2 * QEMU NE2000 emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 #include "qemu/osdep.h"
27 #include "sysemu/sysemu.h"
30 /* debug NE2000 card */
31 //#define DEBUG_NE2000
33 #define MAX_ETH_FRAME_SIZE 1514
35 #define E8390_CMD 0x00 /* The command register (for all pages) */
36 /* Page 0 register offsets. */
37 #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
38 #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
39 #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
40 #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
41 #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
42 #define EN0_TSR 0x04 /* Transmit status reg RD */
43 #define EN0_TPSR 0x04 /* Transmit starting page WR */
44 #define EN0_NCR 0x05 /* Number of collision reg RD */
45 #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
46 #define EN0_FIFO 0x06 /* FIFO RD */
47 #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
48 #define EN0_ISR 0x07 /* Interrupt status reg RD WR */
49 #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
50 #define EN0_RSARLO 0x08 /* Remote start address reg 0 */
51 #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
52 #define EN0_RSARHI 0x09 /* Remote start address reg 1 */
53 #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
54 #define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
55 #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
56 #define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
57 #define EN0_RSR 0x0c /* rx status reg RD */
58 #define EN0_RXCR 0x0c /* RX configuration reg WR */
59 #define EN0_TXCR 0x0d /* TX configuration reg WR */
60 #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
61 #define EN0_DCFG 0x0e /* Data configuration reg WR */
62 #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
63 #define EN0_IMR 0x0f /* Interrupt mask reg WR */
64 #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
67 #define EN1_CURPAG 0x17
70 #define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
71 #define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
73 #define EN3_CONFIG0 0x33
74 #define EN3_CONFIG1 0x34
75 #define EN3_CONFIG2 0x35
76 #define EN3_CONFIG3 0x36
78 /* Register accessed at EN_CMD, the 8390 base addr. */
79 #define E8390_STOP 0x01 /* Stop and reset the chip */
80 #define E8390_START 0x02 /* Start the chip, clear reset */
81 #define E8390_TRANS 0x04 /* Transmit a frame */
82 #define E8390_RREAD 0x08 /* Remote read */
83 #define E8390_RWRITE 0x10 /* Remote write */
84 #define E8390_NODMA 0x20 /* Remote DMA */
85 #define E8390_PAGE0 0x00 /* Select page chip registers */
86 #define E8390_PAGE1 0x40 /* using the two high-order bits */
87 #define E8390_PAGE2 0x80 /* Page 3 is invalid. */
89 /* Bits in EN0_ISR - Interrupt status register */
90 #define ENISR_RX 0x01 /* Receiver, no error */
91 #define ENISR_TX 0x02 /* Transmitter, no error */
92 #define ENISR_RX_ERR 0x04 /* Receiver, with error */
93 #define ENISR_TX_ERR 0x08 /* Transmitter, with error */
94 #define ENISR_OVER 0x10 /* Receiver overwrote the ring */
95 #define ENISR_COUNTERS 0x20 /* Counters need emptying */
96 #define ENISR_RDC 0x40 /* remote dma complete */
97 #define ENISR_RESET 0x80 /* Reset completed */
98 #define ENISR_ALL 0x3f /* Interrupts we will enable */
100 /* Bits in received packet status byte and EN0_RSR*/
101 #define ENRSR_RXOK 0x01 /* Received a good packet */
102 #define ENRSR_CRC 0x02 /* CRC error */
103 #define ENRSR_FAE 0x04 /* frame alignment error */
104 #define ENRSR_FO 0x08 /* FIFO overrun */
105 #define ENRSR_MPA 0x10 /* missed pkt */
106 #define ENRSR_PHY 0x20 /* physical/multicast address */
107 #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
108 #define ENRSR_DEF 0x80 /* deferring */
110 /* Transmitted packet status, EN0_TSR. */
111 #define ENTSR_PTX 0x01 /* Packet transmitted without error */
112 #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
113 #define ENTSR_COL 0x04 /* The transmit collided at least once. */
114 #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
115 #define ENTSR_CRS 0x10 /* The carrier sense was lost. */
116 #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
117 #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
118 #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
120 void ne2000_reset(NE2000State *s)
124 s->isr = ENISR_RESET;
125 memcpy(s->mem, &s->c.macaddr, 6);
129 /* duplicate prom data */
130 for(i = 15;i >= 0; i--) {
131 s->mem[2 * i] = s->mem[i];
132 s->mem[2 * i + 1] = s->mem[i];
136 static void ne2000_update_irq(NE2000State *s)
139 isr = (s->isr & s->imr) & 0x7f;
140 #if defined(DEBUG_NE2000)
141 printf("NE2000: Set IRQ to %d (%02x %02x)\n",
142 isr ? 1 : 0, s->isr, s->imr);
144 qemu_set_irq(s->irq, (isr != 0));
147 static int ne2000_buffer_full(NE2000State *s)
149 int avail, index, boundary;
151 if (s->stop <= s->start) {
155 index = s->curpag << 8;
156 boundary = s->boundary << 8;
157 if (index < boundary)
158 avail = boundary - index;
160 avail = (s->stop - s->start) - (index - boundary);
161 if (avail < (MAX_ETH_FRAME_SIZE + 4))
166 #define MIN_BUF_SIZE 60
168 ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_)
170 NE2000State *s = qemu_get_nic_opaque(nc);
173 unsigned int total_len, next, avail, len, index, mcast_idx;
175 static const uint8_t broadcast_macaddr[6] =
176 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
178 #if defined(DEBUG_NE2000)
179 printf("NE2000: received len=%zu\n", size);
182 if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
185 /* XXX: check this */
186 if (s->rxcr & 0x10) {
187 /* promiscuous: receive all */
189 if (!memcmp(buf, broadcast_macaddr, 6)) {
190 /* broadcast address */
191 if (!(s->rxcr & 0x04))
193 } else if (buf[0] & 0x01) {
195 if (!(s->rxcr & 0x08))
197 mcast_idx = net_crc32(buf, ETH_ALEN) >> 26;
198 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
200 } else if (s->mem[0] == buf[0] &&
201 s->mem[2] == buf[1] &&
202 s->mem[4] == buf[2] &&
203 s->mem[6] == buf[3] &&
204 s->mem[8] == buf[4] &&
205 s->mem[10] == buf[5]) {
213 /* if too small buffer, then expand it */
214 if (size < MIN_BUF_SIZE) {
215 memcpy(buf1, buf, size);
216 memset(buf1 + size, 0, MIN_BUF_SIZE - size);
221 index = s->curpag << 8;
222 if (index >= NE2000_PMEM_END) {
225 /* 4 bytes for header */
226 total_len = size + 4;
227 /* address for next packet (4 bytes for CRC) */
228 next = index + ((total_len + 4 + 255) & ~0xff);
230 next -= (s->stop - s->start);
231 /* prepare packet header */
233 s->rsr = ENRSR_RXOK; /* receive status */
234 /* XXX: check this */
240 p[3] = total_len >> 8;
243 /* write packet data */
245 if (index <= s->stop)
246 avail = s->stop - index;
252 memcpy(s->mem + index, buf, len);
255 if (index == s->stop)
259 s->curpag = next >> 8;
261 /* now we can signal we have received something */
263 ne2000_update_irq(s);
268 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
270 NE2000State *s = opaque;
271 int offset, page, index;
274 trace_ne2000_ioport_write(addr, val);
275 if (addr == E8390_CMD) {
276 /* control register */
278 if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
279 s->isr &= ~ENISR_RESET;
280 /* test specific case: zero length transfer */
281 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
284 ne2000_update_irq(s);
286 if (val & E8390_TRANS) {
287 index = (s->tpsr << 8);
288 /* XXX: next 2 lines are a hack to make netware 3.11 work */
289 if (index >= NE2000_PMEM_END)
290 index -= NE2000_PMEM_SIZE;
291 /* fail safe: check range on the transmitted length */
292 if (index + s->tcnt <= NE2000_PMEM_END) {
293 qemu_send_packet(qemu_get_queue(s->nic), s->mem + index,
296 /* signal end of transfer */
299 s->cmd &= ~E8390_TRANS;
300 ne2000_update_irq(s);
305 offset = addr | (page << 4);
308 if (val << 8 <= NE2000_PMEM_END) {
313 if (val << 8 <= NE2000_PMEM_END) {
318 if (val << 8 < NE2000_PMEM_END) {
324 ne2000_update_irq(s);
330 s->tcnt = (s->tcnt & 0xff00) | val;
333 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
336 s->rsar = (s->rsar & 0xff00) | val;
339 s->rsar = (s->rsar & 0x00ff) | (val << 8);
342 s->rcnt = (s->rcnt & 0xff00) | val;
345 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
354 s->isr &= ~(val & 0x7f);
355 ne2000_update_irq(s);
357 case EN1_PHYS ... EN1_PHYS + 5:
358 s->phys[offset - EN1_PHYS] = val;
361 if (val << 8 < NE2000_PMEM_END) {
365 case EN1_MULT ... EN1_MULT + 7:
366 s->mult[offset - EN1_MULT] = val;
372 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
374 NE2000State *s = opaque;
375 int offset, page, ret;
378 if (addr == E8390_CMD) {
382 offset = addr | (page << 4);
394 ret = s->rsar & 0x00ff;
399 case EN1_PHYS ... EN1_PHYS + 5:
400 ret = s->phys[offset - EN1_PHYS];
405 case EN1_MULT ... EN1_MULT + 7:
406 ret = s->mult[offset - EN1_MULT];
424 ret = 0; /* 10baseT media */
427 ret = 0x40; /* 10baseT active */
430 ret = 0x40; /* Full duplex */
437 trace_ne2000_ioport_read(addr, ret);
441 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
445 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
450 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
453 addr &= ~1; /* XXX: check exact behaviour if not even */
455 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
456 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
460 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
463 addr &= ~1; /* XXX: check exact behaviour if not even */
465 || (addr >= NE2000_PMEM_START
466 && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
467 stl_le_p(s->mem + addr, val);
471 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
474 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
481 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
483 addr &= ~1; /* XXX: check exact behaviour if not even */
485 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
486 return le16_to_cpu(*(uint16_t *)(s->mem + addr));
492 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
494 addr &= ~1; /* XXX: check exact behaviour if not even */
496 || (addr >= NE2000_PMEM_START
497 && addr + sizeof(uint32_t) <= NE2000_MEM_SIZE)) {
498 return ldl_le_p(s->mem + addr);
504 static inline void ne2000_dma_update(NE2000State *s, int len)
508 /* XXX: check what to do if rsar > stop */
509 if (s->rsar == s->stop)
512 if (s->rcnt <= len) {
514 /* signal end of transfer */
516 ne2000_update_irq(s);
522 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
524 NE2000State *s = opaque;
527 printf("NE2000: asic write val=0x%04x\n", val);
531 if (s->dcfg & 0x01) {
533 ne2000_mem_writew(s, s->rsar, val);
534 ne2000_dma_update(s, 2);
537 ne2000_mem_writeb(s, s->rsar, val);
538 ne2000_dma_update(s, 1);
542 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
544 NE2000State *s = opaque;
547 if (s->dcfg & 0x01) {
549 ret = ne2000_mem_readw(s, s->rsar);
550 ne2000_dma_update(s, 2);
553 ret = ne2000_mem_readb(s, s->rsar);
554 ne2000_dma_update(s, 1);
557 printf("NE2000: asic read val=0x%04x\n", ret);
562 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
564 NE2000State *s = opaque;
567 printf("NE2000: asic writel val=0x%04x\n", val);
572 ne2000_mem_writel(s, s->rsar, val);
573 ne2000_dma_update(s, 4);
576 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
578 NE2000State *s = opaque;
582 ret = ne2000_mem_readl(s, s->rsar);
583 ne2000_dma_update(s, 4);
585 printf("NE2000: asic readl val=0x%04x\n", ret);
590 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
592 /* nothing to do (end of reset pulse) */
595 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
597 NE2000State *s = opaque;
602 static int ne2000_post_load(void* opaque, int version_id)
604 NE2000State* s = opaque;
606 if (version_id < 2) {
612 const VMStateDescription vmstate_ne2000 = {
615 .minimum_version_id = 0,
616 .post_load = ne2000_post_load,
617 .fields = (VMStateField[]) {
618 VMSTATE_UINT8_V(rxcr, NE2000State, 2),
619 VMSTATE_UINT8(cmd, NE2000State),
620 VMSTATE_UINT32(start, NE2000State),
621 VMSTATE_UINT32(stop, NE2000State),
622 VMSTATE_UINT8(boundary, NE2000State),
623 VMSTATE_UINT8(tsr, NE2000State),
624 VMSTATE_UINT8(tpsr, NE2000State),
625 VMSTATE_UINT16(tcnt, NE2000State),
626 VMSTATE_UINT16(rcnt, NE2000State),
627 VMSTATE_UINT32(rsar, NE2000State),
628 VMSTATE_UINT8(rsr, NE2000State),
629 VMSTATE_UINT8(isr, NE2000State),
630 VMSTATE_UINT8(dcfg, NE2000State),
631 VMSTATE_UINT8(imr, NE2000State),
632 VMSTATE_BUFFER(phys, NE2000State),
633 VMSTATE_UINT8(curpag, NE2000State),
634 VMSTATE_BUFFER(mult, NE2000State),
635 VMSTATE_UNUSED(4), /* was irq */
636 VMSTATE_BUFFER(mem, NE2000State),
637 VMSTATE_END_OF_LIST()
641 static uint64_t ne2000_read(void *opaque, hwaddr addr,
644 NE2000State *s = opaque;
647 if (addr < 0x10 && size == 1) {
648 val = ne2000_ioport_read(s, addr);
649 } else if (addr == 0x10) {
651 val = ne2000_asic_ioport_read(s, addr);
653 val = ne2000_asic_ioport_readl(s, addr);
655 } else if (addr == 0x1f && size == 1) {
656 val = ne2000_reset_ioport_read(s, addr);
658 val = ((uint64_t)1 << (size * 8)) - 1;
660 trace_ne2000_read(addr, val);
665 static void ne2000_write(void *opaque, hwaddr addr,
666 uint64_t data, unsigned size)
668 NE2000State *s = opaque;
670 trace_ne2000_write(addr, data);
671 if (addr < 0x10 && size == 1) {
672 ne2000_ioport_write(s, addr, data);
673 } else if (addr == 0x10) {
675 ne2000_asic_ioport_write(s, addr, data);
677 ne2000_asic_ioport_writel(s, addr, data);
679 } else if (addr == 0x1f && size == 1) {
680 ne2000_reset_ioport_write(s, addr, data);
684 static const MemoryRegionOps ne2000_ops = {
686 .write = ne2000_write,
687 .endianness = DEVICE_LITTLE_ENDIAN,
690 /***********************************************************/
691 /* PCI NE2000 definitions */
693 void ne2000_setup_io(NE2000State *s, DeviceState *dev, unsigned size)
695 memory_region_init_io(&s->io, OBJECT(dev), &ne2000_ops, s, "ne2000", size);