]> Git Repo - qemu.git/blob - fpu/softfloat.h
softfloat: Add float*_min() and float*_max() functions
[qemu.git] / fpu / softfloat.h
1 /*
2  * QEMU float support
3  *
4  * Derived from SoftFloat.
5  */
6
7 /*============================================================================
8
9 This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
10 Package, Release 2b.
11
12 Written by John R. Hauser.  This work was made possible in part by the
13 International Computer Science Institute, located at Suite 600, 1947 Center
14 Street, Berkeley, California 94704.  Funding was partially provided by the
15 National Science Foundation under grant MIP-9311980.  The original version
16 of this code was written as part of a project to build a fixed-point vector
17 processor in collaboration with the University of California at Berkeley,
18 overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
19 is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20 arithmetic/SoftFloat.html'.
21
22 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
23 been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24 RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25 AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26 COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27 EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28 INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29 OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30
31 Derivative works are acceptable, even for commercial purposes, so long as
32 (1) the source code for the derivative work includes prominent notice that
33 the work is derivative, and (2) the source code includes prominent notice with
34 these four paragraphs for those parts of this code that are retained.
35
36 =============================================================================*/
37
38 #ifndef SOFTFLOAT_H
39 #define SOFTFLOAT_H
40
41 #if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
42 #include <sunmath.h>
43 #endif
44
45 #include <inttypes.h>
46 #include "config.h"
47
48 /*----------------------------------------------------------------------------
49 | Each of the following `typedef's defines the most convenient type that holds
50 | integers of at least as many bits as specified.  For example, `uint8' should
51 | be the most convenient type that can hold unsigned integers of as many as
52 | 8 bits.  The `flag' type must be able to hold either a 0 or 1.  For most
53 | implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
54 | to the same as `int'.
55 *----------------------------------------------------------------------------*/
56 typedef uint8_t flag;
57 typedef uint8_t uint8;
58 typedef int8_t int8;
59 #ifndef _AIX
60 typedef int uint16;
61 typedef int int16;
62 #endif
63 typedef unsigned int uint32;
64 typedef signed int int32;
65 typedef uint64_t uint64;
66 typedef int64_t int64;
67
68 #define LIT64( a ) a##LL
69 #define INLINE static inline
70
71 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
72 #define SNAN_BIT_IS_ONE         1
73 #else
74 #define SNAN_BIT_IS_ONE         0
75 #endif
76
77 /*----------------------------------------------------------------------------
78 | The macro `FLOATX80' must be defined to enable the extended double-precision
79 | floating-point format `floatx80'.  If this macro is not defined, the
80 | `floatx80' type will not be defined, and none of the functions that either
81 | input or output the `floatx80' type will be defined.  The same applies to
82 | the `FLOAT128' macro and the quadruple-precision format `float128'.
83 *----------------------------------------------------------------------------*/
84 #ifdef CONFIG_SOFTFLOAT
85 /* bit exact soft float support */
86 #define FLOATX80
87 #define FLOAT128
88 #else
89 /* native float support */
90 #if (defined(__i386__) || defined(__x86_64__)) && !defined(CONFIG_BSD)
91 #define FLOATX80
92 #endif
93 #endif /* !CONFIG_SOFTFLOAT */
94
95 #define STATUS_PARAM , float_status *status
96 #define STATUS(field) status->field
97 #define STATUS_VAR , status
98
99 /*----------------------------------------------------------------------------
100 | Software IEC/IEEE floating-point ordering relations
101 *----------------------------------------------------------------------------*/
102 enum {
103     float_relation_less      = -1,
104     float_relation_equal     =  0,
105     float_relation_greater   =  1,
106     float_relation_unordered =  2
107 };
108
109 #ifdef CONFIG_SOFTFLOAT
110 /*----------------------------------------------------------------------------
111 | Software IEC/IEEE floating-point types.
112 *----------------------------------------------------------------------------*/
113 /* Use structures for soft-float types.  This prevents accidentally mixing
114    them with native int/float types.  A sufficiently clever compiler and
115    sane ABI should be able to see though these structs.  However
116    x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
117 //#define USE_SOFTFLOAT_STRUCT_TYPES
118 #ifdef USE_SOFTFLOAT_STRUCT_TYPES
119 typedef struct {
120     uint16_t v;
121 } float16;
122 #define float16_val(x) (((float16)(x)).v)
123 #define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
124 #define const_float16(x) { x }
125 typedef struct {
126     uint32_t v;
127 } float32;
128 /* The cast ensures an error if the wrong type is passed.  */
129 #define float32_val(x) (((float32)(x)).v)
130 #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
131 #define const_float32(x) { x }
132 typedef struct {
133     uint64_t v;
134 } float64;
135 #define float64_val(x) (((float64)(x)).v)
136 #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
137 #define const_float64(x) { x }
138 #else
139 typedef uint16_t float16;
140 typedef uint32_t float32;
141 typedef uint64_t float64;
142 #define float16_val(x) (x)
143 #define float32_val(x) (x)
144 #define float64_val(x) (x)
145 #define make_float16(x) (x)
146 #define make_float32(x) (x)
147 #define make_float64(x) (x)
148 #define const_float16(x) (x)
149 #define const_float32(x) (x)
150 #define const_float64(x) (x)
151 #endif
152 #ifdef FLOATX80
153 typedef struct {
154     uint64_t low;
155     uint16_t high;
156 } floatx80;
157 #endif
158 #ifdef FLOAT128
159 typedef struct {
160 #ifdef HOST_WORDS_BIGENDIAN
161     uint64_t high, low;
162 #else
163     uint64_t low, high;
164 #endif
165 } float128;
166 #endif
167
168 /*----------------------------------------------------------------------------
169 | Software IEC/IEEE floating-point underflow tininess-detection mode.
170 *----------------------------------------------------------------------------*/
171 enum {
172     float_tininess_after_rounding  = 0,
173     float_tininess_before_rounding = 1
174 };
175
176 /*----------------------------------------------------------------------------
177 | Software IEC/IEEE floating-point rounding mode.
178 *----------------------------------------------------------------------------*/
179 enum {
180     float_round_nearest_even = 0,
181     float_round_down         = 1,
182     float_round_up           = 2,
183     float_round_to_zero      = 3
184 };
185
186 /*----------------------------------------------------------------------------
187 | Software IEC/IEEE floating-point exception flags.
188 *----------------------------------------------------------------------------*/
189 enum {
190     float_flag_invalid   =  1,
191     float_flag_divbyzero =  4,
192     float_flag_overflow  =  8,
193     float_flag_underflow = 16,
194     float_flag_inexact   = 32,
195     float_flag_input_denormal = 64
196 };
197
198 typedef struct float_status {
199     signed char float_detect_tininess;
200     signed char float_rounding_mode;
201     signed char float_exception_flags;
202 #ifdef FLOATX80
203     signed char floatx80_rounding_precision;
204 #endif
205     /* should denormalised results go to zero and set the inexact flag? */
206     flag flush_to_zero;
207     /* should denormalised inputs go to zero and set the input_denormal flag? */
208     flag flush_inputs_to_zero;
209     flag default_nan_mode;
210 } float_status;
211
212 void set_float_rounding_mode(int val STATUS_PARAM);
213 void set_float_exception_flags(int val STATUS_PARAM);
214 INLINE void set_flush_to_zero(flag val STATUS_PARAM)
215 {
216     STATUS(flush_to_zero) = val;
217 }
218 INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
219 {
220     STATUS(flush_inputs_to_zero) = val;
221 }
222 INLINE void set_default_nan_mode(flag val STATUS_PARAM)
223 {
224     STATUS(default_nan_mode) = val;
225 }
226 INLINE int get_float_exception_flags(float_status *status)
227 {
228     return STATUS(float_exception_flags);
229 }
230 #ifdef FLOATX80
231 void set_floatx80_rounding_precision(int val STATUS_PARAM);
232 #endif
233
234 /*----------------------------------------------------------------------------
235 | Routine to raise any or all of the software IEC/IEEE floating-point
236 | exception flags.
237 *----------------------------------------------------------------------------*/
238 void float_raise( int8 flags STATUS_PARAM);
239
240 /*----------------------------------------------------------------------------
241 | Software IEC/IEEE integer-to-floating-point conversion routines.
242 *----------------------------------------------------------------------------*/
243 float32 int32_to_float32( int32 STATUS_PARAM );
244 float64 int32_to_float64( int32 STATUS_PARAM );
245 float32 uint32_to_float32( unsigned int STATUS_PARAM );
246 float64 uint32_to_float64( unsigned int STATUS_PARAM );
247 #ifdef FLOATX80
248 floatx80 int32_to_floatx80( int32 STATUS_PARAM );
249 #endif
250 #ifdef FLOAT128
251 float128 int32_to_float128( int32 STATUS_PARAM );
252 #endif
253 float32 int64_to_float32( int64 STATUS_PARAM );
254 float32 uint64_to_float32( uint64 STATUS_PARAM );
255 float64 int64_to_float64( int64 STATUS_PARAM );
256 float64 uint64_to_float64( uint64 STATUS_PARAM );
257 #ifdef FLOATX80
258 floatx80 int64_to_floatx80( int64 STATUS_PARAM );
259 #endif
260 #ifdef FLOAT128
261 float128 int64_to_float128( int64 STATUS_PARAM );
262 #endif
263
264 /*----------------------------------------------------------------------------
265 | Software half-precision conversion routines.
266 *----------------------------------------------------------------------------*/
267 float16 float32_to_float16( float32, flag STATUS_PARAM );
268 float32 float16_to_float32( float16, flag STATUS_PARAM );
269
270 /*----------------------------------------------------------------------------
271 | Software half-precision operations.
272 *----------------------------------------------------------------------------*/
273 int float16_is_quiet_nan( float16 );
274 int float16_is_signaling_nan( float16 );
275 float16 float16_maybe_silence_nan( float16 );
276
277 /*----------------------------------------------------------------------------
278 | The pattern for a default generated half-precision NaN.
279 *----------------------------------------------------------------------------*/
280 #if defined(TARGET_ARM)
281 #define float16_default_nan make_float16(0x7E00)
282 #elif SNAN_BIT_IS_ONE
283 #define float16_default_nan make_float16(0x7DFF)
284 #else
285 #define float16_default_nan make_float16(0xFE00)
286 #endif
287
288 /*----------------------------------------------------------------------------
289 | Software IEC/IEEE single-precision conversion routines.
290 *----------------------------------------------------------------------------*/
291 int16 float32_to_int16_round_to_zero( float32 STATUS_PARAM );
292 unsigned int float32_to_uint16_round_to_zero( float32 STATUS_PARAM );
293 int32 float32_to_int32( float32 STATUS_PARAM );
294 int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
295 uint32 float32_to_uint32( float32 STATUS_PARAM );
296 uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
297 int64 float32_to_int64( float32 STATUS_PARAM );
298 int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
299 float64 float32_to_float64( float32 STATUS_PARAM );
300 #ifdef FLOATX80
301 floatx80 float32_to_floatx80( float32 STATUS_PARAM );
302 #endif
303 #ifdef FLOAT128
304 float128 float32_to_float128( float32 STATUS_PARAM );
305 #endif
306
307 /*----------------------------------------------------------------------------
308 | Software IEC/IEEE single-precision operations.
309 *----------------------------------------------------------------------------*/
310 float32 float32_round_to_int( float32 STATUS_PARAM );
311 float32 float32_add( float32, float32 STATUS_PARAM );
312 float32 float32_sub( float32, float32 STATUS_PARAM );
313 float32 float32_mul( float32, float32 STATUS_PARAM );
314 float32 float32_div( float32, float32 STATUS_PARAM );
315 float32 float32_rem( float32, float32 STATUS_PARAM );
316 float32 float32_sqrt( float32 STATUS_PARAM );
317 float32 float32_exp2( float32 STATUS_PARAM );
318 float32 float32_log2( float32 STATUS_PARAM );
319 int float32_eq( float32, float32 STATUS_PARAM );
320 int float32_le( float32, float32 STATUS_PARAM );
321 int float32_lt( float32, float32 STATUS_PARAM );
322 int float32_eq_signaling( float32, float32 STATUS_PARAM );
323 int float32_le_quiet( float32, float32 STATUS_PARAM );
324 int float32_lt_quiet( float32, float32 STATUS_PARAM );
325 int float32_compare( float32, float32 STATUS_PARAM );
326 int float32_compare_quiet( float32, float32 STATUS_PARAM );
327 float32 float32_min(float32, float32 STATUS_PARAM);
328 float32 float32_max(float32, float32 STATUS_PARAM);
329 int float32_is_quiet_nan( float32 );
330 int float32_is_signaling_nan( float32 );
331 float32 float32_maybe_silence_nan( float32 );
332 float32 float32_scalbn( float32, int STATUS_PARAM );
333
334 INLINE float32 float32_abs(float32 a)
335 {
336     /* Note that abs does *not* handle NaN specially, nor does
337      * it flush denormal inputs to zero.
338      */
339     return make_float32(float32_val(a) & 0x7fffffff);
340 }
341
342 INLINE float32 float32_chs(float32 a)
343 {
344     /* Note that chs does *not* handle NaN specially, nor does
345      * it flush denormal inputs to zero.
346      */
347     return make_float32(float32_val(a) ^ 0x80000000);
348 }
349
350 INLINE int float32_is_infinity(float32 a)
351 {
352     return (float32_val(a) & 0x7fffffff) == 0x7f800000;
353 }
354
355 INLINE int float32_is_neg(float32 a)
356 {
357     return float32_val(a) >> 31;
358 }
359
360 INLINE int float32_is_zero(float32 a)
361 {
362     return (float32_val(a) & 0x7fffffff) == 0;
363 }
364
365 INLINE int float32_is_any_nan(float32 a)
366 {
367     return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
368 }
369
370 INLINE int float32_is_zero_or_denormal(float32 a)
371 {
372     return (float32_val(a) & 0x7f800000) == 0;
373 }
374
375 INLINE float32 float32_set_sign(float32 a, int sign)
376 {
377     return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
378 }
379
380 #define float32_zero make_float32(0)
381 #define float32_one make_float32(0x3f800000)
382 #define float32_ln2 make_float32(0x3f317218)
383 #define float32_half make_float32(0x3f000000)
384 #define float32_infinity make_float32(0x7f800000)
385
386
387 /*----------------------------------------------------------------------------
388 | The pattern for a default generated single-precision NaN.
389 *----------------------------------------------------------------------------*/
390 #if defined(TARGET_SPARC)
391 #define float32_default_nan make_float32(0x7FFFFFFF)
392 #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
393 #define float32_default_nan make_float32(0x7FC00000)
394 #elif SNAN_BIT_IS_ONE
395 #define float32_default_nan make_float32(0x7FBFFFFF)
396 #else
397 #define float32_default_nan make_float32(0xFFC00000)
398 #endif
399
400 /*----------------------------------------------------------------------------
401 | Software IEC/IEEE double-precision conversion routines.
402 *----------------------------------------------------------------------------*/
403 int16 float64_to_int16_round_to_zero( float64 STATUS_PARAM );
404 unsigned int float64_to_uint16_round_to_zero( float64 STATUS_PARAM );
405 int32 float64_to_int32( float64 STATUS_PARAM );
406 int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
407 uint32 float64_to_uint32( float64 STATUS_PARAM );
408 uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
409 int64 float64_to_int64( float64 STATUS_PARAM );
410 int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
411 uint64 float64_to_uint64 (float64 a STATUS_PARAM);
412 uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
413 float32 float64_to_float32( float64 STATUS_PARAM );
414 #ifdef FLOATX80
415 floatx80 float64_to_floatx80( float64 STATUS_PARAM );
416 #endif
417 #ifdef FLOAT128
418 float128 float64_to_float128( float64 STATUS_PARAM );
419 #endif
420
421 /*----------------------------------------------------------------------------
422 | Software IEC/IEEE double-precision operations.
423 *----------------------------------------------------------------------------*/
424 float64 float64_round_to_int( float64 STATUS_PARAM );
425 float64 float64_trunc_to_int( float64 STATUS_PARAM );
426 float64 float64_add( float64, float64 STATUS_PARAM );
427 float64 float64_sub( float64, float64 STATUS_PARAM );
428 float64 float64_mul( float64, float64 STATUS_PARAM );
429 float64 float64_div( float64, float64 STATUS_PARAM );
430 float64 float64_rem( float64, float64 STATUS_PARAM );
431 float64 float64_sqrt( float64 STATUS_PARAM );
432 float64 float64_log2( float64 STATUS_PARAM );
433 int float64_eq( float64, float64 STATUS_PARAM );
434 int float64_le( float64, float64 STATUS_PARAM );
435 int float64_lt( float64, float64 STATUS_PARAM );
436 int float64_eq_signaling( float64, float64 STATUS_PARAM );
437 int float64_le_quiet( float64, float64 STATUS_PARAM );
438 int float64_lt_quiet( float64, float64 STATUS_PARAM );
439 int float64_compare( float64, float64 STATUS_PARAM );
440 int float64_compare_quiet( float64, float64 STATUS_PARAM );
441 float64 float64_min(float64, float64 STATUS_PARAM);
442 float64 float64_max(float64, float64 STATUS_PARAM);
443 int float64_is_quiet_nan( float64 a );
444 int float64_is_signaling_nan( float64 );
445 float64 float64_maybe_silence_nan( float64 );
446 float64 float64_scalbn( float64, int STATUS_PARAM );
447
448 INLINE float64 float64_abs(float64 a)
449 {
450     /* Note that abs does *not* handle NaN specially, nor does
451      * it flush denormal inputs to zero.
452      */
453     return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
454 }
455
456 INLINE float64 float64_chs(float64 a)
457 {
458     /* Note that chs does *not* handle NaN specially, nor does
459      * it flush denormal inputs to zero.
460      */
461     return make_float64(float64_val(a) ^ 0x8000000000000000LL);
462 }
463
464 INLINE int float64_is_infinity(float64 a)
465 {
466     return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
467 }
468
469 INLINE int float64_is_neg(float64 a)
470 {
471     return float64_val(a) >> 63;
472 }
473
474 INLINE int float64_is_zero(float64 a)
475 {
476     return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
477 }
478
479 INLINE int float64_is_any_nan(float64 a)
480 {
481     return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
482 }
483
484 INLINE float64 float64_set_sign(float64 a, int sign)
485 {
486     return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
487                         | ((int64_t)sign << 63));
488 }
489
490 #define float64_zero make_float64(0)
491 #define float64_one make_float64(0x3ff0000000000000LL)
492 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
493 #define float64_half make_float64(0x3fe0000000000000LL)
494 #define float64_infinity make_float64(0x7ff0000000000000LL)
495
496 /*----------------------------------------------------------------------------
497 | The pattern for a default generated double-precision NaN.
498 *----------------------------------------------------------------------------*/
499 #if defined(TARGET_SPARC)
500 #define float64_default_nan make_float64(LIT64( 0x7FFFFFFFFFFFFFFF ))
501 #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
502 #define float64_default_nan make_float64(LIT64( 0x7FF8000000000000 ))
503 #elif SNAN_BIT_IS_ONE
504 #define float64_default_nan make_float64(LIT64( 0x7FF7FFFFFFFFFFFF ))
505 #else
506 #define float64_default_nan make_float64(LIT64( 0xFFF8000000000000 ))
507 #endif
508
509 #ifdef FLOATX80
510
511 /*----------------------------------------------------------------------------
512 | Software IEC/IEEE extended double-precision conversion routines.
513 *----------------------------------------------------------------------------*/
514 int32 floatx80_to_int32( floatx80 STATUS_PARAM );
515 int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
516 int64 floatx80_to_int64( floatx80 STATUS_PARAM );
517 int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
518 float32 floatx80_to_float32( floatx80 STATUS_PARAM );
519 float64 floatx80_to_float64( floatx80 STATUS_PARAM );
520 #ifdef FLOAT128
521 float128 floatx80_to_float128( floatx80 STATUS_PARAM );
522 #endif
523
524 /*----------------------------------------------------------------------------
525 | Software IEC/IEEE extended double-precision operations.
526 *----------------------------------------------------------------------------*/
527 floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
528 floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
529 floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
530 floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
531 floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
532 floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
533 floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
534 int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
535 int floatx80_le( floatx80, floatx80 STATUS_PARAM );
536 int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
537 int floatx80_eq_signaling( floatx80, floatx80 STATUS_PARAM );
538 int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
539 int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
540 int floatx80_is_quiet_nan( floatx80 );
541 int floatx80_is_signaling_nan( floatx80 );
542 floatx80 floatx80_maybe_silence_nan( floatx80 );
543 floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
544
545 INLINE floatx80 floatx80_abs(floatx80 a)
546 {
547     a.high &= 0x7fff;
548     return a;
549 }
550
551 INLINE floatx80 floatx80_chs(floatx80 a)
552 {
553     a.high ^= 0x8000;
554     return a;
555 }
556
557 INLINE int floatx80_is_infinity(floatx80 a)
558 {
559     return (a.high & 0x7fff) == 0x7fff && a.low == 0;
560 }
561
562 INLINE int floatx80_is_neg(floatx80 a)
563 {
564     return a.high >> 15;
565 }
566
567 INLINE int floatx80_is_zero(floatx80 a)
568 {
569     return (a.high & 0x7fff) == 0 && a.low == 0;
570 }
571
572 INLINE int floatx80_is_any_nan(floatx80 a)
573 {
574     return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
575 }
576
577 /*----------------------------------------------------------------------------
578 | The pattern for a default generated extended double-precision NaN.  The
579 | `high' and `low' values hold the most- and least-significant bits,
580 | respectively.
581 *----------------------------------------------------------------------------*/
582 #if SNAN_BIT_IS_ONE
583 #define floatx80_default_nan_high 0x7FFF
584 #define floatx80_default_nan_low  LIT64( 0xBFFFFFFFFFFFFFFF )
585 #else
586 #define floatx80_default_nan_high 0xFFFF
587 #define floatx80_default_nan_low  LIT64( 0xC000000000000000 )
588 #endif
589
590 #endif
591
592 #ifdef FLOAT128
593
594 /*----------------------------------------------------------------------------
595 | Software IEC/IEEE quadruple-precision conversion routines.
596 *----------------------------------------------------------------------------*/
597 int32 float128_to_int32( float128 STATUS_PARAM );
598 int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
599 int64 float128_to_int64( float128 STATUS_PARAM );
600 int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
601 float32 float128_to_float32( float128 STATUS_PARAM );
602 float64 float128_to_float64( float128 STATUS_PARAM );
603 #ifdef FLOATX80
604 floatx80 float128_to_floatx80( float128 STATUS_PARAM );
605 #endif
606
607 /*----------------------------------------------------------------------------
608 | Software IEC/IEEE quadruple-precision operations.
609 *----------------------------------------------------------------------------*/
610 float128 float128_round_to_int( float128 STATUS_PARAM );
611 float128 float128_add( float128, float128 STATUS_PARAM );
612 float128 float128_sub( float128, float128 STATUS_PARAM );
613 float128 float128_mul( float128, float128 STATUS_PARAM );
614 float128 float128_div( float128, float128 STATUS_PARAM );
615 float128 float128_rem( float128, float128 STATUS_PARAM );
616 float128 float128_sqrt( float128 STATUS_PARAM );
617 int float128_eq( float128, float128 STATUS_PARAM );
618 int float128_le( float128, float128 STATUS_PARAM );
619 int float128_lt( float128, float128 STATUS_PARAM );
620 int float128_eq_signaling( float128, float128 STATUS_PARAM );
621 int float128_le_quiet( float128, float128 STATUS_PARAM );
622 int float128_lt_quiet( float128, float128 STATUS_PARAM );
623 int float128_compare( float128, float128 STATUS_PARAM );
624 int float128_compare_quiet( float128, float128 STATUS_PARAM );
625 int float128_is_quiet_nan( float128 );
626 int float128_is_signaling_nan( float128 );
627 float128 float128_maybe_silence_nan( float128 );
628 float128 float128_scalbn( float128, int STATUS_PARAM );
629
630 INLINE float128 float128_abs(float128 a)
631 {
632     a.high &= 0x7fffffffffffffffLL;
633     return a;
634 }
635
636 INLINE float128 float128_chs(float128 a)
637 {
638     a.high ^= 0x8000000000000000LL;
639     return a;
640 }
641
642 INLINE int float128_is_infinity(float128 a)
643 {
644     return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
645 }
646
647 INLINE int float128_is_neg(float128 a)
648 {
649     return a.high >> 63;
650 }
651
652 INLINE int float128_is_zero(float128 a)
653 {
654     return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
655 }
656
657 INLINE int float128_is_any_nan(float128 a)
658 {
659     return ((a.high >> 48) & 0x7fff) == 0x7fff &&
660         ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
661 }
662
663 /*----------------------------------------------------------------------------
664 | The pattern for a default generated quadruple-precision NaN.  The `high' and
665 | `low' values hold the most- and least-significant bits, respectively.
666 *----------------------------------------------------------------------------*/
667 #if SNAN_BIT_IS_ONE
668 #define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
669 #define float128_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
670 #else
671 #define float128_default_nan_high LIT64( 0xFFFF800000000000 )
672 #define float128_default_nan_low  LIT64( 0x0000000000000000 )
673 #endif
674
675 #endif
676
677 #else /* CONFIG_SOFTFLOAT */
678
679 #include "softfloat-native.h"
680
681 #endif /* !CONFIG_SOFTFLOAT */
682
683 #endif /* !SOFTFLOAT_H */
This page took 0.062144 seconds and 4 git commands to generate.