4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
22 #include "qemu-common.h"
27 #include "host-utils.h"
33 #ifdef CONFIG_KVM_PARA
34 #include <linux/kvm_para.h>
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
43 #define DPRINTF(fmt, ...) \
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
51 #define BUS_MCEERR_AR 4
54 #define BUS_MCEERR_AO 5
57 static int lm_capable_kernel;
59 #ifdef KVM_CAP_EXT_CPUID
61 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
63 struct kvm_cpuid2 *cpuid;
66 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
67 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
69 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
70 if (r == 0 && cpuid->nent >= max) {
78 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
86 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
87 uint32_t index, int reg)
89 struct kvm_cpuid2 *cpuid;
94 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
99 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
103 for (i = 0; i < cpuid->nent; ++i) {
104 if (cpuid->entries[i].function == function &&
105 cpuid->entries[i].index == index) {
108 ret = cpuid->entries[i].eax;
111 ret = cpuid->entries[i].ebx;
114 ret = cpuid->entries[i].ecx;
117 ret = cpuid->entries[i].edx;
120 /* KVM before 2.6.30 misreports the following features */
121 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
124 /* On Intel, kvm returns cpuid according to the Intel spec,
125 * so add missing bits according to the AMD spec:
127 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
128 ret |= cpuid_1_edx & 0x183f7ff;
143 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
144 uint32_t index, int reg)
151 #ifdef CONFIG_KVM_PARA
152 struct kvm_para_features {
155 } para_features[] = {
156 #ifdef KVM_CAP_CLOCKSOURCE
157 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
159 #ifdef KVM_CAP_NOP_IO_DELAY
160 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
162 #ifdef KVM_CAP_PV_MMU
163 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
165 #ifdef KVM_CAP_ASYNC_PF
166 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
171 static int get_para_features(CPUState *env)
175 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
176 if (kvm_check_extension(env->kvm_state, para_features[i].cap))
177 features |= (1 << para_features[i].feature);
185 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
190 r = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_MCE);
193 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
198 static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
200 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
203 static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
205 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
208 static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
210 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
214 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
215 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
216 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
221 /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
222 static int kvm_mce_in_exception(CPUState *env)
224 struct kvm_msr_entry msr_mcg_status = {
225 .index = MSR_MCG_STATUS,
229 r = kvm_get_msr(env, &msr_mcg_status, 1);
230 if (r == -1 || r == 0) {
233 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
236 struct kvm_x86_mce_data
239 struct kvm_x86_mce *mce;
243 static void kvm_do_inject_x86_mce(void *_data)
245 struct kvm_x86_mce_data *data = _data;
248 /* If there is an MCE exception being processed, ignore this SRAO MCE */
249 if ((data->env->mcg_cap & MCG_SER_P) &&
250 !(data->mce->status & MCI_STATUS_AR)) {
251 r = kvm_mce_in_exception(data->env);
253 fprintf(stderr, "Failed to get MCE status\n");
259 r = kvm_set_mce(data->env, data->mce);
261 perror("kvm_set_mce FAILED");
262 if (data->abort_on_error) {
269 void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
270 uint64_t mcg_status, uint64_t addr, uint64_t misc,
274 struct kvm_x86_mce mce = {
277 .mcg_status = mcg_status,
281 struct kvm_x86_mce_data data = {
286 if (!cenv->mcg_cap) {
287 fprintf(stderr, "MCE support is not enabled!\n");
291 run_on_cpu(cenv, kvm_do_inject_x86_mce, &data);
298 int kvm_arch_init_vcpu(CPUState *env)
301 struct kvm_cpuid2 cpuid;
302 struct kvm_cpuid_entry2 entries[100];
303 } __attribute__((packed)) cpuid_data;
304 uint32_t limit, i, j, cpuid_i;
306 struct kvm_cpuid_entry2 *c;
307 #ifdef KVM_CPUID_SIGNATURE
308 uint32_t signature[3];
311 env->mp_state = KVM_MP_STATE_RUNNABLE;
313 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
315 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
316 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
317 env->cpuid_ext_features |= i;
319 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
321 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
323 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
329 #ifdef CONFIG_KVM_PARA
330 /* Paravirtualization CPUIDs */
331 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
332 c = &cpuid_data.entries[cpuid_i++];
333 memset(c, 0, sizeof(*c));
334 c->function = KVM_CPUID_SIGNATURE;
336 c->ebx = signature[0];
337 c->ecx = signature[1];
338 c->edx = signature[2];
340 c = &cpuid_data.entries[cpuid_i++];
341 memset(c, 0, sizeof(*c));
342 c->function = KVM_CPUID_FEATURES;
343 c->eax = env->cpuid_kvm_features & get_para_features(env);
346 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
348 for (i = 0; i <= limit; i++) {
349 c = &cpuid_data.entries[cpuid_i++];
353 /* Keep reading function 2 till all the input is received */
357 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
358 KVM_CPUID_FLAG_STATE_READ_NEXT;
359 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
360 times = c->eax & 0xff;
362 for (j = 1; j < times; ++j) {
363 c = &cpuid_data.entries[cpuid_i++];
365 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
366 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
375 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
377 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
379 if (i == 4 && c->eax == 0)
381 if (i == 0xb && !(c->ecx & 0xff00))
383 if (i == 0xd && c->eax == 0)
386 c = &cpuid_data.entries[cpuid_i++];
392 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
396 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
398 for (i = 0x80000000; i <= limit; i++) {
399 c = &cpuid_data.entries[cpuid_i++];
403 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
406 cpuid_data.cpuid.nent = cpuid_i;
409 if (((env->cpuid_version >> 8)&0xF) >= 6
410 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
411 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
415 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks))
416 perror("kvm_get_mce_cap_supported FAILED");
418 if (banks > MCE_BANKS_DEF)
419 banks = MCE_BANKS_DEF;
420 mcg_cap &= MCE_CAP_DEF;
422 if (kvm_setup_mce(env, &mcg_cap))
423 perror("kvm_setup_mce FAILED");
425 env->mcg_cap = mcg_cap;
430 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
433 void kvm_arch_reset_vcpu(CPUState *env)
435 env->exception_injected = -1;
436 env->interrupt_injected = -1;
437 env->nmi_injected = 0;
438 env->nmi_pending = 0;
439 if (kvm_irqchip_in_kernel()) {
440 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
441 KVM_MP_STATE_UNINITIALIZED;
443 env->mp_state = KVM_MP_STATE_RUNNABLE;
448 int has_msr_hsave_pa;
450 static void kvm_supported_msrs(CPUState *env)
452 static int kvm_supported_msrs;
456 if (kvm_supported_msrs == 0) {
457 struct kvm_msr_list msr_list, *kvm_msr_list;
459 kvm_supported_msrs = -1;
461 /* Obtain MSR list from KVM. These are the MSRs that we must
464 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
465 if (ret < 0 && ret != -E2BIG) {
468 /* Old kernel modules had a bug and could write beyond the provided
469 memory. Allocate at least a safe amount of 1K. */
470 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
472 sizeof(msr_list.indices[0])));
474 kvm_msr_list->nmsrs = msr_list.nmsrs;
475 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
479 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
480 if (kvm_msr_list->indices[i] == MSR_STAR) {
484 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
485 has_msr_hsave_pa = 1;
497 static int kvm_has_msr_hsave_pa(CPUState *env)
499 kvm_supported_msrs(env);
500 return has_msr_hsave_pa;
503 static int kvm_has_msr_star(CPUState *env)
505 kvm_supported_msrs(env);
509 static int kvm_init_identity_map_page(KVMState *s)
511 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
513 uint64_t addr = 0xfffbc000;
515 if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
519 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
521 fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
528 int kvm_arch_init(KVMState *s, int smp_cpus)
532 struct utsname utsname;
535 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
537 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
538 * directly. In order to use vm86 mode, a TSS is needed. Since this
539 * must be part of guest physical memory, we need to allocate it. Older
540 * versions of KVM just assumed that it would be at the end of physical
541 * memory but that doesn't work with more than 4GB of memory. We simply
542 * refuse to work with those older versions of KVM. */
543 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
545 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
549 /* this address is 3 pages before the bios, and the bios should present
550 * as unavaible memory. FIXME, need to ensure the e820 map deals with
554 * Tell fw_cfg to notify the BIOS to reserve the range.
556 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
557 perror("e820_add_entry() table is full");
560 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
565 return kvm_init_identity_map_page(s);
568 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
570 lhs->selector = rhs->selector;
571 lhs->base = rhs->base;
572 lhs->limit = rhs->limit;
584 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
586 unsigned flags = rhs->flags;
587 lhs->selector = rhs->selector;
588 lhs->base = rhs->base;
589 lhs->limit = rhs->limit;
590 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
591 lhs->present = (flags & DESC_P_MASK) != 0;
592 lhs->dpl = rhs->selector & 3;
593 lhs->db = (flags >> DESC_B_SHIFT) & 1;
594 lhs->s = (flags & DESC_S_MASK) != 0;
595 lhs->l = (flags >> DESC_L_SHIFT) & 1;
596 lhs->g = (flags & DESC_G_MASK) != 0;
597 lhs->avl = (flags & DESC_AVL_MASK) != 0;
601 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
603 lhs->selector = rhs->selector;
604 lhs->base = rhs->base;
605 lhs->limit = rhs->limit;
607 (rhs->type << DESC_TYPE_SHIFT)
608 | (rhs->present * DESC_P_MASK)
609 | (rhs->dpl << DESC_DPL_SHIFT)
610 | (rhs->db << DESC_B_SHIFT)
611 | (rhs->s * DESC_S_MASK)
612 | (rhs->l << DESC_L_SHIFT)
613 | (rhs->g * DESC_G_MASK)
614 | (rhs->avl * DESC_AVL_MASK);
617 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
620 *kvm_reg = *qemu_reg;
622 *qemu_reg = *kvm_reg;
625 static int kvm_getput_regs(CPUState *env, int set)
627 struct kvm_regs regs;
631 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s);
636 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set);
637 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set);
638 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set);
639 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set);
640 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set);
641 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set);
642 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set);
643 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set);
645 kvm_getput_reg(®s.r8, &env->regs[8], set);
646 kvm_getput_reg(®s.r9, &env->regs[9], set);
647 kvm_getput_reg(®s.r10, &env->regs[10], set);
648 kvm_getput_reg(®s.r11, &env->regs[11], set);
649 kvm_getput_reg(®s.r12, &env->regs[12], set);
650 kvm_getput_reg(®s.r13, &env->regs[13], set);
651 kvm_getput_reg(®s.r14, &env->regs[14], set);
652 kvm_getput_reg(®s.r15, &env->regs[15], set);
655 kvm_getput_reg(®s.rflags, &env->eflags, set);
656 kvm_getput_reg(®s.rip, &env->eip, set);
659 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s);
664 static int kvm_put_fpu(CPUState *env)
669 memset(&fpu, 0, sizeof fpu);
670 fpu.fsw = env->fpus & ~(7 << 11);
671 fpu.fsw |= (env->fpstt & 7) << 11;
673 for (i = 0; i < 8; ++i)
674 fpu.ftwx |= (!env->fptags[i]) << i;
675 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
676 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
677 fpu.mxcsr = env->mxcsr;
679 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
683 #define XSAVE_CWD_RIP 2
684 #define XSAVE_CWD_RDP 4
685 #define XSAVE_MXCSR 6
686 #define XSAVE_ST_SPACE 8
687 #define XSAVE_XMM_SPACE 40
688 #define XSAVE_XSTATE_BV 128
689 #define XSAVE_YMMH_SPACE 144
692 static int kvm_put_xsave(CPUState *env)
696 struct kvm_xsave* xsave;
697 uint16_t cwd, swd, twd, fop;
699 if (!kvm_has_xsave())
700 return kvm_put_fpu(env);
702 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
703 memset(xsave, 0, sizeof(struct kvm_xsave));
704 cwd = swd = twd = fop = 0;
705 swd = env->fpus & ~(7 << 11);
706 swd |= (env->fpstt & 7) << 11;
708 for (i = 0; i < 8; ++i)
709 twd |= (!env->fptags[i]) << i;
710 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
711 xsave->region[1] = (uint32_t)(fop << 16) + twd;
712 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
714 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
715 sizeof env->xmm_regs);
716 xsave->region[XSAVE_MXCSR] = env->mxcsr;
717 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
718 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
719 sizeof env->ymmh_regs);
720 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
724 return kvm_put_fpu(env);
728 static int kvm_put_xcrs(CPUState *env)
731 struct kvm_xcrs xcrs;
738 xcrs.xcrs[0].xcr = 0;
739 xcrs.xcrs[0].value = env->xcr0;
740 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
746 static int kvm_put_sregs(CPUState *env)
748 struct kvm_sregs sregs;
750 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
751 if (env->interrupt_injected >= 0) {
752 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
753 (uint64_t)1 << (env->interrupt_injected % 64);
756 if ((env->eflags & VM_MASK)) {
757 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
758 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
759 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
760 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
761 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
762 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
764 set_seg(&sregs.cs, &env->segs[R_CS]);
765 set_seg(&sregs.ds, &env->segs[R_DS]);
766 set_seg(&sregs.es, &env->segs[R_ES]);
767 set_seg(&sregs.fs, &env->segs[R_FS]);
768 set_seg(&sregs.gs, &env->segs[R_GS]);
769 set_seg(&sregs.ss, &env->segs[R_SS]);
771 if (env->cr[0] & CR0_PE_MASK) {
772 /* force ss cpl to cs cpl */
773 sregs.ss.selector = (sregs.ss.selector & ~3) |
774 (sregs.cs.selector & 3);
775 sregs.ss.dpl = sregs.ss.selector & 3;
779 set_seg(&sregs.tr, &env->tr);
780 set_seg(&sregs.ldt, &env->ldt);
782 sregs.idt.limit = env->idt.limit;
783 sregs.idt.base = env->idt.base;
784 sregs.gdt.limit = env->gdt.limit;
785 sregs.gdt.base = env->gdt.base;
787 sregs.cr0 = env->cr[0];
788 sregs.cr2 = env->cr[2];
789 sregs.cr3 = env->cr[3];
790 sregs.cr4 = env->cr[4];
792 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
793 sregs.apic_base = cpu_get_apic_base(env->apic_state);
795 sregs.efer = env->efer;
797 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
800 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
801 uint32_t index, uint64_t value)
803 entry->index = index;
807 static int kvm_put_msrs(CPUState *env, int level)
810 struct kvm_msrs info;
811 struct kvm_msr_entry entries[100];
813 struct kvm_msr_entry *msrs = msr_data.entries;
816 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
817 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
818 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
819 if (kvm_has_msr_star(env))
820 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
821 if (kvm_has_msr_hsave_pa(env))
822 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
824 if (lm_capable_kernel) {
825 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
826 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
827 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
828 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
831 if (level == KVM_PUT_FULL_STATE) {
833 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
834 * writeback. Until this is fixed, we only write the offset to SMP
835 * guests after migration, desynchronizing the VCPUs, but avoiding
836 * huge jump-backs that would occur without any writeback at all.
838 if (smp_cpus == 1 || env->tsc != 0) {
839 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
841 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
842 env->system_time_msr);
843 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
844 #ifdef KVM_CAP_ASYNC_PF
845 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
851 if (level == KVM_PUT_RESET_STATE)
852 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
853 else if (level == KVM_PUT_FULL_STATE) {
854 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
855 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
856 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
857 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
862 msr_data.info.nmsrs = n;
864 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
869 static int kvm_get_fpu(CPUState *env)
874 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
878 env->fpstt = (fpu.fsw >> 11) & 7;
881 for (i = 0; i < 8; ++i)
882 env->fptags[i] = !((fpu.ftwx >> i) & 1);
883 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
884 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
885 env->mxcsr = fpu.mxcsr;
890 static int kvm_get_xsave(CPUState *env)
893 struct kvm_xsave* xsave;
895 uint16_t cwd, swd, twd, fop;
897 if (!kvm_has_xsave())
898 return kvm_get_fpu(env);
900 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
901 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
907 cwd = (uint16_t)xsave->region[0];
908 swd = (uint16_t)(xsave->region[0] >> 16);
909 twd = (uint16_t)xsave->region[1];
910 fop = (uint16_t)(xsave->region[1] >> 16);
911 env->fpstt = (swd >> 11) & 7;
914 for (i = 0; i < 8; ++i)
915 env->fptags[i] = !((twd >> i) & 1);
916 env->mxcsr = xsave->region[XSAVE_MXCSR];
917 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
919 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
920 sizeof env->xmm_regs);
921 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
922 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
923 sizeof env->ymmh_regs);
927 return kvm_get_fpu(env);
931 static int kvm_get_xcrs(CPUState *env)
935 struct kvm_xcrs xcrs;
940 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
944 for (i = 0; i < xcrs.nr_xcrs; i++)
945 /* Only support xcr0 now */
946 if (xcrs.xcrs[0].xcr == 0) {
947 env->xcr0 = xcrs.xcrs[0].value;
956 static int kvm_get_sregs(CPUState *env)
958 struct kvm_sregs sregs;
962 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
966 /* There can only be one pending IRQ set in the bitmap at a time, so try
967 to find it and save its number instead (-1 for none). */
968 env->interrupt_injected = -1;
969 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
970 if (sregs.interrupt_bitmap[i]) {
971 bit = ctz64(sregs.interrupt_bitmap[i]);
972 env->interrupt_injected = i * 64 + bit;
977 get_seg(&env->segs[R_CS], &sregs.cs);
978 get_seg(&env->segs[R_DS], &sregs.ds);
979 get_seg(&env->segs[R_ES], &sregs.es);
980 get_seg(&env->segs[R_FS], &sregs.fs);
981 get_seg(&env->segs[R_GS], &sregs.gs);
982 get_seg(&env->segs[R_SS], &sregs.ss);
984 get_seg(&env->tr, &sregs.tr);
985 get_seg(&env->ldt, &sregs.ldt);
987 env->idt.limit = sregs.idt.limit;
988 env->idt.base = sregs.idt.base;
989 env->gdt.limit = sregs.gdt.limit;
990 env->gdt.base = sregs.gdt.base;
992 env->cr[0] = sregs.cr0;
993 env->cr[2] = sregs.cr2;
994 env->cr[3] = sregs.cr3;
995 env->cr[4] = sregs.cr4;
997 cpu_set_apic_base(env->apic_state, sregs.apic_base);
999 env->efer = sregs.efer;
1000 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1002 #define HFLAG_COPY_MASK ~( \
1003 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1004 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1005 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1006 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1010 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1011 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1012 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1013 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1014 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1015 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1016 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1018 if (env->efer & MSR_EFER_LMA) {
1019 hflags |= HF_LMA_MASK;
1022 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1023 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1025 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1026 (DESC_B_SHIFT - HF_CS32_SHIFT);
1027 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1028 (DESC_B_SHIFT - HF_SS32_SHIFT);
1029 if (!(env->cr[0] & CR0_PE_MASK) ||
1030 (env->eflags & VM_MASK) ||
1031 !(hflags & HF_CS32_MASK)) {
1032 hflags |= HF_ADDSEG_MASK;
1034 hflags |= ((env->segs[R_DS].base |
1035 env->segs[R_ES].base |
1036 env->segs[R_SS].base) != 0) <<
1040 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1045 static int kvm_get_msrs(CPUState *env)
1048 struct kvm_msrs info;
1049 struct kvm_msr_entry entries[100];
1051 struct kvm_msr_entry *msrs = msr_data.entries;
1055 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1056 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1057 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1058 if (kvm_has_msr_star(env))
1059 msrs[n++].index = MSR_STAR;
1060 if (kvm_has_msr_hsave_pa(env))
1061 msrs[n++].index = MSR_VM_HSAVE_PA;
1062 msrs[n++].index = MSR_IA32_TSC;
1063 #ifdef TARGET_X86_64
1064 if (lm_capable_kernel) {
1065 msrs[n++].index = MSR_CSTAR;
1066 msrs[n++].index = MSR_KERNELGSBASE;
1067 msrs[n++].index = MSR_FMASK;
1068 msrs[n++].index = MSR_LSTAR;
1071 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1072 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1073 #ifdef KVM_CAP_ASYNC_PF
1074 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1079 msrs[n++].index = MSR_MCG_STATUS;
1080 msrs[n++].index = MSR_MCG_CTL;
1081 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
1082 msrs[n++].index = MSR_MC0_CTL + i;
1086 msr_data.info.nmsrs = n;
1087 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1091 for (i = 0; i < ret; i++) {
1092 switch (msrs[i].index) {
1093 case MSR_IA32_SYSENTER_CS:
1094 env->sysenter_cs = msrs[i].data;
1096 case MSR_IA32_SYSENTER_ESP:
1097 env->sysenter_esp = msrs[i].data;
1099 case MSR_IA32_SYSENTER_EIP:
1100 env->sysenter_eip = msrs[i].data;
1103 env->star = msrs[i].data;
1105 #ifdef TARGET_X86_64
1107 env->cstar = msrs[i].data;
1109 case MSR_KERNELGSBASE:
1110 env->kernelgsbase = msrs[i].data;
1113 env->fmask = msrs[i].data;
1116 env->lstar = msrs[i].data;
1120 env->tsc = msrs[i].data;
1122 case MSR_VM_HSAVE_PA:
1123 env->vm_hsave = msrs[i].data;
1125 case MSR_KVM_SYSTEM_TIME:
1126 env->system_time_msr = msrs[i].data;
1128 case MSR_KVM_WALL_CLOCK:
1129 env->wall_clock_msr = msrs[i].data;
1132 case MSR_MCG_STATUS:
1133 env->mcg_status = msrs[i].data;
1136 env->mcg_ctl = msrs[i].data;
1141 if (msrs[i].index >= MSR_MC0_CTL &&
1142 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1143 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1147 #ifdef KVM_CAP_ASYNC_PF
1148 case MSR_KVM_ASYNC_PF_EN:
1149 env->async_pf_en_msr = msrs[i].data;
1158 static int kvm_put_mp_state(CPUState *env)
1160 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1162 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1165 static int kvm_get_mp_state(CPUState *env)
1167 struct kvm_mp_state mp_state;
1170 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1174 env->mp_state = mp_state.mp_state;
1178 static int kvm_put_vcpu_events(CPUState *env, int level)
1180 #ifdef KVM_CAP_VCPU_EVENTS
1181 struct kvm_vcpu_events events;
1183 if (!kvm_has_vcpu_events()) {
1187 events.exception.injected = (env->exception_injected >= 0);
1188 events.exception.nr = env->exception_injected;
1189 events.exception.has_error_code = env->has_error_code;
1190 events.exception.error_code = env->error_code;
1192 events.interrupt.injected = (env->interrupt_injected >= 0);
1193 events.interrupt.nr = env->interrupt_injected;
1194 events.interrupt.soft = env->soft_interrupt;
1196 events.nmi.injected = env->nmi_injected;
1197 events.nmi.pending = env->nmi_pending;
1198 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1200 events.sipi_vector = env->sipi_vector;
1203 if (level >= KVM_PUT_RESET_STATE) {
1205 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1208 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1214 static int kvm_get_vcpu_events(CPUState *env)
1216 #ifdef KVM_CAP_VCPU_EVENTS
1217 struct kvm_vcpu_events events;
1220 if (!kvm_has_vcpu_events()) {
1224 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1228 env->exception_injected =
1229 events.exception.injected ? events.exception.nr : -1;
1230 env->has_error_code = events.exception.has_error_code;
1231 env->error_code = events.exception.error_code;
1233 env->interrupt_injected =
1234 events.interrupt.injected ? events.interrupt.nr : -1;
1235 env->soft_interrupt = events.interrupt.soft;
1237 env->nmi_injected = events.nmi.injected;
1238 env->nmi_pending = events.nmi.pending;
1239 if (events.nmi.masked) {
1240 env->hflags2 |= HF2_NMI_MASK;
1242 env->hflags2 &= ~HF2_NMI_MASK;
1245 env->sipi_vector = events.sipi_vector;
1251 static int kvm_guest_debug_workarounds(CPUState *env)
1254 #ifdef KVM_CAP_SET_GUEST_DEBUG
1255 unsigned long reinject_trap = 0;
1257 if (!kvm_has_vcpu_events()) {
1258 if (env->exception_injected == 1) {
1259 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1260 } else if (env->exception_injected == 3) {
1261 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1263 env->exception_injected = -1;
1267 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1268 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1269 * by updating the debug state once again if single-stepping is on.
1270 * Another reason to call kvm_update_guest_debug here is a pending debug
1271 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1272 * reinject them via SET_GUEST_DEBUG.
1274 if (reinject_trap ||
1275 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1276 ret = kvm_update_guest_debug(env, reinject_trap);
1278 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1282 static int kvm_put_debugregs(CPUState *env)
1284 #ifdef KVM_CAP_DEBUGREGS
1285 struct kvm_debugregs dbgregs;
1288 if (!kvm_has_debugregs()) {
1292 for (i = 0; i < 4; i++) {
1293 dbgregs.db[i] = env->dr[i];
1295 dbgregs.dr6 = env->dr[6];
1296 dbgregs.dr7 = env->dr[7];
1299 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1305 static int kvm_get_debugregs(CPUState *env)
1307 #ifdef KVM_CAP_DEBUGREGS
1308 struct kvm_debugregs dbgregs;
1311 if (!kvm_has_debugregs()) {
1315 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1319 for (i = 0; i < 4; i++) {
1320 env->dr[i] = dbgregs.db[i];
1322 env->dr[4] = env->dr[6] = dbgregs.dr6;
1323 env->dr[5] = env->dr[7] = dbgregs.dr7;
1329 int kvm_arch_put_registers(CPUState *env, int level)
1333 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1335 ret = kvm_getput_regs(env, 1);
1339 ret = kvm_put_xsave(env);
1343 ret = kvm_put_xcrs(env);
1347 ret = kvm_put_sregs(env);
1351 ret = kvm_put_msrs(env, level);
1355 if (level >= KVM_PUT_RESET_STATE) {
1356 ret = kvm_put_mp_state(env);
1361 ret = kvm_put_vcpu_events(env, level);
1366 ret = kvm_guest_debug_workarounds(env);
1370 ret = kvm_put_debugregs(env);
1377 int kvm_arch_get_registers(CPUState *env)
1381 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1383 ret = kvm_getput_regs(env, 0);
1387 ret = kvm_get_xsave(env);
1391 ret = kvm_get_xcrs(env);
1395 ret = kvm_get_sregs(env);
1399 ret = kvm_get_msrs(env);
1403 ret = kvm_get_mp_state(env);
1407 ret = kvm_get_vcpu_events(env);
1411 ret = kvm_get_debugregs(env);
1418 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1420 /* Try to inject an interrupt if the guest can accept it */
1421 if (run->ready_for_interrupt_injection &&
1422 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1423 (env->eflags & IF_MASK)) {
1426 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1427 irq = cpu_get_pic_interrupt(env);
1429 struct kvm_interrupt intr;
1432 DPRINTF("injected interrupt %d\n", irq);
1433 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1437 /* If we have an interrupt but the guest is not ready to receive an
1438 * interrupt, request an interrupt window exit. This will
1439 * cause a return to userspace as soon as the guest is ready to
1440 * receive interrupts. */
1441 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1442 run->request_interrupt_window = 1;
1444 run->request_interrupt_window = 0;
1446 DPRINTF("setting tpr\n");
1447 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1452 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1455 env->eflags |= IF_MASK;
1457 env->eflags &= ~IF_MASK;
1459 cpu_set_apic_tpr(env->apic_state, run->cr8);
1460 cpu_set_apic_base(env->apic_state, run->apic_base);
1465 int kvm_arch_process_irqchip_events(CPUState *env)
1467 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1468 kvm_cpu_synchronize_state(env);
1470 env->exception_index = EXCP_HALTED;
1473 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1474 kvm_cpu_synchronize_state(env);
1481 static int kvm_handle_halt(CPUState *env)
1483 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1484 (env->eflags & IF_MASK)) &&
1485 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1487 env->exception_index = EXCP_HLT;
1494 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1498 switch (run->exit_reason) {
1500 DPRINTF("handle_hlt\n");
1501 ret = kvm_handle_halt(env);
1508 #ifdef KVM_CAP_SET_GUEST_DEBUG
1509 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1511 static const uint8_t int3 = 0xcc;
1513 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1514 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1519 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1523 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1524 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1535 static int nb_hw_breakpoint;
1537 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1541 for (n = 0; n < nb_hw_breakpoint; n++)
1542 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1543 (hw_breakpoint[n].len == len || len == -1))
1548 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1549 target_ulong len, int type)
1552 case GDB_BREAKPOINT_HW:
1555 case GDB_WATCHPOINT_WRITE:
1556 case GDB_WATCHPOINT_ACCESS:
1563 if (addr & (len - 1))
1574 if (nb_hw_breakpoint == 4)
1577 if (find_hw_breakpoint(addr, len, type) >= 0)
1580 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1581 hw_breakpoint[nb_hw_breakpoint].len = len;
1582 hw_breakpoint[nb_hw_breakpoint].type = type;
1588 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1589 target_ulong len, int type)
1593 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1598 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1603 void kvm_arch_remove_all_hw_breakpoints(void)
1605 nb_hw_breakpoint = 0;
1608 static CPUWatchpoint hw_watchpoint;
1610 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1615 if (arch_info->exception == 1) {
1616 if (arch_info->dr6 & (1 << 14)) {
1617 if (cpu_single_env->singlestep_enabled)
1620 for (n = 0; n < 4; n++)
1621 if (arch_info->dr6 & (1 << n))
1622 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1628 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1629 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1630 hw_watchpoint.flags = BP_MEM_WRITE;
1634 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1635 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1636 hw_watchpoint.flags = BP_MEM_ACCESS;
1640 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1644 cpu_synchronize_state(cpu_single_env);
1645 assert(cpu_single_env->exception_injected == -1);
1647 cpu_single_env->exception_injected = arch_info->exception;
1648 cpu_single_env->has_error_code = 0;
1654 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1656 const uint8_t type_code[] = {
1657 [GDB_BREAKPOINT_HW] = 0x0,
1658 [GDB_WATCHPOINT_WRITE] = 0x1,
1659 [GDB_WATCHPOINT_ACCESS] = 0x3
1661 const uint8_t len_code[] = {
1662 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1666 if (kvm_sw_breakpoints_active(env))
1667 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1669 if (nb_hw_breakpoint > 0) {
1670 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1671 dbg->arch.debugreg[7] = 0x0600;
1672 for (n = 0; n < nb_hw_breakpoint; n++) {
1673 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1674 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1675 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1676 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1679 /* Legal xcr0 for loading */
1682 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1684 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1686 return !(env->cr[0] & CR0_PE_MASK) ||
1687 ((env->segs[R_CS].selector & 3) != 3);
1690 static void hardware_memory_error(void)
1692 fprintf(stderr, "Hardware memory error!\n");
1697 static void kvm_mce_broadcast_rest(CPUState *env)
1700 int family, model, cpuver = env->cpuid_version;
1702 family = (cpuver >> 8) & 0xf;
1703 model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0xf);
1705 /* Broadcast MCA signal for processor version 06H_EH and above */
1706 if ((family == 6 && model >= 14) || family > 6) {
1707 for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1711 kvm_inject_x86_mce(cenv, 1, MCI_STATUS_VAL | MCI_STATUS_UC,
1712 MCG_STATUS_MCIP | MCG_STATUS_RIPV, 0, 0, 1);
1718 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1720 #if defined(KVM_CAP_MCE)
1721 struct kvm_x86_mce mce = {
1725 ram_addr_t ram_addr;
1726 target_phys_addr_t paddr;
1729 if ((env->mcg_cap & MCG_SER_P) && addr
1730 && (code == BUS_MCEERR_AR
1731 || code == BUS_MCEERR_AO)) {
1732 if (code == BUS_MCEERR_AR) {
1733 /* Fake an Intel architectural Data Load SRAR UCR */
1734 mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1735 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1736 | MCI_STATUS_AR | 0x134;
1737 mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1738 mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV;
1741 * If there is an MCE excpetion being processed, ignore
1744 r = kvm_mce_in_exception(env);
1746 fprintf(stderr, "Failed to get MCE status\n");
1750 /* Fake an Intel architectural Memory scrubbing UCR */
1751 mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1752 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1754 mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1755 mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
1757 vaddr = (void *)addr;
1758 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1759 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1760 fprintf(stderr, "Hardware memory error for memory used by "
1761 "QEMU itself instead of guest system!\n");
1762 /* Hope we are lucky for AO MCE */
1763 if (code == BUS_MCEERR_AO) {
1766 hardware_memory_error();
1770 r = kvm_set_mce(env, &mce);
1772 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1775 kvm_mce_broadcast_rest(env);
1779 if (code == BUS_MCEERR_AO) {
1781 } else if (code == BUS_MCEERR_AR) {
1782 hardware_memory_error();
1790 int kvm_on_sigbus(int code, void *addr)
1792 #if defined(KVM_CAP_MCE)
1793 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1796 ram_addr_t ram_addr;
1797 target_phys_addr_t paddr;
1799 /* Hope we are lucky for AO MCE */
1801 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1802 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1803 fprintf(stderr, "Hardware memory error for memory used by "
1804 "QEMU itself instead of guest system!: %p\n", addr);
1807 status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1808 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1810 kvm_inject_x86_mce(first_cpu, 9, status,
1811 MCG_STATUS_MCIP | MCG_STATUS_RIPV, paddr,
1812 (MCM_ADDR_PHYS << 6) | 0xc, 1);
1813 kvm_mce_broadcast_rest(first_cpu);
1817 if (code == BUS_MCEERR_AO) {
1819 } else if (code == BUS_MCEERR_AR) {
1820 hardware_memory_error();