]> Git Repo - qemu.git/blob - memory.c
Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20140819' into...
[qemu.git] / memory.c
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <[email protected]>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15
16 #include "exec/memory.h"
17 #include "exec/address-spaces.h"
18 #include "exec/ioport.h"
19 #include "qapi/visitor.h"
20 #include "qemu/bitops.h"
21 #include "qom/object.h"
22 #include "trace.h"
23 #include <assert.h>
24
25 #include "exec/memory-internal.h"
26 #include "exec/ram_addr.h"
27 #include "sysemu/sysemu.h"
28
29 //#define DEBUG_UNASSIGNED
30
31 static unsigned memory_region_transaction_depth;
32 static bool memory_region_update_pending;
33 static bool ioeventfd_update_pending;
34 static bool global_dirty_log = false;
35
36 /* flat_view_mutex is taken around reading as->current_map; the critical
37  * section is extremely short, so I'm using a single mutex for every AS.
38  * We could also RCU for the read-side.
39  *
40  * The BQL is taken around transaction commits, hence both locks are taken
41  * while writing to as->current_map (with the BQL taken outside).
42  */
43 static QemuMutex flat_view_mutex;
44
45 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
46     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
47
48 static QTAILQ_HEAD(, AddressSpace) address_spaces
49     = QTAILQ_HEAD_INITIALIZER(address_spaces);
50
51 static void memory_init(void)
52 {
53     qemu_mutex_init(&flat_view_mutex);
54 }
55
56 typedef struct AddrRange AddrRange;
57
58 /*
59  * Note that signed integers are needed for negative offsetting in aliases
60  * (large MemoryRegion::alias_offset).
61  */
62 struct AddrRange {
63     Int128 start;
64     Int128 size;
65 };
66
67 static AddrRange addrrange_make(Int128 start, Int128 size)
68 {
69     return (AddrRange) { start, size };
70 }
71
72 static bool addrrange_equal(AddrRange r1, AddrRange r2)
73 {
74     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
75 }
76
77 static Int128 addrrange_end(AddrRange r)
78 {
79     return int128_add(r.start, r.size);
80 }
81
82 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
83 {
84     int128_addto(&range.start, delta);
85     return range;
86 }
87
88 static bool addrrange_contains(AddrRange range, Int128 addr)
89 {
90     return int128_ge(addr, range.start)
91         && int128_lt(addr, addrrange_end(range));
92 }
93
94 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
95 {
96     return addrrange_contains(r1, r2.start)
97         || addrrange_contains(r2, r1.start);
98 }
99
100 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
101 {
102     Int128 start = int128_max(r1.start, r2.start);
103     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
104     return addrrange_make(start, int128_sub(end, start));
105 }
106
107 enum ListenerDirection { Forward, Reverse };
108
109 static bool memory_listener_match(MemoryListener *listener,
110                                   MemoryRegionSection *section)
111 {
112     return !listener->address_space_filter
113         || listener->address_space_filter == section->address_space;
114 }
115
116 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
117     do {                                                                \
118         MemoryListener *_listener;                                      \
119                                                                         \
120         switch (_direction) {                                           \
121         case Forward:                                                   \
122             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
123                 if (_listener->_callback) {                             \
124                     _listener->_callback(_listener, ##_args);           \
125                 }                                                       \
126             }                                                           \
127             break;                                                      \
128         case Reverse:                                                   \
129             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
130                                    memory_listeners, link) {            \
131                 if (_listener->_callback) {                             \
132                     _listener->_callback(_listener, ##_args);           \
133                 }                                                       \
134             }                                                           \
135             break;                                                      \
136         default:                                                        \
137             abort();                                                    \
138         }                                                               \
139     } while (0)
140
141 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
142     do {                                                                \
143         MemoryListener *_listener;                                      \
144                                                                         \
145         switch (_direction) {                                           \
146         case Forward:                                                   \
147             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
148                 if (_listener->_callback                                \
149                     && memory_listener_match(_listener, _section)) {    \
150                     _listener->_callback(_listener, _section, ##_args); \
151                 }                                                       \
152             }                                                           \
153             break;                                                      \
154         case Reverse:                                                   \
155             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
156                                    memory_listeners, link) {            \
157                 if (_listener->_callback                                \
158                     && memory_listener_match(_listener, _section)) {    \
159                     _listener->_callback(_listener, _section, ##_args); \
160                 }                                                       \
161             }                                                           \
162             break;                                                      \
163         default:                                                        \
164             abort();                                                    \
165         }                                                               \
166     } while (0)
167
168 /* No need to ref/unref .mr, the FlatRange keeps it alive.  */
169 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback)            \
170     MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) {       \
171         .mr = (fr)->mr,                                                 \
172         .address_space = (as),                                          \
173         .offset_within_region = (fr)->offset_in_region,                 \
174         .size = (fr)->addr.size,                                        \
175         .offset_within_address_space = int128_get64((fr)->addr.start),  \
176         .readonly = (fr)->readonly,                                     \
177               }))
178
179 struct CoalescedMemoryRange {
180     AddrRange addr;
181     QTAILQ_ENTRY(CoalescedMemoryRange) link;
182 };
183
184 struct MemoryRegionIoeventfd {
185     AddrRange addr;
186     bool match_data;
187     uint64_t data;
188     EventNotifier *e;
189 };
190
191 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
192                                            MemoryRegionIoeventfd b)
193 {
194     if (int128_lt(a.addr.start, b.addr.start)) {
195         return true;
196     } else if (int128_gt(a.addr.start, b.addr.start)) {
197         return false;
198     } else if (int128_lt(a.addr.size, b.addr.size)) {
199         return true;
200     } else if (int128_gt(a.addr.size, b.addr.size)) {
201         return false;
202     } else if (a.match_data < b.match_data) {
203         return true;
204     } else  if (a.match_data > b.match_data) {
205         return false;
206     } else if (a.match_data) {
207         if (a.data < b.data) {
208             return true;
209         } else if (a.data > b.data) {
210             return false;
211         }
212     }
213     if (a.e < b.e) {
214         return true;
215     } else if (a.e > b.e) {
216         return false;
217     }
218     return false;
219 }
220
221 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
222                                           MemoryRegionIoeventfd b)
223 {
224     return !memory_region_ioeventfd_before(a, b)
225         && !memory_region_ioeventfd_before(b, a);
226 }
227
228 typedef struct FlatRange FlatRange;
229 typedef struct FlatView FlatView;
230
231 /* Range of memory in the global map.  Addresses are absolute. */
232 struct FlatRange {
233     MemoryRegion *mr;
234     hwaddr offset_in_region;
235     AddrRange addr;
236     uint8_t dirty_log_mask;
237     bool romd_mode;
238     bool readonly;
239 };
240
241 /* Flattened global view of current active memory hierarchy.  Kept in sorted
242  * order.
243  */
244 struct FlatView {
245     unsigned ref;
246     FlatRange *ranges;
247     unsigned nr;
248     unsigned nr_allocated;
249 };
250
251 typedef struct AddressSpaceOps AddressSpaceOps;
252
253 #define FOR_EACH_FLAT_RANGE(var, view)          \
254     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
255
256 static bool flatrange_equal(FlatRange *a, FlatRange *b)
257 {
258     return a->mr == b->mr
259         && addrrange_equal(a->addr, b->addr)
260         && a->offset_in_region == b->offset_in_region
261         && a->romd_mode == b->romd_mode
262         && a->readonly == b->readonly;
263 }
264
265 static void flatview_init(FlatView *view)
266 {
267     view->ref = 1;
268     view->ranges = NULL;
269     view->nr = 0;
270     view->nr_allocated = 0;
271 }
272
273 /* Insert a range into a given position.  Caller is responsible for maintaining
274  * sorting order.
275  */
276 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
277 {
278     if (view->nr == view->nr_allocated) {
279         view->nr_allocated = MAX(2 * view->nr, 10);
280         view->ranges = g_realloc(view->ranges,
281                                     view->nr_allocated * sizeof(*view->ranges));
282     }
283     memmove(view->ranges + pos + 1, view->ranges + pos,
284             (view->nr - pos) * sizeof(FlatRange));
285     view->ranges[pos] = *range;
286     memory_region_ref(range->mr);
287     ++view->nr;
288 }
289
290 static void flatview_destroy(FlatView *view)
291 {
292     int i;
293
294     for (i = 0; i < view->nr; i++) {
295         memory_region_unref(view->ranges[i].mr);
296     }
297     g_free(view->ranges);
298     g_free(view);
299 }
300
301 static void flatview_ref(FlatView *view)
302 {
303     atomic_inc(&view->ref);
304 }
305
306 static void flatview_unref(FlatView *view)
307 {
308     if (atomic_fetch_dec(&view->ref) == 1) {
309         flatview_destroy(view);
310     }
311 }
312
313 static bool can_merge(FlatRange *r1, FlatRange *r2)
314 {
315     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
316         && r1->mr == r2->mr
317         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
318                                 r1->addr.size),
319                      int128_make64(r2->offset_in_region))
320         && r1->dirty_log_mask == r2->dirty_log_mask
321         && r1->romd_mode == r2->romd_mode
322         && r1->readonly == r2->readonly;
323 }
324
325 /* Attempt to simplify a view by merging adjacent ranges */
326 static void flatview_simplify(FlatView *view)
327 {
328     unsigned i, j;
329
330     i = 0;
331     while (i < view->nr) {
332         j = i + 1;
333         while (j < view->nr
334                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
335             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
336             ++j;
337         }
338         ++i;
339         memmove(&view->ranges[i], &view->ranges[j],
340                 (view->nr - j) * sizeof(view->ranges[j]));
341         view->nr -= j - i;
342     }
343 }
344
345 static bool memory_region_big_endian(MemoryRegion *mr)
346 {
347 #ifdef TARGET_WORDS_BIGENDIAN
348     return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
349 #else
350     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
351 #endif
352 }
353
354 static bool memory_region_wrong_endianness(MemoryRegion *mr)
355 {
356 #ifdef TARGET_WORDS_BIGENDIAN
357     return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
358 #else
359     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
360 #endif
361 }
362
363 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
364 {
365     if (memory_region_wrong_endianness(mr)) {
366         switch (size) {
367         case 1:
368             break;
369         case 2:
370             *data = bswap16(*data);
371             break;
372         case 4:
373             *data = bswap32(*data);
374             break;
375         case 8:
376             *data = bswap64(*data);
377             break;
378         default:
379             abort();
380         }
381     }
382 }
383
384 static void memory_region_oldmmio_read_accessor(MemoryRegion *mr,
385                                                 hwaddr addr,
386                                                 uint64_t *value,
387                                                 unsigned size,
388                                                 unsigned shift,
389                                                 uint64_t mask)
390 {
391     uint64_t tmp;
392
393     tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
394     trace_memory_region_ops_read(mr, addr, tmp, size);
395     *value |= (tmp & mask) << shift;
396 }
397
398 static void memory_region_read_accessor(MemoryRegion *mr,
399                                         hwaddr addr,
400                                         uint64_t *value,
401                                         unsigned size,
402                                         unsigned shift,
403                                         uint64_t mask)
404 {
405     uint64_t tmp;
406
407     if (mr->flush_coalesced_mmio) {
408         qemu_flush_coalesced_mmio_buffer();
409     }
410     tmp = mr->ops->read(mr->opaque, addr, size);
411     trace_memory_region_ops_read(mr, addr, tmp, size);
412     *value |= (tmp & mask) << shift;
413 }
414
415 static void memory_region_oldmmio_write_accessor(MemoryRegion *mr,
416                                                  hwaddr addr,
417                                                  uint64_t *value,
418                                                  unsigned size,
419                                                  unsigned shift,
420                                                  uint64_t mask)
421 {
422     uint64_t tmp;
423
424     tmp = (*value >> shift) & mask;
425     trace_memory_region_ops_write(mr, addr, tmp, size);
426     mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
427 }
428
429 static void memory_region_write_accessor(MemoryRegion *mr,
430                                          hwaddr addr,
431                                          uint64_t *value,
432                                          unsigned size,
433                                          unsigned shift,
434                                          uint64_t mask)
435 {
436     uint64_t tmp;
437
438     if (mr->flush_coalesced_mmio) {
439         qemu_flush_coalesced_mmio_buffer();
440     }
441     tmp = (*value >> shift) & mask;
442     trace_memory_region_ops_write(mr, addr, tmp, size);
443     mr->ops->write(mr->opaque, addr, tmp, size);
444 }
445
446 static void access_with_adjusted_size(hwaddr addr,
447                                       uint64_t *value,
448                                       unsigned size,
449                                       unsigned access_size_min,
450                                       unsigned access_size_max,
451                                       void (*access)(MemoryRegion *mr,
452                                                      hwaddr addr,
453                                                      uint64_t *value,
454                                                      unsigned size,
455                                                      unsigned shift,
456                                                      uint64_t mask),
457                                       MemoryRegion *mr)
458 {
459     uint64_t access_mask;
460     unsigned access_size;
461     unsigned i;
462
463     if (!access_size_min) {
464         access_size_min = 1;
465     }
466     if (!access_size_max) {
467         access_size_max = 4;
468     }
469
470     /* FIXME: support unaligned access? */
471     access_size = MAX(MIN(size, access_size_max), access_size_min);
472     access_mask = -1ULL >> (64 - access_size * 8);
473     if (memory_region_big_endian(mr)) {
474         for (i = 0; i < size; i += access_size) {
475             access(mr, addr + i, value, access_size,
476                    (size - access_size - i) * 8, access_mask);
477         }
478     } else {
479         for (i = 0; i < size; i += access_size) {
480             access(mr, addr + i, value, access_size, i * 8, access_mask);
481         }
482     }
483 }
484
485 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
486 {
487     AddressSpace *as;
488
489     while (mr->container) {
490         mr = mr->container;
491     }
492     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
493         if (mr == as->root) {
494             return as;
495         }
496     }
497     return NULL;
498 }
499
500 /* Render a memory region into the global view.  Ranges in @view obscure
501  * ranges in @mr.
502  */
503 static void render_memory_region(FlatView *view,
504                                  MemoryRegion *mr,
505                                  Int128 base,
506                                  AddrRange clip,
507                                  bool readonly)
508 {
509     MemoryRegion *subregion;
510     unsigned i;
511     hwaddr offset_in_region;
512     Int128 remain;
513     Int128 now;
514     FlatRange fr;
515     AddrRange tmp;
516
517     if (!mr->enabled) {
518         return;
519     }
520
521     int128_addto(&base, int128_make64(mr->addr));
522     readonly |= mr->readonly;
523
524     tmp = addrrange_make(base, mr->size);
525
526     if (!addrrange_intersects(tmp, clip)) {
527         return;
528     }
529
530     clip = addrrange_intersection(tmp, clip);
531
532     if (mr->alias) {
533         int128_subfrom(&base, int128_make64(mr->alias->addr));
534         int128_subfrom(&base, int128_make64(mr->alias_offset));
535         render_memory_region(view, mr->alias, base, clip, readonly);
536         return;
537     }
538
539     /* Render subregions in priority order. */
540     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
541         render_memory_region(view, subregion, base, clip, readonly);
542     }
543
544     if (!mr->terminates) {
545         return;
546     }
547
548     offset_in_region = int128_get64(int128_sub(clip.start, base));
549     base = clip.start;
550     remain = clip.size;
551
552     fr.mr = mr;
553     fr.dirty_log_mask = mr->dirty_log_mask;
554     fr.romd_mode = mr->romd_mode;
555     fr.readonly = readonly;
556
557     /* Render the region itself into any gaps left by the current view. */
558     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
559         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
560             continue;
561         }
562         if (int128_lt(base, view->ranges[i].addr.start)) {
563             now = int128_min(remain,
564                              int128_sub(view->ranges[i].addr.start, base));
565             fr.offset_in_region = offset_in_region;
566             fr.addr = addrrange_make(base, now);
567             flatview_insert(view, i, &fr);
568             ++i;
569             int128_addto(&base, now);
570             offset_in_region += int128_get64(now);
571             int128_subfrom(&remain, now);
572         }
573         now = int128_sub(int128_min(int128_add(base, remain),
574                                     addrrange_end(view->ranges[i].addr)),
575                          base);
576         int128_addto(&base, now);
577         offset_in_region += int128_get64(now);
578         int128_subfrom(&remain, now);
579     }
580     if (int128_nz(remain)) {
581         fr.offset_in_region = offset_in_region;
582         fr.addr = addrrange_make(base, remain);
583         flatview_insert(view, i, &fr);
584     }
585 }
586
587 /* Render a memory topology into a list of disjoint absolute ranges. */
588 static FlatView *generate_memory_topology(MemoryRegion *mr)
589 {
590     FlatView *view;
591
592     view = g_new(FlatView, 1);
593     flatview_init(view);
594
595     if (mr) {
596         render_memory_region(view, mr, int128_zero(),
597                              addrrange_make(int128_zero(), int128_2_64()), false);
598     }
599     flatview_simplify(view);
600
601     return view;
602 }
603
604 static void address_space_add_del_ioeventfds(AddressSpace *as,
605                                              MemoryRegionIoeventfd *fds_new,
606                                              unsigned fds_new_nb,
607                                              MemoryRegionIoeventfd *fds_old,
608                                              unsigned fds_old_nb)
609 {
610     unsigned iold, inew;
611     MemoryRegionIoeventfd *fd;
612     MemoryRegionSection section;
613
614     /* Generate a symmetric difference of the old and new fd sets, adding
615      * and deleting as necessary.
616      */
617
618     iold = inew = 0;
619     while (iold < fds_old_nb || inew < fds_new_nb) {
620         if (iold < fds_old_nb
621             && (inew == fds_new_nb
622                 || memory_region_ioeventfd_before(fds_old[iold],
623                                                   fds_new[inew]))) {
624             fd = &fds_old[iold];
625             section = (MemoryRegionSection) {
626                 .address_space = as,
627                 .offset_within_address_space = int128_get64(fd->addr.start),
628                 .size = fd->addr.size,
629             };
630             MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
631                                  fd->match_data, fd->data, fd->e);
632             ++iold;
633         } else if (inew < fds_new_nb
634                    && (iold == fds_old_nb
635                        || memory_region_ioeventfd_before(fds_new[inew],
636                                                          fds_old[iold]))) {
637             fd = &fds_new[inew];
638             section = (MemoryRegionSection) {
639                 .address_space = as,
640                 .offset_within_address_space = int128_get64(fd->addr.start),
641                 .size = fd->addr.size,
642             };
643             MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
644                                  fd->match_data, fd->data, fd->e);
645             ++inew;
646         } else {
647             ++iold;
648             ++inew;
649         }
650     }
651 }
652
653 static FlatView *address_space_get_flatview(AddressSpace *as)
654 {
655     FlatView *view;
656
657     qemu_mutex_lock(&flat_view_mutex);
658     view = as->current_map;
659     flatview_ref(view);
660     qemu_mutex_unlock(&flat_view_mutex);
661     return view;
662 }
663
664 static void address_space_update_ioeventfds(AddressSpace *as)
665 {
666     FlatView *view;
667     FlatRange *fr;
668     unsigned ioeventfd_nb = 0;
669     MemoryRegionIoeventfd *ioeventfds = NULL;
670     AddrRange tmp;
671     unsigned i;
672
673     view = address_space_get_flatview(as);
674     FOR_EACH_FLAT_RANGE(fr, view) {
675         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
676             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
677                                   int128_sub(fr->addr.start,
678                                              int128_make64(fr->offset_in_region)));
679             if (addrrange_intersects(fr->addr, tmp)) {
680                 ++ioeventfd_nb;
681                 ioeventfds = g_realloc(ioeventfds,
682                                           ioeventfd_nb * sizeof(*ioeventfds));
683                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
684                 ioeventfds[ioeventfd_nb-1].addr = tmp;
685             }
686         }
687     }
688
689     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
690                                      as->ioeventfds, as->ioeventfd_nb);
691
692     g_free(as->ioeventfds);
693     as->ioeventfds = ioeventfds;
694     as->ioeventfd_nb = ioeventfd_nb;
695     flatview_unref(view);
696 }
697
698 static void address_space_update_topology_pass(AddressSpace *as,
699                                                const FlatView *old_view,
700                                                const FlatView *new_view,
701                                                bool adding)
702 {
703     unsigned iold, inew;
704     FlatRange *frold, *frnew;
705
706     /* Generate a symmetric difference of the old and new memory maps.
707      * Kill ranges in the old map, and instantiate ranges in the new map.
708      */
709     iold = inew = 0;
710     while (iold < old_view->nr || inew < new_view->nr) {
711         if (iold < old_view->nr) {
712             frold = &old_view->ranges[iold];
713         } else {
714             frold = NULL;
715         }
716         if (inew < new_view->nr) {
717             frnew = &new_view->ranges[inew];
718         } else {
719             frnew = NULL;
720         }
721
722         if (frold
723             && (!frnew
724                 || int128_lt(frold->addr.start, frnew->addr.start)
725                 || (int128_eq(frold->addr.start, frnew->addr.start)
726                     && !flatrange_equal(frold, frnew)))) {
727             /* In old but not in new, or in both but attributes changed. */
728
729             if (!adding) {
730                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
731             }
732
733             ++iold;
734         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
735             /* In both and unchanged (except logging may have changed) */
736
737             if (adding) {
738                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
739                 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
740                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
741                 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
742                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
743                 }
744             }
745
746             ++iold;
747             ++inew;
748         } else {
749             /* In new */
750
751             if (adding) {
752                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
753             }
754
755             ++inew;
756         }
757     }
758 }
759
760
761 static void address_space_update_topology(AddressSpace *as)
762 {
763     FlatView *old_view = address_space_get_flatview(as);
764     FlatView *new_view = generate_memory_topology(as->root);
765
766     address_space_update_topology_pass(as, old_view, new_view, false);
767     address_space_update_topology_pass(as, old_view, new_view, true);
768
769     qemu_mutex_lock(&flat_view_mutex);
770     flatview_unref(as->current_map);
771     as->current_map = new_view;
772     qemu_mutex_unlock(&flat_view_mutex);
773
774     /* Note that all the old MemoryRegions are still alive up to this
775      * point.  This relieves most MemoryListeners from the need to
776      * ref/unref the MemoryRegions they get---unless they use them
777      * outside the iothread mutex, in which case precise reference
778      * counting is necessary.
779      */
780     flatview_unref(old_view);
781
782     address_space_update_ioeventfds(as);
783 }
784
785 void memory_region_transaction_begin(void)
786 {
787     qemu_flush_coalesced_mmio_buffer();
788     ++memory_region_transaction_depth;
789 }
790
791 static void memory_region_clear_pending(void)
792 {
793     memory_region_update_pending = false;
794     ioeventfd_update_pending = false;
795 }
796
797 void memory_region_transaction_commit(void)
798 {
799     AddressSpace *as;
800
801     assert(memory_region_transaction_depth);
802     --memory_region_transaction_depth;
803     if (!memory_region_transaction_depth) {
804         if (memory_region_update_pending) {
805             MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
806
807             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
808                 address_space_update_topology(as);
809             }
810
811             MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
812         } else if (ioeventfd_update_pending) {
813             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
814                 address_space_update_ioeventfds(as);
815             }
816         }
817         memory_region_clear_pending();
818    }
819 }
820
821 static void memory_region_destructor_none(MemoryRegion *mr)
822 {
823 }
824
825 static void memory_region_destructor_ram(MemoryRegion *mr)
826 {
827     qemu_ram_free(mr->ram_addr);
828 }
829
830 static void memory_region_destructor_alias(MemoryRegion *mr)
831 {
832     memory_region_unref(mr->alias);
833 }
834
835 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
836 {
837     qemu_ram_free_from_ptr(mr->ram_addr);
838 }
839
840 static void memory_region_destructor_rom_device(MemoryRegion *mr)
841 {
842     qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
843 }
844
845 static bool memory_region_need_escape(char c)
846 {
847     return c == '/' || c == '[' || c == '\\' || c == ']';
848 }
849
850 static char *memory_region_escape_name(const char *name)
851 {
852     const char *p;
853     char *escaped, *q;
854     uint8_t c;
855     size_t bytes = 0;
856
857     for (p = name; *p; p++) {
858         bytes += memory_region_need_escape(*p) ? 4 : 1;
859     }
860     if (bytes == p - name) {
861        return g_memdup(name, bytes + 1);
862     }
863
864     escaped = g_malloc(bytes + 1);
865     for (p = name, q = escaped; *p; p++) {
866         c = *p;
867         if (unlikely(memory_region_need_escape(c))) {
868             *q++ = '\\';
869             *q++ = 'x';
870             *q++ = "0123456789abcdef"[c >> 4];
871             c = "0123456789abcdef"[c & 15];
872         }
873         *q++ = c;
874     }
875     *q = 0;
876     return escaped;
877 }
878
879 static void object_property_add_child_array(Object *owner,
880                                             const char *name,
881                                             Object *child)
882 {
883     int i;
884     char *base_name = memory_region_escape_name(name);
885
886     for (i = 0; ; i++) {
887         char *full_name = g_strdup_printf("%s[%d]", base_name, i);
888         Error *local_err = NULL;
889
890         object_property_add_child(owner, full_name, child, &local_err);
891         g_free(full_name);
892         if (!local_err) {
893             break;
894         }
895
896         error_free(local_err);
897     }
898
899     g_free(base_name);
900 }
901         
902
903 void memory_region_init(MemoryRegion *mr,
904                         Object *owner,
905                         const char *name,
906                         uint64_t size)
907 {
908     if (!owner) {
909         owner = qdev_get_machine();
910     }
911
912     object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
913     mr->size = int128_make64(size);
914     if (size == UINT64_MAX) {
915         mr->size = int128_2_64();
916     }
917     mr->name = g_strdup(name);
918
919     if (name) {
920         object_property_add_child_array(owner, name, OBJECT(mr));
921         object_unref(OBJECT(mr));
922     }
923 }
924
925 static void memory_region_get_addr(Object *obj, Visitor *v, void *opaque,
926                                    const char *name, Error **errp)
927 {
928     MemoryRegion *mr = MEMORY_REGION(obj);
929     uint64_t value = mr->addr;
930
931     visit_type_uint64(v, &value, name, errp);
932 }
933
934 static void memory_region_get_container(Object *obj, Visitor *v, void *opaque,
935                                         const char *name, Error **errp)
936 {
937     MemoryRegion *mr = MEMORY_REGION(obj);
938     gchar *path = (gchar *)"";
939
940     if (mr->container) {
941         path = object_get_canonical_path(OBJECT(mr->container));
942     }
943     visit_type_str(v, &path, name, errp);
944     if (mr->container) {
945         g_free(path);
946     }
947 }
948
949 static Object *memory_region_resolve_container(Object *obj, void *opaque,
950                                                const char *part)
951 {
952     MemoryRegion *mr = MEMORY_REGION(obj);
953
954     return OBJECT(mr->container);
955 }
956
957 static void memory_region_get_priority(Object *obj, Visitor *v, void *opaque,
958                                        const char *name, Error **errp)
959 {
960     MemoryRegion *mr = MEMORY_REGION(obj);
961     int32_t value = mr->priority;
962
963     visit_type_int32(v, &value, name, errp);
964 }
965
966 static bool memory_region_get_may_overlap(Object *obj, Error **errp)
967 {
968     MemoryRegion *mr = MEMORY_REGION(obj);
969
970     return mr->may_overlap;
971 }
972
973 static void memory_region_get_size(Object *obj, Visitor *v, void *opaque,
974                                    const char *name, Error **errp)
975 {
976     MemoryRegion *mr = MEMORY_REGION(obj);
977     uint64_t value = memory_region_size(mr);
978
979     visit_type_uint64(v, &value, name, errp);
980 }
981
982 static void memory_region_initfn(Object *obj)
983 {
984     MemoryRegion *mr = MEMORY_REGION(obj);
985     ObjectProperty *op;
986
987     mr->ops = &unassigned_mem_ops;
988     mr->enabled = true;
989     mr->romd_mode = true;
990     mr->destructor = memory_region_destructor_none;
991     QTAILQ_INIT(&mr->subregions);
992     QTAILQ_INIT(&mr->coalesced);
993
994     op = object_property_add(OBJECT(mr), "container",
995                              "link<" TYPE_MEMORY_REGION ">",
996                              memory_region_get_container,
997                              NULL, /* memory_region_set_container */
998                              NULL, NULL, &error_abort);
999     op->resolve = memory_region_resolve_container;
1000
1001     object_property_add(OBJECT(mr), "addr", "uint64",
1002                         memory_region_get_addr,
1003                         NULL, /* memory_region_set_addr */
1004                         NULL, NULL, &error_abort);
1005     object_property_add(OBJECT(mr), "priority", "uint32",
1006                         memory_region_get_priority,
1007                         NULL, /* memory_region_set_priority */
1008                         NULL, NULL, &error_abort);
1009     object_property_add_bool(OBJECT(mr), "may-overlap",
1010                              memory_region_get_may_overlap,
1011                              NULL, /* memory_region_set_may_overlap */
1012                              &error_abort);
1013     object_property_add(OBJECT(mr), "size", "uint64",
1014                         memory_region_get_size,
1015                         NULL, /* memory_region_set_size, */
1016                         NULL, NULL, &error_abort);
1017 }
1018
1019 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1020                                     unsigned size)
1021 {
1022 #ifdef DEBUG_UNASSIGNED
1023     printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1024 #endif
1025     if (current_cpu != NULL) {
1026         cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1027     }
1028     return 0;
1029 }
1030
1031 static void unassigned_mem_write(void *opaque, hwaddr addr,
1032                                  uint64_t val, unsigned size)
1033 {
1034 #ifdef DEBUG_UNASSIGNED
1035     printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1036 #endif
1037     if (current_cpu != NULL) {
1038         cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1039     }
1040 }
1041
1042 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1043                                    unsigned size, bool is_write)
1044 {
1045     return false;
1046 }
1047
1048 const MemoryRegionOps unassigned_mem_ops = {
1049     .valid.accepts = unassigned_mem_accepts,
1050     .endianness = DEVICE_NATIVE_ENDIAN,
1051 };
1052
1053 bool memory_region_access_valid(MemoryRegion *mr,
1054                                 hwaddr addr,
1055                                 unsigned size,
1056                                 bool is_write)
1057 {
1058     int access_size_min, access_size_max;
1059     int access_size, i;
1060
1061     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1062         return false;
1063     }
1064
1065     if (!mr->ops->valid.accepts) {
1066         return true;
1067     }
1068
1069     access_size_min = mr->ops->valid.min_access_size;
1070     if (!mr->ops->valid.min_access_size) {
1071         access_size_min = 1;
1072     }
1073
1074     access_size_max = mr->ops->valid.max_access_size;
1075     if (!mr->ops->valid.max_access_size) {
1076         access_size_max = 4;
1077     }
1078
1079     access_size = MAX(MIN(size, access_size_max), access_size_min);
1080     for (i = 0; i < size; i += access_size) {
1081         if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1082                                     is_write)) {
1083             return false;
1084         }
1085     }
1086
1087     return true;
1088 }
1089
1090 static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
1091                                              hwaddr addr,
1092                                              unsigned size)
1093 {
1094     uint64_t data = 0;
1095
1096     if (mr->ops->read) {
1097         access_with_adjusted_size(addr, &data, size,
1098                                   mr->ops->impl.min_access_size,
1099                                   mr->ops->impl.max_access_size,
1100                                   memory_region_read_accessor, mr);
1101     } else {
1102         access_with_adjusted_size(addr, &data, size, 1, 4,
1103                                   memory_region_oldmmio_read_accessor, mr);
1104     }
1105
1106     return data;
1107 }
1108
1109 static bool memory_region_dispatch_read(MemoryRegion *mr,
1110                                         hwaddr addr,
1111                                         uint64_t *pval,
1112                                         unsigned size)
1113 {
1114     if (!memory_region_access_valid(mr, addr, size, false)) {
1115         *pval = unassigned_mem_read(mr, addr, size);
1116         return true;
1117     }
1118
1119     *pval = memory_region_dispatch_read1(mr, addr, size);
1120     adjust_endianness(mr, pval, size);
1121     return false;
1122 }
1123
1124 static bool memory_region_dispatch_write(MemoryRegion *mr,
1125                                          hwaddr addr,
1126                                          uint64_t data,
1127                                          unsigned size)
1128 {
1129     if (!memory_region_access_valid(mr, addr, size, true)) {
1130         unassigned_mem_write(mr, addr, data, size);
1131         return true;
1132     }
1133
1134     adjust_endianness(mr, &data, size);
1135
1136     if (mr->ops->write) {
1137         access_with_adjusted_size(addr, &data, size,
1138                                   mr->ops->impl.min_access_size,
1139                                   mr->ops->impl.max_access_size,
1140                                   memory_region_write_accessor, mr);
1141     } else {
1142         access_with_adjusted_size(addr, &data, size, 1, 4,
1143                                   memory_region_oldmmio_write_accessor, mr);
1144     }
1145     return false;
1146 }
1147
1148 void memory_region_init_io(MemoryRegion *mr,
1149                            Object *owner,
1150                            const MemoryRegionOps *ops,
1151                            void *opaque,
1152                            const char *name,
1153                            uint64_t size)
1154 {
1155     memory_region_init(mr, owner, name, size);
1156     mr->ops = ops;
1157     mr->opaque = opaque;
1158     mr->terminates = true;
1159     mr->ram_addr = ~(ram_addr_t)0;
1160 }
1161
1162 void memory_region_init_ram(MemoryRegion *mr,
1163                             Object *owner,
1164                             const char *name,
1165                             uint64_t size)
1166 {
1167     memory_region_init(mr, owner, name, size);
1168     mr->ram = true;
1169     mr->terminates = true;
1170     mr->destructor = memory_region_destructor_ram;
1171     mr->ram_addr = qemu_ram_alloc(size, mr);
1172 }
1173
1174 #ifdef __linux__
1175 void memory_region_init_ram_from_file(MemoryRegion *mr,
1176                                       struct Object *owner,
1177                                       const char *name,
1178                                       uint64_t size,
1179                                       bool share,
1180                                       const char *path,
1181                                       Error **errp)
1182 {
1183     memory_region_init(mr, owner, name, size);
1184     mr->ram = true;
1185     mr->terminates = true;
1186     mr->destructor = memory_region_destructor_ram;
1187     mr->ram_addr = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1188 }
1189 #endif
1190
1191 void memory_region_init_ram_ptr(MemoryRegion *mr,
1192                                 Object *owner,
1193                                 const char *name,
1194                                 uint64_t size,
1195                                 void *ptr)
1196 {
1197     memory_region_init(mr, owner, name, size);
1198     mr->ram = true;
1199     mr->terminates = true;
1200     mr->destructor = memory_region_destructor_ram_from_ptr;
1201     mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr);
1202 }
1203
1204 void memory_region_init_alias(MemoryRegion *mr,
1205                               Object *owner,
1206                               const char *name,
1207                               MemoryRegion *orig,
1208                               hwaddr offset,
1209                               uint64_t size)
1210 {
1211     memory_region_init(mr, owner, name, size);
1212     memory_region_ref(orig);
1213     mr->destructor = memory_region_destructor_alias;
1214     mr->alias = orig;
1215     mr->alias_offset = offset;
1216 }
1217
1218 void memory_region_init_rom_device(MemoryRegion *mr,
1219                                    Object *owner,
1220                                    const MemoryRegionOps *ops,
1221                                    void *opaque,
1222                                    const char *name,
1223                                    uint64_t size)
1224 {
1225     memory_region_init(mr, owner, name, size);
1226     mr->ops = ops;
1227     mr->opaque = opaque;
1228     mr->terminates = true;
1229     mr->rom_device = true;
1230     mr->destructor = memory_region_destructor_rom_device;
1231     mr->ram_addr = qemu_ram_alloc(size, mr);
1232 }
1233
1234 void memory_region_init_iommu(MemoryRegion *mr,
1235                               Object *owner,
1236                               const MemoryRegionIOMMUOps *ops,
1237                               const char *name,
1238                               uint64_t size)
1239 {
1240     memory_region_init(mr, owner, name, size);
1241     mr->iommu_ops = ops,
1242     mr->terminates = true;  /* then re-forwards */
1243     notifier_list_init(&mr->iommu_notify);
1244 }
1245
1246 void memory_region_init_reservation(MemoryRegion *mr,
1247                                     Object *owner,
1248                                     const char *name,
1249                                     uint64_t size)
1250 {
1251     memory_region_init_io(mr, owner, &unassigned_mem_ops, mr, name, size);
1252 }
1253
1254 static void memory_region_finalize(Object *obj)
1255 {
1256     MemoryRegion *mr = MEMORY_REGION(obj);
1257
1258     assert(QTAILQ_EMPTY(&mr->subregions));
1259     assert(memory_region_transaction_depth == 0);
1260     mr->destructor(mr);
1261     memory_region_clear_coalescing(mr);
1262     g_free((char *)mr->name);
1263     g_free(mr->ioeventfds);
1264 }
1265
1266 Object *memory_region_owner(MemoryRegion *mr)
1267 {
1268     Object *obj = OBJECT(mr);
1269     return obj->parent;
1270 }
1271
1272 void memory_region_ref(MemoryRegion *mr)
1273 {
1274     /* MMIO callbacks most likely will access data that belongs
1275      * to the owner, hence the need to ref/unref the owner whenever
1276      * the memory region is in use.
1277      *
1278      * The memory region is a child of its owner.  As long as the
1279      * owner doesn't call unparent itself on the memory region,
1280      * ref-ing the owner will also keep the memory region alive.
1281      * Memory regions without an owner are supposed to never go away,
1282      * but we still ref/unref them for debugging purposes.
1283      */
1284     Object *obj = OBJECT(mr);
1285     if (obj && obj->parent) {
1286         object_ref(obj->parent);
1287     } else {
1288         object_ref(obj);
1289     }
1290 }
1291
1292 void memory_region_unref(MemoryRegion *mr)
1293 {
1294     Object *obj = OBJECT(mr);
1295     if (obj && obj->parent) {
1296         object_unref(obj->parent);
1297     } else {
1298         object_unref(obj);
1299     }
1300 }
1301
1302 uint64_t memory_region_size(MemoryRegion *mr)
1303 {
1304     if (int128_eq(mr->size, int128_2_64())) {
1305         return UINT64_MAX;
1306     }
1307     return int128_get64(mr->size);
1308 }
1309
1310 const char *memory_region_name(const MemoryRegion *mr)
1311 {
1312     return mr->name;
1313 }
1314
1315 bool memory_region_is_ram(MemoryRegion *mr)
1316 {
1317     return mr->ram;
1318 }
1319
1320 bool memory_region_is_logging(MemoryRegion *mr)
1321 {
1322     return mr->dirty_log_mask;
1323 }
1324
1325 bool memory_region_is_rom(MemoryRegion *mr)
1326 {
1327     return mr->ram && mr->readonly;
1328 }
1329
1330 bool memory_region_is_iommu(MemoryRegion *mr)
1331 {
1332     return mr->iommu_ops;
1333 }
1334
1335 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1336 {
1337     notifier_list_add(&mr->iommu_notify, n);
1338 }
1339
1340 void memory_region_unregister_iommu_notifier(Notifier *n)
1341 {
1342     notifier_remove(n);
1343 }
1344
1345 void memory_region_notify_iommu(MemoryRegion *mr,
1346                                 IOMMUTLBEntry entry)
1347 {
1348     assert(memory_region_is_iommu(mr));
1349     notifier_list_notify(&mr->iommu_notify, &entry);
1350 }
1351
1352 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1353 {
1354     uint8_t mask = 1 << client;
1355
1356     memory_region_transaction_begin();
1357     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1358     memory_region_update_pending |= mr->enabled;
1359     memory_region_transaction_commit();
1360 }
1361
1362 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1363                              hwaddr size, unsigned client)
1364 {
1365     assert(mr->terminates);
1366     return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1367 }
1368
1369 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1370                              hwaddr size)
1371 {
1372     assert(mr->terminates);
1373     cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size);
1374 }
1375
1376 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1377                                         hwaddr size, unsigned client)
1378 {
1379     bool ret;
1380     assert(mr->terminates);
1381     ret = cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1382     if (ret) {
1383         cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1384     }
1385     return ret;
1386 }
1387
1388
1389 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1390 {
1391     AddressSpace *as;
1392     FlatRange *fr;
1393
1394     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1395         FlatView *view = address_space_get_flatview(as);
1396         FOR_EACH_FLAT_RANGE(fr, view) {
1397             if (fr->mr == mr) {
1398                 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1399             }
1400         }
1401         flatview_unref(view);
1402     }
1403 }
1404
1405 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1406 {
1407     if (mr->readonly != readonly) {
1408         memory_region_transaction_begin();
1409         mr->readonly = readonly;
1410         memory_region_update_pending |= mr->enabled;
1411         memory_region_transaction_commit();
1412     }
1413 }
1414
1415 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1416 {
1417     if (mr->romd_mode != romd_mode) {
1418         memory_region_transaction_begin();
1419         mr->romd_mode = romd_mode;
1420         memory_region_update_pending |= mr->enabled;
1421         memory_region_transaction_commit();
1422     }
1423 }
1424
1425 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1426                                hwaddr size, unsigned client)
1427 {
1428     assert(mr->terminates);
1429     cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1430 }
1431
1432 int memory_region_get_fd(MemoryRegion *mr)
1433 {
1434     if (mr->alias) {
1435         return memory_region_get_fd(mr->alias);
1436     }
1437
1438     assert(mr->terminates);
1439
1440     return qemu_get_ram_fd(mr->ram_addr & TARGET_PAGE_MASK);
1441 }
1442
1443 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1444 {
1445     if (mr->alias) {
1446         return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1447     }
1448
1449     assert(mr->terminates);
1450
1451     return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1452 }
1453
1454 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1455 {
1456     FlatView *view;
1457     FlatRange *fr;
1458     CoalescedMemoryRange *cmr;
1459     AddrRange tmp;
1460     MemoryRegionSection section;
1461
1462     view = address_space_get_flatview(as);
1463     FOR_EACH_FLAT_RANGE(fr, view) {
1464         if (fr->mr == mr) {
1465             section = (MemoryRegionSection) {
1466                 .address_space = as,
1467                 .offset_within_address_space = int128_get64(fr->addr.start),
1468                 .size = fr->addr.size,
1469             };
1470
1471             MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1472                                  int128_get64(fr->addr.start),
1473                                  int128_get64(fr->addr.size));
1474             QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1475                 tmp = addrrange_shift(cmr->addr,
1476                                       int128_sub(fr->addr.start,
1477                                                  int128_make64(fr->offset_in_region)));
1478                 if (!addrrange_intersects(tmp, fr->addr)) {
1479                     continue;
1480                 }
1481                 tmp = addrrange_intersection(tmp, fr->addr);
1482                 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1483                                      int128_get64(tmp.start),
1484                                      int128_get64(tmp.size));
1485             }
1486         }
1487     }
1488     flatview_unref(view);
1489 }
1490
1491 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1492 {
1493     AddressSpace *as;
1494
1495     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1496         memory_region_update_coalesced_range_as(mr, as);
1497     }
1498 }
1499
1500 void memory_region_set_coalescing(MemoryRegion *mr)
1501 {
1502     memory_region_clear_coalescing(mr);
1503     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1504 }
1505
1506 void memory_region_add_coalescing(MemoryRegion *mr,
1507                                   hwaddr offset,
1508                                   uint64_t size)
1509 {
1510     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1511
1512     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1513     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1514     memory_region_update_coalesced_range(mr);
1515     memory_region_set_flush_coalesced(mr);
1516 }
1517
1518 void memory_region_clear_coalescing(MemoryRegion *mr)
1519 {
1520     CoalescedMemoryRange *cmr;
1521     bool updated = false;
1522
1523     qemu_flush_coalesced_mmio_buffer();
1524     mr->flush_coalesced_mmio = false;
1525
1526     while (!QTAILQ_EMPTY(&mr->coalesced)) {
1527         cmr = QTAILQ_FIRST(&mr->coalesced);
1528         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1529         g_free(cmr);
1530         updated = true;
1531     }
1532
1533     if (updated) {
1534         memory_region_update_coalesced_range(mr);
1535     }
1536 }
1537
1538 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1539 {
1540     mr->flush_coalesced_mmio = true;
1541 }
1542
1543 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1544 {
1545     qemu_flush_coalesced_mmio_buffer();
1546     if (QTAILQ_EMPTY(&mr->coalesced)) {
1547         mr->flush_coalesced_mmio = false;
1548     }
1549 }
1550
1551 void memory_region_add_eventfd(MemoryRegion *mr,
1552                                hwaddr addr,
1553                                unsigned size,
1554                                bool match_data,
1555                                uint64_t data,
1556                                EventNotifier *e)
1557 {
1558     MemoryRegionIoeventfd mrfd = {
1559         .addr.start = int128_make64(addr),
1560         .addr.size = int128_make64(size),
1561         .match_data = match_data,
1562         .data = data,
1563         .e = e,
1564     };
1565     unsigned i;
1566
1567     adjust_endianness(mr, &mrfd.data, size);
1568     memory_region_transaction_begin();
1569     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1570         if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1571             break;
1572         }
1573     }
1574     ++mr->ioeventfd_nb;
1575     mr->ioeventfds = g_realloc(mr->ioeventfds,
1576                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1577     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1578             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1579     mr->ioeventfds[i] = mrfd;
1580     ioeventfd_update_pending |= mr->enabled;
1581     memory_region_transaction_commit();
1582 }
1583
1584 void memory_region_del_eventfd(MemoryRegion *mr,
1585                                hwaddr addr,
1586                                unsigned size,
1587                                bool match_data,
1588                                uint64_t data,
1589                                EventNotifier *e)
1590 {
1591     MemoryRegionIoeventfd mrfd = {
1592         .addr.start = int128_make64(addr),
1593         .addr.size = int128_make64(size),
1594         .match_data = match_data,
1595         .data = data,
1596         .e = e,
1597     };
1598     unsigned i;
1599
1600     adjust_endianness(mr, &mrfd.data, size);
1601     memory_region_transaction_begin();
1602     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1603         if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1604             break;
1605         }
1606     }
1607     assert(i != mr->ioeventfd_nb);
1608     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1609             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1610     --mr->ioeventfd_nb;
1611     mr->ioeventfds = g_realloc(mr->ioeventfds,
1612                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1613     ioeventfd_update_pending |= mr->enabled;
1614     memory_region_transaction_commit();
1615 }
1616
1617 static void memory_region_update_container_subregions(MemoryRegion *subregion)
1618 {
1619     hwaddr offset = subregion->addr;
1620     MemoryRegion *mr = subregion->container;
1621     MemoryRegion *other;
1622
1623     memory_region_transaction_begin();
1624
1625     memory_region_ref(subregion);
1626     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1627         if (subregion->may_overlap || other->may_overlap) {
1628             continue;
1629         }
1630         if (int128_ge(int128_make64(offset),
1631                       int128_add(int128_make64(other->addr), other->size))
1632             || int128_le(int128_add(int128_make64(offset), subregion->size),
1633                          int128_make64(other->addr))) {
1634             continue;
1635         }
1636 #if 0
1637         printf("warning: subregion collision %llx/%llx (%s) "
1638                "vs %llx/%llx (%s)\n",
1639                (unsigned long long)offset,
1640                (unsigned long long)int128_get64(subregion->size),
1641                subregion->name,
1642                (unsigned long long)other->addr,
1643                (unsigned long long)int128_get64(other->size),
1644                other->name);
1645 #endif
1646     }
1647     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1648         if (subregion->priority >= other->priority) {
1649             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1650             goto done;
1651         }
1652     }
1653     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1654 done:
1655     memory_region_update_pending |= mr->enabled && subregion->enabled;
1656     memory_region_transaction_commit();
1657 }
1658
1659 static void memory_region_add_subregion_common(MemoryRegion *mr,
1660                                                hwaddr offset,
1661                                                MemoryRegion *subregion)
1662 {
1663     assert(!subregion->container);
1664     subregion->container = mr;
1665     subregion->addr = offset;
1666     memory_region_update_container_subregions(subregion);
1667 }
1668
1669 void memory_region_add_subregion(MemoryRegion *mr,
1670                                  hwaddr offset,
1671                                  MemoryRegion *subregion)
1672 {
1673     subregion->may_overlap = false;
1674     subregion->priority = 0;
1675     memory_region_add_subregion_common(mr, offset, subregion);
1676 }
1677
1678 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1679                                          hwaddr offset,
1680                                          MemoryRegion *subregion,
1681                                          int priority)
1682 {
1683     subregion->may_overlap = true;
1684     subregion->priority = priority;
1685     memory_region_add_subregion_common(mr, offset, subregion);
1686 }
1687
1688 void memory_region_del_subregion(MemoryRegion *mr,
1689                                  MemoryRegion *subregion)
1690 {
1691     memory_region_transaction_begin();
1692     assert(subregion->container == mr);
1693     subregion->container = NULL;
1694     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1695     memory_region_unref(subregion);
1696     memory_region_update_pending |= mr->enabled && subregion->enabled;
1697     memory_region_transaction_commit();
1698 }
1699
1700 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1701 {
1702     if (enabled == mr->enabled) {
1703         return;
1704     }
1705     memory_region_transaction_begin();
1706     mr->enabled = enabled;
1707     memory_region_update_pending = true;
1708     memory_region_transaction_commit();
1709 }
1710
1711 static void memory_region_readd_subregion(MemoryRegion *mr)
1712 {
1713     MemoryRegion *container = mr->container;
1714
1715     if (container) {
1716         memory_region_transaction_begin();
1717         memory_region_ref(mr);
1718         memory_region_del_subregion(container, mr);
1719         mr->container = container;
1720         memory_region_update_container_subregions(mr);
1721         memory_region_unref(mr);
1722         memory_region_transaction_commit();
1723     }
1724 }
1725
1726 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1727 {
1728     if (addr != mr->addr) {
1729         mr->addr = addr;
1730         memory_region_readd_subregion(mr);
1731     }
1732 }
1733
1734 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1735 {
1736     assert(mr->alias);
1737
1738     if (offset == mr->alias_offset) {
1739         return;
1740     }
1741
1742     memory_region_transaction_begin();
1743     mr->alias_offset = offset;
1744     memory_region_update_pending |= mr->enabled;
1745     memory_region_transaction_commit();
1746 }
1747
1748 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1749 {
1750     return mr->ram_addr;
1751 }
1752
1753 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1754 {
1755     const AddrRange *addr = addr_;
1756     const FlatRange *fr = fr_;
1757
1758     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1759         return -1;
1760     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1761         return 1;
1762     }
1763     return 0;
1764 }
1765
1766 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
1767 {
1768     return bsearch(&addr, view->ranges, view->nr,
1769                    sizeof(FlatRange), cmp_flatrange_addr);
1770 }
1771
1772 bool memory_region_present(MemoryRegion *container, hwaddr addr)
1773 {
1774     MemoryRegion *mr = memory_region_find(container, addr, 1).mr;
1775     if (!mr || (mr == container)) {
1776         return false;
1777     }
1778     memory_region_unref(mr);
1779     return true;
1780 }
1781
1782 bool memory_region_is_mapped(MemoryRegion *mr)
1783 {
1784     return mr->container ? true : false;
1785 }
1786
1787 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1788                                        hwaddr addr, uint64_t size)
1789 {
1790     MemoryRegionSection ret = { .mr = NULL };
1791     MemoryRegion *root;
1792     AddressSpace *as;
1793     AddrRange range;
1794     FlatView *view;
1795     FlatRange *fr;
1796
1797     addr += mr->addr;
1798     for (root = mr; root->container; ) {
1799         root = root->container;
1800         addr += root->addr;
1801     }
1802
1803     as = memory_region_to_address_space(root);
1804     if (!as) {
1805         return ret;
1806     }
1807     range = addrrange_make(int128_make64(addr), int128_make64(size));
1808
1809     view = address_space_get_flatview(as);
1810     fr = flatview_lookup(view, range);
1811     if (!fr) {
1812         flatview_unref(view);
1813         return ret;
1814     }
1815
1816     while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
1817         --fr;
1818     }
1819
1820     ret.mr = fr->mr;
1821     ret.address_space = as;
1822     range = addrrange_intersection(range, fr->addr);
1823     ret.offset_within_region = fr->offset_in_region;
1824     ret.offset_within_region += int128_get64(int128_sub(range.start,
1825                                                         fr->addr.start));
1826     ret.size = range.size;
1827     ret.offset_within_address_space = int128_get64(range.start);
1828     ret.readonly = fr->readonly;
1829     memory_region_ref(ret.mr);
1830
1831     flatview_unref(view);
1832     return ret;
1833 }
1834
1835 void address_space_sync_dirty_bitmap(AddressSpace *as)
1836 {
1837     FlatView *view;
1838     FlatRange *fr;
1839
1840     view = address_space_get_flatview(as);
1841     FOR_EACH_FLAT_RANGE(fr, view) {
1842         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1843     }
1844     flatview_unref(view);
1845 }
1846
1847 void memory_global_dirty_log_start(void)
1848 {
1849     global_dirty_log = true;
1850     MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1851 }
1852
1853 void memory_global_dirty_log_stop(void)
1854 {
1855     global_dirty_log = false;
1856     MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1857 }
1858
1859 static void listener_add_address_space(MemoryListener *listener,
1860                                        AddressSpace *as)
1861 {
1862     FlatView *view;
1863     FlatRange *fr;
1864
1865     if (listener->address_space_filter
1866         && listener->address_space_filter != as) {
1867         return;
1868     }
1869
1870     if (global_dirty_log) {
1871         if (listener->log_global_start) {
1872             listener->log_global_start(listener);
1873         }
1874     }
1875
1876     view = address_space_get_flatview(as);
1877     FOR_EACH_FLAT_RANGE(fr, view) {
1878         MemoryRegionSection section = {
1879             .mr = fr->mr,
1880             .address_space = as,
1881             .offset_within_region = fr->offset_in_region,
1882             .size = fr->addr.size,
1883             .offset_within_address_space = int128_get64(fr->addr.start),
1884             .readonly = fr->readonly,
1885         };
1886         if (listener->region_add) {
1887             listener->region_add(listener, &section);
1888         }
1889     }
1890     flatview_unref(view);
1891 }
1892
1893 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
1894 {
1895     MemoryListener *other = NULL;
1896     AddressSpace *as;
1897
1898     listener->address_space_filter = filter;
1899     if (QTAILQ_EMPTY(&memory_listeners)
1900         || listener->priority >= QTAILQ_LAST(&memory_listeners,
1901                                              memory_listeners)->priority) {
1902         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1903     } else {
1904         QTAILQ_FOREACH(other, &memory_listeners, link) {
1905             if (listener->priority < other->priority) {
1906                 break;
1907             }
1908         }
1909         QTAILQ_INSERT_BEFORE(other, listener, link);
1910     }
1911
1912     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1913         listener_add_address_space(listener, as);
1914     }
1915 }
1916
1917 void memory_listener_unregister(MemoryListener *listener)
1918 {
1919     QTAILQ_REMOVE(&memory_listeners, listener, link);
1920 }
1921
1922 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
1923 {
1924     if (QTAILQ_EMPTY(&address_spaces)) {
1925         memory_init();
1926     }
1927
1928     memory_region_transaction_begin();
1929     as->root = root;
1930     as->current_map = g_new(FlatView, 1);
1931     flatview_init(as->current_map);
1932     as->ioeventfd_nb = 0;
1933     as->ioeventfds = NULL;
1934     QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
1935     as->name = g_strdup(name ? name : "anonymous");
1936     address_space_init_dispatch(as);
1937     memory_region_update_pending |= root->enabled;
1938     memory_region_transaction_commit();
1939 }
1940
1941 void address_space_destroy(AddressSpace *as)
1942 {
1943     MemoryListener *listener;
1944
1945     /* Flush out anything from MemoryListeners listening in on this */
1946     memory_region_transaction_begin();
1947     as->root = NULL;
1948     memory_region_transaction_commit();
1949     QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
1950     address_space_destroy_dispatch(as);
1951
1952     QTAILQ_FOREACH(listener, &memory_listeners, link) {
1953         assert(listener->address_space_filter != as);
1954     }
1955
1956     flatview_unref(as->current_map);
1957     g_free(as->name);
1958     g_free(as->ioeventfds);
1959 }
1960
1961 bool io_mem_read(MemoryRegion *mr, hwaddr addr, uint64_t *pval, unsigned size)
1962 {
1963     return memory_region_dispatch_read(mr, addr, pval, size);
1964 }
1965
1966 bool io_mem_write(MemoryRegion *mr, hwaddr addr,
1967                   uint64_t val, unsigned size)
1968 {
1969     return memory_region_dispatch_write(mr, addr, val, size);
1970 }
1971
1972 typedef struct MemoryRegionList MemoryRegionList;
1973
1974 struct MemoryRegionList {
1975     const MemoryRegion *mr;
1976     QTAILQ_ENTRY(MemoryRegionList) queue;
1977 };
1978
1979 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1980
1981 static void mtree_print_mr(fprintf_function mon_printf, void *f,
1982                            const MemoryRegion *mr, unsigned int level,
1983                            hwaddr base,
1984                            MemoryRegionListHead *alias_print_queue)
1985 {
1986     MemoryRegionList *new_ml, *ml, *next_ml;
1987     MemoryRegionListHead submr_print_queue;
1988     const MemoryRegion *submr;
1989     unsigned int i;
1990
1991     if (!mr || !mr->enabled) {
1992         return;
1993     }
1994
1995     for (i = 0; i < level; i++) {
1996         mon_printf(f, "  ");
1997     }
1998
1999     if (mr->alias) {
2000         MemoryRegionList *ml;
2001         bool found = false;
2002
2003         /* check if the alias is already in the queue */
2004         QTAILQ_FOREACH(ml, alias_print_queue, queue) {
2005             if (ml->mr == mr->alias) {
2006                 found = true;
2007             }
2008         }
2009
2010         if (!found) {
2011             ml = g_new(MemoryRegionList, 1);
2012             ml->mr = mr->alias;
2013             QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
2014         }
2015         mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2016                    " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2017                    "-" TARGET_FMT_plx "\n",
2018                    base + mr->addr,
2019                    base + mr->addr
2020                    + (int128_nz(mr->size) ?
2021                       (hwaddr)int128_get64(int128_sub(mr->size,
2022                                                       int128_one())) : 0),
2023                    mr->priority,
2024                    mr->romd_mode ? 'R' : '-',
2025                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2026                                                                        : '-',
2027                    memory_region_name(mr),
2028                    memory_region_name(mr->alias),
2029                    mr->alias_offset,
2030                    mr->alias_offset
2031                    + (int128_nz(mr->size) ?
2032                       (hwaddr)int128_get64(int128_sub(mr->size,
2033                                                       int128_one())) : 0));
2034     } else {
2035         mon_printf(f,
2036                    TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
2037                    base + mr->addr,
2038                    base + mr->addr
2039                    + (int128_nz(mr->size) ?
2040                       (hwaddr)int128_get64(int128_sub(mr->size,
2041                                                       int128_one())) : 0),
2042                    mr->priority,
2043                    mr->romd_mode ? 'R' : '-',
2044                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2045                                                                        : '-',
2046                    memory_region_name(mr));
2047     }
2048
2049     QTAILQ_INIT(&submr_print_queue);
2050
2051     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2052         new_ml = g_new(MemoryRegionList, 1);
2053         new_ml->mr = submr;
2054         QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2055             if (new_ml->mr->addr < ml->mr->addr ||
2056                 (new_ml->mr->addr == ml->mr->addr &&
2057                  new_ml->mr->priority > ml->mr->priority)) {
2058                 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
2059                 new_ml = NULL;
2060                 break;
2061             }
2062         }
2063         if (new_ml) {
2064             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
2065         }
2066     }
2067
2068     QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2069         mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
2070                        alias_print_queue);
2071     }
2072
2073     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
2074         g_free(ml);
2075     }
2076 }
2077
2078 void mtree_info(fprintf_function mon_printf, void *f)
2079 {
2080     MemoryRegionListHead ml_head;
2081     MemoryRegionList *ml, *ml2;
2082     AddressSpace *as;
2083
2084     QTAILQ_INIT(&ml_head);
2085
2086     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2087         mon_printf(f, "%s\n", as->name);
2088         mtree_print_mr(mon_printf, f, as->root, 0, 0, &ml_head);
2089     }
2090
2091     mon_printf(f, "aliases\n");
2092     /* print aliased regions */
2093     QTAILQ_FOREACH(ml, &ml_head, queue) {
2094         mon_printf(f, "%s\n", memory_region_name(ml->mr));
2095         mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
2096     }
2097
2098     QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
2099         g_free(ml);
2100     }
2101 }
2102
2103 static const TypeInfo memory_region_info = {
2104     .parent             = TYPE_OBJECT,
2105     .name               = TYPE_MEMORY_REGION,
2106     .instance_size      = sizeof(MemoryRegion),
2107     .instance_init      = memory_region_initfn,
2108     .instance_finalize  = memory_region_finalize,
2109 };
2110
2111 static void memory_register_types(void)
2112 {
2113     type_register_static(&memory_region_info);
2114 }
2115
2116 type_init(memory_register_types)
This page took 0.154625 seconds and 4 git commands to generate.