2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "sysemu/qtest.h"
35 #include "hw/fw-path-provider.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/cpus.h"
40 #include "sysemu/hw_accel.h"
42 #include "migration/misc.h"
43 #include "migration/global_state.h"
44 #include "migration/register.h"
45 #include "mmu-hash64.h"
46 #include "mmu-book3s-v3.h"
47 #include "cpu-models.h"
50 #include "hw/boards.h"
51 #include "hw/ppc/ppc.h"
52 #include "hw/loader.h"
54 #include "hw/ppc/fdt.h"
55 #include "hw/ppc/spapr.h"
56 #include "hw/ppc/spapr_vio.h"
57 #include "hw/pci-host/spapr.h"
58 #include "hw/pci/msi.h"
60 #include "hw/pci/pci.h"
61 #include "hw/scsi/scsi.h"
62 #include "hw/virtio/virtio-scsi.h"
63 #include "hw/virtio/vhost-scsi-common.h"
65 #include "exec/address-spaces.h"
66 #include "exec/ram_addr.h"
68 #include "qemu/config-file.h"
69 #include "qemu/error-report.h"
72 #include "hw/intc/intc.h"
74 #include "qemu/cutils.h"
75 #include "hw/ppc/spapr_cpu_core.h"
76 #include "hw/mem/memory-device.h"
80 /* SLOF memory layout:
82 * SLOF raw image loaded at 0, copies its romfs right below the flat
83 * device-tree, then position SLOF itself 31M below that
85 * So we set FW_OVERHEAD to 40MB which should account for all of that
88 * We load our kernel at 4M, leaving space for SLOF initial image
90 #define FDT_MAX_SIZE 0x100000
91 #define RTAS_MAX_SIZE 0x10000
92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE 0x400000
94 #define FW_FILE_NAME "slof.bin"
95 #define FW_OVERHEAD 0x2800000
96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
98 #define MIN_RMA_SLOF 128UL
100 #define PHANDLE_INTC 0x00001111
102 /* These two functions implement the VCPU id numbering: one to compute them
103 * all and one to identify thread 0 of a VCORE. Any change to the first one
104 * is likely to have an impact on the second one, so let's keep them close.
106 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
110 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
112 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
116 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
119 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
121 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
122 * and newer QEMUs don't even have them. In both cases, we don't want
123 * to send anything on the wire.
128 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
129 .name = "icp/server",
131 .minimum_version_id = 1,
132 .needed = pre_2_10_vmstate_dummy_icp_needed,
133 .fields = (VMStateField[]) {
134 VMSTATE_UNUSED(4), /* uint32_t xirr */
135 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
136 VMSTATE_UNUSED(1), /* uint8_t mfrr */
137 VMSTATE_END_OF_LIST()
141 static void pre_2_10_vmstate_register_dummy_icp(int i)
143 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
144 (void *)(uintptr_t) i);
147 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
149 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
150 (void *)(uintptr_t) i);
153 int spapr_max_server_number(SpaprMachineState *spapr)
156 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
159 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
163 uint32_t servers_prop[smt_threads];
164 uint32_t gservers_prop[smt_threads * 2];
165 int index = spapr_get_vcpu_id(cpu);
167 if (cpu->compat_pvr) {
168 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
174 /* Build interrupt servers and gservers properties */
175 for (i = 0; i < smt_threads; i++) {
176 servers_prop[i] = cpu_to_be32(index + i);
177 /* Hack, direct the group queues back to cpu 0 */
178 gservers_prop[i*2] = cpu_to_be32(index + i);
179 gservers_prop[i*2 + 1] = 0;
181 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
182 servers_prop, sizeof(servers_prop));
186 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
187 gservers_prop, sizeof(gservers_prop));
192 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
194 int index = spapr_get_vcpu_id(cpu);
195 uint32_t associativity[] = {cpu_to_be32(0x5),
199 cpu_to_be32(cpu->node_id),
202 /* Advertise NUMA via ibm,associativity */
203 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
204 sizeof(associativity));
207 /* Populate the "ibm,pa-features" property */
208 static void spapr_populate_pa_features(SpaprMachineState *spapr,
210 void *fdt, int offset,
213 uint8_t pa_features_206[] = { 6, 0,
214 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
215 uint8_t pa_features_207[] = { 24, 0,
216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
217 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
218 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
219 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
220 uint8_t pa_features_300[] = { 66, 0,
221 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
222 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
223 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
225 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
227 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
228 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
230 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
232 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
233 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
234 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
236 /* 42: PM, 44: PC RA, 46: SC vec'd */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
238 /* 48: SIMD, 50: QP BFP, 52: String */
239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
240 /* 54: DecFP, 56: DecI, 58: SHA */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
242 /* 60: NM atomic, 62: RNG */
243 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
245 uint8_t *pa_features = NULL;
248 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
249 pa_features = pa_features_206;
250 pa_size = sizeof(pa_features_206);
252 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
253 pa_features = pa_features_207;
254 pa_size = sizeof(pa_features_207);
256 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
257 pa_features = pa_features_300;
258 pa_size = sizeof(pa_features_300);
264 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
266 * Note: we keep CI large pages off by default because a 64K capable
267 * guest provisioned with large pages might otherwise try to map a qemu
268 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
269 * even if that qemu runs on a 4k host.
270 * We dd this bit back here if we are confident this is not an issue
272 pa_features[3] |= 0x20;
274 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
275 pa_features[24] |= 0x80; /* Transactional memory support */
277 if (legacy_guest && pa_size > 40) {
278 /* Workaround for broken kernels that attempt (guest) radix
279 * mode when they can't handle it, if they see the radix bit set
280 * in pa-features. So hide it from them. */
281 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
284 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
287 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr)
289 int ret = 0, offset, cpus_offset;
292 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
295 PowerPCCPU *cpu = POWERPC_CPU(cs);
296 DeviceClass *dc = DEVICE_GET_CLASS(cs);
297 int index = spapr_get_vcpu_id(cpu);
298 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
300 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
304 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
306 cpus_offset = fdt_path_offset(fdt, "/cpus");
307 if (cpus_offset < 0) {
308 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
309 if (cpus_offset < 0) {
313 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
315 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
321 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
322 pft_size_prop, sizeof(pft_size_prop));
327 if (nb_numa_nodes > 1) {
328 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
334 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
339 spapr_populate_pa_features(spapr, cpu, fdt, offset,
340 spapr->cas_legacy_guest_workaround);
345 static hwaddr spapr_node0_size(MachineState *machine)
349 for (i = 0; i < nb_numa_nodes; ++i) {
350 if (numa_info[i].node_mem) {
351 return MIN(pow2floor(numa_info[i].node_mem),
356 return machine->ram_size;
359 static void add_str(GString *s, const gchar *s1)
361 g_string_append_len(s, s1, strlen(s1) + 1);
364 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
367 uint32_t associativity[] = {
368 cpu_to_be32(0x4), /* length */
369 cpu_to_be32(0x0), cpu_to_be32(0x0),
370 cpu_to_be32(0x0), cpu_to_be32(nodeid)
373 uint64_t mem_reg_property[2];
376 mem_reg_property[0] = cpu_to_be64(start);
377 mem_reg_property[1] = cpu_to_be64(size);
379 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
380 off = fdt_add_subnode(fdt, 0, mem_name);
382 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
383 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
384 sizeof(mem_reg_property))));
385 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
386 sizeof(associativity))));
390 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
392 MachineState *machine = MACHINE(spapr);
393 hwaddr mem_start, node_size;
394 int i, nb_nodes = nb_numa_nodes;
395 NodeInfo *nodes = numa_info;
398 /* No NUMA nodes, assume there is just one node with whole RAM */
399 if (!nb_numa_nodes) {
401 ramnode.node_mem = machine->ram_size;
405 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
406 if (!nodes[i].node_mem) {
409 if (mem_start >= machine->ram_size) {
412 node_size = nodes[i].node_mem;
413 if (node_size > machine->ram_size - mem_start) {
414 node_size = machine->ram_size - mem_start;
418 /* spapr_machine_init() checks for rma_size <= node0_size
420 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
421 mem_start += spapr->rma_size;
422 node_size -= spapr->rma_size;
424 for ( ; node_size; ) {
425 hwaddr sizetmp = pow2floor(node_size);
427 /* mem_start != 0 here */
428 if (ctzl(mem_start) < ctzl(sizetmp)) {
429 sizetmp = 1ULL << ctzl(mem_start);
432 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
433 node_size -= sizetmp;
434 mem_start += sizetmp;
441 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
442 SpaprMachineState *spapr)
444 PowerPCCPU *cpu = POWERPC_CPU(cs);
445 CPUPPCState *env = &cpu->env;
446 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
447 int index = spapr_get_vcpu_id(cpu);
448 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
449 0xffffffff, 0xffffffff};
450 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
451 : SPAPR_TIMEBASE_FREQ;
452 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
453 uint32_t page_sizes_prop[64];
454 size_t page_sizes_prop_size;
455 uint32_t vcpus_per_socket = smp_threads * smp_cores;
456 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
457 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
460 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
463 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
465 drc_index = spapr_drc_index(drc);
466 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
469 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
470 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
472 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
473 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
474 env->dcache_line_size)));
475 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
476 env->dcache_line_size)));
477 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
478 env->icache_line_size)));
479 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
480 env->icache_line_size)));
482 if (pcc->l1_dcache_size) {
483 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
484 pcc->l1_dcache_size)));
486 warn_report("Unknown L1 dcache size for cpu");
488 if (pcc->l1_icache_size) {
489 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
490 pcc->l1_icache_size)));
492 warn_report("Unknown L1 icache size for cpu");
495 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
496 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
497 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
498 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
499 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
500 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
502 if (env->spr_cb[SPR_PURR].oea_read) {
503 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
505 if (env->spr_cb[SPR_SPURR].oea_read) {
506 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
509 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
510 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
511 segs, sizeof(segs))));
514 /* Advertise VSX (vector extensions) if available
515 * 1 == VMX / Altivec available
518 * Only CPUs for which we create core types in spapr_cpu_core.c
519 * are possible, and all of those have VMX */
520 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
521 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
523 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
526 /* Advertise DFP (Decimal Floating Point) if available
527 * 0 / no property == no DFP
528 * 1 == DFP available */
529 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
530 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
533 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
534 sizeof(page_sizes_prop));
535 if (page_sizes_prop_size) {
536 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
537 page_sizes_prop, page_sizes_prop_size)));
540 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
542 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
543 cs->cpu_index / vcpus_per_socket)));
545 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
546 pft_size_prop, sizeof(pft_size_prop))));
548 if (nb_numa_nodes > 1) {
549 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
552 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
554 if (pcc->radix_page_info) {
555 for (i = 0; i < pcc->radix_page_info->count; i++) {
556 radix_AP_encodings[i] =
557 cpu_to_be32(pcc->radix_page_info->entries[i]);
559 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
561 pcc->radix_page_info->count *
562 sizeof(radix_AP_encodings[0]))));
566 * We set this property to let the guest know that it can use the large
567 * decrementer and its width in bits.
569 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
570 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
571 pcc->lrg_decr_bits)));
574 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
583 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
585 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
586 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
589 * We walk the CPUs in reverse order to ensure that CPU DT nodes
590 * created by fdt_add_subnode() end up in the right order in FDT
591 * for the guest kernel the enumerate the CPUs correctly.
593 * The CPU list cannot be traversed in reverse order, so we need
599 rev = g_renew(CPUState *, rev, n_cpus + 1);
603 for (i = n_cpus - 1; i >= 0; i--) {
604 CPUState *cs = rev[i];
605 PowerPCCPU *cpu = POWERPC_CPU(cs);
606 int index = spapr_get_vcpu_id(cpu);
607 DeviceClass *dc = DEVICE_GET_CLASS(cs);
610 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
614 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
615 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
618 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
624 static int spapr_rng_populate_dt(void *fdt)
629 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
633 ret = fdt_setprop_string(fdt, node, "device_type",
634 "ibm,platform-facilities");
635 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
636 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
638 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
642 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
647 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
649 MemoryDeviceInfoList *info;
651 for (info = list; info; info = info->next) {
652 MemoryDeviceInfo *value = info->value;
654 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
655 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
657 if (addr >= pcdimm_info->addr &&
658 addr < (pcdimm_info->addr + pcdimm_info->size)) {
659 return pcdimm_info->node;
667 struct sPAPRDrconfCellV2 {
675 typedef struct DrconfCellQueue {
676 struct sPAPRDrconfCellV2 cell;
677 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
680 static DrconfCellQueue *
681 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
682 uint32_t drc_index, uint32_t aa_index,
685 DrconfCellQueue *elem;
687 elem = g_malloc0(sizeof(*elem));
688 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
689 elem->cell.base_addr = cpu_to_be64(base_addr);
690 elem->cell.drc_index = cpu_to_be32(drc_index);
691 elem->cell.aa_index = cpu_to_be32(aa_index);
692 elem->cell.flags = cpu_to_be32(flags);
697 /* ibm,dynamic-memory-v2 */
698 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
699 int offset, MemoryDeviceInfoList *dimms)
701 MachineState *machine = MACHINE(spapr);
702 uint8_t *int_buf, *cur_index;
704 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
705 uint64_t addr, cur_addr, size;
706 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
707 uint64_t mem_end = machine->device_memory->base +
708 memory_region_size(&machine->device_memory->mr);
709 uint32_t node, buf_len, nr_entries = 0;
711 DrconfCellQueue *elem, *next;
712 MemoryDeviceInfoList *info;
713 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
714 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
716 /* Entry to cover RAM and the gap area */
717 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
718 SPAPR_LMB_FLAGS_RESERVED |
719 SPAPR_LMB_FLAGS_DRC_INVALID);
720 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
723 cur_addr = machine->device_memory->base;
724 for (info = dimms; info; info = info->next) {
725 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
731 /* Entry for hot-pluggable area */
732 if (cur_addr < addr) {
733 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
735 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
736 cur_addr, spapr_drc_index(drc), -1, 0);
737 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
742 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
744 elem = spapr_get_drconf_cell(size / lmb_size, addr,
745 spapr_drc_index(drc), node,
746 SPAPR_LMB_FLAGS_ASSIGNED);
747 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
749 cur_addr = addr + size;
752 /* Entry for remaining hotpluggable area */
753 if (cur_addr < mem_end) {
754 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
756 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
757 cur_addr, spapr_drc_index(drc), -1, 0);
758 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
762 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
763 int_buf = cur_index = g_malloc0(buf_len);
764 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
765 cur_index += sizeof(nr_entries);
767 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
768 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
769 cur_index += sizeof(elem->cell);
770 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
774 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
782 /* ibm,dynamic-memory */
783 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
784 int offset, MemoryDeviceInfoList *dimms)
786 MachineState *machine = MACHINE(spapr);
788 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
789 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
790 uint32_t nr_lmbs = (machine->device_memory->base +
791 memory_region_size(&machine->device_memory->mr)) /
793 uint32_t *int_buf, *cur_index, buf_len;
796 * Allocate enough buffer size to fit in ibm,dynamic-memory
798 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
799 cur_index = int_buf = g_malloc0(buf_len);
800 int_buf[0] = cpu_to_be32(nr_lmbs);
802 for (i = 0; i < nr_lmbs; i++) {
803 uint64_t addr = i * lmb_size;
804 uint32_t *dynamic_memory = cur_index;
806 if (i >= device_lmb_start) {
809 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
812 dynamic_memory[0] = cpu_to_be32(addr >> 32);
813 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
814 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
815 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
816 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
817 if (memory_region_present(get_system_memory(), addr)) {
818 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
820 dynamic_memory[5] = cpu_to_be32(0);
824 * LMB information for RMA, boot time RAM and gap b/n RAM and
825 * device memory region -- all these are marked as reserved
826 * and as having no valid DRC.
828 dynamic_memory[0] = cpu_to_be32(addr >> 32);
829 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
830 dynamic_memory[2] = cpu_to_be32(0);
831 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
832 dynamic_memory[4] = cpu_to_be32(-1);
833 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
834 SPAPR_LMB_FLAGS_DRC_INVALID);
837 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
839 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
848 * Adds ibm,dynamic-reconfiguration-memory node.
849 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
850 * of this device tree node.
852 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
854 MachineState *machine = MACHINE(spapr);
856 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
857 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
858 uint32_t *int_buf, *cur_index, buf_len;
859 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
860 MemoryDeviceInfoList *dimms = NULL;
863 * Don't create the node if there is no device memory
865 if (machine->ram_size == machine->maxram_size) {
869 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
871 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
872 sizeof(prop_lmb_size));
877 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
882 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
887 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
888 dimms = qmp_memory_device_list();
889 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
890 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
892 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
894 qapi_free_MemoryDeviceInfoList(dimms);
900 /* ibm,associativity-lookup-arrays */
901 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
902 cur_index = int_buf = g_malloc0(buf_len);
903 int_buf[0] = cpu_to_be32(nr_nodes);
904 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
906 for (i = 0; i < nr_nodes; i++) {
907 uint32_t associativity[] = {
913 memcpy(cur_index, associativity, sizeof(associativity));
916 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
917 (cur_index - int_buf) * sizeof(uint32_t));
923 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
924 SpaprOptionVector *ov5_updates)
926 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
929 /* Generate ibm,dynamic-reconfiguration-memory node if required */
930 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
931 g_assert(smc->dr_lmb_enabled);
932 ret = spapr_populate_drconf_memory(spapr, fdt);
938 offset = fdt_path_offset(fdt, "/chosen");
940 offset = fdt_add_subnode(fdt, 0, "chosen");
945 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
946 "ibm,architecture-vec-5");
952 static bool spapr_hotplugged_dev_before_cas(void)
954 Object *drc_container, *obj;
955 ObjectProperty *prop;
956 ObjectPropertyIterator iter;
958 drc_container = container_get(object_get_root(), "/dr-connector");
959 object_property_iter_init(&iter, drc_container);
960 while ((prop = object_property_iter_next(&iter))) {
961 if (!strstart(prop->type, "link<", NULL)) {
964 obj = object_property_get_link(drc_container, prop->name, NULL);
965 if (spapr_drc_needed(obj)) {
972 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
973 target_ulong addr, target_ulong size,
974 SpaprOptionVector *ov5_updates)
976 void *fdt, *fdt_skel;
977 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
979 if (spapr_hotplugged_dev_before_cas()) {
983 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
984 error_report("SLOF provided an unexpected CAS buffer size "
985 TARGET_FMT_lu " (min: %zu, max: %u)",
986 size, sizeof(hdr), FW_MAX_SIZE);
992 /* Create skeleton */
993 fdt_skel = g_malloc0(size);
994 _FDT((fdt_create(fdt_skel, size)));
995 _FDT((fdt_finish_reservemap(fdt_skel)));
996 _FDT((fdt_begin_node(fdt_skel, "")));
997 _FDT((fdt_end_node(fdt_skel)));
998 _FDT((fdt_finish(fdt_skel)));
999 fdt = g_malloc0(size);
1000 _FDT((fdt_open_into(fdt_skel, fdt, size)));
1003 /* Fixup cpu nodes */
1004 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1006 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1010 /* Pack resulting tree */
1011 _FDT((fdt_pack(fdt)));
1013 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1014 trace_spapr_cas_failed(size);
1018 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1019 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1020 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1026 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
1029 GString *hypertas = g_string_sized_new(256);
1030 GString *qemu_hypertas = g_string_sized_new(256);
1031 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1032 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1033 memory_region_size(&MACHINE(spapr)->device_memory->mr);
1034 uint32_t lrdr_capacity[] = {
1035 cpu_to_be32(max_device_addr >> 32),
1036 cpu_to_be32(max_device_addr & 0xffffffff),
1037 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1038 cpu_to_be32(max_cpus / smp_threads),
1040 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
1041 uint32_t maxdomains[] = {
1046 cpu_to_be32(spapr->gpu_numa_id),
1049 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1052 add_str(hypertas, "hcall-pft");
1053 add_str(hypertas, "hcall-term");
1054 add_str(hypertas, "hcall-dabr");
1055 add_str(hypertas, "hcall-interrupt");
1056 add_str(hypertas, "hcall-tce");
1057 add_str(hypertas, "hcall-vio");
1058 add_str(hypertas, "hcall-splpar");
1059 add_str(hypertas, "hcall-bulk");
1060 add_str(hypertas, "hcall-set-mode");
1061 add_str(hypertas, "hcall-sprg0");
1062 add_str(hypertas, "hcall-copy");
1063 add_str(hypertas, "hcall-debug");
1064 add_str(hypertas, "hcall-vphn");
1065 add_str(qemu_hypertas, "hcall-memop1");
1067 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1068 add_str(hypertas, "hcall-multi-tce");
1071 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1072 add_str(hypertas, "hcall-hpt-resize");
1075 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1076 hypertas->str, hypertas->len));
1077 g_string_free(hypertas, TRUE);
1078 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1079 qemu_hypertas->str, qemu_hypertas->len));
1080 g_string_free(qemu_hypertas, TRUE);
1082 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1083 refpoints, sizeof(refpoints)));
1085 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1086 maxdomains, sizeof(maxdomains)));
1088 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1089 RTAS_ERROR_LOG_MAX));
1090 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1091 RTAS_EVENT_SCAN_RATE));
1093 g_assert(msi_nonbroken);
1094 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1097 * According to PAPR, rtas ibm,os-term does not guarantee a return
1098 * back to the guest cpu.
1100 * While an additional ibm,extended-os-term property indicates
1101 * that rtas call return will always occur. Set this property.
1103 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1105 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1106 lrdr_capacity, sizeof(lrdr_capacity)));
1108 spapr_dt_rtas_tokens(fdt, rtas);
1112 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1113 * and the XIVE features that the guest may request and thus the valid
1114 * values for bytes 23..26 of option vector 5:
1116 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1119 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1122 23, spapr->irq->ov5, /* Xive mode. */
1123 24, 0x00, /* Hash/Radix, filled in below. */
1124 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1125 26, 0x40, /* Radix options: GTSE == yes. */
1128 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1129 first_ppc_cpu->compat_pvr)) {
1131 * If we're in a pre POWER9 compat mode then the guest should
1132 * do hash and use the legacy interrupt mode
1134 val[1] = 0x00; /* XICS */
1135 val[3] = 0x00; /* Hash */
1136 } else if (kvm_enabled()) {
1137 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1138 val[3] = 0x80; /* OV5_MMU_BOTH */
1139 } else if (kvmppc_has_cap_mmu_radix()) {
1140 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1142 val[3] = 0x00; /* Hash */
1145 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1148 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1152 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1154 MachineState *machine = MACHINE(spapr);
1156 const char *boot_device = machine->boot_order;
1157 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1159 char *bootlist = get_boot_devices_list(&cb);
1161 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1163 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1164 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1165 spapr->initrd_base));
1166 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1167 spapr->initrd_base + spapr->initrd_size));
1169 if (spapr->kernel_size) {
1170 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1171 cpu_to_be64(spapr->kernel_size) };
1173 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1174 &kprop, sizeof(kprop)));
1175 if (spapr->kernel_le) {
1176 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1180 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1182 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1183 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1184 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1186 if (cb && bootlist) {
1189 for (i = 0; i < cb; i++) {
1190 if (bootlist[i] == '\n') {
1194 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1197 if (boot_device && strlen(boot_device)) {
1198 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1201 if (!spapr->has_graphics && stdout_path) {
1203 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1204 * kernel. New platforms should only use the "stdout-path" property. Set
1205 * the new property and continue using older property to remain
1206 * compatible with the existing firmware.
1208 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1209 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1212 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1214 g_free(stdout_path);
1218 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1220 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1221 * KVM to work under pHyp with some guest co-operation */
1223 uint8_t hypercall[16];
1225 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1226 /* indicate KVM hypercall interface */
1227 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1228 if (kvmppc_has_cap_fixup_hcalls()) {
1230 * Older KVM versions with older guest kernels were broken
1231 * with the magic page, don't allow the guest to map it.
1233 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1234 sizeof(hypercall))) {
1235 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1236 hypercall, sizeof(hypercall)));
1241 static void *spapr_build_fdt(SpaprMachineState *spapr)
1243 MachineState *machine = MACHINE(spapr);
1244 MachineClass *mc = MACHINE_GET_CLASS(machine);
1245 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1251 fdt = g_malloc0(FDT_MAX_SIZE);
1252 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1255 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1256 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1257 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1259 /* Guest UUID & Name*/
1260 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1261 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1262 if (qemu_uuid_set) {
1263 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1267 if (qemu_get_vm_name()) {
1268 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1269 qemu_get_vm_name()));
1272 /* Host Model & Serial Number */
1273 if (spapr->host_model) {
1274 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1275 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1276 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1280 if (spapr->host_serial) {
1281 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1282 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1283 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1287 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1288 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1290 /* /interrupt controller */
1291 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1294 ret = spapr_populate_memory(spapr, fdt);
1296 error_report("couldn't setup memory nodes in fdt");
1301 spapr_dt_vdevice(spapr->vio_bus, fdt);
1303 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1304 ret = spapr_rng_populate_dt(fdt);
1306 error_report("could not set up rng device in the fdt");
1311 QLIST_FOREACH(phb, &spapr->phbs, list) {
1312 ret = spapr_populate_pci_dt(phb, PHANDLE_INTC, fdt,
1313 spapr->irq->nr_msis, NULL);
1315 error_report("couldn't setup PCI devices in fdt");
1321 spapr_populate_cpus_dt_node(fdt, spapr);
1323 if (smc->dr_lmb_enabled) {
1324 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1327 if (mc->has_hotpluggable_cpus) {
1328 int offset = fdt_path_offset(fdt, "/cpus");
1329 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1330 SPAPR_DR_CONNECTOR_TYPE_CPU);
1332 error_report("Couldn't set up CPU DR device tree properties");
1337 /* /event-sources */
1338 spapr_dt_events(spapr, fdt);
1341 spapr_dt_rtas(spapr, fdt);
1344 spapr_dt_chosen(spapr, fdt);
1347 if (kvm_enabled()) {
1348 spapr_dt_hypervisor(spapr, fdt);
1351 /* Build memory reserve map */
1352 if (spapr->kernel_size) {
1353 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1355 if (spapr->initrd_size) {
1356 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1359 /* ibm,client-architecture-support updates */
1360 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1362 error_report("couldn't setup CAS properties fdt");
1366 if (smc->dr_phb_enabled) {
1367 ret = spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1369 error_report("Couldn't set up PHB DR device tree properties");
1377 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1379 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1382 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1385 CPUPPCState *env = &cpu->env;
1387 /* The TCG path should also be holding the BQL at this point */
1388 g_assert(qemu_mutex_iothread_locked());
1391 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1392 env->gpr[3] = H_PRIVILEGE;
1394 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1398 struct LPCRSyncState {
1403 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1405 struct LPCRSyncState *s = arg.host_ptr;
1406 PowerPCCPU *cpu = POWERPC_CPU(cs);
1407 CPUPPCState *env = &cpu->env;
1410 cpu_synchronize_state(cs);
1411 lpcr = env->spr[SPR_LPCR];
1414 ppc_store_lpcr(cpu, lpcr);
1417 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1420 struct LPCRSyncState s = {
1425 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1429 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1431 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1433 /* Copy PATE1:GR into PATE0:HR */
1434 entry->dw0 = spapr->patb_entry & PATE0_HR;
1435 entry->dw1 = spapr->patb_entry;
1438 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1439 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1440 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1441 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1442 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1445 * Get the fd to access the kernel htab, re-opening it if necessary
1447 static int get_htab_fd(SpaprMachineState *spapr)
1449 Error *local_err = NULL;
1451 if (spapr->htab_fd >= 0) {
1452 return spapr->htab_fd;
1455 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1456 if (spapr->htab_fd < 0) {
1457 error_report_err(local_err);
1460 return spapr->htab_fd;
1463 void close_htab_fd(SpaprMachineState *spapr)
1465 if (spapr->htab_fd >= 0) {
1466 close(spapr->htab_fd);
1468 spapr->htab_fd = -1;
1471 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1473 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1475 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1478 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1480 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1482 assert(kvm_enabled());
1488 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1491 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1494 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1495 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1499 * HTAB is controlled by KVM. Fetch into temporary buffer
1501 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1502 kvmppc_read_hptes(hptes, ptex, n);
1507 * HTAB is controlled by QEMU. Just point to the internally
1510 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1513 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1514 const ppc_hash_pte64_t *hptes,
1517 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1520 g_free((void *)hptes);
1523 /* Nothing to do for qemu managed HPT */
1526 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1527 uint64_t pte0, uint64_t pte1)
1529 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1530 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1533 kvmppc_write_hpte(ptex, pte0, pte1);
1535 if (pte0 & HPTE64_V_VALID) {
1536 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1538 * When setting valid, we write PTE1 first. This ensures
1539 * proper synchronization with the reading code in
1540 * ppc_hash64_pteg_search()
1543 stq_p(spapr->htab + offset, pte0);
1545 stq_p(spapr->htab + offset, pte0);
1547 * When clearing it we set PTE0 first. This ensures proper
1548 * synchronization with the reading code in
1549 * ppc_hash64_pteg_search()
1552 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1557 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1560 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1561 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1564 /* There should always be a hash table when this is called */
1565 error_report("spapr_hpte_set_c called with no hash table !");
1569 /* The HW performs a non-atomic byte update */
1570 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1573 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1576 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1577 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1580 /* There should always be a hash table when this is called */
1581 error_report("spapr_hpte_set_r called with no hash table !");
1585 /* The HW performs a non-atomic byte update */
1586 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1589 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1593 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1594 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1595 * that's much more than is needed for Linux guests */
1596 shift = ctz64(pow2ceil(ramsize)) - 7;
1597 shift = MAX(shift, 18); /* Minimum architected size */
1598 shift = MIN(shift, 46); /* Maximum architected size */
1602 void spapr_free_hpt(SpaprMachineState *spapr)
1604 g_free(spapr->htab);
1606 spapr->htab_shift = 0;
1607 close_htab_fd(spapr);
1610 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1615 /* Clean up any HPT info from a previous boot */
1616 spapr_free_hpt(spapr);
1618 rc = kvmppc_reset_htab(shift);
1620 /* kernel-side HPT needed, but couldn't allocate one */
1621 error_setg_errno(errp, errno,
1622 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1624 /* This is almost certainly fatal, but if the caller really
1625 * wants to carry on with shift == 0, it's welcome to try */
1626 } else if (rc > 0) {
1627 /* kernel-side HPT allocated */
1630 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1634 spapr->htab_shift = shift;
1637 /* kernel-side HPT not needed, allocate in userspace instead */
1638 size_t size = 1ULL << shift;
1641 spapr->htab = qemu_memalign(size, size);
1643 error_setg_errno(errp, errno,
1644 "Could not allocate HPT of order %d", shift);
1648 memset(spapr->htab, 0, size);
1649 spapr->htab_shift = shift;
1651 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1652 DIRTY_HPTE(HPTE(spapr->htab, i));
1655 /* We're setting up a hash table, so that means we're not radix */
1656 spapr->patb_entry = 0;
1657 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1660 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1664 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1665 || (spapr->cas_reboot
1666 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1667 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1669 uint64_t current_ram_size;
1671 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1672 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1674 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1676 if (spapr->vrma_adjust) {
1677 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1682 static int spapr_reset_drcs(Object *child, void *opaque)
1685 (SpaprDrc *) object_dynamic_cast(child,
1686 TYPE_SPAPR_DR_CONNECTOR);
1689 spapr_drc_reset(drc);
1695 static void spapr_machine_reset(void)
1697 MachineState *machine = MACHINE(qdev_get_machine());
1698 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1699 PowerPCCPU *first_ppc_cpu;
1700 uint32_t rtas_limit;
1701 hwaddr rtas_addr, fdt_addr;
1705 spapr_caps_apply(spapr);
1707 first_ppc_cpu = POWERPC_CPU(first_cpu);
1708 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1709 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1710 spapr->max_compat_pvr)) {
1712 * If using KVM with radix mode available, VCPUs can be started
1713 * without a HPT because KVM will start them in radix mode.
1714 * Set the GR bit in PATE so that we know there is no HPT.
1716 spapr->patb_entry = PATE1_GR;
1717 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1719 spapr_setup_hpt_and_vrma(spapr);
1723 * If this reset wasn't generated by CAS, we should reset our
1724 * negotiated options and start from scratch
1726 if (!spapr->cas_reboot) {
1727 spapr_ovec_cleanup(spapr->ov5_cas);
1728 spapr->ov5_cas = spapr_ovec_new();
1730 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1733 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1734 spapr_irq_msi_reset(spapr);
1738 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
1739 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
1740 * called from vPHB reset handler so we initialize the counter here.
1741 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
1742 * must be equally distant from any other node.
1743 * The final value of spapr->gpu_numa_id is going to be written to
1744 * max-associativity-domains in spapr_build_fdt().
1746 spapr->gpu_numa_id = MAX(1, nb_numa_nodes);
1747 qemu_devices_reset();
1750 * This is fixing some of the default configuration of the XIVE
1751 * devices. To be called after the reset of the machine devices.
1753 spapr_irq_reset(spapr, &error_fatal);
1756 * There is no CAS under qtest. Simulate one to please the code that
1757 * depends on spapr->ov5_cas. This is especially needed to test device
1758 * unplug, so we do that before resetting the DRCs.
1760 if (qtest_enabled()) {
1761 spapr_ovec_cleanup(spapr->ov5_cas);
1762 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1765 /* DRC reset may cause a device to be unplugged. This will cause troubles
1766 * if this device is used by another device (eg, a running vhost backend
1767 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1768 * situations, we reset DRCs after all devices have been reset.
1770 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1772 spapr_clear_pending_events(spapr);
1775 * We place the device tree and RTAS just below either the top of the RMA,
1776 * or just below 2GB, whichever is lower, so that it can be
1777 * processed with 32-bit real mode code if necessary
1779 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1780 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1781 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1783 fdt = spapr_build_fdt(spapr);
1785 spapr_load_rtas(spapr, fdt, rtas_addr);
1789 /* Should only fail if we've built a corrupted tree */
1792 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1793 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1794 fdt_totalsize(fdt), FDT_MAX_SIZE);
1799 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1800 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1801 g_free(spapr->fdt_blob);
1802 spapr->fdt_size = fdt_totalsize(fdt);
1803 spapr->fdt_initial_size = spapr->fdt_size;
1804 spapr->fdt_blob = fdt;
1806 /* Set up the entry state */
1807 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1808 first_ppc_cpu->env.gpr[5] = 0;
1810 spapr->cas_reboot = false;
1813 static void spapr_create_nvram(SpaprMachineState *spapr)
1815 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1816 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1819 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1823 qdev_init_nofail(dev);
1825 spapr->nvram = (struct SpaprNvram *)dev;
1828 static void spapr_rtc_create(SpaprMachineState *spapr)
1830 object_initialize_child(OBJECT(spapr), "rtc",
1831 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1832 &error_fatal, NULL);
1833 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1835 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1836 "date", &error_fatal);
1839 /* Returns whether we want to use VGA or not */
1840 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1842 switch (vga_interface_type) {
1850 return pci_vga_init(pci_bus) != NULL;
1853 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1858 static int spapr_pre_load(void *opaque)
1862 rc = spapr_caps_pre_load(opaque);
1870 static int spapr_post_load(void *opaque, int version_id)
1872 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1875 err = spapr_caps_post_migration(spapr);
1881 * In earlier versions, there was no separate qdev for the PAPR
1882 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1883 * So when migrating from those versions, poke the incoming offset
1884 * value into the RTC device
1886 if (version_id < 3) {
1887 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1893 if (kvm_enabled() && spapr->patb_entry) {
1894 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1895 bool radix = !!(spapr->patb_entry & PATE1_GR);
1896 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1899 * Update LPCR:HR and UPRT as they may not be set properly in
1902 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1903 LPCR_HR | LPCR_UPRT);
1905 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1907 error_report("Process table config unsupported by the host");
1912 err = spapr_irq_post_load(spapr, version_id);
1920 static int spapr_pre_save(void *opaque)
1924 rc = spapr_caps_pre_save(opaque);
1932 static bool version_before_3(void *opaque, int version_id)
1934 return version_id < 3;
1937 static bool spapr_pending_events_needed(void *opaque)
1939 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1940 return !QTAILQ_EMPTY(&spapr->pending_events);
1943 static const VMStateDescription vmstate_spapr_event_entry = {
1944 .name = "spapr_event_log_entry",
1946 .minimum_version_id = 1,
1947 .fields = (VMStateField[]) {
1948 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1949 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1950 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1951 NULL, extended_length),
1952 VMSTATE_END_OF_LIST()
1956 static const VMStateDescription vmstate_spapr_pending_events = {
1957 .name = "spapr_pending_events",
1959 .minimum_version_id = 1,
1960 .needed = spapr_pending_events_needed,
1961 .fields = (VMStateField[]) {
1962 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1963 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1964 VMSTATE_END_OF_LIST()
1968 static bool spapr_ov5_cas_needed(void *opaque)
1970 SpaprMachineState *spapr = opaque;
1971 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1972 SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1973 SpaprOptionVector *ov5_removed = spapr_ovec_new();
1976 /* Prior to the introduction of SpaprOptionVector, we had two option
1977 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1978 * Both of these options encode machine topology into the device-tree
1979 * in such a way that the now-booted OS should still be able to interact
1980 * appropriately with QEMU regardless of what options were actually
1981 * negotiatied on the source side.
1983 * As such, we can avoid migrating the CAS-negotiated options if these
1984 * are the only options available on the current machine/platform.
1985 * Since these are the only options available for pseries-2.7 and
1986 * earlier, this allows us to maintain old->new/new->old migration
1989 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1990 * via default pseries-2.8 machines and explicit command-line parameters.
1991 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1992 * of the actual CAS-negotiated values to continue working properly. For
1993 * example, availability of memory unplug depends on knowing whether
1994 * OV5_HP_EVT was negotiated via CAS.
1996 * Thus, for any cases where the set of available CAS-negotiatable
1997 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1998 * include the CAS-negotiated options in the migration stream, unless
1999 * if they affect boot time behaviour only.
2001 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
2002 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
2003 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
2005 /* spapr_ovec_diff returns true if bits were removed. we avoid using
2006 * the mask itself since in the future it's possible "legacy" bits may be
2007 * removed via machine options, which could generate a false positive
2008 * that breaks migration.
2010 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
2011 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
2013 spapr_ovec_cleanup(ov5_mask);
2014 spapr_ovec_cleanup(ov5_legacy);
2015 spapr_ovec_cleanup(ov5_removed);
2020 static const VMStateDescription vmstate_spapr_ov5_cas = {
2021 .name = "spapr_option_vector_ov5_cas",
2023 .minimum_version_id = 1,
2024 .needed = spapr_ov5_cas_needed,
2025 .fields = (VMStateField[]) {
2026 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2027 vmstate_spapr_ovec, SpaprOptionVector),
2028 VMSTATE_END_OF_LIST()
2032 static bool spapr_patb_entry_needed(void *opaque)
2034 SpaprMachineState *spapr = opaque;
2036 return !!spapr->patb_entry;
2039 static const VMStateDescription vmstate_spapr_patb_entry = {
2040 .name = "spapr_patb_entry",
2042 .minimum_version_id = 1,
2043 .needed = spapr_patb_entry_needed,
2044 .fields = (VMStateField[]) {
2045 VMSTATE_UINT64(patb_entry, SpaprMachineState),
2046 VMSTATE_END_OF_LIST()
2050 static bool spapr_irq_map_needed(void *opaque)
2052 SpaprMachineState *spapr = opaque;
2054 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2057 static const VMStateDescription vmstate_spapr_irq_map = {
2058 .name = "spapr_irq_map",
2060 .minimum_version_id = 1,
2061 .needed = spapr_irq_map_needed,
2062 .fields = (VMStateField[]) {
2063 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2064 VMSTATE_END_OF_LIST()
2068 static bool spapr_dtb_needed(void *opaque)
2070 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2072 return smc->update_dt_enabled;
2075 static int spapr_dtb_pre_load(void *opaque)
2077 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2079 g_free(spapr->fdt_blob);
2080 spapr->fdt_blob = NULL;
2081 spapr->fdt_size = 0;
2086 static const VMStateDescription vmstate_spapr_dtb = {
2087 .name = "spapr_dtb",
2089 .minimum_version_id = 1,
2090 .needed = spapr_dtb_needed,
2091 .pre_load = spapr_dtb_pre_load,
2092 .fields = (VMStateField[]) {
2093 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2094 VMSTATE_UINT32(fdt_size, SpaprMachineState),
2095 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2097 VMSTATE_END_OF_LIST()
2101 static const VMStateDescription vmstate_spapr = {
2104 .minimum_version_id = 1,
2105 .pre_load = spapr_pre_load,
2106 .post_load = spapr_post_load,
2107 .pre_save = spapr_pre_save,
2108 .fields = (VMStateField[]) {
2109 /* used to be @next_irq */
2110 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2113 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2115 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2116 VMSTATE_END_OF_LIST()
2118 .subsections = (const VMStateDescription*[]) {
2119 &vmstate_spapr_ov5_cas,
2120 &vmstate_spapr_patb_entry,
2121 &vmstate_spapr_pending_events,
2122 &vmstate_spapr_cap_htm,
2123 &vmstate_spapr_cap_vsx,
2124 &vmstate_spapr_cap_dfp,
2125 &vmstate_spapr_cap_cfpc,
2126 &vmstate_spapr_cap_sbbc,
2127 &vmstate_spapr_cap_ibs,
2128 &vmstate_spapr_cap_hpt_maxpagesize,
2129 &vmstate_spapr_irq_map,
2130 &vmstate_spapr_cap_nested_kvm_hv,
2132 &vmstate_spapr_cap_large_decr,
2133 &vmstate_spapr_cap_ccf_assist,
2138 static int htab_save_setup(QEMUFile *f, void *opaque)
2140 SpaprMachineState *spapr = opaque;
2142 /* "Iteration" header */
2143 if (!spapr->htab_shift) {
2144 qemu_put_be32(f, -1);
2146 qemu_put_be32(f, spapr->htab_shift);
2150 spapr->htab_save_index = 0;
2151 spapr->htab_first_pass = true;
2153 if (spapr->htab_shift) {
2154 assert(kvm_enabled());
2162 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2163 int chunkstart, int n_valid, int n_invalid)
2165 qemu_put_be32(f, chunkstart);
2166 qemu_put_be16(f, n_valid);
2167 qemu_put_be16(f, n_invalid);
2168 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2169 HASH_PTE_SIZE_64 * n_valid);
2172 static void htab_save_end_marker(QEMUFile *f)
2174 qemu_put_be32(f, 0);
2175 qemu_put_be16(f, 0);
2176 qemu_put_be16(f, 0);
2179 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2182 bool has_timeout = max_ns != -1;
2183 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2184 int index = spapr->htab_save_index;
2185 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2187 assert(spapr->htab_first_pass);
2192 /* Consume invalid HPTEs */
2193 while ((index < htabslots)
2194 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2195 CLEAN_HPTE(HPTE(spapr->htab, index));
2199 /* Consume valid HPTEs */
2201 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2202 && HPTE_VALID(HPTE(spapr->htab, index))) {
2203 CLEAN_HPTE(HPTE(spapr->htab, index));
2207 if (index > chunkstart) {
2208 int n_valid = index - chunkstart;
2210 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2213 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2217 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2219 if (index >= htabslots) {
2220 assert(index == htabslots);
2222 spapr->htab_first_pass = false;
2224 spapr->htab_save_index = index;
2227 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2230 bool final = max_ns < 0;
2231 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2232 int examined = 0, sent = 0;
2233 int index = spapr->htab_save_index;
2234 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2236 assert(!spapr->htab_first_pass);
2239 int chunkstart, invalidstart;
2241 /* Consume non-dirty HPTEs */
2242 while ((index < htabslots)
2243 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2249 /* Consume valid dirty HPTEs */
2250 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2251 && HPTE_DIRTY(HPTE(spapr->htab, index))
2252 && HPTE_VALID(HPTE(spapr->htab, index))) {
2253 CLEAN_HPTE(HPTE(spapr->htab, index));
2258 invalidstart = index;
2259 /* Consume invalid dirty HPTEs */
2260 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2261 && HPTE_DIRTY(HPTE(spapr->htab, index))
2262 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2263 CLEAN_HPTE(HPTE(spapr->htab, index));
2268 if (index > chunkstart) {
2269 int n_valid = invalidstart - chunkstart;
2270 int n_invalid = index - invalidstart;
2272 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2273 sent += index - chunkstart;
2275 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2280 if (examined >= htabslots) {
2284 if (index >= htabslots) {
2285 assert(index == htabslots);
2288 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2290 if (index >= htabslots) {
2291 assert(index == htabslots);
2295 spapr->htab_save_index = index;
2297 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2300 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2301 #define MAX_KVM_BUF_SIZE 2048
2303 static int htab_save_iterate(QEMUFile *f, void *opaque)
2305 SpaprMachineState *spapr = opaque;
2309 /* Iteration header */
2310 if (!spapr->htab_shift) {
2311 qemu_put_be32(f, -1);
2314 qemu_put_be32(f, 0);
2318 assert(kvm_enabled());
2320 fd = get_htab_fd(spapr);
2325 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2329 } else if (spapr->htab_first_pass) {
2330 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2332 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2335 htab_save_end_marker(f);
2340 static int htab_save_complete(QEMUFile *f, void *opaque)
2342 SpaprMachineState *spapr = opaque;
2345 /* Iteration header */
2346 if (!spapr->htab_shift) {
2347 qemu_put_be32(f, -1);
2350 qemu_put_be32(f, 0);
2356 assert(kvm_enabled());
2358 fd = get_htab_fd(spapr);
2363 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2368 if (spapr->htab_first_pass) {
2369 htab_save_first_pass(f, spapr, -1);
2371 htab_save_later_pass(f, spapr, -1);
2375 htab_save_end_marker(f);
2380 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2382 SpaprMachineState *spapr = opaque;
2383 uint32_t section_hdr;
2385 Error *local_err = NULL;
2387 if (version_id < 1 || version_id > 1) {
2388 error_report("htab_load() bad version");
2392 section_hdr = qemu_get_be32(f);
2394 if (section_hdr == -1) {
2395 spapr_free_hpt(spapr);
2400 /* First section gives the htab size */
2401 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2403 error_report_err(local_err);
2410 assert(kvm_enabled());
2412 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2414 error_report_err(local_err);
2421 uint16_t n_valid, n_invalid;
2423 index = qemu_get_be32(f);
2424 n_valid = qemu_get_be16(f);
2425 n_invalid = qemu_get_be16(f);
2427 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2432 if ((index + n_valid + n_invalid) >
2433 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2434 /* Bad index in stream */
2436 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2437 index, n_valid, n_invalid, spapr->htab_shift);
2443 qemu_get_buffer(f, HPTE(spapr->htab, index),
2444 HASH_PTE_SIZE_64 * n_valid);
2447 memset(HPTE(spapr->htab, index + n_valid), 0,
2448 HASH_PTE_SIZE_64 * n_invalid);
2455 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2470 static void htab_save_cleanup(void *opaque)
2472 SpaprMachineState *spapr = opaque;
2474 close_htab_fd(spapr);
2477 static SaveVMHandlers savevm_htab_handlers = {
2478 .save_setup = htab_save_setup,
2479 .save_live_iterate = htab_save_iterate,
2480 .save_live_complete_precopy = htab_save_complete,
2481 .save_cleanup = htab_save_cleanup,
2482 .load_state = htab_load,
2485 static void spapr_boot_set(void *opaque, const char *boot_device,
2488 MachineState *machine = MACHINE(opaque);
2489 machine->boot_order = g_strdup(boot_device);
2492 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2494 MachineState *machine = MACHINE(spapr);
2495 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2496 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2499 for (i = 0; i < nr_lmbs; i++) {
2502 addr = i * lmb_size + machine->device_memory->base;
2503 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2509 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2510 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2511 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2513 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2517 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2518 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2519 " is not aligned to %" PRIu64 " MiB",
2521 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2525 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2526 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2527 " is not aligned to %" PRIu64 " MiB",
2529 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2533 for (i = 0; i < nb_numa_nodes; i++) {
2534 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2536 "Node %d memory size 0x%" PRIx64
2537 " is not aligned to %" PRIu64 " MiB",
2538 i, numa_info[i].node_mem,
2539 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2545 /* find cpu slot in machine->possible_cpus by core_id */
2546 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2548 int index = id / smp_threads;
2550 if (index >= ms->possible_cpus->len) {
2556 return &ms->possible_cpus->cpus[index];
2559 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2561 Error *local_err = NULL;
2562 bool vsmt_user = !!spapr->vsmt;
2563 int kvm_smt = kvmppc_smt_threads();
2566 if (!kvm_enabled() && (smp_threads > 1)) {
2567 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2568 "on a pseries machine");
2571 if (!is_power_of_2(smp_threads)) {
2572 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2573 "machine because it must be a power of 2", smp_threads);
2577 /* Detemine the VSMT mode to use: */
2579 if (spapr->vsmt < smp_threads) {
2580 error_setg(&local_err, "Cannot support VSMT mode %d"
2581 " because it must be >= threads/core (%d)",
2582 spapr->vsmt, smp_threads);
2585 /* In this case, spapr->vsmt has been set by the command line */
2588 * Default VSMT value is tricky, because we need it to be as
2589 * consistent as possible (for migration), but this requires
2590 * changing it for at least some existing cases. We pick 8 as
2591 * the value that we'd get with KVM on POWER8, the
2592 * overwhelmingly common case in production systems.
2594 spapr->vsmt = MAX(8, smp_threads);
2597 /* KVM: If necessary, set the SMT mode: */
2598 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2599 ret = kvmppc_set_smt_threads(spapr->vsmt);
2601 /* Looks like KVM isn't able to change VSMT mode */
2602 error_setg(&local_err,
2603 "Failed to set KVM's VSMT mode to %d (errno %d)",
2605 /* We can live with that if the default one is big enough
2606 * for the number of threads, and a submultiple of the one
2607 * we want. In this case we'll waste some vcpu ids, but
2608 * behaviour will be correct */
2609 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2610 warn_report_err(local_err);
2615 error_append_hint(&local_err,
2616 "On PPC, a VM with %d threads/core"
2617 " on a host with %d threads/core"
2618 " requires the use of VSMT mode %d.\n",
2619 smp_threads, kvm_smt, spapr->vsmt);
2621 kvmppc_hint_smt_possible(&local_err);
2626 /* else TCG: nothing to do currently */
2628 error_propagate(errp, local_err);
2631 static void spapr_init_cpus(SpaprMachineState *spapr)
2633 MachineState *machine = MACHINE(spapr);
2634 MachineClass *mc = MACHINE_GET_CLASS(machine);
2635 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2636 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2637 const CPUArchIdList *possible_cpus;
2638 int boot_cores_nr = smp_cpus / smp_threads;
2641 possible_cpus = mc->possible_cpu_arch_ids(machine);
2642 if (mc->has_hotpluggable_cpus) {
2643 if (smp_cpus % smp_threads) {
2644 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2645 smp_cpus, smp_threads);
2648 if (max_cpus % smp_threads) {
2649 error_report("max_cpus (%u) must be multiple of threads (%u)",
2650 max_cpus, smp_threads);
2654 if (max_cpus != smp_cpus) {
2655 error_report("This machine version does not support CPU hotplug");
2658 boot_cores_nr = possible_cpus->len;
2661 if (smc->pre_2_10_has_unused_icps) {
2664 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2665 /* Dummy entries get deregistered when real ICPState objects
2666 * are registered during CPU core hotplug.
2668 pre_2_10_vmstate_register_dummy_icp(i);
2672 for (i = 0; i < possible_cpus->len; i++) {
2673 int core_id = i * smp_threads;
2675 if (mc->has_hotpluggable_cpus) {
2676 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2677 spapr_vcpu_id(spapr, core_id));
2680 if (i < boot_cores_nr) {
2681 Object *core = object_new(type);
2682 int nr_threads = smp_threads;
2684 /* Handle the partially filled core for older machine types */
2685 if ((i + 1) * smp_threads >= smp_cpus) {
2686 nr_threads = smp_cpus - i * smp_threads;
2689 object_property_set_int(core, nr_threads, "nr-threads",
2691 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2693 object_property_set_bool(core, true, "realized", &error_fatal);
2700 static PCIHostState *spapr_create_default_phb(void)
2704 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2705 qdev_prop_set_uint32(dev, "index", 0);
2706 qdev_init_nofail(dev);
2708 return PCI_HOST_BRIDGE(dev);
2711 /* pSeries LPAR / sPAPR hardware init */
2712 static void spapr_machine_init(MachineState *machine)
2714 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2715 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2716 const char *kernel_filename = machine->kernel_filename;
2717 const char *initrd_filename = machine->initrd_filename;
2720 MemoryRegion *sysmem = get_system_memory();
2721 MemoryRegion *ram = g_new(MemoryRegion, 1);
2722 hwaddr node0_size = spapr_node0_size(machine);
2723 long load_limit, fw_size;
2725 Error *resize_hpt_err = NULL;
2727 msi_nonbroken = true;
2729 QLIST_INIT(&spapr->phbs);
2730 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2732 /* Determine capabilities to run with */
2733 spapr_caps_init(spapr);
2735 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2736 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2738 * If the user explicitly requested a mode we should either
2739 * supply it, or fail completely (which we do below). But if
2740 * it's not set explicitly, we reset our mode to something
2743 if (resize_hpt_err) {
2744 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2745 error_free(resize_hpt_err);
2746 resize_hpt_err = NULL;
2748 spapr->resize_hpt = smc->resize_hpt_default;
2752 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2754 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2756 * User requested HPT resize, but this host can't supply it. Bail out
2758 error_report_err(resize_hpt_err);
2762 spapr->rma_size = node0_size;
2764 /* With KVM, we don't actually know whether KVM supports an
2765 * unbounded RMA (PR KVM) or is limited by the hash table size
2766 * (HV KVM using VRMA), so we always assume the latter
2768 * In that case, we also limit the initial allocations for RTAS
2769 * etc... to 256M since we have no way to know what the VRMA size
2770 * is going to be as it depends on the size of the hash table
2771 * which isn't determined yet.
2773 if (kvm_enabled()) {
2774 spapr->vrma_adjust = 1;
2775 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2778 /* Actually we don't support unbounded RMA anymore since we added
2779 * proper emulation of HV mode. The max we can get is 16G which
2780 * also happens to be what we configure for PAPR mode so make sure
2781 * we don't do anything bigger than that
2783 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2785 if (spapr->rma_size > node0_size) {
2786 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2791 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2792 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2795 * VSMT must be set in order to be able to compute VCPU ids, ie to
2796 * call spapr_max_server_number() or spapr_vcpu_id().
2798 spapr_set_vsmt_mode(spapr, &error_fatal);
2800 /* Set up Interrupt Controller before we create the VCPUs */
2801 spapr_irq_init(spapr, &error_fatal);
2803 /* Set up containers for ibm,client-architecture-support negotiated options
2805 spapr->ov5 = spapr_ovec_new();
2806 spapr->ov5_cas = spapr_ovec_new();
2808 if (smc->dr_lmb_enabled) {
2809 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2810 spapr_validate_node_memory(machine, &error_fatal);
2813 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2815 /* advertise support for dedicated HP event source to guests */
2816 if (spapr->use_hotplug_event_source) {
2817 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2820 /* advertise support for HPT resizing */
2821 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2822 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2825 /* advertise support for ibm,dyamic-memory-v2 */
2826 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2828 /* advertise XIVE on POWER9 machines */
2829 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2830 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2834 spapr_init_cpus(spapr);
2836 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2837 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2838 spapr->max_compat_pvr)) {
2839 /* KVM and TCG always allow GTSE with radix... */
2840 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2842 /* ... but not with hash (currently). */
2844 if (kvm_enabled()) {
2845 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2846 kvmppc_enable_logical_ci_hcalls();
2847 kvmppc_enable_set_mode_hcall();
2849 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2850 kvmppc_enable_clear_ref_mod_hcalls();
2852 /* Enable H_PAGE_INIT */
2853 kvmppc_enable_h_page_init();
2857 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2859 memory_region_add_subregion(sysmem, 0, ram);
2861 /* always allocate the device memory information */
2862 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2864 /* initialize hotplug memory address space */
2865 if (machine->ram_size < machine->maxram_size) {
2866 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2868 * Limit the number of hotpluggable memory slots to half the number
2869 * slots that KVM supports, leaving the other half for PCI and other
2870 * devices. However ensure that number of slots doesn't drop below 32.
2872 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2873 SPAPR_MAX_RAM_SLOTS;
2875 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2876 max_memslots = SPAPR_MAX_RAM_SLOTS;
2878 if (machine->ram_slots > max_memslots) {
2879 error_report("Specified number of memory slots %"
2880 PRIu64" exceeds max supported %d",
2881 machine->ram_slots, max_memslots);
2885 machine->device_memory->base = ROUND_UP(machine->ram_size,
2886 SPAPR_DEVICE_MEM_ALIGN);
2887 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2888 "device-memory", device_mem_size);
2889 memory_region_add_subregion(sysmem, machine->device_memory->base,
2890 &machine->device_memory->mr);
2893 if (smc->dr_lmb_enabled) {
2894 spapr_create_lmb_dr_connectors(spapr);
2897 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2899 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2902 spapr->rtas_size = get_image_size(filename);
2903 if (spapr->rtas_size < 0) {
2904 error_report("Could not get size of LPAR rtas '%s'", filename);
2907 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2908 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2909 error_report("Could not load LPAR rtas '%s'", filename);
2912 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2913 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2914 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2919 /* Set up RTAS event infrastructure */
2920 spapr_events_init(spapr);
2922 /* Set up the RTC RTAS interfaces */
2923 spapr_rtc_create(spapr);
2925 /* Set up VIO bus */
2926 spapr->vio_bus = spapr_vio_bus_init();
2928 for (i = 0; i < serial_max_hds(); i++) {
2930 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2934 /* We always have at least the nvram device on VIO */
2935 spapr_create_nvram(spapr);
2938 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2939 * connectors (described in root DT node's "ibm,drc-types" property)
2940 * are pre-initialized here. additional child connectors (such as
2941 * connectors for a PHBs PCI slots) are added as needed during their
2942 * parent's realization.
2944 if (smc->dr_phb_enabled) {
2945 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2946 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2951 spapr_pci_rtas_init();
2953 phb = spapr_create_default_phb();
2955 for (i = 0; i < nb_nics; i++) {
2956 NICInfo *nd = &nd_table[i];
2959 nd->model = g_strdup("spapr-vlan");
2962 if (g_str_equal(nd->model, "spapr-vlan") ||
2963 g_str_equal(nd->model, "ibmveth")) {
2964 spapr_vlan_create(spapr->vio_bus, nd);
2966 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2970 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2971 spapr_vscsi_create(spapr->vio_bus);
2975 if (spapr_vga_init(phb->bus, &error_fatal)) {
2976 spapr->has_graphics = true;
2977 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2981 if (smc->use_ohci_by_default) {
2982 pci_create_simple(phb->bus, -1, "pci-ohci");
2984 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2987 if (spapr->has_graphics) {
2988 USBBus *usb_bus = usb_bus_find(-1);
2990 usb_create_simple(usb_bus, "usb-kbd");
2991 usb_create_simple(usb_bus, "usb-mouse");
2995 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2997 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
3002 if (kernel_filename) {
3003 uint64_t lowaddr = 0;
3005 spapr->kernel_size = load_elf(kernel_filename, NULL,
3006 translate_kernel_address, NULL,
3007 NULL, &lowaddr, NULL, 1,
3008 PPC_ELF_MACHINE, 0, 0);
3009 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3010 spapr->kernel_size = load_elf(kernel_filename, NULL,
3011 translate_kernel_address, NULL, NULL,
3012 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
3014 spapr->kernel_le = spapr->kernel_size > 0;
3016 if (spapr->kernel_size < 0) {
3017 error_report("error loading %s: %s", kernel_filename,
3018 load_elf_strerror(spapr->kernel_size));
3023 if (initrd_filename) {
3024 /* Try to locate the initrd in the gap between the kernel
3025 * and the firmware. Add a bit of space just in case
3027 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
3028 + 0x1ffff) & ~0xffff;
3029 spapr->initrd_size = load_image_targphys(initrd_filename,
3032 - spapr->initrd_base);
3033 if (spapr->initrd_size < 0) {
3034 error_report("could not load initial ram disk '%s'",
3041 if (bios_name == NULL) {
3042 bios_name = FW_FILE_NAME;
3044 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3046 error_report("Could not find LPAR firmware '%s'", bios_name);
3049 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3051 error_report("Could not load LPAR firmware '%s'", filename);
3056 /* FIXME: Should register things through the MachineState's qdev
3057 * interface, this is a legacy from the sPAPREnvironment structure
3058 * which predated MachineState but had a similar function */
3059 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3060 register_savevm_live(NULL, "spapr/htab", -1, 1,
3061 &savevm_htab_handlers, spapr);
3063 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3066 qemu_register_boot_set(spapr_boot_set, spapr);
3068 if (kvm_enabled()) {
3069 /* to stop and start vmclock */
3070 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3073 kvmppc_spapr_enable_inkernel_multitce();
3077 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3083 if (!strcmp(vm_type, "HV")) {
3087 if (!strcmp(vm_type, "PR")) {
3091 error_report("Unknown kvm-type specified '%s'", vm_type);
3096 * Implementation of an interface to adjust firmware path
3097 * for the bootindex property handling.
3099 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3102 #define CAST(type, obj, name) \
3103 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3104 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3105 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3106 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3109 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3110 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3111 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3115 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3116 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3117 * 0x8000 | (target << 8) | (bus << 5) | lun
3118 * (see the "Logical unit addressing format" table in SAM5)
3120 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3121 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3122 (uint64_t)id << 48);
3123 } else if (virtio) {
3125 * We use SRP luns of the form 01000000 | (target << 8) | lun
3126 * in the top 32 bits of the 64-bit LUN
3127 * Note: the quote above is from SLOF and it is wrong,
3128 * the actual binding is:
3129 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3131 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3132 if (d->lun >= 256) {
3133 /* Use the LUN "flat space addressing method" */
3136 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3137 (uint64_t)id << 32);
3140 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3141 * in the top 32 bits of the 64-bit LUN
3143 unsigned usb_port = atoi(usb->port->path);
3144 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3145 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3146 (uint64_t)id << 32);
3151 * SLOF probes the USB devices, and if it recognizes that the device is a
3152 * storage device, it changes its name to "storage" instead of "usb-host",
3153 * and additionally adds a child node for the SCSI LUN, so the correct
3154 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3156 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3157 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3158 if (usb_host_dev_is_scsi_storage(usbdev)) {
3159 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3164 /* Replace "pci" with "pci@800000020000000" */
3165 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3169 /* Same logic as virtio above */
3170 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3171 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3174 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3175 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3176 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3177 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3183 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3185 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3187 return g_strdup(spapr->kvm_type);
3190 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3192 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3194 g_free(spapr->kvm_type);
3195 spapr->kvm_type = g_strdup(value);
3198 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3200 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3202 return spapr->use_hotplug_event_source;
3205 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3208 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3210 spapr->use_hotplug_event_source = value;
3213 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3218 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3220 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3222 switch (spapr->resize_hpt) {
3223 case SPAPR_RESIZE_HPT_DEFAULT:
3224 return g_strdup("default");
3225 case SPAPR_RESIZE_HPT_DISABLED:
3226 return g_strdup("disabled");
3227 case SPAPR_RESIZE_HPT_ENABLED:
3228 return g_strdup("enabled");
3229 case SPAPR_RESIZE_HPT_REQUIRED:
3230 return g_strdup("required");
3232 g_assert_not_reached();
3235 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3237 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3239 if (strcmp(value, "default") == 0) {
3240 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3241 } else if (strcmp(value, "disabled") == 0) {
3242 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3243 } else if (strcmp(value, "enabled") == 0) {
3244 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3245 } else if (strcmp(value, "required") == 0) {
3246 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3248 error_setg(errp, "Bad value for \"resize-hpt\" property");
3252 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3253 void *opaque, Error **errp)
3255 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3258 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3259 void *opaque, Error **errp)
3261 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3264 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3266 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3268 if (spapr->irq == &spapr_irq_xics_legacy) {
3269 return g_strdup("legacy");
3270 } else if (spapr->irq == &spapr_irq_xics) {
3271 return g_strdup("xics");
3272 } else if (spapr->irq == &spapr_irq_xive) {
3273 return g_strdup("xive");
3274 } else if (spapr->irq == &spapr_irq_dual) {
3275 return g_strdup("dual");
3277 g_assert_not_reached();
3280 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3282 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3284 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3285 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3289 /* The legacy IRQ backend can not be set */
3290 if (strcmp(value, "xics") == 0) {
3291 spapr->irq = &spapr_irq_xics;
3292 } else if (strcmp(value, "xive") == 0) {
3293 spapr->irq = &spapr_irq_xive;
3294 } else if (strcmp(value, "dual") == 0) {
3295 spapr->irq = &spapr_irq_dual;
3297 error_setg(errp, "Bad value for \"ic-mode\" property");
3301 static char *spapr_get_host_model(Object *obj, Error **errp)
3303 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3305 return g_strdup(spapr->host_model);
3308 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3310 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3312 g_free(spapr->host_model);
3313 spapr->host_model = g_strdup(value);
3316 static char *spapr_get_host_serial(Object *obj, Error **errp)
3318 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3320 return g_strdup(spapr->host_serial);
3323 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3325 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3327 g_free(spapr->host_serial);
3328 spapr->host_serial = g_strdup(value);
3331 static void spapr_instance_init(Object *obj)
3333 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3334 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3336 spapr->htab_fd = -1;
3337 spapr->use_hotplug_event_source = true;
3338 object_property_add_str(obj, "kvm-type",
3339 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3340 object_property_set_description(obj, "kvm-type",
3341 "Specifies the KVM virtualization mode (HV, PR)",
3343 object_property_add_bool(obj, "modern-hotplug-events",
3344 spapr_get_modern_hotplug_events,
3345 spapr_set_modern_hotplug_events,
3347 object_property_set_description(obj, "modern-hotplug-events",
3348 "Use dedicated hotplug event mechanism in"
3349 " place of standard EPOW events when possible"
3350 " (required for memory hot-unplug support)",
3352 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3353 "Maximum permitted CPU compatibility mode",
3356 object_property_add_str(obj, "resize-hpt",
3357 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3358 object_property_set_description(obj, "resize-hpt",
3359 "Resizing of the Hash Page Table (enabled, disabled, required)",
3361 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3362 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3363 object_property_set_description(obj, "vsmt",
3364 "Virtual SMT: KVM behaves as if this were"
3365 " the host's SMT mode", &error_abort);
3366 object_property_add_bool(obj, "vfio-no-msix-emulation",
3367 spapr_get_msix_emulation, NULL, NULL);
3369 /* The machine class defines the default interrupt controller mode */
3370 spapr->irq = smc->irq;
3371 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3372 spapr_set_ic_mode, NULL);
3373 object_property_set_description(obj, "ic-mode",
3374 "Specifies the interrupt controller mode (xics, xive, dual)",
3377 object_property_add_str(obj, "host-model",
3378 spapr_get_host_model, spapr_set_host_model,
3380 object_property_set_description(obj, "host-model",
3381 "Host model to advertise in guest device tree", &error_abort);
3382 object_property_add_str(obj, "host-serial",
3383 spapr_get_host_serial, spapr_set_host_serial,
3385 object_property_set_description(obj, "host-serial",
3386 "Host serial number to advertise in guest device tree", &error_abort);
3389 static void spapr_machine_finalizefn(Object *obj)
3391 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3393 g_free(spapr->kvm_type);
3396 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3398 cpu_synchronize_state(cs);
3399 ppc_cpu_do_system_reset(cs);
3402 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3407 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3411 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3412 void *fdt, int *fdt_start_offset, Error **errp)
3417 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3418 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3420 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3421 SPAPR_MEMORY_BLOCK_SIZE);
3425 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3426 bool dedicated_hp_event_source, Error **errp)
3429 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3431 uint64_t addr = addr_start;
3432 bool hotplugged = spapr_drc_hotplugged(dev);
3433 Error *local_err = NULL;
3435 for (i = 0; i < nr_lmbs; i++) {
3436 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3437 addr / SPAPR_MEMORY_BLOCK_SIZE);
3440 spapr_drc_attach(drc, dev, &local_err);
3442 while (addr > addr_start) {
3443 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3444 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3445 addr / SPAPR_MEMORY_BLOCK_SIZE);
3446 spapr_drc_detach(drc);
3448 error_propagate(errp, local_err);
3452 spapr_drc_reset(drc);
3454 addr += SPAPR_MEMORY_BLOCK_SIZE;
3456 /* send hotplug notification to the
3457 * guest only in case of hotplugged memory
3460 if (dedicated_hp_event_source) {
3461 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3462 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3463 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3465 spapr_drc_index(drc));
3467 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3473 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3476 Error *local_err = NULL;
3477 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3478 PCDIMMDevice *dimm = PC_DIMM(dev);
3479 uint64_t size, addr;
3481 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3483 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3488 addr = object_property_get_uint(OBJECT(dimm),
3489 PC_DIMM_ADDR_PROP, &local_err);
3494 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3503 pc_dimm_unplug(dimm, MACHINE(ms));
3505 error_propagate(errp, local_err);
3508 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3511 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3512 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3513 PCDIMMDevice *dimm = PC_DIMM(dev);
3514 Error *local_err = NULL;
3519 if (!smc->dr_lmb_enabled) {
3520 error_setg(errp, "Memory hotplug not supported for this machine");
3524 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3526 error_propagate(errp, local_err);
3530 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3531 error_setg(errp, "Hotplugged memory size must be a multiple of "
3532 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3536 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3538 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3539 spapr_check_pagesize(spapr, pagesize, &local_err);
3541 error_propagate(errp, local_err);
3545 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3548 struct SpaprDimmState {
3551 QTAILQ_ENTRY(SpaprDimmState) next;
3554 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3557 SpaprDimmState *dimm_state = NULL;
3559 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3560 if (dimm_state->dimm == dimm) {
3567 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3571 SpaprDimmState *ds = NULL;
3574 * If this request is for a DIMM whose removal had failed earlier
3575 * (due to guest's refusal to remove the LMBs), we would have this
3576 * dimm already in the pending_dimm_unplugs list. In that
3577 * case don't add again.
3579 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3581 ds = g_malloc0(sizeof(SpaprDimmState));
3582 ds->nr_lmbs = nr_lmbs;
3584 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3589 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3590 SpaprDimmState *dimm_state)
3592 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3596 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3600 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3602 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3603 uint32_t avail_lmbs = 0;
3604 uint64_t addr_start, addr;
3607 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3611 for (i = 0; i < nr_lmbs; i++) {
3612 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3613 addr / SPAPR_MEMORY_BLOCK_SIZE);
3618 addr += SPAPR_MEMORY_BLOCK_SIZE;
3621 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3624 /* Callback to be called during DRC release. */
3625 void spapr_lmb_release(DeviceState *dev)
3627 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3628 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3629 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3631 /* This information will get lost if a migration occurs
3632 * during the unplug process. In this case recover it. */
3634 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3636 /* The DRC being examined by the caller at least must be counted */
3637 g_assert(ds->nr_lmbs);
3640 if (--ds->nr_lmbs) {
3645 * Now that all the LMBs have been removed by the guest, call the
3646 * unplug handler chain. This can never fail.
3648 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3649 object_unparent(OBJECT(dev));
3652 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3654 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3655 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3657 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3658 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3659 spapr_pending_dimm_unplugs_remove(spapr, ds);
3662 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3663 DeviceState *dev, Error **errp)
3665 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3666 Error *local_err = NULL;
3667 PCDIMMDevice *dimm = PC_DIMM(dev);
3669 uint64_t size, addr_start, addr;
3673 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3674 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3676 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3683 * An existing pending dimm state for this DIMM means that there is an
3684 * unplug operation in progress, waiting for the spapr_lmb_release
3685 * callback to complete the job (BQL can't cover that far). In this case,
3686 * bail out to avoid detaching DRCs that were already released.
3688 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3689 error_setg(&local_err,
3690 "Memory unplug already in progress for device %s",
3695 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3698 for (i = 0; i < nr_lmbs; i++) {
3699 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3700 addr / SPAPR_MEMORY_BLOCK_SIZE);
3703 spapr_drc_detach(drc);
3704 addr += SPAPR_MEMORY_BLOCK_SIZE;
3707 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3708 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3709 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3710 nr_lmbs, spapr_drc_index(drc));
3712 error_propagate(errp, local_err);
3715 /* Callback to be called during DRC release. */
3716 void spapr_core_release(DeviceState *dev)
3718 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3720 /* Call the unplug handler chain. This can never fail. */
3721 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3722 object_unparent(OBJECT(dev));
3725 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3727 MachineState *ms = MACHINE(hotplug_dev);
3728 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3729 CPUCore *cc = CPU_CORE(dev);
3730 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3732 if (smc->pre_2_10_has_unused_icps) {
3733 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3736 for (i = 0; i < cc->nr_threads; i++) {
3737 CPUState *cs = CPU(sc->threads[i]);
3739 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3744 core_slot->cpu = NULL;
3745 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3749 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3752 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3755 CPUCore *cc = CPU_CORE(dev);
3757 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3758 error_setg(errp, "Unable to find CPU core with core-id: %d",
3763 error_setg(errp, "Boot CPU core may not be unplugged");
3767 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3768 spapr_vcpu_id(spapr, cc->core_id));
3771 spapr_drc_detach(drc);
3773 spapr_hotplug_req_remove_by_index(drc);
3776 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3777 void *fdt, int *fdt_start_offset, Error **errp)
3779 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3780 CPUState *cs = CPU(core->threads[0]);
3781 PowerPCCPU *cpu = POWERPC_CPU(cs);
3782 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3783 int id = spapr_get_vcpu_id(cpu);
3787 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3788 offset = fdt_add_subnode(fdt, 0, nodename);
3791 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3793 *fdt_start_offset = offset;
3797 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3800 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3801 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3802 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3803 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3804 CPUCore *cc = CPU_CORE(dev);
3807 Error *local_err = NULL;
3808 CPUArchId *core_slot;
3810 bool hotplugged = spapr_drc_hotplugged(dev);
3812 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3814 error_setg(errp, "Unable to find CPU core with core-id: %d",
3818 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3819 spapr_vcpu_id(spapr, cc->core_id));
3821 g_assert(drc || !mc->has_hotpluggable_cpus);
3824 spapr_drc_attach(drc, dev, &local_err);
3826 error_propagate(errp, local_err);
3832 * Send hotplug notification interrupt to the guest only
3833 * in case of hotplugged CPUs.
3835 spapr_hotplug_req_add_by_index(drc);
3837 spapr_drc_reset(drc);
3841 core_slot->cpu = OBJECT(dev);
3843 if (smc->pre_2_10_has_unused_icps) {
3846 for (i = 0; i < cc->nr_threads; i++) {
3847 cs = CPU(core->threads[i]);
3848 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3853 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3856 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3857 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3858 Error *local_err = NULL;
3859 CPUCore *cc = CPU_CORE(dev);
3860 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3861 const char *type = object_get_typename(OBJECT(dev));
3862 CPUArchId *core_slot;
3865 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3866 error_setg(&local_err, "CPU hotplug not supported for this machine");
3870 if (strcmp(base_core_type, type)) {
3871 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3875 if (cc->core_id % smp_threads) {
3876 error_setg(&local_err, "invalid core id %d", cc->core_id);
3881 * In general we should have homogeneous threads-per-core, but old
3882 * (pre hotplug support) machine types allow the last core to have
3883 * reduced threads as a compatibility hack for when we allowed
3884 * total vcpus not a multiple of threads-per-core.
3886 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3887 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3888 cc->nr_threads, smp_threads);
3892 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3894 error_setg(&local_err, "core id %d out of range", cc->core_id);
3898 if (core_slot->cpu) {
3899 error_setg(&local_err, "core %d already populated", cc->core_id);
3903 numa_cpu_pre_plug(core_slot, dev, &local_err);
3906 error_propagate(errp, local_err);
3909 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3910 void *fdt, int *fdt_start_offset, Error **errp)
3912 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3915 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3916 if (intc_phandle <= 0) {
3920 if (spapr_populate_pci_dt(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3921 fdt_start_offset)) {
3922 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3926 /* generally SLOF creates these, for hotplug it's up to QEMU */
3927 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3932 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3935 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3936 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3937 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3938 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3940 if (dev->hotplugged && !smc->dr_phb_enabled) {
3941 error_setg(errp, "PHB hotplug not supported for this machine");
3945 if (sphb->index == (uint32_t)-1) {
3946 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3951 * This will check that sphb->index doesn't exceed the maximum number of
3952 * PHBs for the current machine type.
3954 smc->phb_placement(spapr, sphb->index,
3955 &sphb->buid, &sphb->io_win_addr,
3956 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3957 windows_supported, sphb->dma_liobn,
3958 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3962 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3965 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3966 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3967 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3969 bool hotplugged = spapr_drc_hotplugged(dev);
3970 Error *local_err = NULL;
3972 if (!smc->dr_phb_enabled) {
3976 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3977 /* hotplug hooks should check it's enabled before getting this far */
3980 spapr_drc_attach(drc, DEVICE(dev), &local_err);
3982 error_propagate(errp, local_err);
3987 spapr_hotplug_req_add_by_index(drc);
3989 spapr_drc_reset(drc);
3993 void spapr_phb_release(DeviceState *dev)
3995 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3997 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3998 object_unparent(OBJECT(dev));
4001 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4003 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4006 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4007 DeviceState *dev, Error **errp)
4009 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4012 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4015 if (!spapr_drc_unplug_requested(drc)) {
4016 spapr_drc_detach(drc);
4017 spapr_hotplug_req_remove_by_index(drc);
4021 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4022 DeviceState *dev, Error **errp)
4024 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4025 spapr_memory_plug(hotplug_dev, dev, errp);
4026 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4027 spapr_core_plug(hotplug_dev, dev, errp);
4028 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4029 spapr_phb_plug(hotplug_dev, dev, errp);
4033 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4034 DeviceState *dev, Error **errp)
4036 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4037 spapr_memory_unplug(hotplug_dev, dev);
4038 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4039 spapr_core_unplug(hotplug_dev, dev);
4040 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4041 spapr_phb_unplug(hotplug_dev, dev);
4045 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4046 DeviceState *dev, Error **errp)
4048 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4049 MachineClass *mc = MACHINE_GET_CLASS(sms);
4050 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4052 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4053 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4054 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4056 /* NOTE: this means there is a window after guest reset, prior to
4057 * CAS negotiation, where unplug requests will fail due to the
4058 * capability not being detected yet. This is a bit different than
4059 * the case with PCI unplug, where the events will be queued and
4060 * eventually handled by the guest after boot
4062 error_setg(errp, "Memory hot unplug not supported for this guest");
4064 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4065 if (!mc->has_hotpluggable_cpus) {
4066 error_setg(errp, "CPU hot unplug not supported on this machine");
4069 spapr_core_unplug_request(hotplug_dev, dev, errp);
4070 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4071 if (!smc->dr_phb_enabled) {
4072 error_setg(errp, "PHB hot unplug not supported on this machine");
4075 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4079 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4080 DeviceState *dev, Error **errp)
4082 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4083 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4084 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4085 spapr_core_pre_plug(hotplug_dev, dev, errp);
4086 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4087 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4091 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4094 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4095 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4096 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4097 return HOTPLUG_HANDLER(machine);
4102 static CpuInstanceProperties
4103 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4105 CPUArchId *core_slot;
4106 MachineClass *mc = MACHINE_GET_CLASS(machine);
4108 /* make sure possible_cpu are intialized */
4109 mc->possible_cpu_arch_ids(machine);
4110 /* get CPU core slot containing thread that matches cpu_index */
4111 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4113 return core_slot->props;
4116 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4118 return idx / smp_cores % nb_numa_nodes;
4121 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4124 const char *core_type;
4125 int spapr_max_cores = max_cpus / smp_threads;
4126 MachineClass *mc = MACHINE_GET_CLASS(machine);
4128 if (!mc->has_hotpluggable_cpus) {
4129 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4131 if (machine->possible_cpus) {
4132 assert(machine->possible_cpus->len == spapr_max_cores);
4133 return machine->possible_cpus;
4136 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4138 error_report("Unable to find sPAPR CPU Core definition");
4142 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4143 sizeof(CPUArchId) * spapr_max_cores);
4144 machine->possible_cpus->len = spapr_max_cores;
4145 for (i = 0; i < machine->possible_cpus->len; i++) {
4146 int core_id = i * smp_threads;
4148 machine->possible_cpus->cpus[i].type = core_type;
4149 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4150 machine->possible_cpus->cpus[i].arch_id = core_id;
4151 machine->possible_cpus->cpus[i].props.has_core_id = true;
4152 machine->possible_cpus->cpus[i].props.core_id = core_id;
4154 return machine->possible_cpus;
4157 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4158 uint64_t *buid, hwaddr *pio,
4159 hwaddr *mmio32, hwaddr *mmio64,
4160 unsigned n_dma, uint32_t *liobns,
4161 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4164 * New-style PHB window placement.
4166 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4167 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4170 * Some guest kernels can't work with MMIO windows above 1<<46
4171 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4173 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4174 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4175 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4176 * 1TiB 64-bit MMIO windows for each PHB.
4178 const uint64_t base_buid = 0x800000020000000ULL;
4181 /* Sanity check natural alignments */
4182 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4183 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4184 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4185 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4186 /* Sanity check bounds */
4187 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4188 SPAPR_PCI_MEM32_WIN_SIZE);
4189 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4190 SPAPR_PCI_MEM64_WIN_SIZE);
4192 if (index >= SPAPR_MAX_PHBS) {
4193 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4194 SPAPR_MAX_PHBS - 1);
4198 *buid = base_buid + index;
4199 for (i = 0; i < n_dma; ++i) {
4200 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4203 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4204 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4205 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4207 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4208 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4211 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4213 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4215 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4218 static void spapr_ics_resend(XICSFabric *dev)
4220 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4222 ics_resend(spapr->ics);
4225 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4227 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4229 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4232 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4235 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4237 spapr->irq->print_info(spapr, mon);
4240 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4242 return cpu->vcpu_id;
4245 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4247 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4250 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4252 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4253 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4254 error_append_hint(errp, "Adjust the number of cpus to %d "
4255 "or try to raise the number of threads per core\n",
4256 vcpu_id * smp_threads / spapr->vsmt);
4260 cpu->vcpu_id = vcpu_id;
4263 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4268 PowerPCCPU *cpu = POWERPC_CPU(cs);
4270 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4278 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4280 MachineClass *mc = MACHINE_CLASS(oc);
4281 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4282 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4283 NMIClass *nc = NMI_CLASS(oc);
4284 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4285 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4286 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4287 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4289 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4290 mc->ignore_boot_device_suffixes = true;
4293 * We set up the default / latest behaviour here. The class_init
4294 * functions for the specific versioned machine types can override
4295 * these details for backwards compatibility
4297 mc->init = spapr_machine_init;
4298 mc->reset = spapr_machine_reset;
4299 mc->block_default_type = IF_SCSI;
4300 mc->max_cpus = 1024;
4301 mc->no_parallel = 1;
4302 mc->default_boot_order = "";
4303 mc->default_ram_size = 512 * MiB;
4304 mc->default_display = "std";
4305 mc->kvm_type = spapr_kvm_type;
4306 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4307 mc->pci_allow_0_address = true;
4308 assert(!mc->get_hotplug_handler);
4309 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4310 hc->pre_plug = spapr_machine_device_pre_plug;
4311 hc->plug = spapr_machine_device_plug;
4312 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4313 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4314 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4315 hc->unplug_request = spapr_machine_device_unplug_request;
4316 hc->unplug = spapr_machine_device_unplug;
4318 smc->dr_lmb_enabled = true;
4319 smc->update_dt_enabled = true;
4320 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4321 mc->has_hotpluggable_cpus = true;
4322 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4323 fwc->get_dev_path = spapr_get_fw_dev_path;
4324 nc->nmi_monitor_handler = spapr_nmi;
4325 smc->phb_placement = spapr_phb_placement;
4326 vhc->hypercall = emulate_spapr_hypercall;
4327 vhc->hpt_mask = spapr_hpt_mask;
4328 vhc->map_hptes = spapr_map_hptes;
4329 vhc->unmap_hptes = spapr_unmap_hptes;
4330 vhc->hpte_set_c = spapr_hpte_set_c;
4331 vhc->hpte_set_r = spapr_hpte_set_r;
4332 vhc->get_pate = spapr_get_pate;
4333 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4334 xic->ics_get = spapr_ics_get;
4335 xic->ics_resend = spapr_ics_resend;
4336 xic->icp_get = spapr_icp_get;
4337 ispc->print_info = spapr_pic_print_info;
4338 /* Force NUMA node memory size to be a multiple of
4339 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4340 * in which LMBs are represented and hot-added
4342 mc->numa_mem_align_shift = 28;
4344 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4345 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4346 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4347 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4348 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4349 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4350 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4351 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4352 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4353 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4354 spapr_caps_add_properties(smc, &error_abort);
4355 smc->irq = &spapr_irq_xics;
4356 smc->dr_phb_enabled = true;
4359 static const TypeInfo spapr_machine_info = {
4360 .name = TYPE_SPAPR_MACHINE,
4361 .parent = TYPE_MACHINE,
4363 .instance_size = sizeof(SpaprMachineState),
4364 .instance_init = spapr_instance_init,
4365 .instance_finalize = spapr_machine_finalizefn,
4366 .class_size = sizeof(SpaprMachineClass),
4367 .class_init = spapr_machine_class_init,
4368 .interfaces = (InterfaceInfo[]) {
4369 { TYPE_FW_PATH_PROVIDER },
4371 { TYPE_HOTPLUG_HANDLER },
4372 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4373 { TYPE_XICS_FABRIC },
4374 { TYPE_INTERRUPT_STATS_PROVIDER },
4379 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4380 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4383 MachineClass *mc = MACHINE_CLASS(oc); \
4384 spapr_machine_##suffix##_class_options(mc); \
4386 mc->alias = "pseries"; \
4387 mc->is_default = 1; \
4390 static const TypeInfo spapr_machine_##suffix##_info = { \
4391 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4392 .parent = TYPE_SPAPR_MACHINE, \
4393 .class_init = spapr_machine_##suffix##_class_init, \
4395 static void spapr_machine_register_##suffix(void) \
4397 type_register(&spapr_machine_##suffix##_info); \
4399 type_init(spapr_machine_register_##suffix)
4404 static void spapr_machine_4_1_class_options(MachineClass *mc)
4406 /* Defaults for the latest behaviour inherited from the base class */
4409 DEFINE_SPAPR_MACHINE(4_1, "4.1", true);
4414 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4415 uint64_t *buid, hwaddr *pio,
4416 hwaddr *mmio32, hwaddr *mmio64,
4417 unsigned n_dma, uint32_t *liobns,
4418 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4420 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4421 nv2gpa, nv2atsd, errp);
4426 static void spapr_machine_4_0_class_options(MachineClass *mc)
4428 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4430 spapr_machine_4_1_class_options(mc);
4431 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4432 smc->phb_placement = phb_placement_4_0;
4435 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4440 static void spapr_machine_3_1_class_options(MachineClass *mc)
4442 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4444 spapr_machine_4_0_class_options(mc);
4445 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4447 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4448 smc->update_dt_enabled = false;
4449 smc->dr_phb_enabled = false;
4450 smc->broken_host_serial_model = true;
4451 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4452 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4453 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4454 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4457 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4463 static void spapr_machine_3_0_class_options(MachineClass *mc)
4465 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4467 spapr_machine_3_1_class_options(mc);
4468 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4470 smc->legacy_irq_allocation = true;
4471 smc->irq = &spapr_irq_xics_legacy;
4474 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4479 static void spapr_machine_2_12_class_options(MachineClass *mc)
4481 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4482 static GlobalProperty compat[] = {
4483 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4484 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4487 spapr_machine_3_0_class_options(mc);
4488 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4489 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4491 /* We depend on kvm_enabled() to choose a default value for the
4492 * hpt-max-page-size capability. Of course we can't do it here
4493 * because this is too early and the HW accelerator isn't initialzed
4494 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4496 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4499 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4501 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4503 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4505 spapr_machine_2_12_class_options(mc);
4506 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4507 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4508 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4511 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4517 static void spapr_machine_2_11_class_options(MachineClass *mc)
4519 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4521 spapr_machine_2_12_class_options(mc);
4522 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4523 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4526 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4532 static void spapr_machine_2_10_class_options(MachineClass *mc)
4534 spapr_machine_2_11_class_options(mc);
4535 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4538 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4544 static void spapr_machine_2_9_class_options(MachineClass *mc)
4546 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4547 static GlobalProperty compat[] = {
4548 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4551 spapr_machine_2_10_class_options(mc);
4552 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4553 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4554 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4555 smc->pre_2_10_has_unused_icps = true;
4556 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4559 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4565 static void spapr_machine_2_8_class_options(MachineClass *mc)
4567 static GlobalProperty compat[] = {
4568 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4571 spapr_machine_2_9_class_options(mc);
4572 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4573 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4574 mc->numa_mem_align_shift = 23;
4577 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4583 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4584 uint64_t *buid, hwaddr *pio,
4585 hwaddr *mmio32, hwaddr *mmio64,
4586 unsigned n_dma, uint32_t *liobns,
4587 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4589 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4590 const uint64_t base_buid = 0x800000020000000ULL;
4591 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4592 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4593 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4594 const uint32_t max_index = 255;
4595 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4597 uint64_t ram_top = MACHINE(spapr)->ram_size;
4598 hwaddr phb0_base, phb_base;
4601 /* Do we have device memory? */
4602 if (MACHINE(spapr)->maxram_size > ram_top) {
4603 /* Can't just use maxram_size, because there may be an
4604 * alignment gap between normal and device memory regions
4606 ram_top = MACHINE(spapr)->device_memory->base +
4607 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4610 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4612 if (index > max_index) {
4613 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4618 *buid = base_buid + index;
4619 for (i = 0; i < n_dma; ++i) {
4620 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4623 phb_base = phb0_base + index * phb_spacing;
4624 *pio = phb_base + pio_offset;
4625 *mmio32 = phb_base + mmio_offset;
4627 * We don't set the 64-bit MMIO window, relying on the PHB's
4628 * fallback behaviour of automatically splitting a large "32-bit"
4629 * window into contiguous 32-bit and 64-bit windows
4636 static void spapr_machine_2_7_class_options(MachineClass *mc)
4638 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4639 static GlobalProperty compat[] = {
4640 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4641 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4642 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4643 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4646 spapr_machine_2_8_class_options(mc);
4647 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4648 mc->default_machine_opts = "modern-hotplug-events=off";
4649 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4650 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4651 smc->phb_placement = phb_placement_2_7;
4654 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4660 static void spapr_machine_2_6_class_options(MachineClass *mc)
4662 static GlobalProperty compat[] = {
4663 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4666 spapr_machine_2_7_class_options(mc);
4667 mc->has_hotpluggable_cpus = false;
4668 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4669 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4672 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4678 static void spapr_machine_2_5_class_options(MachineClass *mc)
4680 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4681 static GlobalProperty compat[] = {
4682 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4685 spapr_machine_2_6_class_options(mc);
4686 smc->use_ohci_by_default = true;
4687 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4688 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4691 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4697 static void spapr_machine_2_4_class_options(MachineClass *mc)
4699 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4701 spapr_machine_2_5_class_options(mc);
4702 smc->dr_lmb_enabled = false;
4703 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4706 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4712 static void spapr_machine_2_3_class_options(MachineClass *mc)
4714 static GlobalProperty compat[] = {
4715 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4717 spapr_machine_2_4_class_options(mc);
4718 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4719 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4721 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4727 static void spapr_machine_2_2_class_options(MachineClass *mc)
4729 static GlobalProperty compat[] = {
4730 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4733 spapr_machine_2_3_class_options(mc);
4734 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4735 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4736 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4738 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4744 static void spapr_machine_2_1_class_options(MachineClass *mc)
4746 spapr_machine_2_2_class_options(mc);
4747 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4749 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4751 static void spapr_machine_register_types(void)
4753 type_register_static(&spapr_machine_info);
4756 type_init(spapr_machine_register_types)