]> Git Repo - qemu.git/blob - hw/ne2000.c
QMP: Fix asynchronous events delivery
[qemu.git] / hw / ne2000.c
1 /*
2  * QEMU NE2000 emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw.h"
25 #include "pci.h"
26 #include "net.h"
27 #include "ne2000.h"
28 #include "loader.h"
29
30 /* debug NE2000 card */
31 //#define DEBUG_NE2000
32
33 #define MAX_ETH_FRAME_SIZE 1514
34
35 #define E8390_CMD       0x00  /* The command register (for all pages) */
36 /* Page 0 register offsets. */
37 #define EN0_CLDALO      0x01    /* Low byte of current local dma addr  RD */
38 #define EN0_STARTPG     0x01    /* Starting page of ring bfr WR */
39 #define EN0_CLDAHI      0x02    /* High byte of current local dma addr  RD */
40 #define EN0_STOPPG      0x02    /* Ending page +1 of ring bfr WR */
41 #define EN0_BOUNDARY    0x03    /* Boundary page of ring bfr RD WR */
42 #define EN0_TSR         0x04    /* Transmit status reg RD */
43 #define EN0_TPSR        0x04    /* Transmit starting page WR */
44 #define EN0_NCR         0x05    /* Number of collision reg RD */
45 #define EN0_TCNTLO      0x05    /* Low  byte of tx byte count WR */
46 #define EN0_FIFO        0x06    /* FIFO RD */
47 #define EN0_TCNTHI      0x06    /* High byte of tx byte count WR */
48 #define EN0_ISR         0x07    /* Interrupt status reg RD WR */
49 #define EN0_CRDALO      0x08    /* low byte of current remote dma address RD */
50 #define EN0_RSARLO      0x08    /* Remote start address reg 0 */
51 #define EN0_CRDAHI      0x09    /* high byte, current remote dma address RD */
52 #define EN0_RSARHI      0x09    /* Remote start address reg 1 */
53 #define EN0_RCNTLO      0x0a    /* Remote byte count reg WR */
54 #define EN0_RTL8029ID0  0x0a    /* Realtek ID byte #1 RD */
55 #define EN0_RCNTHI      0x0b    /* Remote byte count reg WR */
56 #define EN0_RTL8029ID1  0x0b    /* Realtek ID byte #2 RD */
57 #define EN0_RSR         0x0c    /* rx status reg RD */
58 #define EN0_RXCR        0x0c    /* RX configuration reg WR */
59 #define EN0_TXCR        0x0d    /* TX configuration reg WR */
60 #define EN0_COUNTER0    0x0d    /* Rcv alignment error counter RD */
61 #define EN0_DCFG        0x0e    /* Data configuration reg WR */
62 #define EN0_COUNTER1    0x0e    /* Rcv CRC error counter RD */
63 #define EN0_IMR         0x0f    /* Interrupt mask reg WR */
64 #define EN0_COUNTER2    0x0f    /* Rcv missed frame error counter RD */
65
66 #define EN1_PHYS        0x11
67 #define EN1_CURPAG      0x17
68 #define EN1_MULT        0x18
69
70 #define EN2_STARTPG     0x21    /* Starting page of ring bfr RD */
71 #define EN2_STOPPG      0x22    /* Ending page +1 of ring bfr RD */
72
73 #define EN3_CONFIG0     0x33
74 #define EN3_CONFIG1     0x34
75 #define EN3_CONFIG2     0x35
76 #define EN3_CONFIG3     0x36
77
78 /*  Register accessed at EN_CMD, the 8390 base addr.  */
79 #define E8390_STOP      0x01    /* Stop and reset the chip */
80 #define E8390_START     0x02    /* Start the chip, clear reset */
81 #define E8390_TRANS     0x04    /* Transmit a frame */
82 #define E8390_RREAD     0x08    /* Remote read */
83 #define E8390_RWRITE    0x10    /* Remote write  */
84 #define E8390_NODMA     0x20    /* Remote DMA */
85 #define E8390_PAGE0     0x00    /* Select page chip registers */
86 #define E8390_PAGE1     0x40    /* using the two high-order bits */
87 #define E8390_PAGE2     0x80    /* Page 3 is invalid. */
88
89 /* Bits in EN0_ISR - Interrupt status register */
90 #define ENISR_RX        0x01    /* Receiver, no error */
91 #define ENISR_TX        0x02    /* Transmitter, no error */
92 #define ENISR_RX_ERR    0x04    /* Receiver, with error */
93 #define ENISR_TX_ERR    0x08    /* Transmitter, with error */
94 #define ENISR_OVER      0x10    /* Receiver overwrote the ring */
95 #define ENISR_COUNTERS  0x20    /* Counters need emptying */
96 #define ENISR_RDC       0x40    /* remote dma complete */
97 #define ENISR_RESET     0x80    /* Reset completed */
98 #define ENISR_ALL       0x3f    /* Interrupts we will enable */
99
100 /* Bits in received packet status byte and EN0_RSR*/
101 #define ENRSR_RXOK      0x01    /* Received a good packet */
102 #define ENRSR_CRC       0x02    /* CRC error */
103 #define ENRSR_FAE       0x04    /* frame alignment error */
104 #define ENRSR_FO        0x08    /* FIFO overrun */
105 #define ENRSR_MPA       0x10    /* missed pkt */
106 #define ENRSR_PHY       0x20    /* physical/multicast address */
107 #define ENRSR_DIS       0x40    /* receiver disable. set in monitor mode */
108 #define ENRSR_DEF       0x80    /* deferring */
109
110 /* Transmitted packet status, EN0_TSR. */
111 #define ENTSR_PTX 0x01  /* Packet transmitted without error */
112 #define ENTSR_ND  0x02  /* The transmit wasn't deferred. */
113 #define ENTSR_COL 0x04  /* The transmit collided at least once. */
114 #define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
115 #define ENTSR_CRS 0x10  /* The carrier sense was lost. */
116 #define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
117 #define ENTSR_CDH 0x40  /* The collision detect "heartbeat" signal was lost. */
118 #define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
119
120 typedef struct PCINE2000State {
121     PCIDevice dev;
122     NE2000State ne2000;
123 } PCINE2000State;
124
125 void ne2000_reset(NE2000State *s)
126 {
127     int i;
128
129     s->isr = ENISR_RESET;
130     memcpy(s->mem, &s->c.macaddr, 6);
131     s->mem[14] = 0x57;
132     s->mem[15] = 0x57;
133
134     /* duplicate prom data */
135     for(i = 15;i >= 0; i--) {
136         s->mem[2 * i] = s->mem[i];
137         s->mem[2 * i + 1] = s->mem[i];
138     }
139 }
140
141 static void ne2000_update_irq(NE2000State *s)
142 {
143     int isr;
144     isr = (s->isr & s->imr) & 0x7f;
145 #if defined(DEBUG_NE2000)
146     printf("NE2000: Set IRQ to %d (%02x %02x)\n",
147            isr ? 1 : 0, s->isr, s->imr);
148 #endif
149     qemu_set_irq(s->irq, (isr != 0));
150 }
151
152 #define POLYNOMIAL 0x04c11db6
153
154 /* From FreeBSD */
155 /* XXX: optimize */
156 static int compute_mcast_idx(const uint8_t *ep)
157 {
158     uint32_t crc;
159     int carry, i, j;
160     uint8_t b;
161
162     crc = 0xffffffff;
163     for (i = 0; i < 6; i++) {
164         b = *ep++;
165         for (j = 0; j < 8; j++) {
166             carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
167             crc <<= 1;
168             b >>= 1;
169             if (carry)
170                 crc = ((crc ^ POLYNOMIAL) | carry);
171         }
172     }
173     return (crc >> 26);
174 }
175
176 static int ne2000_buffer_full(NE2000State *s)
177 {
178     int avail, index, boundary;
179
180     index = s->curpag << 8;
181     boundary = s->boundary << 8;
182     if (index < boundary)
183         avail = boundary - index;
184     else
185         avail = (s->stop - s->start) - (index - boundary);
186     if (avail < (MAX_ETH_FRAME_SIZE + 4))
187         return 1;
188     return 0;
189 }
190
191 int ne2000_can_receive(VLANClientState *nc)
192 {
193     NE2000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
194
195     if (s->cmd & E8390_STOP)
196         return 1;
197     return !ne2000_buffer_full(s);
198 }
199
200 #define MIN_BUF_SIZE 60
201
202 ssize_t ne2000_receive(VLANClientState *nc, const uint8_t *buf, size_t size_)
203 {
204     NE2000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
205     int size = size_;
206     uint8_t *p;
207     unsigned int total_len, next, avail, len, index, mcast_idx;
208     uint8_t buf1[60];
209     static const uint8_t broadcast_macaddr[6] =
210         { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
211
212 #if defined(DEBUG_NE2000)
213     printf("NE2000: received len=%d\n", size);
214 #endif
215
216     if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
217         return -1;
218
219     /* XXX: check this */
220     if (s->rxcr & 0x10) {
221         /* promiscuous: receive all */
222     } else {
223         if (!memcmp(buf,  broadcast_macaddr, 6)) {
224             /* broadcast address */
225             if (!(s->rxcr & 0x04))
226                 return size;
227         } else if (buf[0] & 0x01) {
228             /* multicast */
229             if (!(s->rxcr & 0x08))
230                 return size;
231             mcast_idx = compute_mcast_idx(buf);
232             if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
233                 return size;
234         } else if (s->mem[0] == buf[0] &&
235                    s->mem[2] == buf[1] &&
236                    s->mem[4] == buf[2] &&
237                    s->mem[6] == buf[3] &&
238                    s->mem[8] == buf[4] &&
239                    s->mem[10] == buf[5]) {
240             /* match */
241         } else {
242             return size;
243         }
244     }
245
246
247     /* if too small buffer, then expand it */
248     if (size < MIN_BUF_SIZE) {
249         memcpy(buf1, buf, size);
250         memset(buf1 + size, 0, MIN_BUF_SIZE - size);
251         buf = buf1;
252         size = MIN_BUF_SIZE;
253     }
254
255     index = s->curpag << 8;
256     /* 4 bytes for header */
257     total_len = size + 4;
258     /* address for next packet (4 bytes for CRC) */
259     next = index + ((total_len + 4 + 255) & ~0xff);
260     if (next >= s->stop)
261         next -= (s->stop - s->start);
262     /* prepare packet header */
263     p = s->mem + index;
264     s->rsr = ENRSR_RXOK; /* receive status */
265     /* XXX: check this */
266     if (buf[0] & 0x01)
267         s->rsr |= ENRSR_PHY;
268     p[0] = s->rsr;
269     p[1] = next >> 8;
270     p[2] = total_len;
271     p[3] = total_len >> 8;
272     index += 4;
273
274     /* write packet data */
275     while (size > 0) {
276         if (index <= s->stop)
277             avail = s->stop - index;
278         else
279             avail = 0;
280         len = size;
281         if (len > avail)
282             len = avail;
283         memcpy(s->mem + index, buf, len);
284         buf += len;
285         index += len;
286         if (index == s->stop)
287             index = s->start;
288         size -= len;
289     }
290     s->curpag = next >> 8;
291
292     /* now we can signal we have received something */
293     s->isr |= ENISR_RX;
294     ne2000_update_irq(s);
295
296     return size_;
297 }
298
299 void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
300 {
301     NE2000State *s = opaque;
302     int offset, page, index;
303
304     addr &= 0xf;
305 #ifdef DEBUG_NE2000
306     printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
307 #endif
308     if (addr == E8390_CMD) {
309         /* control register */
310         s->cmd = val;
311         if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
312             s->isr &= ~ENISR_RESET;
313             /* test specific case: zero length transfer */
314             if ((val & (E8390_RREAD | E8390_RWRITE)) &&
315                 s->rcnt == 0) {
316                 s->isr |= ENISR_RDC;
317                 ne2000_update_irq(s);
318             }
319             if (val & E8390_TRANS) {
320                 index = (s->tpsr << 8);
321                 /* XXX: next 2 lines are a hack to make netware 3.11 work */
322                 if (index >= NE2000_PMEM_END)
323                     index -= NE2000_PMEM_SIZE;
324                 /* fail safe: check range on the transmitted length  */
325                 if (index + s->tcnt <= NE2000_PMEM_END) {
326                     qemu_send_packet(&s->nic->nc, s->mem + index, s->tcnt);
327                 }
328                 /* signal end of transfer */
329                 s->tsr = ENTSR_PTX;
330                 s->isr |= ENISR_TX;
331                 s->cmd &= ~E8390_TRANS;
332                 ne2000_update_irq(s);
333             }
334         }
335     } else {
336         page = s->cmd >> 6;
337         offset = addr | (page << 4);
338         switch(offset) {
339         case EN0_STARTPG:
340             s->start = val << 8;
341             break;
342         case EN0_STOPPG:
343             s->stop = val << 8;
344             break;
345         case EN0_BOUNDARY:
346             s->boundary = val;
347             break;
348         case EN0_IMR:
349             s->imr = val;
350             ne2000_update_irq(s);
351             break;
352         case EN0_TPSR:
353             s->tpsr = val;
354             break;
355         case EN0_TCNTLO:
356             s->tcnt = (s->tcnt & 0xff00) | val;
357             break;
358         case EN0_TCNTHI:
359             s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
360             break;
361         case EN0_RSARLO:
362             s->rsar = (s->rsar & 0xff00) | val;
363             break;
364         case EN0_RSARHI:
365             s->rsar = (s->rsar & 0x00ff) | (val << 8);
366             break;
367         case EN0_RCNTLO:
368             s->rcnt = (s->rcnt & 0xff00) | val;
369             break;
370         case EN0_RCNTHI:
371             s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
372             break;
373         case EN0_RXCR:
374             s->rxcr = val;
375             break;
376         case EN0_DCFG:
377             s->dcfg = val;
378             break;
379         case EN0_ISR:
380             s->isr &= ~(val & 0x7f);
381             ne2000_update_irq(s);
382             break;
383         case EN1_PHYS ... EN1_PHYS + 5:
384             s->phys[offset - EN1_PHYS] = val;
385             break;
386         case EN1_CURPAG:
387             s->curpag = val;
388             break;
389         case EN1_MULT ... EN1_MULT + 7:
390             s->mult[offset - EN1_MULT] = val;
391             break;
392         }
393     }
394 }
395
396 uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
397 {
398     NE2000State *s = opaque;
399     int offset, page, ret;
400
401     addr &= 0xf;
402     if (addr == E8390_CMD) {
403         ret = s->cmd;
404     } else {
405         page = s->cmd >> 6;
406         offset = addr | (page << 4);
407         switch(offset) {
408         case EN0_TSR:
409             ret = s->tsr;
410             break;
411         case EN0_BOUNDARY:
412             ret = s->boundary;
413             break;
414         case EN0_ISR:
415             ret = s->isr;
416             break;
417         case EN0_RSARLO:
418             ret = s->rsar & 0x00ff;
419             break;
420         case EN0_RSARHI:
421             ret = s->rsar >> 8;
422             break;
423         case EN1_PHYS ... EN1_PHYS + 5:
424             ret = s->phys[offset - EN1_PHYS];
425             break;
426         case EN1_CURPAG:
427             ret = s->curpag;
428             break;
429         case EN1_MULT ... EN1_MULT + 7:
430             ret = s->mult[offset - EN1_MULT];
431             break;
432         case EN0_RSR:
433             ret = s->rsr;
434             break;
435         case EN2_STARTPG:
436             ret = s->start >> 8;
437             break;
438         case EN2_STOPPG:
439             ret = s->stop >> 8;
440             break;
441         case EN0_RTL8029ID0:
442             ret = 0x50;
443             break;
444         case EN0_RTL8029ID1:
445             ret = 0x43;
446             break;
447         case EN3_CONFIG0:
448             ret = 0;            /* 10baseT media */
449             break;
450         case EN3_CONFIG2:
451             ret = 0x40;         /* 10baseT active */
452             break;
453         case EN3_CONFIG3:
454             ret = 0x40;         /* Full duplex */
455             break;
456         default:
457             ret = 0x00;
458             break;
459         }
460     }
461 #ifdef DEBUG_NE2000
462     printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
463 #endif
464     return ret;
465 }
466
467 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
468                                      uint32_t val)
469 {
470     if (addr < 32 ||
471         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
472         s->mem[addr] = val;
473     }
474 }
475
476 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
477                                      uint32_t val)
478 {
479     addr &= ~1; /* XXX: check exact behaviour if not even */
480     if (addr < 32 ||
481         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
482         *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
483     }
484 }
485
486 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
487                                      uint32_t val)
488 {
489     addr &= ~1; /* XXX: check exact behaviour if not even */
490     if (addr < 32 ||
491         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
492         cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
493     }
494 }
495
496 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
497 {
498     if (addr < 32 ||
499         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
500         return s->mem[addr];
501     } else {
502         return 0xff;
503     }
504 }
505
506 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
507 {
508     addr &= ~1; /* XXX: check exact behaviour if not even */
509     if (addr < 32 ||
510         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
511         return le16_to_cpu(*(uint16_t *)(s->mem + addr));
512     } else {
513         return 0xffff;
514     }
515 }
516
517 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
518 {
519     addr &= ~1; /* XXX: check exact behaviour if not even */
520     if (addr < 32 ||
521         (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
522         return le32_to_cpupu((uint32_t *)(s->mem + addr));
523     } else {
524         return 0xffffffff;
525     }
526 }
527
528 static inline void ne2000_dma_update(NE2000State *s, int len)
529 {
530     s->rsar += len;
531     /* wrap */
532     /* XXX: check what to do if rsar > stop */
533     if (s->rsar == s->stop)
534         s->rsar = s->start;
535
536     if (s->rcnt <= len) {
537         s->rcnt = 0;
538         /* signal end of transfer */
539         s->isr |= ENISR_RDC;
540         ne2000_update_irq(s);
541     } else {
542         s->rcnt -= len;
543     }
544 }
545
546 void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
547 {
548     NE2000State *s = opaque;
549
550 #ifdef DEBUG_NE2000
551     printf("NE2000: asic write val=0x%04x\n", val);
552 #endif
553     if (s->rcnt == 0)
554         return;
555     if (s->dcfg & 0x01) {
556         /* 16 bit access */
557         ne2000_mem_writew(s, s->rsar, val);
558         ne2000_dma_update(s, 2);
559     } else {
560         /* 8 bit access */
561         ne2000_mem_writeb(s, s->rsar, val);
562         ne2000_dma_update(s, 1);
563     }
564 }
565
566 uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
567 {
568     NE2000State *s = opaque;
569     int ret;
570
571     if (s->dcfg & 0x01) {
572         /* 16 bit access */
573         ret = ne2000_mem_readw(s, s->rsar);
574         ne2000_dma_update(s, 2);
575     } else {
576         /* 8 bit access */
577         ret = ne2000_mem_readb(s, s->rsar);
578         ne2000_dma_update(s, 1);
579     }
580 #ifdef DEBUG_NE2000
581     printf("NE2000: asic read val=0x%04x\n", ret);
582 #endif
583     return ret;
584 }
585
586 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
587 {
588     NE2000State *s = opaque;
589
590 #ifdef DEBUG_NE2000
591     printf("NE2000: asic writel val=0x%04x\n", val);
592 #endif
593     if (s->rcnt == 0)
594         return;
595     /* 32 bit access */
596     ne2000_mem_writel(s, s->rsar, val);
597     ne2000_dma_update(s, 4);
598 }
599
600 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
601 {
602     NE2000State *s = opaque;
603     int ret;
604
605     /* 32 bit access */
606     ret = ne2000_mem_readl(s, s->rsar);
607     ne2000_dma_update(s, 4);
608 #ifdef DEBUG_NE2000
609     printf("NE2000: asic readl val=0x%04x\n", ret);
610 #endif
611     return ret;
612 }
613
614 void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
615 {
616     /* nothing to do (end of reset pulse) */
617 }
618
619 uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
620 {
621     NE2000State *s = opaque;
622     ne2000_reset(s);
623     return 0;
624 }
625
626 static int ne2000_post_load(void* opaque, int version_id)
627 {
628     NE2000State* s = opaque;
629
630     if (version_id < 2) {
631         s->rxcr = 0x0c;
632     }
633     return 0;
634 }
635
636 const VMStateDescription vmstate_ne2000 = {
637     .name = "ne2000",
638     .version_id = 2,
639     .minimum_version_id = 0,
640     .minimum_version_id_old = 0,
641     .post_load = ne2000_post_load,
642     .fields      = (VMStateField []) {
643         VMSTATE_UINT8_V(rxcr, NE2000State, 2),
644         VMSTATE_UINT8(cmd, NE2000State),
645         VMSTATE_UINT32(start, NE2000State),
646         VMSTATE_UINT32(stop, NE2000State),
647         VMSTATE_UINT8(boundary, NE2000State),
648         VMSTATE_UINT8(tsr, NE2000State),
649         VMSTATE_UINT8(tpsr, NE2000State),
650         VMSTATE_UINT16(tcnt, NE2000State),
651         VMSTATE_UINT16(rcnt, NE2000State),
652         VMSTATE_UINT32(rsar, NE2000State),
653         VMSTATE_UINT8(rsr, NE2000State),
654         VMSTATE_UINT8(isr, NE2000State),
655         VMSTATE_UINT8(dcfg, NE2000State),
656         VMSTATE_UINT8(imr, NE2000State),
657         VMSTATE_BUFFER(phys, NE2000State),
658         VMSTATE_UINT8(curpag, NE2000State),
659         VMSTATE_BUFFER(mult, NE2000State),
660         VMSTATE_UNUSED(4), /* was irq */
661         VMSTATE_BUFFER(mem, NE2000State),
662         VMSTATE_END_OF_LIST()
663     }
664 };
665
666 static const VMStateDescription vmstate_pci_ne2000 = {
667     .name = "ne2000",
668     .version_id = 3,
669     .minimum_version_id = 3,
670     .minimum_version_id_old = 3,
671     .fields      = (VMStateField []) {
672         VMSTATE_PCI_DEVICE(dev, PCINE2000State),
673         VMSTATE_STRUCT(ne2000, PCINE2000State, 0, vmstate_ne2000, NE2000State),
674         VMSTATE_END_OF_LIST()
675     }
676 };
677
678 /***********************************************************/
679 /* PCI NE2000 definitions */
680
681 static void ne2000_map(PCIDevice *pci_dev, int region_num,
682                        pcibus_t addr, pcibus_t size, int type)
683 {
684     PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
685     NE2000State *s = &d->ne2000;
686
687     register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
688     register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
689
690     register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
691     register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
692     register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
693     register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
694     register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
695     register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
696
697     register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
698     register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
699 }
700
701 static void ne2000_cleanup(VLANClientState *nc)
702 {
703     NE2000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
704
705     s->nic = NULL;
706 }
707
708 static NetClientInfo net_ne2000_info = {
709     .type = NET_CLIENT_TYPE_NIC,
710     .size = sizeof(NICState),
711     .can_receive = ne2000_can_receive,
712     .receive = ne2000_receive,
713     .cleanup = ne2000_cleanup,
714 };
715
716 static int pci_ne2000_init(PCIDevice *pci_dev)
717 {
718     PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
719     NE2000State *s;
720     uint8_t *pci_conf;
721
722     pci_conf = d->dev.config;
723     pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REALTEK);
724     pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REALTEK_8029);
725     pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
726     pci_conf[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_NORMAL; // header_type
727     /* TODO: RST# value should be 0. PCI spec 6.2.4 */
728     pci_conf[PCI_INTERRUPT_PIN] = 1; // interrupt pin 0
729
730     pci_register_bar(&d->dev, 0, 0x100,
731                            PCI_BASE_ADDRESS_SPACE_IO, ne2000_map);
732     s = &d->ne2000;
733     s->irq = d->dev.irq[0];
734
735     qemu_macaddr_default_if_unset(&s->c.macaddr);
736     ne2000_reset(s);
737
738     s->nic = qemu_new_nic(&net_ne2000_info, &s->c,
739                           pci_dev->qdev.info->name, pci_dev->qdev.id, s);
740     qemu_format_nic_info_str(&s->nic->nc, s->c.macaddr.a);
741
742     if (!pci_dev->qdev.hotplugged) {
743         static int loaded = 0;
744         if (!loaded) {
745             rom_add_option("pxe-ne2k_pci.bin");
746             loaded = 1;
747         }
748     }
749
750     return 0;
751 }
752
753 static int pci_ne2000_exit(PCIDevice *pci_dev)
754 {
755     PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
756     NE2000State *s = &d->ne2000;
757
758     qemu_del_vlan_client(&s->nic->nc);
759     return 0;
760 }
761
762 static PCIDeviceInfo ne2000_info = {
763     .qdev.name  = "ne2k_pci",
764     .qdev.size  = sizeof(PCINE2000State),
765     .qdev.vmsd  = &vmstate_pci_ne2000,
766     .init       = pci_ne2000_init,
767     .exit       = pci_ne2000_exit,
768     .qdev.props = (Property[]) {
769         DEFINE_NIC_PROPERTIES(PCINE2000State, ne2000.c),
770         DEFINE_PROP_END_OF_LIST(),
771     }
772 };
773
774 static void ne2000_register_devices(void)
775 {
776     pci_qdev_register(&ne2000_info);
777 }
778
779 device_init(ne2000_register_devices)
This page took 0.074244 seconds and 4 git commands to generate.