryRange) link;
152 };
153
154 struct MemoryRegionIoeventfd {
155     AddrRange addr;
156     bool match_data;
157     uint64_t data;
158     EventNotifier *e;
159 };
160
161 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
162                                            MemoryRegionIoeventfd b)
163 {
164     if (int128_lt(a.addr.start, b.addr.start)) {
165         return true;
166     } else if (int128_gt(a.addr.start, b.addr.start)) {
167         return false;
168     } else if (int128_lt(a.addr.size, b.addr.size)) {
169         return true;
170     } else if (int128_gt(a.addr.size, b.addr.size)) {
171         return false;
172     } else if (a.match_data < b.match_data) {
173         return true;
174     } else  if (a.match_data > b.match_data) {
175         return false;
176     } else if (a.match_data) {
177         if (a.data < b.data) {
178             return true;
179         } else if (a.data > b.data) {
180             return false;
181         }
182     }
183     if (a.e < b.e) {
184         return true;
185     } else if (a.e > b.e) {
186         return false;
187     }
188     return false;
189 }
190
191 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
192                                           MemoryRegionIoeventfd b)
193 {
194     return !memory_region_ioeventfd_before(a, b)
195         && !memory_region_ioeventfd_before(b, a);
196 }
197
198 typedef struct FlatRange FlatRange;
199 typedef struct FlatView FlatView;
200
201 /* Range of memory in the global map.  Addresses are absolute. */
202 struct FlatRange {
203     MemoryRegion *mr;
204     target_phys_addr_t offset_in_region;
205     AddrRange addr;
206     uint8_t dirty_log_mask;
207     bool readable;
208     bool readonly;
209 };
210
211 /* Flattened global view of current active memory hierarchy.  Kept in sorted
212  * order.
213  */
214 struct FlatView {
215     FlatRange *ranges;
216     unsigned nr;
217     unsigned nr_allocated;
218 };
219
220 typedef struct AddressSpace AddressSpace;
221 typedef struct AddressSpaceOps AddressSpaceOps;
222
223 /* A system address space - I/O, memory, etc. */
224 struct AddressSpace {
225     MemoryRegion *root;
226     FlatView current_map;
227     int ioeventfd_nb;
228     MemoryRegionIoeventfd *ioeventfds;
229 };
230
231 #define FOR_EACH_FLAT_RANGE(var, view)          \
232     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
233
234 static bool flatrange_equal(FlatRange *a, FlatRange *b)
235 {
236     return a->mr == b->mr
237         && addrrange_equal(a->addr, b->addr)
238         && a->offset_in_region == b->offset_in_region
239         && a->readable == b->readable
240         && a->readonly == b->readonly;
241 }
242
243 static void flatview_init(FlatView *view)
244 {
245     view->ranges = NULL;
246     view->nr = 0;
247     view->nr_allocated = 0;
248 }
249
250 /* Insert a range into a given position.  Caller is responsible for maintaining
251  * sorting order.
252  */
253 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
254 {
255     if (view->nr == view->nr_allocated) {
256         view->nr_allocated = MAX(2 * view->nr, 10);
257         view->ranges = g_realloc(view->ranges,
258                                     view->nr_allocated * sizeof(*view->ranges));
259     }
260     memmove(view->ranges + pos + 1, view->ranges + pos,
261             (view->nr - pos) * sizeof(FlatRange));
262     view->ranges[pos] = *range;
263     ++view->nr;
264 }
265
266 static void flatview_destroy(FlatView *view)
267 {
268     g_free(view->ranges);
269 }
270
271 static bool can_merge(FlatRange *r1, FlatRange *r2)
272 {
273     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
274         && r1->mr == r2->mr
275         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
276                                 r1->addr.size),
277                      int128_make64(r2->offset_in_region))
278         && r1->dirty_log_mask == r2->dirty_log_mask
279         && r1->readable == r2->readable
280         && r1->readonly == r2->readonly;
281 }
282
283 /* Attempt to simplify a view by merging ajacent ranges */
284 static void flatview_simplify(FlatView *view)
285 {
286     unsigned i, j;
287
288     i = 0;
289     while (i < view->nr) {
290         j = i + 1;
291         while (j < view->nr
292                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
293             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
294             ++j;
295         }
296         ++i;
297         memmove(&view->ranges[i], &view->ranges[j],
298                 (view->nr - j) * sizeof(view->ranges[j]));
299         view->nr -= j - i;
300     }
301 }
302
303 static void memory_region_read_accessor(void *opaque,
304                                         target_phys_addr_t addr,
305                                         uint64_t *value,
306                                         unsigned size,
307                                         unsigned shift,
308                                         uint64_t mask)
309 {
310     MemoryRegion *mr = opaque;
311     uint64_t tmp;
312
313     if (mr->flush_coalesced_mmio) {
314         qemu_flush_coalesced_mmio_buffer();
315     }
316     tmp = mr->ops->read(mr->opaque, addr, size);
317     *value |= (tmp & mask) << shift;
318 }
319
320 static void memory_region_write_accessor(void *opaque,
321                                          target_phys_addr_t addr,
322                                          uint64_t *value,
323                                          unsigned size,
324                                          unsigned shift,
325                                          uint64_t mask)
326 {
327     MemoryRegion *mr = opaque;
328     uint64_t tmp;
329
330     if (mr->flush_coalesced_mmio) {
331         qemu_flush_coalesced_mmio_buffer();
332     }
333     tmp = (*value >> shift) & mask;
334     mr->ops->write(mr->opaque, addr, tmp, size);
335 }
336
337 static void access_with_adjusted_size(target_phys_addr_t addr,
338                                       uint64_t *value,
339                                       unsigned size,
340                                       unsigned access_size_min,
341                                       unsigned access_size_max,
342                                       void (*access)(void *opaque,
343                                                      target_phys_addr_t addr,
344                                                      uint64_t *value,
345                                                      unsigned size,
346                                                      unsigned shift,
347                                                      uint64_t mask),
348                                       void *opaque)
349 {
350     uint64_t access_mask;
351     unsigned access_size;
352     unsigned i;
353
354     if (!access_size_min) {
355         access_size_min = 1;
356     }
357     if (!access_size_max) {
358         access_size_max = 4;
359     }
360     access_size = MAX(MIN(size, access_size_max), access_size_min);
361     access_mask = -1ULL >> (64 - access_size * 8);
362     for (i = 0; i < size; i += access_size) {
363         /* FIXME: big-endian support */
364         access(opaque, addr + i, value, access_size, i * 8, access_mask);
365     }
366 }
367
368 static AddressSpace address_space_memory;
369
370 static const MemoryRegionPortio *find_portio(MemoryRegion *mr, uint64_t offset,
371                                              unsigned width, bool write)
372 {
373     const MemoryRegionPortio *mrp;
374
375     for (mrp = mr->ops->old_portio; mrp->size; ++mrp) {
376         if (offset >= mrp->offset && offset < mrp->offset + mrp->len
377             && width == mrp->size
378             && (write ? (bool)mrp->write : (bool)mrp->read)) {
379             return mrp;
380         }
381     }
382     return NULL;
383 }
384
385 static void memory_region_iorange_read(IORange *iorange,
386                                        uint64_t offset,
387                                        unsigned width,
388                                        uint64_t *data)
389 {
390     MemoryRegionIORange *mrio
391         = container_of(iorange, MemoryRegionIORange, iorange);
392     MemoryRegion *mr = mrio->mr;
393
394     offset += mrio->offset;
395     if (mr->ops->old_portio) {
396         const MemoryRegionPortio *mrp = find_portio(mr, offset - mrio->offset,
397                                                     width, false);
398
399         *data = ((uint64_t)1 << (width * 8)) - 1;
400         if (mrp) {
401             *data = mrp->read(mr->opaque, offset);
402         } else if (width == 2) {
403             mrp = find_portio(mr, offset - mrio->offset, 1, false);
404             assert(mrp);
405             *data = mrp->read(mr->opaque, offset) |
406                     (mrp->read(mr->opaque, offset + 1) << 8);
407         }
408         return;
409     }
410     *data = 0;
411     access_with_adjusted_size(offset, data, width,
412                               mr->ops->impl.min_access_size,
413                               mr->ops->impl.max_access_size,
414                               memory_region_read_accessor, mr);
415 }
416
417 static void memory_region_iorange_write(IORange *iorange,
418                                         uint64_t offset,
419                                         unsigned width,
420                                         uint64_t data)
421 {
422     MemoryRegionIORange *mrio
423         = container_of(iorange, MemoryRegionIORange, iorange);
424     MemoryRegion *mr = mrio->mr;
425
426     offset += mrio->offset;
427     if (mr->ops->old_portio) {
428         const MemoryRegionPortio *mrp = find_portio(mr, offset - mrio->offset,
429                                                     width, true);
430
431         if (mrp) {
432             mrp->write(mr->opaque, offset, data);
433         } else if (width == 2) {
434             mrp = find_portio(mr, offset - mrio->offset, 1, true);
435             assert(mrp);
436             mrp->write(mr->opaque, offset, data & 0xff);
437             mrp->write(mr->opaque, offset + 1, data >> 8);
438         }
439         return;
440     }
441     access_with_adjusted_size(offset, &data, width,
442                               mr->ops->impl.min_access_size,
443                               mr->ops->impl.max_access_size,
444                               memory_region_write_accessor, mr);
445 }
446
447 static void memory_region_iorange_destructor(IORange *iorange)
448 {
449     g_free(container_of(iorange, MemoryRegionIORange, iorange));
450 }
451
452 const IORangeOps memory_region_iorange_ops = {
453     .read = memory_region_iorange_read,
454     .write = memory_region_iorange_write,
455     .destructor = memory_region_iorange_destructor,
456 };
457
458 static AddressSpace address_space_io;
459
460 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
461 {
462     while (mr->parent) {
463         mr = mr->parent;
464     }
465     if (mr == address_space_memory.root) {
466         return &address_space_memory;
467     }
468     if (mr == address_space_io.root) {
469         return &address_space_io;
470     }
471     abort();
472 }
473
474 /* Render a memory region into the global view.  Ranges in @view obscure
475  * ranges in @mr.
476  */
477 static void render_memory_region(FlatView *view,
478                                  MemoryRegion *mr,
479                                  Int128 base,
480                                  AddrRange clip,
481                                  bool readonly)
482 {
483     MemoryRegion *subregion;
484     unsigned i;
485     target_phys_addr_t offset_in_region;
486     Int128 remain;
487     Int128 now;
488     FlatRange fr;
489     AddrRange tmp;
490
491     if (!mr->enabled) {
492         return;
493     }
494
495     int128_addto(&base, int128_make64(mr->addr));
496     readonly |= mr->readonly;
497
498     tmp = addrrange_make(base, mr->size);
499
500     if (!addrrange_intersects(tmp, clip)) {
501         return;
502     }
503
504     clip = addrrange_intersection(tmp, clip);
505
506     if (mr->alias) {
507         int128_subfrom(&base, int128_make64(mr->alias->addr));
508         int128_subfrom(&base, int128_make64(mr->alias_offset));
509         render_memory_region(view, mr->alias, base, clip, readonly);
510         return;
511     }
512
513     /* Render subregions in priority order. */
514     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
515         render_memory_region(view, subregion, base, clip, readonly);
516     }
517
518     if (!mr->terminates) {
519         return;
520     }
521
522     offset_in_region = int128_get64(int128_sub(clip.start, base));
523     base = clip.start;
524     remain = clip.size;
525
526     /* Render the region itself into any gaps left by the current view. */
527     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
528         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
529             continue;
530         }
531         if (int128_lt(base, view->ranges[i].addr.start)) {
532             now = int128_min(remain,
533                              int128_sub(view->ranges[i].addr.start, base));
534             fr.mr = mr;
535             fr.offset_in_region = offset_in_region;
536             fr.addr = addrrange_make(base, now);
537             fr.dirty_log_mask = mr->dirty_log_mask;
538             fr.readable = mr->readable;
539             fr.readonly = readonly;
540             flatview_insert(view, i, &fr);
541             ++i;
542             int128_addto(&base, now);
543             offset_in_region += int128_get64(now);
544             int128_subfrom(&remain, now);
545         }
546         if (int128_eq(base, view->ranges[i].addr.start)) {
547             now = int128_min(remain, view->ranges[i].addr.size);
548             int128_addto(&base, now);
549             offset_in_region += int128_get64(now);
550             int128_subfrom(&remain, now);
551         }
552     }
553     if (int128_nz(remain)) {
554         fr.mr = mr;
555         fr.offset_in_region = offset_in_region;
556         fr.addr = addrrange_make(base, remain);
557         fr.dirty_log_mask = mr->dirty_log_mask;
558         fr.readable = mr->readable;
559         fr.readonly = readonly;
560         flatview_insert(view, i, &fr);
561     }
562 }
563
564 /* Render a memory topology into a list of disjoint absolute ranges. */
565 static FlatView generate_memory_topology(MemoryRegion *mr)
566 {
567     FlatView view;
568
569     flatview_init(&view);
570
571     render_memory_region(&view, mr, int128_zero(),
572                          addrrange_make(int128_zero(), int128_2_64()), false);
573     flatview_simplify(&view);
574
575     return view;
576 }
577
578 static void address_space_add_del_ioeventfds(AddressSpace *as,
579                                              MemoryRegionIoeventfd *fds_new,
580                                              unsigned fds_new_nb,
581                                              MemoryRegionIoeventfd *fds_old,
582                                              unsigned fds_old_nb)
583 {
584     unsigned iold, inew;
585     MemoryRegionIoeventfd *fd;
586     MemoryRegionSection section;
587
588     /* Generate a symmetric difference of the old and new fd sets, adding
589      * and deleting as necessary.
590      */
591
592     iold = inew = 0;
593     while (iold < fds_old_nb || inew < fds_new_nb) {
594         if (iold < fds_old_nb
595             && (inew == fds_new_nb
596                 || memory_region_ioeventfd_before(fds_old[iold],
597                                                   fds_new[inew]))) {
598             fd = &fds_old[iold];
599             section = (MemoryRegionSection) {
600                 .address_space = as->root,
601                 .offset_within_address_space = int128_get64(fd->addr.start),
602                 .size = int128_get64(fd->addr.size),
603             };
604             MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
605                                  fd->match_data, fd->data, fd->e);
606             ++iold;
607         } else if (inew < fds_new_nb
608                    && (iold == fds_old_nb
609                        || memory_region_ioeventfd_before(fds_new[inew],
610                                                          fds_old[iold]))) {
611             fd = &fds_new[inew];
612             section = (MemoryRegionSection) {
613                 .address_space = as->root,
614                 .offset_within_address_space = int128_get64(fd->addr.start),
615                 .size = int128_get64(fd->addr.size),
616             };
617             MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
618                                  fd->match_data, fd->data, fd->e);
619             ++inew;
620         } else {
621             ++iold;
622             ++inew;
623         }
624     }
625 }
626
627 static void address_space_update_ioeventfds(AddressSpace *as)
628 {
629     FlatRange *fr;
630     unsigned ioeventfd_nb = 0;
631     MemoryRegionIoeventfd *ioeventfds = NULL;
632     AddrRange tmp;
633     unsigned i;
634
635     FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
636         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
637             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
638                                   int128_sub(fr->addr.start,
639                                              int128_make64(fr->offset_in_region)));
640             if (addrrange_intersects(fr->addr, tmp)) {
641                 ++ioeventfd_nb;
642                 ioeventfds = g_realloc(ioeventfds,
643                                           ioeventfd_nb * sizeof(*ioeventfds));
644                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
645                 ioeventfds[ioeventfd_nb-1].addr = tmp;
646             }
647         }
648     }
649
650     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
651                                      as->ioeventfds, as->ioeventfd_nb);
652
653     g_free(as->ioeventfds);
654     as->ioeventfds = ioeventfds;
655     as->ioeventfd_nb = ioeventfd_nb;
656 }
657
658 static void address_space_update_topology_pass(AddressSpace *as,
659                                                FlatView old_view,
660                                                FlatView new_view,
661                                                bool adding)
662 {
663     unsigned iold, inew;
664     FlatRange *frold, *frnew;
665
666     /* Generate a symmetric difference of the old and new memory maps.
667      * Kill ranges in the old map, and instantiate ranges in the new map.
668      */
669     iold = inew = 0;
670     while (iold < old_view.nr || inew < new_view.nr) {
671         if (iold < old_view.nr) {
672             frold = &old_view.ranges[iold];
673         } else {
674             frold = NULL;
675         }
676         if (inew < new_view.nr) {
677             frnew = &new_view.ranges[inew];
678         } else {
679             frnew = NULL;
680         }
681
682         if (frold
683             && (!frnew
684                 || int128_lt(frold->addr.start, frnew->addr.start)
685                 || (int128_eq(frold->addr.start, frnew->addr.start)
686                     && !flatrange_equal(frold, frnew)))) {
687             /* In old, but (not in new, or in new but attributes changed). */
688
689             if (!adding) {
690                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
691             }
692
693             ++iold;
694         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
695             /* In both (logging may have changed) */
696
697             if (adding) {
698                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
699                 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
700                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
701                 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
702                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
703                 }
704             }
705
706             ++iold;
707             ++inew;
708         } else {
709             /* In new */
710
711             if (adding) {
712                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
713             }
714
715             ++inew;
716         }
717     }
718 }
719
720
721 static void address_space_update_topology(AddressSpace *as)
722 {
723     FlatView old_view = as->current_map;
724     FlatView new_view = generate_memory_topology(as->root);
725
726     address_space_update_topology_pass(as, old_view, new_view, false);
727     address_space_update_topology_pass(as, old_view, new_view, true);
728
729     as->current_map = new_view;
730     flatview_destroy(&old_view);
731     address_space_update_ioeventfds(as);
732 }
733
734 void memory_region_transaction_begin(void)
735 {
736     qemu_flush_coalesced_mmio_buffer();
737     ++memory_region_transaction_depth;
738 }
739
740 void memory_region_transaction_commit(void)
741 {
742     assert(memory_region_transaction_depth);
743     --memory_region_transaction_depth;
744     if (!memory_region_transaction_depth) {
745         MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
746
747         if (address_space_memory.root) {
748             address_space_update_topology(&address_space_memory);
749         }
750         if (address_space_io.root) {
751             address_space_update_topology(&address_space_io);
752         }
753
754         MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
755     }
756 }
757
758 static void memory_region_destructor_none(MemoryRegion *mr)
759 {
760 }
761
762 static void memory_region_destructor_ram(MemoryRegion *mr)
763 {
764     qemu_ram_free(mr->ram_addr);
765 }
766
767 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
768 {
769     qemu_ram_free_from_ptr(mr->ram_addr);
770 }
771
772 static void memory_region_destructor_iomem(MemoryRegion *mr)
773 {
774 }
775
776 static void memory_region_destructor_rom_device(MemoryRegion *mr)
777 {
778     qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
779 }
780
781 static bool memory_region_wrong_endianness(MemoryRegion *mr)
782 {
783 #ifdef TARGET_WORDS_BIGENDIAN
784     return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
785 #else
786     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
787 #endif
788 }
789
790 void memory_region_init(MemoryRegion *mr,
791                         const char *name,
792                         uint64_t size)
793 {
794     mr->ops = NULL;
795     mr->parent = NULL;
796     mr->size = int128_make64(size);
797     if (size == UINT64_MAX) {
798         mr->size = int128_2_64();
799     }
800     mr->addr = 0;
801     mr->subpage = false;
802     mr->enabled = true;
803     mr->terminates = false;
804     mr->ram = false;
805     mr->readable = true;
806     mr->readonly = false;
807     mr->rom_device = false;
808     mr->destructor = memory_region_destructor_none;
809     mr->priority = 0;
810     mr->may_overlap = false;
811     mr->alias = NULL;
812     QTAILQ_INIT(&mr->subregions);
813     memset(&mr->subregions_link, 0, sizeof mr->subregions_link);
814     QTAILQ_INIT(&mr->coalesced);
815     mr->name = g_strdup(name);
816     mr->dirty_log_mask = 0;
817     mr->ioeventfd_nb = 0;
818     mr->ioeventfds = NULL;
819     mr->flush_coalesced_mmio = false;
820 }
821
822 static bool memory_region_access_valid(MemoryRegion *mr,
823                                        target_phys_addr_t addr,
824                                        unsigned size,
825                                        bool is_write)
826 {
827     if (mr->ops->valid.accepts
828         && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write)) {
829         return false;
830     }
831
832     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
833         return false;
834     }
835
836     /* Treat zero as compatibility all valid */
837     if (!mr->ops->valid.max_access_size) {
838         return true;
839     }
840
841     if (size > mr->ops->valid.max_access_size
842         || size < mr->ops->valid.min_access_size) {
843         return false;
844     }
845     return true;
846 }
847
848 static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
849                                              target_phys_addr_t addr,
850                                              unsigned size)
851 {
852     uint64_t data = 0;
853
854     if (!memory_region_access_valid(mr, addr, size, false)) {
855         return -1U; /* FIXME: better signalling */
856     }
857
858     if (!mr->ops->read) {
859         return mr->ops->old_mmio.read[bitops_ffsl(size)](mr->opaque, addr);
860     }
861
862     /* FIXME: support unaligned access */
863     access_with_adjusted_size(addr, &data, size,
864                               mr->ops->impl.min_access_size,
865                               mr->ops->impl.max_access_size,
866                               memory_region_read_accessor, mr);
867
868     return data;
869 }
870
871 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
872 {
873     if (memory_region_wrong_endianness(mr)) {
874         switch (size) {
875         case 1:
876             break;
877         case 2:
878             *data = bswap16(*data);
879             break;
880         case 4:
881             *data = bswap32(*data);
882             break;
883         default:
884             abort();
885         }
886     }
887 }
888
889 static uint64_t memory_region_dispatch_read(MemoryRegion *mr,
890                                             target_phys_addr_t addr,
891                                             unsigned size)
892 {
893     uint64_t ret;
894
895     ret = memory_region_dispatch_read1(mr, addr, size);
896     adjust_endianness(mr, &ret, size);
897     return ret;
898 }
899
900 static void memory_region_dispatch_write(MemoryRegion *mr,
901                                          target_phys_addr_t addr,
902                                          uint64_t data,
903                                          unsigned size)
904 {
905     if (!memory_region_access_valid(mr, addr, size, true)) {
906         return; /* FIXME: better signalling */
907     }
908
909     adjust_endianness(mr, &data, size);
910
911     if (!mr->ops->write) {
912         mr->ops->old_mmio.write[bitops_ffsl(size)](mr->opaque, addr, data);
913         return;
914     }
915
916     /* FIXME: support unaligned access */
917     access_with_adjusted_size(addr, &data, size,
918                               mr->ops->impl.min_access_size,
919                               mr->ops->impl.max_access_size,
920                               memory_region_write_accessor, mr);
921 }
922
923 void memory_region_init_io(MemoryRegion *mr,
924                            const MemoryRegionOps *ops,
925                            void *opaque,
926                            const char *name,
927                            uint64_t size)
928 {
929     memory_region_init(mr, name, size);
930     mr->ops = ops;
931     mr->opaque = opaque;
932     mr->terminates = true;
933     mr->destructor = memory_region_destructor_iomem;
934     mr->ram_addr = ~(ram_addr_t)0;
935 }
936
937 void memory_region_init_ram(MemoryRegion *mr,
938                             const char *name,
939                             uint64_t size)
940 {
941     memory_region_init(mr, name, size);
942     mr->ram = true;
943     mr->terminates = true;
944     mr->destructor = memory_region_destructor_ram;
945     mr->ram_addr = qemu_ram_alloc(size, mr);
946 }
947
948 void memory_region_init_ram_ptr(MemoryRegion *mr,
949                                 const char *name,
950                                 uint64_t size,
951                                 void *ptr)
952 {
953     memory_region_init(mr, name, size);
954     mr->ram = true;
955     mr->terminates = true;
956     mr->destructor = memory_region_destructor_ram_from_ptr;
957     mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr);
958 }
959
960 void memory_region_init_alias(MemoryRegion *mr,
961                               const char *name,
962                               MemoryRegion *orig,
963                               target_phys_addr_t offset,
964                               uint64_t size)
965 {
966     memory_region_init(mr, name, size);
967     mr->alias = orig;
968     mr->alias_offset = offset;
969 }
970
971 void memory_region_init_rom_device(MemoryRegion *mr,
972                                    const MemoryRegionOps *ops,
973                                    void *opaque,
974                                    const char *name,
975                                    uint64_t size)
976 {
977     memory_region_init(mr, name, size);
978     mr->ops = ops;
979     mr->opaque = opaque;
980     mr->terminates = true;
981     mr->rom_device = true;
982     mr->destructor = memory_region_destructor_rom_device;
983     mr->ram_addr = qemu_ram_alloc(size, mr);
984 }
985
986 static uint64_t invalid_read(void *opaque, target_phys_addr_t addr,
987                              unsigned size)
988 {
989     MemoryRegion *mr = opaque;
990
991     if (!mr->warning_printed) {
992         fprintf(stderr, "Invalid read from memory region %s\n", mr->name);
993         mr->warning_printed = true;
994     }
995     return -1U;
996 }
997
998 static void invalid_write(void *opaque, target_phys_addr_t addr, uint64_t data,
999                           unsigned size)
1000 {
1001     MemoryRegion *mr = opaque;
1002
1003     if (!mr->warning_printed) {
1004         fprintf(stderr, "Invalid write to memory region %s\n", mr->name);
1005         mr->warning_printed = true;
1006     }
1007 }
1008
1009 static const MemoryRegionOps reservation_ops = {
1010     .read = invalid_read,
1011     .write = invalid_write,
1012     .endianness = DEVICE_NATIVE_ENDIAN,
1013 };
1014
1015 void memory_region_init_reservation(MemoryRegion *mr,
1016                                     const char *name,
1017                                     uint64_t size)
1018 {
1019     memory_region_init_io(mr, &reservation_ops, mr, name, size);
1020 }
1021
1022 void memory_region_destroy(MemoryRegion *mr)
1023 {
1024     assert(QTAILQ_EMPTY(&mr->subregions));
1025     mr->destructor(mr);
1026     memory_region_clear_coalescing(mr);
1027     g_free((char *)mr->name);
1028     g_free(mr->ioeventfds);
1029 }
1030
1031 uint64_t memory_region_size(MemoryRegion *mr)
1032 {
1033     if (int128_eq(mr->size, int128_2_64())) {
1034         return UINT64_MAX;
1035     }
1036     return int128_get64(mr->size);
1037 }
1038
1039 const char *memory_region_name(MemoryRegion *mr)
1040 {
1041     return mr->name;
1042 }
1043
1044 bool memory_region_is_ram(MemoryRegion *mr)
1045 {
1046     return mr->ram;
1047 }
1048
1049 bool memory_region_is_logging(MemoryRegion *mr)
1050 {
1051     return mr->dirty_log_mask;
1052 }
1053
1054 bool memory_region_is_rom(MemoryRegion *mr)
1055 {
1056     return mr->ram && mr->readonly;
1057 }
1058
1059 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1060 {
1061     uint8_t mask = 1 << client;
1062
1063     memory_region_transaction_begin();
1064     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1065     memory_region_transaction_commit();
1066 }
1067
1068 bool memory_region_get_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1069                              target_phys_addr_t size, unsigned client)
1070 {
1071     assert(mr->terminates);
1072     return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size,
1073                                          1 << client);
1074 }
1075
1076 void memory_region_set_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1077                              target_phys_addr_t size)
1078 {
1079     assert(mr->terminates);
1080     return cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size, -1);
1081 }
1082
1083 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1084 {
1085     FlatRange *fr;
1086
1087     FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
1088         if (fr->mr == mr) {
1089             MEMORY_LISTENER_UPDATE_REGION(fr, &address_space_memory,
1090                                           Forward, log_sync);
1091         }
1092     }
1093 }
1094
1095 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1096 {
1097     if (mr->readonly != readonly) {
1098         memory_region_transaction_begin();
1099         mr->readonly = readonly;
1100         memory_region_transaction_commit();
1101     }
1102 }
1103
1104 void memory_region_rom_device_set_readable(MemoryRegion *mr, bool readable)
1105 {
1106     if (mr->readable != readable) {
1107         memory_region_transaction_begin();
1108         mr->readable = readable;
1109         memory_region_transaction_commit();
1110     }
1111 }
1112
1113 void memory_region_reset_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1114                                target_phys_addr_t size, unsigned client)
1115 {
1116     assert(mr->terminates);
1117     cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
1118                                     mr->ram_addr + addr + size,
1119                                     1 << client);
1120 }
1121
1122 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1123 {
1124     if (mr->alias) {
1125         return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1126     }
1127
1128     assert(mr->terminates);
1129
1130     return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1131 }
1132
1133 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1134 {
1135     FlatRange *fr;
1136     CoalescedMemoryRange *cmr;
1137     AddrRange tmp;
1138
1139     FOR_EACH_FLAT_RANGE(fr, &address_space_memory.current_map) {
1140         if (fr->mr == mr) {
1141             qemu_unregister_coalesced_mmio(int128_get64(fr->addr.start),
1142                                            int128_get64(fr->addr.size));
1143             QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1144                 tmp = addrrange_shift(cmr->addr,
1145                                       int128_sub(fr->addr.start,
1146                                                  int128_make64(fr->offset_in_region)));
1147                 if (!addrrange_intersects(tmp, fr->addr)) {
1148                     continue;
1149                 }
1150                 tmp = addrrange_intersection(tmp, fr->addr);
1151                 qemu_register_coalesced_mmio(int128_get64(tmp.start),
1152                                              int128_get64(tmp.size));
1153             }
1154         }
1155     }
1156 }
1157
1158 void memory_region_set_coalescing(MemoryRegion *mr)
1159 {
1160     memory_region_clear_coalescing(mr);
1161     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1162 }
1163
1164 void memory_region_add_coalescing(MemoryRegion *mr,
1165                                   target_phys_addr_t offset,
1166                                   uint64_t size)
1167 {
1168     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1169
1170     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1171     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1172     memory_region_update_coalesced_range(mr);
1173     memory_region_set_flush_coalesced(mr);
1174 }
1175
1176 void memory_region_clear_coalescing(MemoryRegion *mr)
1177 {
1178     CoalescedMemoryRange *cmr;
1179
1180     qemu_flush_coalesced_mmio_buffer();
1181     mr->flush_coalesced_mmio = false;
1182
1183     while (!QTAILQ_EMPTY(&mr->coalesced)) {
1184         cmr = QTAILQ_FIRST(&mr->coalesced);
1185         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1186         g_free(cmr);
1187     }
1188     memory_region_update_coalesced_range(mr);
1189 }
1190
1191 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1192 {
1193     mr->flush_coalesced_mmio = true;
1194 }
1195
1196 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1197 {
1198     qemu_flush_coalesced_mmio_buffer();
1199     if (QTAILQ_EMPTY(&mr->coalesced)) {
1200         mr->flush_coalesced_mmio = false;
1201     }
1202 }
1203
1204 void memory_region_add_eventfd(MemoryRegion *mr,
1205                                target_phys_addr_t addr,
1206                                unsigned size,
1207                                bool match_data,
1208                                uint64_t data,
1209                                EventNotifier *e)
1210 {
1211     MemoryRegionIoeventfd mrfd = {
1212         .addr.start = int128_make64(addr),
1213         .addr.size = int128_make64(size),
1214         .match_data = match_data,
1215         .data = data,
1216         .e = e,
1217     };
1218     unsigned i;
1219
1220     adjust_endianness(mr, &mrfd.data, size);
1221     memory_region_transaction_begin();
1222     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1223         if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1224             break;
1225         }
1226     }
1227     ++mr->ioeventfd_nb;
1228     mr->ioeventfds = g_realloc(mr->ioeventfds,
1229                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1230     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1231             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1232     mr->ioeventfds[i] = mrfd;
1233     memory_region_transaction_commit();
1234 }
1235
1236 void memory_region_del_eventfd(MemoryRegion *mr,
1237                                target_phys_addr_t addr,
1238                                unsigned size,
1239                                bool match_data,
1240                                uint64_t data,
1241                                EventNotifier *e)
1242 {
1243     MemoryRegionIoeventfd mrfd = {
1244         .addr.start = int128_make64(addr),
1245         .addr.size = int128_make64(size),
1246         .match_data = match_data,
1247         .data = data,
1248         .e = e,
1249     };
1250     unsigned i;
1251
1252     adjust_endianness(mr, &mrfd.data, size);
1253     memory_region_transaction_begin();
1254     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1255         if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1256             break;
1257         }
1258     }
1259     assert(i != mr->ioeventfd_nb);
1260     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1261             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1262     --mr->ioeventfd_nb;
1263     mr->ioeventfds = g_realloc(mr->ioeventfds,
1264                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1265     memory_region_transaction_commit();
1266 }
1267
1268 static void memory_region_add_subregion_common(MemoryRegion *mr,
1269                                                target_phys_addr_t offset,
1270                                                MemoryRegion *subregion)
1271 {
1272     MemoryRegion *other;
1273
1274     memory_region_transaction_begin();
1275
1276     assert(!subregion->parent);
1277     subregion->parent = mr;
1278     subregion->addr = offset;
1279     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1280         if (subregion->may_overlap || other->may_overlap) {
1281             continue;
1282         }
1283         if (int128_gt(int128_make64(offset),
1284                       int128_add(int128_make64(other->addr), other->size))
1285             || int128_le(int128_add(int128_make64(offset), subregion->size),
1286                          int128_make64(other->addr))) {
1287             continue;
1288         }
1289 #if 0
1290         printf("warning: subregion collision %llx/%llx (%s) "
1291                "vs %llx/%llx (%s)\n",
1292                (unsigned long long)offset,
1293                (unsigned long long)int128_get64(subregion->size),
1294                subregion->name,
1295                (unsigned long long)other->addr,
1296                (unsigned long long)int128_get64(other->size),
1297                other->name);
1298 #endif
1299     }
1300     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1301         if (subregion->priority >= other->priority) {
1302             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1303             goto done;
1304         }
1305     }
1306     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1307 done:
1308     memory_region_transaction_commit();
1309 }
1310
1311
1312 void memory_region_add_subregion(MemoryRegion *mr,
1313                                  target_phys_addr_t offset,
1314                                  MemoryRegion *subregion)
1315 {
1316     subregion->may_overlap = false;
1317     subregion->priority = 0;
1318     memory_region_add_subregion_common(mr, offset, subregion);
1319 }
1320
1321 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1322                                          target_phys_addr_t offset,
1323                                          MemoryRegion *subregion,
1324                                          unsigned priority)
1325 {
1326     subregion->may_overlap = true;
1327     subregion->priority = priority;
1328     memory_region_add_subregion_common(mr, offset, subregion);
1329 }
1330
1331 void memory_region_del_subregion(MemoryRegion *mr,
1332                                  MemoryRegion *subregion)
1333 {
1334     memory_region_transaction_begin();
1335     assert(subregion->parent == mr);
1336     subregion->parent = NULL;
1337     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1338     memory_region_transaction_commit();
1339 }
1340
1341 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1342 {
1343     if (enabled == mr->enabled) {
1344         return;
1345     }
1346     memory_region_transaction_begin();
1347     mr->enabled = enabled;
1348     memory_region_transaction_commit();
1349 }
1350
1351 void memory_region_set_address(MemoryRegion *mr, target_phys_addr_t addr)
1352 {
1353     MemoryRegion *parent = mr->parent;
1354     unsigned priority = mr->priority;
1355     bool may_overlap = mr->may_overlap;
1356
1357     if (addr == mr->addr || !parent) {
1358         mr->addr = addr;
1359         return;
1360     }
1361
1362     memory_region_transaction_begin();
1363     memory_region_del_subregion(parent, mr);
1364     if (may_overlap) {
1365         memory_region_add_subregion_overlap(parent, addr, mr, priority);
1366     } else {
1367         memory_region_add_subregion(parent, addr, mr);
1368     }
1369     memory_region_transaction_commit();
1370 }
1371
1372 void memory_region_set_alias_offset(MemoryRegion *mr, target_phys_addr_t offset)
1373 {
1374     assert(mr->alias);
1375
1376     if (offset == mr->alias_offset) {
1377         return;
1378     }
1379
1380     memory_region_transaction_begin();
1381     mr->alias_offset = offset;
1382     memory_region_transaction_commit();
1383 }
1384
1385 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1386 {
1387     return mr->ram_addr;
1388 }
1389
1390 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1391 {
1392     const AddrRange *addr = addr_;
1393     const FlatRange *fr = fr_;
1394
1395     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1396         return -1;
1397     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1398         return 1;
1399     }
1400     return 0;
1401 }
1402
1403 static FlatRange *address_space_lookup(AddressSpace *as, AddrRange addr)
1404 {
1405     return bsearch(&addr, as->current_map.ranges, as->current_map.nr,
1406                    sizeof(FlatRange), cmp_flatrange_addr);
1407 }
1408
1409 MemoryRegionSection memory_region_find(MemoryRegion *address_space,
1410                                        target_phys_addr_t addr, uint64_t size)
1411 {
1412     AddressSpace *as = memory_region_to_address_space(address_space);
1413     AddrRange range = addrrange_make(int128_make64(addr),
1414                                      int128_make64(size));
1415     FlatRange *fr = address_space_lookup(as, range);
1416     MemoryRegionSection ret = { .mr = NULL, .size = 0 };
1417
1418     if (!fr) {
1419         return ret;
1420     }
1421
1422     while (fr > as->current_map.ranges
1423            && addrrange_intersects(fr[-1].addr, range)) {
1424         --fr;
1425     }
1426
1427     ret.mr = fr->mr;
1428     range = addrrange_intersection(range, fr->addr);
1429     ret.offset_within_region = fr->offset_in_region;
1430     ret.offset_within_region += int128_get64(int128_sub(range.start,
1431                                                         fr->addr.start));
1432     ret.size = int128_get64(range.size);
1433     ret.offset_within_address_space = int128_get64(range.start);
1434     ret.readonly = fr->readonly;
1435     return ret;
1436 }
1437
1438 void memory_global_sync_dirty_bitmap(MemoryRegion *address_space)
1439 {
1440     AddressSpace *as = memory_region_to_address_space(address_space);
1441     FlatRange *fr;
1442
1443     FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
1444         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1445     }
1446 }
1447
1448 void memory_global_dirty_log_start(void)
1449 {
1450     global_dirty_log = true;
1451     MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1452 }
1453
1454 void memory_global_dirty_log_stop(void)
1455 {
1456     global_dirty_log = false;
1457     MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1458 }
1459
1460 static void listener_add_address_space(MemoryListener *listener,
1461                                        AddressSpace *as)
1462 {
1463     FlatRange *fr;
1464
1465     if (listener->address_space_filter
1466         && listener->address_space_filter != as->root) {
1467         return;
1468     }
1469
1470     if (global_dirty_log) {
1471         listener->log_global_start(listener);
1472     }
1473     FOR_EACH_FLAT_RANGE(fr, &as->current_map) {
1474         MemoryRegionSection section = {
1475             .mr = fr->mr,
1476             .address_space = as->root,
1477             .offset_within_region = fr->offset_in_region,
1478             .size = int128_get64(fr->addr.size),
1479             .offset_within_address_space = int128_get64(fr->addr.start),
1480             .readonly = fr->readonly,
1481         };
1482         listener->region_add(listener, &section);
1483     }
1484 }
1485
1486 void memory_listener_register(MemoryListener *listener, MemoryRegion *filter)
1487 {
1488     MemoryListener *other = NULL;
1489
1490     listener->address_space_filter = filter;
1491     if (QTAILQ_EMPTY(&memory_listeners)
1492         || listener->priority >= QTAILQ_LAST(&memory_listeners,
1493                                              memory_listeners)->priority) {
1494         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1495     } else {
1496         QTAILQ_FOREACH(other, &memory_listeners, link) {
1497             if (listener->priority < other->priority) {
1498                 break;
1499             }
1500         }
1501         QTAILQ_INSERT_BEFORE(other, listener, link);
1502     }
1503     listener_add_address_space(listener, &address_space_memory);
1504     listener_add_address_space(listener, &address_space_io);
1505 }
1506
1507 void memory_listener_unregister(MemoryListener *listener)
1508 {
1509     QTAILQ_REMOVE(&memory_listeners, listener, link);
1510 }
1511
1512 void set_system_memory_map(MemoryRegion *mr)
1513 {
1514     memory_region_transaction_begin();
1515     address_space_memory.root = mr;
1516     memory_region_transaction_commit();
1517 }
1518
1519 void set_system_io_map(MemoryRegion *mr)
1520 {
1521     memory_region_transaction_begin();
1522     address_space_io.root = mr;
1523     memory_region_transaction_commit();
1524 }
1525
1526 uint64_t io_mem_read(MemoryRegion *mr, target_phys_addr_t addr, unsigned size)
1527 {
1528     return memory_region_dispatch_read(mr, addr, size);
1529 }
1530
1531 void io_mem_write(MemoryRegion *mr, target_phys_addr_t addr,
1532                   uint64_t val, unsigned size)
1533 {
1534     memory_region_dispatch_write(mr, addr, val, size);
1535 }
1536
1537 typedef struct MemoryRegionList MemoryRegionList;
1538
1539 struct MemoryRegionList {
1540     const MemoryRegion *mr;
1541     bool printed;
1542     QTAILQ_ENTRY(MemoryRegionList) queue;
1543 };
1544
1545 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1546
1547 static void mtree_print_mr(fprintf_function mon_printf, void *f,
1548                            const MemoryRegion *mr, unsigned int level,
1549                            target_phys_addr_t base,
1550                            MemoryRegionListHead *alias_print_queue)
1551 {
1552     MemoryRegionList *new_ml, *ml, *next_ml;
1553     MemoryRegionListHead submr_print_queue;
1554     const MemoryRegion *submr;
1555     unsigned int i;
1556
1557     if (!mr) {
1558         return;
1559     }
1560
1561     for (i = 0; i < level; i++) {
1562         mon_printf(f, "  ");
1563     }
1564
1565     if (mr->alias) {
1566         MemoryRegionList *ml;
1567         bool found = false;
1568
1569         /* check if the alias is already in the queue */
1570         QTAILQ_FOREACH(ml, alias_print_queue, queue) {
1571             if (ml->mr == mr->alias && !ml->printed) {
1572                 found = true;
1573             }
1574         }
1575
1576         if (!found) {
1577             ml = g_new(MemoryRegionList, 1);
1578             ml->mr = mr->alias;
1579             ml->printed = false;
1580             QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
1581         }
1582         mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
1583                    " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
1584                    "-" TARGET_FMT_plx "\n",
1585                    base + mr->addr,
1586                    base + mr->addr
1587                    + (target_phys_addr_t)int128_get64(mr->size) - 1,
1588                    mr->priority,
1589                    mr->readable ? 'R' : '-',
1590                    !mr->readonly && !(mr->rom_device && mr->readable) ? 'W'
1591                                                                       : '-',
1592                    mr->name,
1593                    mr->alias->name,
1594                    mr->alias_offset,
1595                    mr->alias_offset
1596                    + (target_phys_addr_t)int128_get64(mr->size) - 1);
1597     } else {
1598         mon_printf(f,
1599                    TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
1600                    base + mr->addr,
1601                    base + mr->addr
1602                    + (target_phys_addr_t)int128_get64(mr->size) - 1,
1603                    mr->priority,
1604                    mr->readable ? 'R' : '-',
1605                    !mr->readonly && !(mr->rom_device && mr->readable) ? 'W'
1606                                                                       : '-',
1607                    mr->name);
1608     }
1609
1610     QTAILQ_INIT(&submr_print_queue);
1611
1612     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
1613         new_ml = g_new(MemoryRegionList, 1);
1614         new_ml->mr = submr;
1615         QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1616             if (new_ml->mr->addr < ml->mr->addr ||
1617                 (new_ml->mr->addr == ml->mr->addr &&
1618                  new_ml->mr->priority > ml->mr->priority)) {
1619                 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
1620                 new_ml = NULL;
1621                 break;
1622             }
1623         }
1624         if (new_ml) {
1625             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
1626         }
1627     }
1628
1629     QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1630         mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
1631                        alias_print_queue);
1632     }
1633
1634     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
1635         g_free(ml);
1636     }
1637 }
1638
1639 void mtree_info(fprintf_function mon_printf, void *f)
1640 {
1641     MemoryRegionListHead ml_head;
1642     MemoryRegionList *ml, *ml2;
1643
1644     QTAILQ_INIT(&ml_head);
1645
1646     mon_printf(f, "memory\n");
1647     mtree_print_mr(mon_printf, f, address_space_memory.root, 0, 0, &ml_head);
1648
1649     if (address_space_io.root &&
1650         !QTAILQ_EMPTY(&address_space_io.root->subregions)) {
1651         mon_printf(f, "I/O\n");
1652         mtree_print_mr(mon_printf, f, address_space_io.root, 0, 0, &ml_head);
1653     }
1654
1655     mon_printf(f, "aliases\n");
1656     /* print aliased regions */
1657     QTAILQ_FOREACH(ml, &ml_head, queue) {
1658         if (!ml->printed) {
1659             mon_printf(f, "%s\n", ml->mr->name);
1660             mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
1661         }
1662     }
1663
1664     QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
1665         g_free(ml);
1666     }
1667 }
This page took 0.114868 seconds and 4 git commands to generate.