2 * QEMU 8253/8254 interval timer emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu-timer.h"
31 #define RW_STATE_LSB 1
32 #define RW_STATE_MSB 2
33 #define RW_STATE_WORD0 3
34 #define RW_STATE_WORD1 4
36 typedef struct PITChannelState {
37 int count; /* can be 65536 */
38 uint16_t latched_count;
39 uint8_t count_latched;
40 uint8_t status_latched;
47 uint8_t bcd; /* not supported */
48 uint8_t gate; /* timer start */
49 int64_t count_load_time;
51 int64_t next_transition_time;
57 PITChannelState channels[3];
60 static PITState pit_state;
62 static void pit_irq_timer_update(PITChannelState *s, int64_t current_time);
64 static int pit_get_count(PITChannelState *s)
69 d = muldiv64(qemu_get_clock(vm_clock) - s->count_load_time, PIT_FREQ,
76 counter = (s->count - d) & 0xffff;
79 /* XXX: may be incorrect for odd counts */
80 counter = s->count - ((2 * d) % s->count);
83 counter = s->count - (d % s->count);
89 /* get pit output bit */
90 static int pit_get_out1(PITChannelState *s, int64_t current_time)
95 d = muldiv64(current_time - s->count_load_time, PIT_FREQ,
100 out = (d >= s->count);
103 out = (d < s->count);
106 if ((d % s->count) == 0 && d != 0)
112 out = (d % s->count) < ((s->count + 1) >> 1);
116 out = (d == s->count);
122 int pit_get_out(PITState *pit, int channel, int64_t current_time)
124 PITChannelState *s = &pit->channels[channel];
125 return pit_get_out1(s, current_time);
128 /* return -1 if no transition will occur. */
129 static int64_t pit_get_next_transition_time(PITChannelState *s,
130 int64_t current_time)
132 uint64_t d, next_time, base;
135 d = muldiv64(current_time - s->count_load_time, PIT_FREQ,
136 get_ticks_per_sec());
142 next_time = s->count;
147 base = (d / s->count) * s->count;
148 if ((d - base) == 0 && d != 0)
149 next_time = base + s->count;
151 next_time = base + s->count + 1;
154 base = (d / s->count) * s->count;
155 period2 = ((s->count + 1) >> 1);
156 if ((d - base) < period2)
157 next_time = base + period2;
159 next_time = base + s->count;
164 next_time = s->count;
165 else if (d == s->count)
166 next_time = s->count + 1;
171 /* convert to timer units */
172 next_time = s->count_load_time + muldiv64(next_time, get_ticks_per_sec(),
174 /* fix potential rounding problems */
175 /* XXX: better solution: use a clock at PIT_FREQ Hz */
176 if (next_time <= current_time)
177 next_time = current_time + 1;
181 /* val must be 0 or 1 */
182 void pit_set_gate(PITState *pit, int channel, int val)
184 PITChannelState *s = &pit->channels[channel];
190 /* XXX: just disable/enable counting */
195 /* restart counting on rising edge */
196 s->count_load_time = qemu_get_clock(vm_clock);
197 pit_irq_timer_update(s, s->count_load_time);
203 /* restart counting on rising edge */
204 s->count_load_time = qemu_get_clock(vm_clock);
205 pit_irq_timer_update(s, s->count_load_time);
207 /* XXX: disable/enable counting */
213 int pit_get_gate(PITState *pit, int channel)
215 PITChannelState *s = &pit->channels[channel];
219 int pit_get_initial_count(PITState *pit, int channel)
221 PITChannelState *s = &pit->channels[channel];
225 int pit_get_mode(PITState *pit, int channel)
227 PITChannelState *s = &pit->channels[channel];
231 static inline void pit_load_count(PITChannelState *s, int val)
235 s->count_load_time = qemu_get_clock(vm_clock);
237 pit_irq_timer_update(s, s->count_load_time);
240 /* if already latched, do not latch again */
241 static void pit_latch_count(PITChannelState *s)
243 if (!s->count_latched) {
244 s->latched_count = pit_get_count(s);
245 s->count_latched = s->rw_mode;
249 static void pit_ioport_write(void *opaque, uint32_t addr, uint32_t val)
251 PITState *pit = opaque;
259 /* read back command */
260 for(channel = 0; channel < 3; channel++) {
261 s = &pit->channels[channel];
262 if (val & (2 << channel)) {
266 if (!(val & 0x10) && !s->status_latched) {
268 /* XXX: add BCD and null count */
269 s->status = (pit_get_out1(s, qemu_get_clock(vm_clock)) << 7) |
273 s->status_latched = 1;
278 s = &pit->channels[channel];
279 access = (val >> 4) & 3;
284 s->read_state = access;
285 s->write_state = access;
287 s->mode = (val >> 1) & 7;
289 /* XXX: update irq timer ? */
293 s = &pit->channels[addr];
294 switch(s->write_state) {
297 pit_load_count(s, val);
300 pit_load_count(s, val << 8);
303 s->write_latch = val;
304 s->write_state = RW_STATE_WORD1;
307 pit_load_count(s, s->write_latch | (val << 8));
308 s->write_state = RW_STATE_WORD0;
314 static uint32_t pit_ioport_read(void *opaque, uint32_t addr)
316 PITState *pit = opaque;
321 s = &pit->channels[addr];
322 if (s->status_latched) {
323 s->status_latched = 0;
325 } else if (s->count_latched) {
326 switch(s->count_latched) {
329 ret = s->latched_count & 0xff;
330 s->count_latched = 0;
333 ret = s->latched_count >> 8;
334 s->count_latched = 0;
337 ret = s->latched_count & 0xff;
338 s->count_latched = RW_STATE_MSB;
342 switch(s->read_state) {
345 count = pit_get_count(s);
349 count = pit_get_count(s);
350 ret = (count >> 8) & 0xff;
353 count = pit_get_count(s);
355 s->read_state = RW_STATE_WORD1;
358 count = pit_get_count(s);
359 ret = (count >> 8) & 0xff;
360 s->read_state = RW_STATE_WORD0;
367 static void pit_irq_timer_update(PITChannelState *s, int64_t current_time)
374 expire_time = pit_get_next_transition_time(s, current_time);
375 irq_level = pit_get_out1(s, current_time);
376 qemu_set_irq(s->irq, irq_level);
378 printf("irq_level=%d next_delay=%f\n",
380 (double)(expire_time - current_time) / get_ticks_per_sec());
382 s->next_transition_time = expire_time;
383 if (expire_time != -1)
384 qemu_mod_timer(s->irq_timer, expire_time);
386 qemu_del_timer(s->irq_timer);
389 static void pit_irq_timer(void *opaque)
391 PITChannelState *s = opaque;
393 pit_irq_timer_update(s, s->next_transition_time);
396 static const VMStateDescription vmstate_pit_channel = {
397 .name = "pit channel",
399 .minimum_version_id = 2,
400 .minimum_version_id_old = 2,
401 .fields = (VMStateField []) {
402 VMSTATE_INT32(count, PITChannelState),
403 VMSTATE_UINT16(latched_count, PITChannelState),
404 VMSTATE_UINT8(count_latched, PITChannelState),
405 VMSTATE_UINT8(status_latched, PITChannelState),
406 VMSTATE_UINT8(status, PITChannelState),
407 VMSTATE_UINT8(read_state, PITChannelState),
408 VMSTATE_UINT8(write_state, PITChannelState),
409 VMSTATE_UINT8(write_latch, PITChannelState),
410 VMSTATE_UINT8(rw_mode, PITChannelState),
411 VMSTATE_UINT8(mode, PITChannelState),
412 VMSTATE_UINT8(bcd, PITChannelState),
413 VMSTATE_UINT8(gate, PITChannelState),
414 VMSTATE_INT64(count_load_time, PITChannelState),
415 VMSTATE_INT64(next_transition_time, PITChannelState),
416 VMSTATE_END_OF_LIST()
420 static int pit_load_old(QEMUFile *f, void *opaque, int version_id)
422 PITState *pit = opaque;
429 for(i = 0; i < 3; i++) {
430 s = &pit->channels[i];
431 s->count=qemu_get_be32(f);
432 qemu_get_be16s(f, &s->latched_count);
433 qemu_get_8s(f, &s->count_latched);
434 qemu_get_8s(f, &s->status_latched);
435 qemu_get_8s(f, &s->status);
436 qemu_get_8s(f, &s->read_state);
437 qemu_get_8s(f, &s->write_state);
438 qemu_get_8s(f, &s->write_latch);
439 qemu_get_8s(f, &s->rw_mode);
440 qemu_get_8s(f, &s->mode);
441 qemu_get_8s(f, &s->bcd);
442 qemu_get_8s(f, &s->gate);
443 s->count_load_time=qemu_get_be64(f);
445 s->next_transition_time=qemu_get_be64(f);
446 qemu_get_timer(f, s->irq_timer);
452 static const VMStateDescription vmstate_pit = {
455 .minimum_version_id = 2,
456 .minimum_version_id_old = 1,
457 .load_state_old = pit_load_old,
458 .fields = (VMStateField []) {
459 VMSTATE_STRUCT_ARRAY(channels, PITState, 3, 2, vmstate_pit_channel, PITChannelState),
460 VMSTATE_TIMER(channels[0].irq_timer, PITState),
461 VMSTATE_END_OF_LIST()
465 static void pit_reset(void *opaque)
467 PITState *pit = opaque;
471 for(i = 0;i < 3; i++) {
472 s = &pit->channels[i];
475 pit_load_count(s, 0);
479 /* When HPET is operating in legacy mode, i8254 timer0 is disabled */
480 void hpet_pit_disable(void) {
482 s = &pit_state.channels[0];
484 qemu_del_timer(s->irq_timer);
487 /* When HPET is reset or leaving legacy mode, it must reenable i8254
491 void hpet_pit_enable(void)
493 PITState *pit = &pit_state;
495 s = &pit->channels[0];
498 pit_load_count(s, 0);
501 PITState *pit_init(int base, qemu_irq irq)
503 PITState *pit = &pit_state;
506 s = &pit->channels[0];
507 /* the timer 0 is connected to an IRQ */
508 s->irq_timer = qemu_new_timer(vm_clock, pit_irq_timer, s);
511 vmstate_register(NULL, base, &vmstate_pit, pit);
512 qemu_register_reset(pit_reset, pit);
513 register_ioport_write(base, 4, 1, pit_ioport_write, pit);
514 register_ioport_read(base, 3, 1, pit_ioport_read, pit);