]> Git Repo - qemu.git/blob - memory.c
memory: move address_space_memory and address_space_io out of memory core
[qemu.git] / memory.c
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <[email protected]>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15
16 #include "memory.h"
17 #include "exec-memory.h"
18 #include "ioport.h"
19 #include "bitops.h"
20 #include "kvm.h"
21 #include <assert.h>
22
23 #include "memory-internal.h"
24
25 unsigned memory_region_transaction_depth = 0;
26 static bool global_dirty_log = false;
27
28 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
29     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
30
31 static QTAILQ_HEAD(, AddressSpace) address_spaces
32     = QTAILQ_HEAD_INITIALIZER(address_spaces);
33
34 typedef struct AddrRange AddrRange;
35
36 /*
37  * Note using signed integers limits us to physical addresses at most
38  * 63 bits wide.  They are needed for negative offsetting in aliases
39  * (large MemoryRegion::alias_offset).
40  */
41 struct AddrRange {
42     Int128 start;
43     Int128 size;
44 };
45
46 static AddrRange addrrange_make(Int128 start, Int128 size)
47 {
48     return (AddrRange) { start, size };
49 }
50
51 static bool addrrange_equal(AddrRange r1, AddrRange r2)
52 {
53     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
54 }
55
56 static Int128 addrrange_end(AddrRange r)
57 {
58     return int128_add(r.start, r.size);
59 }
60
61 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
62 {
63     int128_addto(&range.start, delta);
64     return range;
65 }
66
67 static bool addrrange_contains(AddrRange range, Int128 addr)
68 {
69     return int128_ge(addr, range.start)
70         && int128_lt(addr, addrrange_end(range));
71 }
72
73 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
74 {
75     return addrrange_contains(r1, r2.start)
76         || addrrange_contains(r2, r1.start);
77 }
78
79 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
80 {
81     Int128 start = int128_max(r1.start, r2.start);
82     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
83     return addrrange_make(start, int128_sub(end, start));
84 }
85
86 enum ListenerDirection { Forward, Reverse };
87
88 static bool memory_listener_match(MemoryListener *listener,
89                                   MemoryRegionSection *section)
90 {
91     return !listener->address_space_filter
92         || listener->address_space_filter == section->address_space;
93 }
94
95 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
96     do {                                                                \
97         MemoryListener *_listener;                                      \
98                                                                         \
99         switch (_direction) {                                           \
100         case Forward:                                                   \
101             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
102                 if (_listener->_callback) {                             \
103                     _listener->_callback(_listener, ##_args);           \
104                 }                                                       \
105             }                                                           \
106             break;                                                      \
107         case Reverse:                                                   \
108             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
109                                    memory_listeners, link) {            \
110                 if (_listener->_callback) {                             \
111                     _listener->_callback(_listener, ##_args);           \
112                 }                                                       \
113             }                                                           \
114             break;                                                      \
115         default:                                                        \
116             abort();                                                    \
117         }                                                               \
118     } while (0)
119
120 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
121     do {                                                                \
122         MemoryListener *_listener;                                      \
123                                                                         \
124         switch (_direction) {                                           \
125         case Forward:                                                   \
126             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
127                 if (_listener->_callback                                \
128                     && memory_listener_match(_listener, _section)) {    \
129                     _listener->_callback(_listener, _section, ##_args); \
130                 }                                                       \
131             }                                                           \
132             break;                                                      \
133         case Reverse:                                                   \
134             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
135                                    memory_listeners, link) {            \
136                 if (_listener->_callback                                \
137                     && memory_listener_match(_listener, _section)) {    \
138                     _listener->_callback(_listener, _section, ##_args); \
139                 }                                                       \
140             }                                                           \
141             break;                                                      \
142         default:                                                        \
143             abort();                                                    \
144         }                                                               \
145     } while (0)
146
147 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback)            \
148     MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) {       \
149         .mr = (fr)->mr,                                                 \
150         .address_space = (as)->root,                                    \
151         .offset_within_region = (fr)->offset_in_region,                 \
152         .size = int128_get64((fr)->addr.size),                          \
153         .offset_within_address_space = int128_get64((fr)->addr.start),  \
154         .readonly = (fr)->readonly,                                     \
155               }))
156
157 struct CoalescedMemoryRange {
158     AddrRange addr;
159     QTAILQ_ENTRY(CoalescedMemoryRange) link;
160 };
161
162 struct MemoryRegionIoeventfd {
163     AddrRange addr;
164     bool match_data;
165     uint64_t data;
166     EventNotifier *e;
167 };
168
169 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
170                                            MemoryRegionIoeventfd b)
171 {
172     if (int128_lt(a.addr.start, b.addr.start)) {
173         return true;
174     } else if (int128_gt(a.addr.start, b.addr.start)) {
175         return false;
176     } else if (int128_lt(a.addr.size, b.addr.size)) {
177         return true;
178     } else if (int128_gt(a.addr.size, b.addr.size)) {
179         return false;
180     } else if (a.match_data < b.match_data) {
181         return true;
182     } else  if (a.match_data > b.match_data) {
183         return false;
184     } else if (a.match_data) {
185         if (a.data < b.data) {
186             return true;
187         } else if (a.data > b.data) {
188             return false;
189         }
190     }
191     if (a.e < b.e) {
192         return true;
193     } else if (a.e > b.e) {
194         return false;
195     }
196     return false;
197 }
198
199 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
200                                           MemoryRegionIoeventfd b)
201 {
202     return !memory_region_ioeventfd_before(a, b)
203         && !memory_region_ioeventfd_before(b, a);
204 }
205
206 typedef struct FlatRange FlatRange;
207 typedef struct FlatView FlatView;
208
209 /* Range of memory in the global map.  Addresses are absolute. */
210 struct FlatRange {
211     MemoryRegion *mr;
212     target_phys_addr_t offset_in_region;
213     AddrRange addr;
214     uint8_t dirty_log_mask;
215     bool readable;
216     bool readonly;
217 };
218
219 /* Flattened global view of current active memory hierarchy.  Kept in sorted
220  * order.
221  */
222 struct FlatView {
223     FlatRange *ranges;
224     unsigned nr;
225     unsigned nr_allocated;
226 };
227
228 typedef struct AddressSpaceOps AddressSpaceOps;
229
230 #define FOR_EACH_FLAT_RANGE(var, view)          \
231     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
232
233 static bool flatrange_equal(FlatRange *a, FlatRange *b)
234 {
235     return a->mr == b->mr
236         && addrrange_equal(a->addr, b->addr)
237         && a->offset_in_region == b->offset_in_region
238         && a->readable == b->readable
239         && a->readonly == b->readonly;
240 }
241
242 static void flatview_init(FlatView *view)
243 {
244     view->ranges = NULL;
245     view->nr = 0;
246     view->nr_allocated = 0;
247 }
248
249 /* Insert a range into a given position.  Caller is responsible for maintaining
250  * sorting order.
251  */
252 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
253 {
254     if (view->nr == view->nr_allocated) {
255         view->nr_allocated = MAX(2 * view->nr, 10);
256         view->ranges = g_realloc(view->ranges,
257                                     view->nr_allocated * sizeof(*view->ranges));
258     }
259     memmove(view->ranges + pos + 1, view->ranges + pos,
260             (view->nr - pos) * sizeof(FlatRange));
261     view->ranges[pos] = *range;
262     ++view->nr;
263 }
264
265 static void flatview_destroy(FlatView *view)
266 {
267     g_free(view->ranges);
268 }
269
270 static bool can_merge(FlatRange *r1, FlatRange *r2)
271 {
272     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
273         && r1->mr == r2->mr
274         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
275                                 r1->addr.size),
276                      int128_make64(r2->offset_in_region))
277         && r1->dirty_log_mask == r2->dirty_log_mask
278         && r1->readable == r2->readable
279         && r1->readonly == r2->readonly;
280 }
281
282 /* Attempt to simplify a view by merging ajacent ranges */
283 static void flatview_simplify(FlatView *view)
284 {
285     unsigned i, j;
286
287     i = 0;
288     while (i < view->nr) {
289         j = i + 1;
290         while (j < view->nr
291                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
292             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
293             ++j;
294         }
295         ++i;
296         memmove(&view->ranges[i], &view->ranges[j],
297                 (view->nr - j) * sizeof(view->ranges[j]));
298         view->nr -= j - i;
299     }
300 }
301
302 static void memory_region_read_accessor(void *opaque,
303                                         target_phys_addr_t addr,
304                                         uint64_t *value,
305                                         unsigned size,
306                                         unsigned shift,
307                                         uint64_t mask)
308 {
309     MemoryRegion *mr = opaque;
310     uint64_t tmp;
311
312     if (mr->flush_coalesced_mmio) {
313         qemu_flush_coalesced_mmio_buffer();
314     }
315     tmp = mr->ops->read(mr->opaque, addr, size);
316     *value |= (tmp & mask) << shift;
317 }
318
319 static void memory_region_write_accessor(void *opaque,
320                                          target_phys_addr_t addr,
321                                          uint64_t *value,
322                                          unsigned size,
323                                          unsigned shift,
324                                          uint64_t mask)
325 {
326     MemoryRegion *mr = opaque;
327     uint64_t tmp;
328
329     if (mr->flush_coalesced_mmio) {
330         qemu_flush_coalesced_mmio_buffer();
331     }
332     tmp = (*value >> shift) & mask;
333     mr->ops->write(mr->opaque, addr, tmp, size);
334 }
335
336 static void access_with_adjusted_size(target_phys_addr_t addr,
337                                       uint64_t *value,
338                                       unsigned size,
339                                       unsigned access_size_min,
340                                       unsigned access_size_max,
341                                       void (*access)(void *opaque,
342                                                      target_phys_addr_t addr,
343                                                      uint64_t *value,
344                                                      unsigned size,
345                                                      unsigned shift,
346                                                      uint64_t mask),
347                                       void *opaque)
348 {
349     uint64_t access_mask;
350     unsigned access_size;
351     unsigned i;
352
353     if (!access_size_min) {
354         access_size_min = 1;
355     }
356     if (!access_size_max) {
357         access_size_max = 4;
358     }
359     access_size = MAX(MIN(size, access_size_max), access_size_min);
360     access_mask = -1ULL >> (64 - access_size * 8);
361     for (i = 0; i < size; i += access_size) {
362         /* FIXME: big-endian support */
363         access(opaque, addr + i, value, access_size, i * 8, access_mask);
364     }
365 }
366
367 static const MemoryRegionPortio *find_portio(MemoryRegion *mr, uint64_t offset,
368                                              unsigned width, bool write)
369 {
370     const MemoryRegionPortio *mrp;
371
372     for (mrp = mr->ops->old_portio; mrp->size; ++mrp) {
373         if (offset >= mrp->offset && offset < mrp->offset + mrp->len
374             && width == mrp->size
375             && (write ? (bool)mrp->write : (bool)mrp->read)) {
376             return mrp;
377         }
378     }
379     return NULL;
380 }
381
382 static void memory_region_iorange_read(IORange *iorange,
383                                        uint64_t offset,
384                                        unsigned width,
385                                        uint64_t *data)
386 {
387     MemoryRegionIORange *mrio
388         = container_of(iorange, MemoryRegionIORange, iorange);
389     MemoryRegion *mr = mrio->mr;
390
391     offset += mrio->offset;
392     if (mr->ops->old_portio) {
393         const MemoryRegionPortio *mrp = find_portio(mr, offset - mrio->offset,
394                                                     width, false);
395
396         *data = ((uint64_t)1 << (width * 8)) - 1;
397         if (mrp) {
398             *data = mrp->read(mr->opaque, offset);
399         } else if (width == 2) {
400             mrp = find_portio(mr, offset - mrio->offset, 1, false);
401             assert(mrp);
402             *data = mrp->read(mr->opaque, offset) |
403                     (mrp->read(mr->opaque, offset + 1) << 8);
404         }
405         return;
406     }
407     *data = 0;
408     access_with_adjusted_size(offset, data, width,
409                               mr->ops->impl.min_access_size,
410                               mr->ops->impl.max_access_size,
411                               memory_region_read_accessor, mr);
412 }
413
414 static void memory_region_iorange_write(IORange *iorange,
415                                         uint64_t offset,
416                                         unsigned width,
417                                         uint64_t data)
418 {
419     MemoryRegionIORange *mrio
420         = container_of(iorange, MemoryRegionIORange, iorange);
421     MemoryRegion *mr = mrio->mr;
422
423     offset += mrio->offset;
424     if (mr->ops->old_portio) {
425         const MemoryRegionPortio *mrp = find_portio(mr, offset - mrio->offset,
426                                                     width, true);
427
428         if (mrp) {
429             mrp->write(mr->opaque, offset, data);
430         } else if (width == 2) {
431             mrp = find_portio(mr, offset - mrio->offset, 1, true);
432             assert(mrp);
433             mrp->write(mr->opaque, offset, data & 0xff);
434             mrp->write(mr->opaque, offset + 1, data >> 8);
435         }
436         return;
437     }
438     access_with_adjusted_size(offset, &data, width,
439                               mr->ops->impl.min_access_size,
440                               mr->ops->impl.max_access_size,
441                               memory_region_write_accessor, mr);
442 }
443
444 static void memory_region_iorange_destructor(IORange *iorange)
445 {
446     g_free(container_of(iorange, MemoryRegionIORange, iorange));
447 }
448
449 const IORangeOps memory_region_iorange_ops = {
450     .read = memory_region_iorange_read,
451     .write = memory_region_iorange_write,
452     .destructor = memory_region_iorange_destructor,
453 };
454
455 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
456 {
457     AddressSpace *as;
458
459     while (mr->parent) {
460         mr = mr->parent;
461     }
462     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
463         if (mr == as->root) {
464             return as;
465         }
466     }
467     abort();
468 }
469
470 /* Render a memory region into the global view.  Ranges in @view obscure
471  * ranges in @mr.
472  */
473 static void render_memory_region(FlatView *view,
474                                  MemoryRegion *mr,
475                                  Int128 base,
476                                  AddrRange clip,
477                                  bool readonly)
478 {
479     MemoryRegion *subregion;
480     unsigned i;
481     target_phys_addr_t offset_in_region;
482     Int128 remain;
483     Int128 now;
484     FlatRange fr;
485     AddrRange tmp;
486
487     if (!mr->enabled) {
488         return;
489     }
490
491     int128_addto(&base, int128_make64(mr->addr));
492     readonly |= mr->readonly;
493
494     tmp = addrrange_make(base, mr->size);
495
496     if (!addrrange_intersects(tmp, clip)) {
497         return;
498     }
499
500     clip = addrrange_intersection(tmp, clip);
501
502     if (mr->alias) {
503         int128_subfrom(&base, int128_make64(mr->alias->addr));
504         int128_subfrom(&base, int128_make64(mr->alias_offset));
505         render_memory_region(view, mr->alias, base, clip, readonly);
506         return;
507     }
508
509     /* Render subregions in priority order. */
510     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
511         render_memory_region(view, subregion, base, clip, readonly);
512     }
513
514     if (!mr->terminates) {
515         return;
516     }
517
518     offset_in_region = int128_get64(int128_sub(clip.start, base));
519     base = clip.start;
520     remain = clip.size;
521
522     /* Render the region itself into any gaps left by the current view. */
523     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
524         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
525             continue;
526         }
527         if (int128_lt(base, view->ranges[i].addr.start)) {
528             now = int128_min(remain,
529                              int128_sub(view->ranges[i].addr.start, base));
530             fr.mr = mr;
531             fr.offset_in_region = offset_in_region;
532             fr.addr = addrrange_make(base, now);
533             fr.dirty_log_mask = mr->dirty_log_mask;
534             fr.readable = mr->readable;
535             fr.readonly = readonly;
536             flatview_insert(view, i, &fr);
537             ++i;
538             int128_addto(&base, now);
539             offset_in_region += int128_get64(now);
540             int128_subfrom(&remain, now);
541         }
542         if (int128_eq(base, view->ranges[i].addr.start)) {
543             now = int128_min(remain, view->ranges[i].addr.size);
544             int128_addto(&base, now);
545             offset_in_region += int128_get64(now);
546             int128_subfrom(&remain, now);
547         }
548     }
549     if (int128_nz(remain)) {
550         fr.mr = mr;
551         fr.offset_in_region = offset_in_region;
552         fr.addr = addrrange_make(base, remain);
553         fr.dirty_log_mask = mr->dirty_log_mask;
554         fr.readable = mr->readable;
555         fr.readonly = readonly;
556         flatview_insert(view, i, &fr);
557     }
558 }
559
560 /* Render a memory topology into a list of disjoint absolute ranges. */
561 static FlatView generate_memory_topology(MemoryRegion *mr)
562 {
563     FlatView view;
564
565     flatview_init(&view);
566
567     render_memory_region(&view, mr, int128_zero(),
568                          addrrange_make(int128_zero(), int128_2_64()), false);
569     flatview_simplify(&view);
570
571     return view;
572 }
573
574 static void address_space_add_del_ioeventfds(AddressSpace *as,
575                                              MemoryRegionIoeventfd *fds_new,
576                                              unsigned fds_new_nb,
577                                              MemoryRegionIoeventfd *fds_old,
578                                              unsigned fds_old_nb)
579 {
580     unsigned iold, inew;
581     MemoryRegionIoeventfd *fd;
582     MemoryRegionSection section;
583
584     /* Generate a symmetric difference of the old and new fd sets, adding
585      * and deleting as necessary.
586      */
587
588     iold = inew = 0;
589     while (iold < fds_old_nb || inew < fds_new_nb) {
590         if (iold < fds_old_nb
591             && (inew == fds_new_nb
592                 || memory_region_ioeventfd_before(fds_old[iold],
593                                                   fds_new[inew]))) {
594             fd = &fds_old[iold];
595             section = (MemoryRegionSection) {
596                 .address_space = as->root,
597                 .offset_within_address_space = int128_get64(fd->addr.start),
598                 .size = int128_get64(fd->addr.size),
599             };
600             MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
601                                  fd->match_data, fd->data, fd->e);
602             ++iold;
603         } else if (inew < fds_new_nb
604                    && (iold == fds_old_nb
605                        || memory_region_ioeventfd_before(fds_new[inew],
606                                                          fds_old[iold]))) {
607             fd = &fds_new[inew];
608             section = (MemoryRegionSection) {
609                 .address_space = as->root,
610                 .offset_within_address_space = int128_get64(fd->addr.start),
611                 .size = int128_get64(fd->addr.size),
612             };
613             MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
614                                  fd->match_data, fd->data, fd->e);
615             ++inew;
616         } else {
617             ++iold;
618             ++inew;
619         }
620     }
621 }
622
623 static void address_space_update_ioeventfds(AddressSpace *as)
624 {
625     FlatRange *fr;
626     unsigned ioeventfd_nb = 0;
627     MemoryRegionIoeventfd *ioeventfds = NULL;
628     AddrRange tmp;
629     unsigned i;
630
631     FOR_EACH_FLAT_RANGE(fr, as->current_map) {
632         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
633             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
634                                   int128_sub(fr->addr.start,
635                                              int128_make64(fr->offset_in_region)));
636             if (addrrange_intersects(fr->addr, tmp)) {
637                 ++ioeventfd_nb;
638                 ioeventfds = g_realloc(ioeventfds,
639                                           ioeventfd_nb * sizeof(*ioeventfds));
640                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
641                 ioeventfds[ioeventfd_nb-1].addr = tmp;
642             }
643         }
644     }
645
646     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
647                                      as->ioeventfds, as->ioeventfd_nb);
648
649     g_free(as->ioeventfds);
650     as->ioeventfds = ioeventfds;
651     as->ioeventfd_nb = ioeventfd_nb;
652 }
653
654 static void address_space_update_topology_pass(AddressSpace *as,
655                                                FlatView old_view,
656                                                FlatView new_view,
657                                                bool adding)
658 {
659     unsigned iold, inew;
660     FlatRange *frold, *frnew;
661
662     /* Generate a symmetric difference of the old and new memory maps.
663      * Kill ranges in the old map, and instantiate ranges in the new map.
664      */
665     iold = inew = 0;
666     while (iold < old_view.nr || inew < new_view.nr) {
667         if (iold < old_view.nr) {
668             frold = &old_view.ranges[iold];
669         } else {
670             frold = NULL;
671         }
672         if (inew < new_view.nr) {
673             frnew = &new_view.ranges[inew];
674         } else {
675             frnew = NULL;
676         }
677
678         if (frold
679             && (!frnew
680                 || int128_lt(frold->addr.start, frnew->addr.start)
681                 || (int128_eq(frold->addr.start, frnew->addr.start)
682                     && !flatrange_equal(frold, frnew)))) {
683             /* In old, but (not in new, or in new but attributes changed). */
684
685             if (!adding) {
686                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
687             }
688
689             ++iold;
690         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
691             /* In both (logging may have changed) */
692
693             if (adding) {
694                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
695                 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
696                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
697                 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
698                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
699                 }
700             }
701
702             ++iold;
703             ++inew;
704         } else {
705             /* In new */
706
707             if (adding) {
708                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
709             }
710
711             ++inew;
712         }
713     }
714 }
715
716
717 static void address_space_update_topology(AddressSpace *as)
718 {
719     FlatView old_view = *as->current_map;
720     FlatView new_view = generate_memory_topology(as->root);
721
722     address_space_update_topology_pass(as, old_view, new_view, false);
723     address_space_update_topology_pass(as, old_view, new_view, true);
724
725     *as->current_map = new_view;
726     flatview_destroy(&old_view);
727     address_space_update_ioeventfds(as);
728 }
729
730 void memory_region_transaction_begin(void)
731 {
732     qemu_flush_coalesced_mmio_buffer();
733     ++memory_region_transaction_depth;
734 }
735
736 void memory_region_transaction_commit(void)
737 {
738     AddressSpace *as;
739
740     assert(memory_region_transaction_depth);
741     --memory_region_transaction_depth;
742     if (!memory_region_transaction_depth) {
743         MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
744
745         QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
746             address_space_update_topology(as);
747         }
748
749         MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
750     }
751 }
752
753 static void memory_region_destructor_none(MemoryRegion *mr)
754 {
755 }
756
757 static void memory_region_destructor_ram(MemoryRegion *mr)
758 {
759     qemu_ram_free(mr->ram_addr);
760 }
761
762 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
763 {
764     qemu_ram_free_from_ptr(mr->ram_addr);
765 }
766
767 static void memory_region_destructor_iomem(MemoryRegion *mr)
768 {
769 }
770
771 static void memory_region_destructor_rom_device(MemoryRegion *mr)
772 {
773     qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
774 }
775
776 static bool memory_region_wrong_endianness(MemoryRegion *mr)
777 {
778 #ifdef TARGET_WORDS_BIGENDIAN
779     return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
780 #else
781     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
782 #endif
783 }
784
785 void memory_region_init(MemoryRegion *mr,
786                         const char *name,
787                         uint64_t size)
788 {
789     mr->ops = NULL;
790     mr->parent = NULL;
791     mr->size = int128_make64(size);
792     if (size == UINT64_MAX) {
793         mr->size = int128_2_64();
794     }
795     mr->addr = 0;
796     mr->subpage = false;
797     mr->enabled = true;
798     mr->terminates = false;
799     mr->ram = false;
800     mr->readable = true;
801     mr->readonly = false;
802     mr->rom_device = false;
803     mr->destructor = memory_region_destructor_none;
804     mr->priority = 0;
805     mr->may_overlap = false;
806     mr->alias = NULL;
807     QTAILQ_INIT(&mr->subregions);
808     memset(&mr->subregions_link, 0, sizeof mr->subregions_link);
809     QTAILQ_INIT(&mr->coalesced);
810     mr->name = g_strdup(name);
811     mr->dirty_log_mask = 0;
812     mr->ioeventfd_nb = 0;
813     mr->ioeventfds = NULL;
814     mr->flush_coalesced_mmio = false;
815 }
816
817 static bool memory_region_access_valid(MemoryRegion *mr,
818                                        target_phys_addr_t addr,
819                                        unsigned size,
820                                        bool is_write)
821 {
822     if (mr->ops->valid.accepts
823         && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write)) {
824         return false;
825     }
826
827     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
828         return false;
829     }
830
831     /* Treat zero as compatibility all valid */
832     if (!mr->ops->valid.max_access_size) {
833         return true;
834     }
835
836     if (size > mr->ops->valid.max_access_size
837         || size < mr->ops->valid.min_access_size) {
838         return false;
839     }
840     return true;
841 }
842
843 static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
844                                              target_phys_addr_t addr,
845                                              unsigned size)
846 {
847     uint64_t data = 0;
848
849     if (!memory_region_access_valid(mr, addr, size, false)) {
850         return -1U; /* FIXME: better signalling */
851     }
852
853     if (!mr->ops->read) {
854         return mr->ops->old_mmio.read[bitops_ffsl(size)](mr->opaque, addr);
855     }
856
857     /* FIXME: support unaligned access */
858     access_with_adjusted_size(addr, &data, size,
859                               mr->ops->impl.min_access_size,
860                               mr->ops->impl.max_access_size,
861                               memory_region_read_accessor, mr);
862
863     return data;
864 }
865
866 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
867 {
868     if (memory_region_wrong_endianness(mr)) {
869         switch (size) {
870         case 1:
871             break;
872         case 2:
873             *data = bswap16(*data);
874             break;
875         case 4:
876             *data = bswap32(*data);
877             break;
878         default:
879             abort();
880         }
881     }
882 }
883
884 static uint64_t memory_region_dispatch_read(MemoryRegion *mr,
885                                             target_phys_addr_t addr,
886                                             unsigned size)
887 {
888     uint64_t ret;
889
890     ret = memory_region_dispatch_read1(mr, addr, size);
891     adjust_endianness(mr, &ret, size);
892     return ret;
893 }
894
895 static void memory_region_dispatch_write(MemoryRegion *mr,
896                                          target_phys_addr_t addr,
897                                          uint64_t data,
898                                          unsigned size)
899 {
900     if (!memory_region_access_valid(mr, addr, size, true)) {
901         return; /* FIXME: better signalling */
902     }
903
904     adjust_endianness(mr, &data, size);
905
906     if (!mr->ops->write) {
907         mr->ops->old_mmio.write[bitops_ffsl(size)](mr->opaque, addr, data);
908         return;
909     }
910
911     /* FIXME: support unaligned access */
912     access_with_adjusted_size(addr, &data, size,
913                               mr->ops->impl.min_access_size,
914                               mr->ops->impl.max_access_size,
915                               memory_region_write_accessor, mr);
916 }
917
918 void memory_region_init_io(MemoryRegion *mr,
919                            const MemoryRegionOps *ops,
920                            void *opaque,
921                            const char *name,
922                            uint64_t size)
923 {
924     memory_region_init(mr, name, size);
925     mr->ops = ops;
926     mr->opaque = opaque;
927     mr->terminates = true;
928     mr->destructor = memory_region_destructor_iomem;
929     mr->ram_addr = ~(ram_addr_t)0;
930 }
931
932 void memory_region_init_ram(MemoryRegion *mr,
933                             const char *name,
934                             uint64_t size)
935 {
936     memory_region_init(mr, name, size);
937     mr->ram = true;
938     mr->terminates = true;
939     mr->destructor = memory_region_destructor_ram;
940     mr->ram_addr = qemu_ram_alloc(size, mr);
941 }
942
943 void memory_region_init_ram_ptr(MemoryRegion *mr,
944                                 const char *name,
945                                 uint64_t size,
946                                 void *ptr)
947 {
948     memory_region_init(mr, name, size);
949     mr->ram = true;
950     mr->terminates = true;
951     mr->destructor = memory_region_destructor_ram_from_ptr;
952     mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr);
953 }
954
955 void memory_region_init_alias(MemoryRegion *mr,
956                               const char *name,
957                               MemoryRegion *orig,
958                               target_phys_addr_t offset,
959                               uint64_t size)
960 {
961     memory_region_init(mr, name, size);
962     mr->alias = orig;
963     mr->alias_offset = offset;
964 }
965
966 void memory_region_init_rom_device(MemoryRegion *mr,
967                                    const MemoryRegionOps *ops,
968                                    void *opaque,
969                                    const char *name,
970                                    uint64_t size)
971 {
972     memory_region_init(mr, name, size);
973     mr->ops = ops;
974     mr->opaque = opaque;
975     mr->terminates = true;
976     mr->rom_device = true;
977     mr->destructor = memory_region_destructor_rom_device;
978     mr->ram_addr = qemu_ram_alloc(size, mr);
979 }
980
981 static uint64_t invalid_read(void *opaque, target_phys_addr_t addr,
982                              unsigned size)
983 {
984     MemoryRegion *mr = opaque;
985
986     if (!mr->warning_printed) {
987         fprintf(stderr, "Invalid read from memory region %s\n", mr->name);
988         mr->warning_printed = true;
989     }
990     return -1U;
991 }
992
993 static void invalid_write(void *opaque, target_phys_addr_t addr, uint64_t data,
994                           unsigned size)
995 {
996     MemoryRegion *mr = opaque;
997
998     if (!mr->warning_printed) {
999         fprintf(stderr, "Invalid write to memory region %s\n", mr->name);
1000         mr->warning_printed = true;
1001     }
1002 }
1003
1004 static const MemoryRegionOps reservation_ops = {
1005     .read = invalid_read,
1006     .write = invalid_write,
1007     .endianness = DEVICE_NATIVE_ENDIAN,
1008 };
1009
1010 void memory_region_init_reservation(MemoryRegion *mr,
1011                                     const char *name,
1012                                     uint64_t size)
1013 {
1014     memory_region_init_io(mr, &reservation_ops, mr, name, size);
1015 }
1016
1017 void memory_region_destroy(MemoryRegion *mr)
1018 {
1019     assert(QTAILQ_EMPTY(&mr->subregions));
1020     mr->destructor(mr);
1021     memory_region_clear_coalescing(mr);
1022     g_free((char *)mr->name);
1023     g_free(mr->ioeventfds);
1024 }
1025
1026 uint64_t memory_region_size(MemoryRegion *mr)
1027 {
1028     if (int128_eq(mr->size, int128_2_64())) {
1029         return UINT64_MAX;
1030     }
1031     return int128_get64(mr->size);
1032 }
1033
1034 const char *memory_region_name(MemoryRegion *mr)
1035 {
1036     return mr->name;
1037 }
1038
1039 bool memory_region_is_ram(MemoryRegion *mr)
1040 {
1041     return mr->ram;
1042 }
1043
1044 bool memory_region_is_logging(MemoryRegion *mr)
1045 {
1046     return mr->dirty_log_mask;
1047 }
1048
1049 bool memory_region_is_rom(MemoryRegion *mr)
1050 {
1051     return mr->ram && mr->readonly;
1052 }
1053
1054 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1055 {
1056     uint8_t mask = 1 << client;
1057
1058     memory_region_transaction_begin();
1059     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1060     memory_region_transaction_commit();
1061 }
1062
1063 bool memory_region_get_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1064                              target_phys_addr_t size, unsigned client)
1065 {
1066     assert(mr->terminates);
1067     return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size,
1068                                          1 << client);
1069 }
1070
1071 void memory_region_set_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1072                              target_phys_addr_t size)
1073 {
1074     assert(mr->terminates);
1075     return cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size, -1);
1076 }
1077
1078 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1079 {
1080     AddressSpace *as;
1081     FlatRange *fr;
1082
1083     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1084         FOR_EACH_FLAT_RANGE(fr, as->current_map) {
1085             if (fr->mr == mr) {
1086                 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1087             }
1088         }
1089     }
1090 }
1091
1092 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1093 {
1094     if (mr->readonly != readonly) {
1095         memory_region_transaction_begin();
1096         mr->readonly = readonly;
1097         memory_region_transaction_commit();
1098     }
1099 }
1100
1101 void memory_region_rom_device_set_readable(MemoryRegion *mr, bool readable)
1102 {
1103     if (mr->readable != readable) {
1104         memory_region_transaction_begin();
1105         mr->readable = readable;
1106         memory_region_transaction_commit();
1107     }
1108 }
1109
1110 void memory_region_reset_dirty(MemoryRegion *mr, target_phys_addr_t addr,
1111                                target_phys_addr_t size, unsigned client)
1112 {
1113     assert(mr->terminates);
1114     cpu_physical_memory_reset_dirty(mr->ram_addr + addr,
1115                                     mr->ram_addr + addr + size,
1116                                     1 << client);
1117 }
1118
1119 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1120 {
1121     if (mr->alias) {
1122         return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1123     }
1124
1125     assert(mr->terminates);
1126
1127     return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1128 }
1129
1130 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1131 {
1132     FlatRange *fr;
1133     CoalescedMemoryRange *cmr;
1134     AddrRange tmp;
1135     MemoryRegionSection section;
1136
1137     FOR_EACH_FLAT_RANGE(fr, as->current_map) {
1138         if (fr->mr == mr) {
1139             section = (MemoryRegionSection) {
1140                 .address_space = as->root,
1141                 .offset_within_address_space = int128_get64(fr->addr.start),
1142                 .size = int128_get64(fr->addr.size),
1143             };
1144
1145             MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1146                                  int128_get64(fr->addr.start),
1147                                  int128_get64(fr->addr.size));
1148             QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1149                 tmp = addrrange_shift(cmr->addr,
1150                                       int128_sub(fr->addr.start,
1151                                                  int128_make64(fr->offset_in_region)));
1152                 if (!addrrange_intersects(tmp, fr->addr)) {
1153                     continue;
1154                 }
1155                 tmp = addrrange_intersection(tmp, fr->addr);
1156                 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1157                                      int128_get64(tmp.start),
1158                                      int128_get64(tmp.size));
1159             }
1160         }
1161     }
1162 }
1163
1164 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1165 {
1166     AddressSpace *as;
1167
1168     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1169         memory_region_update_coalesced_range_as(mr, as);
1170     }
1171 }
1172
1173 void memory_region_set_coalescing(MemoryRegion *mr)
1174 {
1175     memory_region_clear_coalescing(mr);
1176     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1177 }
1178
1179 void memory_region_add_coalescing(MemoryRegion *mr,
1180                                   target_phys_addr_t offset,
1181                                   uint64_t size)
1182 {
1183     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1184
1185     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1186     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1187     memory_region_update_coalesced_range(mr);
1188     memory_region_set_flush_coalesced(mr);
1189 }
1190
1191 void memory_region_clear_coalescing(MemoryRegion *mr)
1192 {
1193     CoalescedMemoryRange *cmr;
1194
1195     qemu_flush_coalesced_mmio_buffer();
1196     mr->flush_coalesced_mmio = false;
1197
1198     while (!QTAILQ_EMPTY(&mr->coalesced)) {
1199         cmr = QTAILQ_FIRST(&mr->coalesced);
1200         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1201         g_free(cmr);
1202     }
1203     memory_region_update_coalesced_range(mr);
1204 }
1205
1206 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1207 {
1208     mr->flush_coalesced_mmio = true;
1209 }
1210
1211 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1212 {
1213     qemu_flush_coalesced_mmio_buffer();
1214     if (QTAILQ_EMPTY(&mr->coalesced)) {
1215         mr->flush_coalesced_mmio = false;
1216     }
1217 }
1218
1219 void memory_region_add_eventfd(MemoryRegion *mr,
1220                                target_phys_addr_t addr,
1221                                unsigned size,
1222                                bool match_data,
1223                                uint64_t data,
1224                                EventNotifier *e)
1225 {
1226     MemoryRegionIoeventfd mrfd = {
1227         .addr.start = int128_make64(addr),
1228         .addr.size = int128_make64(size),
1229         .match_data = match_data,
1230         .data = data,
1231         .e = e,
1232     };
1233     unsigned i;
1234
1235     memory_region_transaction_begin();
1236     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1237         if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1238             break;
1239         }
1240     }
1241     ++mr->ioeventfd_nb;
1242     mr->ioeventfds = g_realloc(mr->ioeventfds,
1243                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1244     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1245             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1246     mr->ioeventfds[i] = mrfd;
1247     memory_region_transaction_commit();
1248 }
1249
1250 void memory_region_del_eventfd(MemoryRegion *mr,
1251                                target_phys_addr_t addr,
1252                                unsigned size,
1253                                bool match_data,
1254                                uint64_t data,
1255                                EventNotifier *e)
1256 {
1257     MemoryRegionIoeventfd mrfd = {
1258         .addr.start = int128_make64(addr),
1259         .addr.size = int128_make64(size),
1260         .match_data = match_data,
1261         .data = data,
1262         .e = e,
1263     };
1264     unsigned i;
1265
1266     memory_region_transaction_begin();
1267     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1268         if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1269             break;
1270         }
1271     }
1272     assert(i != mr->ioeventfd_nb);
1273     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1274             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1275     --mr->ioeventfd_nb;
1276     mr->ioeventfds = g_realloc(mr->ioeventfds,
1277                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1278     memory_region_transaction_commit();
1279 }
1280
1281 static void memory_region_add_subregion_common(MemoryRegion *mr,
1282                                                target_phys_addr_t offset,
1283                                                MemoryRegion *subregion)
1284 {
1285     MemoryRegion *other;
1286
1287     memory_region_transaction_begin();
1288
1289     assert(!subregion->parent);
1290     subregion->parent = mr;
1291     subregion->addr = offset;
1292     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1293         if (subregion->may_overlap || other->may_overlap) {
1294             continue;
1295         }
1296         if (int128_gt(int128_make64(offset),
1297                       int128_add(int128_make64(other->addr), other->size))
1298             || int128_le(int128_add(int128_make64(offset), subregion->size),
1299                          int128_make64(other->addr))) {
1300             continue;
1301         }
1302 #if 0
1303         printf("warning: subregion collision %llx/%llx (%s) "
1304                "vs %llx/%llx (%s)\n",
1305                (unsigned long long)offset,
1306                (unsigned long long)int128_get64(subregion->size),
1307                subregion->name,
1308                (unsigned long long)other->addr,
1309                (unsigned long long)int128_get64(other->size),
1310                other->name);
1311 #endif
1312     }
1313     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1314         if (subregion->priority >= other->priority) {
1315             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1316             goto done;
1317         }
1318     }
1319     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1320 done:
1321     memory_region_transaction_commit();
1322 }
1323
1324
1325 void memory_region_add_subregion(MemoryRegion *mr,
1326                                  target_phys_addr_t offset,
1327                                  MemoryRegion *subregion)
1328 {
1329     subregion->may_overlap = false;
1330     subregion->priority = 0;
1331     memory_region_add_subregion_common(mr, offset, subregion);
1332 }
1333
1334 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1335                                          target_phys_addr_t offset,
1336                                          MemoryRegion *subregion,
1337                                          unsigned priority)
1338 {
1339     subregion->may_overlap = true;
1340     subregion->priority = priority;
1341     memory_region_add_subregion_common(mr, offset, subregion);
1342 }
1343
1344 void memory_region_del_subregion(MemoryRegion *mr,
1345                                  MemoryRegion *subregion)
1346 {
1347     memory_region_transaction_begin();
1348     assert(subregion->parent == mr);
1349     subregion->parent = NULL;
1350     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1351     memory_region_transaction_commit();
1352 }
1353
1354 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1355 {
1356     if (enabled == mr->enabled) {
1357         return;
1358     }
1359     memory_region_transaction_begin();
1360     mr->enabled = enabled;
1361     memory_region_transaction_commit();
1362 }
1363
1364 void memory_region_set_address(MemoryRegion *mr, target_phys_addr_t addr)
1365 {
1366     MemoryRegion *parent = mr->parent;
1367     unsigned priority = mr->priority;
1368     bool may_overlap = mr->may_overlap;
1369
1370     if (addr == mr->addr || !parent) {
1371         mr->addr = addr;
1372         return;
1373     }
1374
1375     memory_region_transaction_begin();
1376     memory_region_del_subregion(parent, mr);
1377     if (may_overlap) {
1378         memory_region_add_subregion_overlap(parent, addr, mr, priority);
1379     } else {
1380         memory_region_add_subregion(parent, addr, mr);
1381     }
1382     memory_region_transaction_commit();
1383 }
1384
1385 void memory_region_set_alias_offset(MemoryRegion *mr, target_phys_addr_t offset)
1386 {
1387     assert(mr->alias);
1388
1389     if (offset == mr->alias_offset) {
1390         return;
1391     }
1392
1393     memory_region_transaction_begin();
1394     mr->alias_offset = offset;
1395     memory_region_transaction_commit();
1396 }
1397
1398 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1399 {
1400     return mr->ram_addr;
1401 }
1402
1403 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1404 {
1405     const AddrRange *addr = addr_;
1406     const FlatRange *fr = fr_;
1407
1408     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1409         return -1;
1410     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1411         return 1;
1412     }
1413     return 0;
1414 }
1415
1416 static FlatRange *address_space_lookup(AddressSpace *as, AddrRange addr)
1417 {
1418     return bsearch(&addr, as->current_map->ranges, as->current_map->nr,
1419                    sizeof(FlatRange), cmp_flatrange_addr);
1420 }
1421
1422 MemoryRegionSection memory_region_find(MemoryRegion *address_space,
1423                                        target_phys_addr_t addr, uint64_t size)
1424 {
1425     AddressSpace *as = memory_region_to_address_space(address_space);
1426     AddrRange range = addrrange_make(int128_make64(addr),
1427                                      int128_make64(size));
1428     FlatRange *fr = address_space_lookup(as, range);
1429     MemoryRegionSection ret = { .mr = NULL, .size = 0 };
1430
1431     if (!fr) {
1432         return ret;
1433     }
1434
1435     while (fr > as->current_map->ranges
1436            && addrrange_intersects(fr[-1].addr, range)) {
1437         --fr;
1438     }
1439
1440     ret.mr = fr->mr;
1441     range = addrrange_intersection(range, fr->addr);
1442     ret.offset_within_region = fr->offset_in_region;
1443     ret.offset_within_region += int128_get64(int128_sub(range.start,
1444                                                         fr->addr.start));
1445     ret.size = int128_get64(range.size);
1446     ret.offset_within_address_space = int128_get64(range.start);
1447     ret.readonly = fr->readonly;
1448     return ret;
1449 }
1450
1451 void memory_global_sync_dirty_bitmap(MemoryRegion *address_space)
1452 {
1453     AddressSpace *as = memory_region_to_address_space(address_space);
1454     FlatRange *fr;
1455
1456     FOR_EACH_FLAT_RANGE(fr, as->current_map) {
1457         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1458     }
1459 }
1460
1461 void memory_global_dirty_log_start(void)
1462 {
1463     global_dirty_log = true;
1464     MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1465 }
1466
1467 void memory_global_dirty_log_stop(void)
1468 {
1469     global_dirty_log = false;
1470     MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1471 }
1472
1473 static void listener_add_address_space(MemoryListener *listener,
1474                                        AddressSpace *as)
1475 {
1476     FlatRange *fr;
1477
1478     if (listener->address_space_filter
1479         && listener->address_space_filter != as->root) {
1480         return;
1481     }
1482
1483     if (global_dirty_log) {
1484         if (listener->log_global_start) {
1485             listener->log_global_start(listener);
1486         }
1487     }
1488
1489     FOR_EACH_FLAT_RANGE(fr, as->current_map) {
1490         MemoryRegionSection section = {
1491             .mr = fr->mr,
1492             .address_space = as->root,
1493             .offset_within_region = fr->offset_in_region,
1494             .size = int128_get64(fr->addr.size),
1495             .offset_within_address_space = int128_get64(fr->addr.start),
1496             .readonly = fr->readonly,
1497         };
1498         if (listener->region_add) {
1499             listener->region_add(listener, &section);
1500         }
1501     }
1502 }
1503
1504 void memory_listener_register(MemoryListener *listener, MemoryRegion *filter)
1505 {
1506     MemoryListener *other = NULL;
1507     AddressSpace *as;
1508
1509     listener->address_space_filter = filter;
1510     if (QTAILQ_EMPTY(&memory_listeners)
1511         || listener->priority >= QTAILQ_LAST(&memory_listeners,
1512                                              memory_listeners)->priority) {
1513         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1514     } else {
1515         QTAILQ_FOREACH(other, &memory_listeners, link) {
1516             if (listener->priority < other->priority) {
1517                 break;
1518             }
1519         }
1520         QTAILQ_INSERT_BEFORE(other, listener, link);
1521     }
1522
1523     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1524         listener_add_address_space(listener, as);
1525     }
1526 }
1527
1528 void memory_listener_unregister(MemoryListener *listener)
1529 {
1530     QTAILQ_REMOVE(&memory_listeners, listener, link);
1531 }
1532
1533 void address_space_init(AddressSpace *as, MemoryRegion *root)
1534 {
1535     memory_region_transaction_begin();
1536     as->root = root;
1537     as->current_map = g_new(FlatView, 1);
1538     flatview_init(as->current_map);
1539     QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
1540     as->name = NULL;
1541     memory_region_transaction_commit();
1542 }
1543
1544 uint64_t io_mem_read(MemoryRegion *mr, target_phys_addr_t addr, unsigned size)
1545 {
1546     return memory_region_dispatch_read(mr, addr, size);
1547 }
1548
1549 void io_mem_write(MemoryRegion *mr, target_phys_addr_t addr,
1550                   uint64_t val, unsigned size)
1551 {
1552     memory_region_dispatch_write(mr, addr, val, size);
1553 }
1554
1555 typedef struct MemoryRegionList MemoryRegionList;
1556
1557 struct MemoryRegionList {
1558     const MemoryRegion *mr;
1559     bool printed;
1560     QTAILQ_ENTRY(MemoryRegionList) queue;
1561 };
1562
1563 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1564
1565 static void mtree_print_mr(fprintf_function mon_printf, void *f,
1566                            const MemoryRegion *mr, unsigned int level,
1567                            target_phys_addr_t base,
1568                            MemoryRegionListHead *alias_print_queue)
1569 {
1570     MemoryRegionList *new_ml, *ml, *next_ml;
1571     MemoryRegionListHead submr_print_queue;
1572     const MemoryRegion *submr;
1573     unsigned int i;
1574
1575     if (!mr) {
1576         return;
1577     }
1578
1579     for (i = 0; i < level; i++) {
1580         mon_printf(f, "  ");
1581     }
1582
1583     if (mr->alias) {
1584         MemoryRegionList *ml;
1585         bool found = false;
1586
1587         /* check if the alias is already in the queue */
1588         QTAILQ_FOREACH(ml, alias_print_queue, queue) {
1589             if (ml->mr == mr->alias && !ml->printed) {
1590                 found = true;
1591             }
1592         }
1593
1594         if (!found) {
1595             ml = g_new(MemoryRegionList, 1);
1596             ml->mr = mr->alias;
1597             ml->printed = false;
1598             QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
1599         }
1600         mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
1601                    " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
1602                    "-" TARGET_FMT_plx "\n",
1603                    base + mr->addr,
1604                    base + mr->addr
1605                    + (target_phys_addr_t)int128_get64(mr->size) - 1,
1606                    mr->priority,
1607                    mr->readable ? 'R' : '-',
1608                    !mr->readonly && !(mr->rom_device && mr->readable) ? 'W'
1609                                                                       : '-',
1610                    mr->name,
1611                    mr->alias->name,
1612                    mr->alias_offset,
1613                    mr->alias_offset
1614                    + (target_phys_addr_t)int128_get64(mr->size) - 1);
1615     } else {
1616         mon_printf(f,
1617                    TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
1618                    base + mr->addr,
1619                    base + mr->addr
1620                    + (target_phys_addr_t)int128_get64(mr->size) - 1,
1621                    mr->priority,
1622                    mr->readable ? 'R' : '-',
1623                    !mr->readonly && !(mr->rom_device && mr->readable) ? 'W'
1624                                                                       : '-',
1625                    mr->name);
1626     }
1627
1628     QTAILQ_INIT(&submr_print_queue);
1629
1630     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
1631         new_ml = g_new(MemoryRegionList, 1);
1632         new_ml->mr = submr;
1633         QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1634             if (new_ml->mr->addr < ml->mr->addr ||
1635                 (new_ml->mr->addr == ml->mr->addr &&
1636                  new_ml->mr->priority > ml->mr->priority)) {
1637                 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
1638                 new_ml = NULL;
1639                 break;
1640             }
1641         }
1642         if (new_ml) {
1643             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
1644         }
1645     }
1646
1647     QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
1648         mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
1649                        alias_print_queue);
1650     }
1651
1652     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
1653         g_free(ml);
1654     }
1655 }
1656
1657 void mtree_info(fprintf_function mon_printf, void *f)
1658 {
1659     MemoryRegionListHead ml_head;
1660     MemoryRegionList *ml, *ml2;
1661     AddressSpace *as;
1662
1663     QTAILQ_INIT(&ml_head);
1664
1665     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1666         if (!as->name) {
1667             continue;
1668         }
1669         mon_printf(f, "%s\n", as->name);
1670         mtree_print_mr(mon_printf, f, as->root, 0, 0, &ml_head);
1671     }
1672
1673     mon_printf(f, "aliases\n");
1674     /* print aliased regions */
1675     QTAILQ_FOREACH(ml, &ml_head, queue) {
1676         if (!ml->printed) {
1677             mon_printf(f, "%s\n", ml->mr->name);
1678             mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
1679         }
1680     }
1681
1682     QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
1683         g_free(ml);
1684     }
1685 }
This page took 0.11521 seconds and 4 git commands to generate.