2 #include "exec/gdbstub.h"
4 #include "qemu/host-utils.h"
5 #include "sysemu/sysemu.h"
6 #include "qemu/bitops.h"
8 #ifndef CONFIG_USER_ONLY
9 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
10 int access_type, int is_user,
11 hwaddr *phys_ptr, int *prot,
12 target_ulong *page_size);
15 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
19 /* VFP data registers are always little-endian. */
20 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
22 stfq_le_p(buf, env->vfp.regs[reg]);
25 if (arm_feature(env, ARM_FEATURE_NEON)) {
26 /* Aliases for Q regs. */
29 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
30 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
34 switch (reg - nregs) {
35 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
36 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
37 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
42 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
46 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
48 env->vfp.regs[reg] = ldfq_le_p(buf);
51 if (arm_feature(env, ARM_FEATURE_NEON)) {
54 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
55 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
59 switch (reg - nregs) {
60 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
61 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
62 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
67 static int raw_read(CPUARMState *env, const ARMCPRegInfo *ri,
70 *value = CPREG_FIELD32(env, ri);
74 static int raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
77 CPREG_FIELD32(env, ri) = value;
81 static bool read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
84 /* Raw read of a coprocessor register (as needed for migration, etc)
85 * return true on success, false if the read is impossible for some reason.
87 if (ri->type & ARM_CP_CONST) {
89 } else if (ri->raw_readfn) {
90 return (ri->raw_readfn(env, ri, v) == 0);
91 } else if (ri->readfn) {
92 return (ri->readfn(env, ri, v) == 0);
94 if (ri->type & ARM_CP_64BIT) {
95 *v = CPREG_FIELD64(env, ri);
97 *v = CPREG_FIELD32(env, ri);
103 static bool write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
106 /* Raw write of a coprocessor register (as needed for migration, etc).
107 * Return true on success, false if the write is impossible for some reason.
108 * Note that constant registers are treated as write-ignored; the
109 * caller should check for success by whether a readback gives the
112 if (ri->type & ARM_CP_CONST) {
114 } else if (ri->raw_writefn) {
115 return (ri->raw_writefn(env, ri, v) == 0);
116 } else if (ri->writefn) {
117 return (ri->writefn(env, ri, v) == 0);
119 if (ri->type & ARM_CP_64BIT) {
120 CPREG_FIELD64(env, ri) = v;
122 CPREG_FIELD32(env, ri) = v;
128 bool write_cpustate_to_list(ARMCPU *cpu)
130 /* Write the coprocessor state from cpu->env to the (index,value) list. */
134 for (i = 0; i < cpu->cpreg_array_len; i++) {
135 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
136 const ARMCPRegInfo *ri;
138 ri = get_arm_cp_reginfo(cpu, regidx);
143 if (ri->type & ARM_CP_NO_MIGRATE) {
146 if (!read_raw_cp_reg(&cpu->env, ri, &v)) {
150 cpu->cpreg_values[i] = v;
155 bool write_list_to_cpustate(ARMCPU *cpu)
160 for (i = 0; i < cpu->cpreg_array_len; i++) {
161 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
162 uint64_t v = cpu->cpreg_values[i];
164 const ARMCPRegInfo *ri;
166 ri = get_arm_cp_reginfo(cpu, regidx);
171 if (ri->type & ARM_CP_NO_MIGRATE) {
174 /* Write value and confirm it reads back as written
175 * (to catch read-only registers and partially read-only
176 * registers where the incoming migration value doesn't match)
178 if (!write_raw_cp_reg(&cpu->env, ri, v) ||
179 !read_raw_cp_reg(&cpu->env, ri, &readback) ||
187 static void add_cpreg_to_list(gpointer key, gpointer opaque)
189 ARMCPU *cpu = opaque;
191 const ARMCPRegInfo *ri;
193 regidx = *(uint32_t *)key;
194 ri = get_arm_cp_reginfo(cpu, regidx);
196 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
197 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
198 /* The value array need not be initialized at this point */
199 cpu->cpreg_array_len++;
203 static void count_cpreg(gpointer key, gpointer opaque)
205 ARMCPU *cpu = opaque;
207 const ARMCPRegInfo *ri;
209 regidx = *(uint32_t *)key;
210 ri = get_arm_cp_reginfo(cpu, regidx);
212 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
213 cpu->cpreg_array_len++;
217 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
219 uint32_t aidx = *(uint32_t *)a;
220 uint32_t bidx = *(uint32_t *)b;
225 void init_cpreg_list(ARMCPU *cpu)
227 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
228 * Note that we require cpreg_tuples[] to be sorted by key ID.
233 keys = g_hash_table_get_keys(cpu->cp_regs);
234 keys = g_list_sort(keys, cpreg_key_compare);
236 cpu->cpreg_array_len = 0;
238 g_list_foreach(keys, count_cpreg, cpu);
240 arraylen = cpu->cpreg_array_len;
241 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
242 cpu->cpreg_values = g_new(uint64_t, arraylen);
243 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
244 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
245 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
246 cpu->cpreg_array_len = 0;
248 g_list_foreach(keys, add_cpreg_to_list, cpu);
250 assert(cpu->cpreg_array_len == arraylen);
255 static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
257 env->cp15.c3 = value;
258 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
262 static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
264 if (env->cp15.c13_fcse != value) {
265 /* Unlike real hardware the qemu TLB uses virtual addresses,
266 * not modified virtual addresses, so this causes a TLB flush.
269 env->cp15.c13_fcse = value;
273 static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
276 if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
277 /* For VMSA (when not using the LPAE long descriptor page table
278 * format) this register includes the ASID, so do a TLB flush.
279 * For PMSA it is purely a process ID and no action is needed.
283 env->cp15.c13_context = value;
287 static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
290 /* Invalidate all (TLBIALL) */
295 static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
298 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
299 tlb_flush_page(env, value & TARGET_PAGE_MASK);
303 static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
306 /* Invalidate by ASID (TLBIASID) */
307 tlb_flush(env, value == 0);
311 static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
314 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
315 tlb_flush_page(env, value & TARGET_PAGE_MASK);
319 static const ARMCPRegInfo cp_reginfo[] = {
320 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
321 * version" bits will read as a reserved value, which should cause
322 * Linux to not try to use the debug hardware.
324 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
325 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
326 /* MMU Domain access control / MPU write buffer control */
327 { .name = "DACR", .cp = 15,
328 .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
329 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
330 .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
331 { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
332 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
333 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
334 { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
335 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
336 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
337 /* ??? This covers not just the impdef TLB lockdown registers but also
338 * some v7VMSA registers relating to TEX remap, so it is overly broad.
340 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
341 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
342 /* MMU TLB control. Note that the wildcarding means we cover not just
343 * the unified TLB ops but also the dside/iside/inner-shareable variants.
345 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
346 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
347 .type = ARM_CP_NO_MIGRATE },
348 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
349 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
350 .type = ARM_CP_NO_MIGRATE },
351 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
352 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
353 .type = ARM_CP_NO_MIGRATE },
354 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
355 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
356 .type = ARM_CP_NO_MIGRATE },
357 /* Cache maintenance ops; some of this space may be overridden later. */
358 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
359 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
360 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
364 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
365 /* Not all pre-v6 cores implemented this WFI, so this is slightly
368 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
369 .access = PL1_W, .type = ARM_CP_WFI },
373 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
374 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
375 * is UNPREDICTABLE; we choose to NOP as most implementations do).
377 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
378 .access = PL1_W, .type = ARM_CP_WFI },
379 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
380 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
381 * OMAPCP will override this space.
383 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
384 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
386 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
387 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
389 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
390 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
391 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
396 static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
398 if (env->cp15.c1_coproc != value) {
399 env->cp15.c1_coproc = value;
400 /* ??? Is this safe when called from within a TB? */
406 static const ARMCPRegInfo v6_cp_reginfo[] = {
407 /* prefetch by MVA in v6, NOP in v7 */
408 { .name = "MVA_prefetch",
409 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
410 .access = PL1_W, .type = ARM_CP_NOP },
411 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
412 .access = PL0_W, .type = ARM_CP_NOP },
413 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
414 .access = PL0_W, .type = ARM_CP_NOP },
415 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
416 .access = PL0_W, .type = ARM_CP_NOP },
417 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
418 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
420 /* Watchpoint Fault Address Register : should actually only be present
421 * for 1136, 1176, 11MPCore.
423 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
424 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
425 { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
426 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
427 .resetvalue = 0, .writefn = cpacr_write },
432 static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri,
435 /* Generic performance monitor register read function for where
436 * user access may be allowed by PMUSERENR.
438 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
441 *value = CPREG_FIELD32(env, ri);
445 static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
448 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
451 /* only the DP, X, D and E bits are writable */
452 env->cp15.c9_pmcr &= ~0x39;
453 env->cp15.c9_pmcr |= (value & 0x39);
457 static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
460 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
464 env->cp15.c9_pmcnten |= value;
468 static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
471 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
475 env->cp15.c9_pmcnten &= ~value;
479 static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
482 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
485 env->cp15.c9_pmovsr &= ~value;
489 static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
492 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
495 env->cp15.c9_pmxevtyper = value & 0xff;
499 static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
502 env->cp15.c9_pmuserenr = value & 1;
506 static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
509 /* We have no event counters so only the C bit can be changed */
511 env->cp15.c9_pminten |= value;
515 static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
519 env->cp15.c9_pminten &= ~value;
523 static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
526 ARMCPU *cpu = arm_env_get_cpu(env);
527 *value = cpu->ccsidr[env->cp15.c0_cssel];
531 static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
534 env->cp15.c0_cssel = value & 0xf;
538 static const ARMCPRegInfo v7_cp_reginfo[] = {
539 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
542 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
543 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
544 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
545 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
546 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
547 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
548 .access = PL1_W, .type = ARM_CP_NOP },
549 /* Performance monitors are implementation defined in v7,
550 * but with an ARM recommended set of registers, which we
551 * follow (although we don't actually implement any counters)
553 * Performance registers fall into three categories:
554 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
555 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
556 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
557 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
558 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
560 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
561 .access = PL0_RW, .resetvalue = 0,
562 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
563 .readfn = pmreg_read, .writefn = pmcntenset_write,
564 .raw_readfn = raw_read, .raw_writefn = raw_write },
565 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
566 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
567 .readfn = pmreg_read, .writefn = pmcntenclr_write,
568 .type = ARM_CP_NO_MIGRATE },
569 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
570 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
571 .readfn = pmreg_read, .writefn = pmovsr_write,
572 .raw_readfn = raw_read, .raw_writefn = raw_write },
573 /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
576 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
577 .access = PL0_W, .type = ARM_CP_NOP },
578 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
579 * We choose to RAZ/WI. XXX should respect PMUSERENR.
581 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
582 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
583 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
584 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
585 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
586 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
588 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
589 .readfn = pmreg_read, .writefn = pmxevtyper_write,
590 .raw_readfn = raw_read, .raw_writefn = raw_write },
591 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
592 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
593 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
594 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
595 .access = PL0_R | PL1_RW,
596 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
598 .writefn = pmuserenr_write, .raw_writefn = raw_write },
599 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
601 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
603 .writefn = pmintenset_write, .raw_writefn = raw_write },
604 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
605 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
606 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
607 .resetvalue = 0, .writefn = pmintenclr_write, },
608 { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
609 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
611 { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
612 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE },
613 { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
614 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
615 .writefn = csselr_write, .resetvalue = 0 },
616 /* Auxiliary ID register: this actually has an IMPDEF value but for now
617 * just RAZ for all cores:
619 { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
620 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
624 static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
631 static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri,
634 /* This is a helper function because the user access rights
635 * depend on the value of the TEECR.
637 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
640 *value = env->teehbr;
644 static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
647 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
654 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
655 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
656 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
658 .writefn = teecr_write },
659 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
660 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
661 .resetvalue = 0, .raw_readfn = raw_read, .raw_writefn = raw_write,
662 .readfn = teehbr_read, .writefn = teehbr_write },
666 static const ARMCPRegInfo v6k_cp_reginfo[] = {
667 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
669 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1),
671 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
672 .access = PL0_R|PL1_W,
673 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2),
675 { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4,
677 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3),
682 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
683 /* Dummy implementation: RAZ/WI the whole crn=14 space */
684 { .name = "GENERIC_TIMER", .cp = 15, .crn = 14,
685 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
686 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
691 static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
693 if (arm_feature(env, ARM_FEATURE_LPAE)) {
694 env->cp15.c7_par = value;
695 } else if (arm_feature(env, ARM_FEATURE_V7)) {
696 env->cp15.c7_par = value & 0xfffff6ff;
698 env->cp15.c7_par = value & 0xfffff1ff;
703 #ifndef CONFIG_USER_ONLY
704 /* get_phys_addr() isn't present for user-mode-only targets */
706 /* Return true if extended addresses are enabled, ie this is an
707 * LPAE implementation and we are using the long-descriptor translation
708 * table format because the TTBCR EAE bit is set.
710 static inline bool extended_addresses_enabled(CPUARMState *env)
712 return arm_feature(env, ARM_FEATURE_LPAE)
713 && (env->cp15.c2_control & (1 << 31));
716 static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
719 target_ulong page_size;
721 int ret, is_user = ri->opc2 & 2;
722 int access_type = ri->opc2 & 1;
725 /* Other states are only available with TrustZone */
728 ret = get_phys_addr(env, value, access_type, is_user,
729 &phys_addr, &prot, &page_size);
730 if (extended_addresses_enabled(env)) {
731 /* ret is a DFSR/IFSR value for the long descriptor
732 * translation table format, but with WnR always clear.
733 * Convert it to a 64-bit PAR.
735 uint64_t par64 = (1 << 11); /* LPAE bit always set */
737 par64 |= phys_addr & ~0xfffULL;
738 /* We don't set the ATTR or SH fields in the PAR. */
741 par64 |= (ret & 0x3f) << 1; /* FS */
742 /* Note that S2WLK and FSTAGE are always zero, because we don't
743 * implement virtualization and therefore there can't be a stage 2
747 env->cp15.c7_par = par64;
748 env->cp15.c7_par_hi = par64 >> 32;
750 /* ret is a DFSR/IFSR value for the short descriptor
751 * translation table format (with WnR always clear).
752 * Convert it to a 32-bit PAR.
755 /* We do not set any attribute bits in the PAR */
756 if (page_size == (1 << 24)
757 && arm_feature(env, ARM_FEATURE_V7)) {
758 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
760 env->cp15.c7_par = phys_addr & 0xfffff000;
763 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
764 ((ret & (12 << 1)) >> 6) |
765 ((ret & 0xf) << 1) | 1;
767 env->cp15.c7_par_hi = 0;
773 static const ARMCPRegInfo vapa_cp_reginfo[] = {
774 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
775 .access = PL1_RW, .resetvalue = 0,
776 .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
777 .writefn = par_write },
778 #ifndef CONFIG_USER_ONLY
779 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
780 .access = PL1_W, .writefn = ats_write, .type = ARM_CP_NO_MIGRATE },
785 /* Return basic MPU access permission bits. */
786 static uint32_t simple_mpu_ap_bits(uint32_t val)
793 for (i = 0; i < 16; i += 2) {
794 ret |= (val >> i) & mask;
800 /* Pad basic MPU access permission bits to extended format. */
801 static uint32_t extended_mpu_ap_bits(uint32_t val)
808 for (i = 0; i < 16; i += 2) {
809 ret |= (val & mask) << i;
815 static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
818 env->cp15.c5_data = extended_mpu_ap_bits(value);
822 static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
825 *value = simple_mpu_ap_bits(env->cp15.c5_data);
829 static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
832 env->cp15.c5_insn = extended_mpu_ap_bits(value);
836 static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
839 *value = simple_mpu_ap_bits(env->cp15.c5_insn);
843 static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri,
849 *value = env->cp15.c6_region[ri->crm];
853 static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
859 env->cp15.c6_region[ri->crm] = value;
863 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
864 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
865 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
866 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
867 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
868 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
869 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
870 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
871 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
872 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
874 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
875 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
877 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
878 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
880 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
881 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
883 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
884 /* Protection region base and size registers */
885 { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0,
886 .opc2 = CP_ANY, .access = PL1_RW,
887 .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, },
891 static int vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
894 if (arm_feature(env, ARM_FEATURE_LPAE)) {
895 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
899 /* Note that we always calculate c2_mask and c2_base_mask, but
900 * they are only used for short-descriptor tables (ie if EAE is 0);
901 * for long-descriptor tables the TTBCR fields are used differently
902 * and the c2_mask and c2_base_mask values are meaningless.
904 env->cp15.c2_control = value;
905 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> value);
906 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> value);
910 static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
913 if (arm_feature(env, ARM_FEATURE_LPAE)) {
914 /* With LPAE the TTBCR could result in a change of ASID
915 * via the TTBCR.A1 bit, so do a TLB flush.
919 return vmsa_ttbcr_raw_write(env, ri, value);
922 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
924 env->cp15.c2_base_mask = 0xffffc000u;
925 env->cp15.c2_control = 0;
926 env->cp15.c2_mask = 0;
929 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
930 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
932 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
933 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
935 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
936 { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
938 .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, },
939 { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
941 .fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, },
942 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
943 .access = PL1_RW, .writefn = vmsa_ttbcr_write,
944 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
945 .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
946 { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
947 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
952 static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
955 env->cp15.c15_ticonfig = value & 0xe7;
956 /* The OS_TYPE bit in this register changes the reported CPUID! */
957 env->cp15.c0_cpuid = (value & (1 << 5)) ?
958 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
962 static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
965 env->cp15.c15_threadid = value & 0xffff;
969 static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
972 /* Wait-for-interrupt (deprecated) */
973 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
977 static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
980 /* On OMAP there are registers indicating the max/min index of dcache lines
981 * containing a dirty line; cache flush operations have to reset these.
983 env->cp15.c15_i_max = 0x000;
984 env->cp15.c15_i_min = 0xff0;
988 static const ARMCPRegInfo omap_cp_reginfo[] = {
989 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
990 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
991 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
992 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
993 .access = PL1_RW, .type = ARM_CP_NOP },
994 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
996 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
997 .writefn = omap_ticonfig_write },
998 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
1000 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
1001 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
1002 .access = PL1_RW, .resetvalue = 0xff0,
1003 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
1004 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
1006 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
1007 .writefn = omap_threadid_write },
1008 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
1009 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1010 .type = ARM_CP_NO_MIGRATE,
1011 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
1012 /* TODO: Peripheral port remap register:
1013 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1014 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1017 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1018 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
1019 .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE,
1020 .writefn = omap_cachemaint_write },
1021 { .name = "C9", .cp = 15, .crn = 9,
1022 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
1023 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1027 static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1031 if (env->cp15.c15_cpar != value) {
1032 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1034 env->cp15.c15_cpar = value;
1039 static const ARMCPRegInfo xscale_cp_reginfo[] = {
1040 { .name = "XSCALE_CPAR",
1041 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1042 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
1043 .writefn = xscale_cpar_write, },
1044 { .name = "XSCALE_AUXCR",
1045 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
1046 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
1051 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
1052 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1053 * implementation of this implementation-defined space.
1054 * Ideally this should eventually disappear in favour of actually
1055 * implementing the correct behaviour for all cores.
1057 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
1058 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1059 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1064 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
1065 /* Cache status: RAZ because we have no cache so it's always clean */
1066 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
1067 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1072 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
1073 /* We never have a a block transfer operation in progress */
1074 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
1075 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1077 /* The cache ops themselves: these all NOP for QEMU */
1078 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
1079 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1080 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
1081 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1082 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
1083 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1084 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
1085 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1086 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
1087 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1088 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
1089 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1093 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
1094 /* The cache test-and-clean instructions always return (1 << 30)
1095 * to indicate that there are no dirty cache lines.
1097 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
1098 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1099 .resetvalue = (1 << 30) },
1100 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
1101 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1102 .resetvalue = (1 << 30) },
1106 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
1107 /* Ignore ReadBuffer accesses */
1108 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
1109 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1110 .access = PL1_RW, .resetvalue = 0,
1111 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE },
1115 static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1118 CPUState *cs = CPU(arm_env_get_cpu(env));
1119 uint32_t mpidr = cs->cpu_index;
1120 /* We don't support setting cluster ID ([8..11])
1121 * so these bits always RAZ.
1123 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1125 /* Cores which are uniprocessor (non-coherent)
1126 * but still implement the MP extensions set
1127 * bit 30. (For instance, A9UP.) However we do
1128 * not currently model any of those cores.
1135 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
1136 { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
1137 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE },
1141 static int par64_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1143 *value = ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
1147 static int par64_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1149 env->cp15.c7_par_hi = value >> 32;
1150 env->cp15.c7_par = value;
1154 static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1156 env->cp15.c7_par_hi = 0;
1157 env->cp15.c7_par = 0;
1160 static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri,
1163 *value = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
1167 static int ttbr064_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1170 env->cp15.c2_base0_hi = value >> 32;
1171 env->cp15.c2_base0 = value;
1175 static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri,
1178 /* Writes to the 64 bit format TTBRs may change the ASID */
1180 return ttbr064_raw_write(env, ri, value);
1183 static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1185 env->cp15.c2_base0_hi = 0;
1186 env->cp15.c2_base0 = 0;
1189 static int ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri,
1192 *value = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
1196 static int ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri,
1199 env->cp15.c2_base1_hi = value >> 32;
1200 env->cp15.c2_base1 = value;
1204 static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1206 env->cp15.c2_base1_hi = 0;
1207 env->cp15.c2_base1 = 0;
1210 static const ARMCPRegInfo lpae_cp_reginfo[] = {
1211 /* NOP AMAIR0/1: the override is because these clash with the rather
1212 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1214 { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
1215 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1217 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
1218 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1220 /* 64 bit access versions of the (dummy) debug registers */
1221 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1222 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1223 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1224 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1225 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
1226 .access = PL1_RW, .type = ARM_CP_64BIT,
1227 .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
1228 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1229 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read,
1230 .writefn = ttbr064_write, .raw_writefn = ttbr064_raw_write,
1231 .resetfn = ttbr064_reset },
1232 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1233 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read,
1234 .writefn = ttbr164_write, .resetfn = ttbr164_reset },
1238 static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1240 env->cp15.c1_sys = value;
1241 /* ??? Lots of these bits are not implemented. */
1242 /* This may enable/disable the MMU, so do a TLB flush. */
1247 void register_cp_regs_for_features(ARMCPU *cpu)
1249 /* Register all the coprocessor registers based on feature bits */
1250 CPUARMState *env = &cpu->env;
1251 if (arm_feature(env, ARM_FEATURE_M)) {
1252 /* M profile has no coprocessor registers */
1256 define_arm_cp_regs(cpu, cp_reginfo);
1257 if (arm_feature(env, ARM_FEATURE_V6)) {
1258 /* The ID registers all have impdef reset values */
1259 ARMCPRegInfo v6_idregs[] = {
1260 { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
1261 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1262 .resetvalue = cpu->id_pfr0 },
1263 { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
1264 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1265 .resetvalue = cpu->id_pfr1 },
1266 { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
1267 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1268 .resetvalue = cpu->id_dfr0 },
1269 { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
1270 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1271 .resetvalue = cpu->id_afr0 },
1272 { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
1273 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1274 .resetvalue = cpu->id_mmfr0 },
1275 { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
1276 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1277 .resetvalue = cpu->id_mmfr1 },
1278 { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
1279 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1280 .resetvalue = cpu->id_mmfr2 },
1281 { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
1282 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1283 .resetvalue = cpu->id_mmfr3 },
1284 { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
1285 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1286 .resetvalue = cpu->id_isar0 },
1287 { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
1288 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1289 .resetvalue = cpu->id_isar1 },
1290 { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
1291 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1292 .resetvalue = cpu->id_isar2 },
1293 { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
1294 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1295 .resetvalue = cpu->id_isar3 },
1296 { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
1297 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1298 .resetvalue = cpu->id_isar4 },
1299 { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
1300 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1301 .resetvalue = cpu->id_isar5 },
1302 /* 6..7 are as yet unallocated and must RAZ */
1303 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
1304 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1306 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
1307 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1311 define_arm_cp_regs(cpu, v6_idregs);
1312 define_arm_cp_regs(cpu, v6_cp_reginfo);
1314 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
1316 if (arm_feature(env, ARM_FEATURE_V6K)) {
1317 define_arm_cp_regs(cpu, v6k_cp_reginfo);
1319 if (arm_feature(env, ARM_FEATURE_V7)) {
1320 /* v7 performance monitor control register: same implementor
1321 * field as main ID register, and we implement no event counters.
1323 ARMCPRegInfo pmcr = {
1324 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
1325 .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
1326 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
1327 .readfn = pmreg_read, .writefn = pmcr_write,
1328 .raw_readfn = raw_read, .raw_writefn = raw_write,
1330 ARMCPRegInfo clidr = {
1331 .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
1332 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
1334 define_one_arm_cp_reg(cpu, &pmcr);
1335 define_one_arm_cp_reg(cpu, &clidr);
1336 define_arm_cp_regs(cpu, v7_cp_reginfo);
1338 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
1340 if (arm_feature(env, ARM_FEATURE_MPU)) {
1341 /* These are the MPU registers prior to PMSAv6. Any new
1342 * PMSA core later than the ARM946 will require that we
1343 * implement the PMSAv6 or PMSAv7 registers, which are
1344 * completely different.
1346 assert(!arm_feature(env, ARM_FEATURE_V6));
1347 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
1349 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
1351 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
1352 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
1354 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1355 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
1357 if (arm_feature(env, ARM_FEATURE_VAPA)) {
1358 define_arm_cp_regs(cpu, vapa_cp_reginfo);
1360 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
1361 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
1363 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
1364 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
1366 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
1367 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
1369 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1370 define_arm_cp_regs(cpu, omap_cp_reginfo);
1372 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
1373 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
1375 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1376 define_arm_cp_regs(cpu, xscale_cp_reginfo);
1378 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
1379 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
1381 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1382 define_arm_cp_regs(cpu, lpae_cp_reginfo);
1384 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
1385 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
1386 * be read-only (ie write causes UNDEF exception).
1389 ARMCPRegInfo id_cp_reginfo[] = {
1390 /* Note that the MIDR isn't a simple constant register because
1391 * of the TI925 behaviour where writes to another register can
1392 * cause the MIDR value to change.
1394 * Unimplemented registers in the c15 0 0 0 space default to
1395 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
1396 * and friends override accordingly.
1399 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
1400 .access = PL1_R, .resetvalue = cpu->midr,
1401 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
1402 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
1403 .type = ARM_CP_OVERRIDE },
1405 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
1406 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
1408 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
1409 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1411 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
1412 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1413 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
1415 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
1416 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1418 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
1419 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1421 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
1422 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1424 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
1425 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1427 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
1428 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1431 ARMCPRegInfo crn0_wi_reginfo = {
1432 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
1433 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
1434 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
1436 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
1437 arm_feature(env, ARM_FEATURE_STRONGARM)) {
1439 /* Register the blanket "writes ignored" value first to cover the
1440 * whole space. Then update the specific ID registers to allow write
1441 * access, so that they ignore writes rather than causing them to
1444 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
1445 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
1449 define_arm_cp_regs(cpu, id_cp_reginfo);
1452 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
1453 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
1456 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
1457 ARMCPRegInfo auxcr = {
1458 .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
1459 .access = PL1_RW, .type = ARM_CP_CONST,
1460 .resetvalue = cpu->reset_auxcr
1462 define_one_arm_cp_reg(cpu, &auxcr);
1465 /* Generic registers whose values depend on the implementation */
1467 ARMCPRegInfo sctlr = {
1468 .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
1469 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
1470 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
1471 .raw_writefn = raw_write,
1473 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1474 /* Normally we would always end the TB on an SCTLR write, but Linux
1475 * arch/arm/mach-pxa/sleep.S expects two instructions following
1476 * an MMU enable to execute from cache. Imitate this behaviour.
1478 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
1480 define_one_arm_cp_reg(cpu, &sctlr);
1484 ARMCPU *cpu_arm_init(const char *cpu_model)
1490 oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
1494 cpu = ARM_CPU(object_new(object_class_get_name(oc)));
1496 env->cpu_model_str = cpu_model;
1498 /* TODO this should be set centrally, once possible */
1499 object_property_set_bool(OBJECT(cpu), true, "realized", NULL);
1504 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
1506 CPUARMState *env = &cpu->env;
1508 if (arm_feature(env, ARM_FEATURE_NEON)) {
1509 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1510 51, "arm-neon.xml", 0);
1511 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
1512 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1513 35, "arm-vfp3.xml", 0);
1514 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
1515 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1516 19, "arm-vfp.xml", 0);
1520 /* Sort alphabetically by type name, except for "any". */
1521 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
1523 ObjectClass *class_a = (ObjectClass *)a;
1524 ObjectClass *class_b = (ObjectClass *)b;
1525 const char *name_a, *name_b;
1527 name_a = object_class_get_name(class_a);
1528 name_b = object_class_get_name(class_b);
1529 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
1531 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
1534 return strcmp(name_a, name_b);
1538 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
1540 ObjectClass *oc = data;
1541 CPUListState *s = user_data;
1542 const char *typename;
1545 typename = object_class_get_name(oc);
1546 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
1547 (*s->cpu_fprintf)(s->file, " %s\n",
1552 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
1556 .cpu_fprintf = cpu_fprintf,
1560 list = object_class_get_list(TYPE_ARM_CPU, false);
1561 list = g_slist_sort(list, arm_cpu_list_compare);
1562 (*cpu_fprintf)(f, "Available CPUs:\n");
1563 g_slist_foreach(list, arm_cpu_list_entry, &s);
1567 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1568 const ARMCPRegInfo *r, void *opaque)
1570 /* Define implementations of coprocessor registers.
1571 * We store these in a hashtable because typically
1572 * there are less than 150 registers in a space which
1573 * is 16*16*16*8*8 = 262144 in size.
1574 * Wildcarding is supported for the crm, opc1 and opc2 fields.
1575 * If a register is defined twice then the second definition is
1576 * used, so this can be used to define some generic registers and
1577 * then override them with implementation specific variations.
1578 * At least one of the original and the second definition should
1579 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
1580 * against accidental use.
1582 int crm, opc1, opc2;
1583 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
1584 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
1585 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
1586 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
1587 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
1588 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
1589 /* 64 bit registers have only CRm and Opc1 fields */
1590 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
1591 /* Check that the register definition has enough info to handle
1592 * reads and writes if they are permitted.
1594 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
1595 if (r->access & PL3_R) {
1596 assert(r->fieldoffset || r->readfn);
1598 if (r->access & PL3_W) {
1599 assert(r->fieldoffset || r->writefn);
1602 /* Bad type field probably means missing sentinel at end of reg list */
1603 assert(cptype_valid(r->type));
1604 for (crm = crmmin; crm <= crmmax; crm++) {
1605 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
1606 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
1607 uint32_t *key = g_new(uint32_t, 1);
1608 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
1609 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
1610 *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2);
1612 r2->opaque = opaque;
1614 /* Make sure reginfo passed to helpers for wildcarded regs
1615 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
1620 /* By convention, for wildcarded registers only the first
1621 * entry is used for migration; the others are marked as
1622 * NO_MIGRATE so we don't try to transfer the register
1623 * multiple times. Special registers (ie NOP/WFI) are
1626 if ((r->type & ARM_CP_SPECIAL) ||
1627 ((r->crm == CP_ANY) && crm != 0) ||
1628 ((r->opc1 == CP_ANY) && opc1 != 0) ||
1629 ((r->opc2 == CP_ANY) && opc2 != 0)) {
1630 r2->type |= ARM_CP_NO_MIGRATE;
1633 /* Overriding of an existing definition must be explicitly
1636 if (!(r->type & ARM_CP_OVERRIDE)) {
1637 ARMCPRegInfo *oldreg;
1638 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
1639 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
1640 fprintf(stderr, "Register redefined: cp=%d %d bit "
1641 "crn=%d crm=%d opc1=%d opc2=%d, "
1642 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
1643 r2->crn, r2->crm, r2->opc1, r2->opc2,
1644 oldreg->name, r2->name);
1648 g_hash_table_insert(cpu->cp_regs, key, r2);
1654 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1655 const ARMCPRegInfo *regs, void *opaque)
1657 /* Define a whole list of registers */
1658 const ARMCPRegInfo *r;
1659 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
1660 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
1664 const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp)
1666 return g_hash_table_lookup(cpu->cp_regs, &encoded_cp);
1669 int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1672 /* Helper coprocessor write function for write-ignore registers */
1676 int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1678 /* Helper coprocessor write function for read-as-zero registers */
1683 static int bad_mode_switch(CPUARMState *env, int mode)
1685 /* Return true if it is not valid for us to switch to
1686 * this CPU mode (ie all the UNPREDICTABLE cases in
1687 * the ARM ARM CPSRWriteByInstr pseudocode).
1690 case ARM_CPU_MODE_USR:
1691 case ARM_CPU_MODE_SYS:
1692 case ARM_CPU_MODE_SVC:
1693 case ARM_CPU_MODE_ABT:
1694 case ARM_CPU_MODE_UND:
1695 case ARM_CPU_MODE_IRQ:
1696 case ARM_CPU_MODE_FIQ:
1703 uint32_t cpsr_read(CPUARMState *env)
1706 ZF = (env->ZF == 0);
1707 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
1708 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1709 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
1710 | ((env->condexec_bits & 0xfc) << 8)
1714 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1716 if (mask & CPSR_NZCV) {
1717 env->ZF = (~val) & CPSR_Z;
1719 env->CF = (val >> 29) & 1;
1720 env->VF = (val << 3) & 0x80000000;
1723 env->QF = ((val & CPSR_Q) != 0);
1725 env->thumb = ((val & CPSR_T) != 0);
1726 if (mask & CPSR_IT_0_1) {
1727 env->condexec_bits &= ~3;
1728 env->condexec_bits |= (val >> 25) & 3;
1730 if (mask & CPSR_IT_2_7) {
1731 env->condexec_bits &= 3;
1732 env->condexec_bits |= (val >> 8) & 0xfc;
1734 if (mask & CPSR_GE) {
1735 env->GE = (val >> 16) & 0xf;
1738 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
1739 if (bad_mode_switch(env, val & CPSR_M)) {
1740 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
1741 * We choose to ignore the attempt and leave the CPSR M field
1746 switch_mode(env, val & CPSR_M);
1749 mask &= ~CACHED_CPSR_BITS;
1750 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
1753 /* Sign/zero extend */
1754 uint32_t HELPER(sxtb16)(uint32_t x)
1757 res = (uint16_t)(int8_t)x;
1758 res |= (uint32_t)(int8_t)(x >> 16) << 16;
1762 uint32_t HELPER(uxtb16)(uint32_t x)
1765 res = (uint16_t)(uint8_t)x;
1766 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
1770 uint32_t HELPER(clz)(uint32_t x)
1775 int32_t HELPER(sdiv)(int32_t num, int32_t den)
1779 if (num == INT_MIN && den == -1)
1784 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
1791 uint32_t HELPER(rbit)(uint32_t x)
1793 x = ((x & 0xff000000) >> 24)
1794 | ((x & 0x00ff0000) >> 8)
1795 | ((x & 0x0000ff00) << 8)
1796 | ((x & 0x000000ff) << 24);
1797 x = ((x & 0xf0f0f0f0) >> 4)
1798 | ((x & 0x0f0f0f0f) << 4);
1799 x = ((x & 0x88888888) >> 3)
1800 | ((x & 0x44444444) >> 1)
1801 | ((x & 0x22222222) << 1)
1802 | ((x & 0x11111111) << 3);
1806 #if defined(CONFIG_USER_ONLY)
1808 void arm_cpu_do_interrupt(CPUState *cs)
1810 ARMCPU *cpu = ARM_CPU(cs);
1811 CPUARMState *env = &cpu->env;
1813 env->exception_index = -1;
1816 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
1820 env->exception_index = EXCP_PREFETCH_ABORT;
1821 env->cp15.c6_insn = address;
1823 env->exception_index = EXCP_DATA_ABORT;
1824 env->cp15.c6_data = address;
1829 /* These should probably raise undefined insn exceptions. */
1830 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
1832 cpu_abort(env, "v7m_mrs %d\n", reg);
1835 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
1837 cpu_abort(env, "v7m_mrs %d\n", reg);
1841 void switch_mode(CPUARMState *env, int mode)
1843 if (mode != ARM_CPU_MODE_USR)
1844 cpu_abort(env, "Tried to switch out of user mode\n");
1847 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
1849 cpu_abort(env, "banked r13 write\n");
1852 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
1854 cpu_abort(env, "banked r13 read\n");
1860 /* Map CPU modes onto saved register banks. */
1861 int bank_number(int mode)
1864 case ARM_CPU_MODE_USR:
1865 case ARM_CPU_MODE_SYS:
1867 case ARM_CPU_MODE_SVC:
1869 case ARM_CPU_MODE_ABT:
1871 case ARM_CPU_MODE_UND:
1873 case ARM_CPU_MODE_IRQ:
1875 case ARM_CPU_MODE_FIQ:
1878 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
1881 void switch_mode(CPUARMState *env, int mode)
1886 old_mode = env->uncached_cpsr & CPSR_M;
1887 if (mode == old_mode)
1890 if (old_mode == ARM_CPU_MODE_FIQ) {
1891 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
1892 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
1893 } else if (mode == ARM_CPU_MODE_FIQ) {
1894 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
1895 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
1898 i = bank_number(old_mode);
1899 env->banked_r13[i] = env->regs[13];
1900 env->banked_r14[i] = env->regs[14];
1901 env->banked_spsr[i] = env->spsr;
1903 i = bank_number(mode);
1904 env->regs[13] = env->banked_r13[i];
1905 env->regs[14] = env->banked_r14[i];
1906 env->spsr = env->banked_spsr[i];
1909 static void v7m_push(CPUARMState *env, uint32_t val)
1912 stl_phys(env->regs[13], val);
1915 static uint32_t v7m_pop(CPUARMState *env)
1918 val = ldl_phys(env->regs[13]);
1923 /* Switch to V7M main or process stack pointer. */
1924 static void switch_v7m_sp(CPUARMState *env, int process)
1927 if (env->v7m.current_sp != process) {
1928 tmp = env->v7m.other_sp;
1929 env->v7m.other_sp = env->regs[13];
1930 env->regs[13] = tmp;
1931 env->v7m.current_sp = process;
1935 static void do_v7m_exception_exit(CPUARMState *env)
1940 type = env->regs[15];
1941 if (env->v7m.exception != 0)
1942 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
1944 /* Switch to the target stack. */
1945 switch_v7m_sp(env, (type & 4) != 0);
1946 /* Pop registers. */
1947 env->regs[0] = v7m_pop(env);
1948 env->regs[1] = v7m_pop(env);
1949 env->regs[2] = v7m_pop(env);
1950 env->regs[3] = v7m_pop(env);
1951 env->regs[12] = v7m_pop(env);
1952 env->regs[14] = v7m_pop(env);
1953 env->regs[15] = v7m_pop(env);
1954 xpsr = v7m_pop(env);
1955 xpsr_write(env, xpsr, 0xfffffdff);
1956 /* Undo stack alignment. */
1959 /* ??? The exception return type specifies Thread/Handler mode. However
1960 this is also implied by the xPSR value. Not sure what to do
1961 if there is a mismatch. */
1962 /* ??? Likewise for mismatches between the CONTROL register and the stack
1966 void arm_v7m_cpu_do_interrupt(CPUState *cs)
1968 ARMCPU *cpu = ARM_CPU(cs);
1969 CPUARMState *env = &cpu->env;
1970 uint32_t xpsr = xpsr_read(env);
1975 if (env->v7m.current_sp)
1977 if (env->v7m.exception == 0)
1980 /* For exceptions we just mark as pending on the NVIC, and let that
1982 /* TODO: Need to escalate if the current priority is higher than the
1983 one we're raising. */
1984 switch (env->exception_index) {
1986 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
1989 /* The PC already points to the next instruction. */
1990 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
1992 case EXCP_PREFETCH_ABORT:
1993 case EXCP_DATA_ABORT:
1994 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
1997 if (semihosting_enabled) {
1999 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2002 env->regs[0] = do_arm_semihosting(env);
2006 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
2009 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
2011 case EXCP_EXCEPTION_EXIT:
2012 do_v7m_exception_exit(env);
2015 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
2016 return; /* Never happens. Keep compiler happy. */
2019 /* Align stack pointer. */
2020 /* ??? Should only do this if Configuration Control Register
2021 STACKALIGN bit is set. */
2022 if (env->regs[13] & 4) {
2026 /* Switch to the handler mode. */
2027 v7m_push(env, xpsr);
2028 v7m_push(env, env->regs[15]);
2029 v7m_push(env, env->regs[14]);
2030 v7m_push(env, env->regs[12]);
2031 v7m_push(env, env->regs[3]);
2032 v7m_push(env, env->regs[2]);
2033 v7m_push(env, env->regs[1]);
2034 v7m_push(env, env->regs[0]);
2035 switch_v7m_sp(env, 0);
2037 env->condexec_bits = 0;
2039 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
2040 env->regs[15] = addr & 0xfffffffe;
2041 env->thumb = addr & 1;
2044 /* Handle a CPU exception. */
2045 void arm_cpu_do_interrupt(CPUState *cs)
2047 ARMCPU *cpu = ARM_CPU(cs);
2048 CPUARMState *env = &cpu->env;
2056 /* TODO: Vectored interrupt controller. */
2057 switch (env->exception_index) {
2059 new_mode = ARM_CPU_MODE_UND;
2068 if (semihosting_enabled) {
2069 /* Check for semihosting interrupt. */
2071 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
2074 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
2077 /* Only intercept calls from privileged modes, to provide some
2078 semblance of security. */
2079 if (((mask == 0x123456 && !env->thumb)
2080 || (mask == 0xab && env->thumb))
2081 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2082 env->regs[0] = do_arm_semihosting(env);
2086 new_mode = ARM_CPU_MODE_SVC;
2089 /* The PC already points to the next instruction. */
2093 /* See if this is a semihosting syscall. */
2094 if (env->thumb && semihosting_enabled) {
2095 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2097 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2099 env->regs[0] = do_arm_semihosting(env);
2103 env->cp15.c5_insn = 2;
2104 /* Fall through to prefetch abort. */
2105 case EXCP_PREFETCH_ABORT:
2106 new_mode = ARM_CPU_MODE_ABT;
2108 mask = CPSR_A | CPSR_I;
2111 case EXCP_DATA_ABORT:
2112 new_mode = ARM_CPU_MODE_ABT;
2114 mask = CPSR_A | CPSR_I;
2118 new_mode = ARM_CPU_MODE_IRQ;
2120 /* Disable IRQ and imprecise data aborts. */
2121 mask = CPSR_A | CPSR_I;
2125 new_mode = ARM_CPU_MODE_FIQ;
2127 /* Disable FIQ, IRQ and imprecise data aborts. */
2128 mask = CPSR_A | CPSR_I | CPSR_F;
2132 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
2133 return; /* Never happens. Keep compiler happy. */
2136 if (env->cp15.c1_sys & (1 << 13)) {
2139 switch_mode (env, new_mode);
2140 env->spsr = cpsr_read(env);
2141 /* Clear IT bits. */
2142 env->condexec_bits = 0;
2143 /* Switch to the new mode, and to the correct instruction set. */
2144 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
2145 env->uncached_cpsr |= mask;
2146 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
2147 * and we should just guard the thumb mode on V4 */
2148 if (arm_feature(env, ARM_FEATURE_V4T)) {
2149 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
2151 env->regs[14] = env->regs[15] + offset;
2152 env->regs[15] = addr;
2153 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
2156 /* Check section/page access permissions.
2157 Returns the page protection flags, or zero if the access is not
2159 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
2160 int access_type, int is_user)
2164 if (domain_prot == 3) {
2165 return PAGE_READ | PAGE_WRITE;
2168 if (access_type == 1)
2171 prot_ro = PAGE_READ;
2175 if (access_type == 1)
2177 switch ((env->cp15.c1_sys >> 8) & 3) {
2179 return is_user ? 0 : PAGE_READ;
2186 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
2191 return PAGE_READ | PAGE_WRITE;
2193 return PAGE_READ | PAGE_WRITE;
2194 case 4: /* Reserved. */
2197 return is_user ? 0 : prot_ro;
2201 if (!arm_feature (env, ARM_FEATURE_V6K))
2209 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
2213 if (address & env->cp15.c2_mask)
2214 table = env->cp15.c2_base1 & 0xffffc000;
2216 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
2218 table |= (address >> 18) & 0x3ffc;
2222 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
2223 int is_user, hwaddr *phys_ptr,
2224 int *prot, target_ulong *page_size)
2235 /* Pagetable walk. */
2236 /* Lookup l1 descriptor. */
2237 table = get_level1_table_address(env, address);
2238 desc = ldl_phys(table);
2240 domain = (desc >> 5) & 0x0f;
2241 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2243 /* Section translation fault. */
2247 if (domain_prot == 0 || domain_prot == 2) {
2249 code = 9; /* Section domain fault. */
2251 code = 11; /* Page domain fault. */
2256 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2257 ap = (desc >> 10) & 3;
2259 *page_size = 1024 * 1024;
2261 /* Lookup l2 entry. */
2263 /* Coarse pagetable. */
2264 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2266 /* Fine pagetable. */
2267 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
2269 desc = ldl_phys(table);
2271 case 0: /* Page translation fault. */
2274 case 1: /* 64k page. */
2275 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2276 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2277 *page_size = 0x10000;
2279 case 2: /* 4k page. */
2280 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2281 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2282 *page_size = 0x1000;
2284 case 3: /* 1k page. */
2286 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2287 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2289 /* Page translation fault. */
2294 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
2296 ap = (desc >> 4) & 3;
2300 /* Never happens, but compiler isn't smart enough to tell. */
2305 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2307 /* Access permission fault. */
2311 *phys_ptr = phys_addr;
2314 return code | (domain << 4);
2317 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
2318 int is_user, hwaddr *phys_ptr,
2319 int *prot, target_ulong *page_size)
2332 /* Pagetable walk. */
2333 /* Lookup l1 descriptor. */
2334 table = get_level1_table_address(env, address);
2335 desc = ldl_phys(table);
2337 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
2338 /* Section translation fault, or attempt to use the encoding
2339 * which is Reserved on implementations without PXN.
2344 if ((type == 1) || !(desc & (1 << 18))) {
2345 /* Page or Section. */
2346 domain = (desc >> 5) & 0x0f;
2348 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2349 if (domain_prot == 0 || domain_prot == 2) {
2351 code = 9; /* Section domain fault. */
2353 code = 11; /* Page domain fault. */
2358 if (desc & (1 << 18)) {
2360 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
2361 *page_size = 0x1000000;
2364 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2365 *page_size = 0x100000;
2367 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
2368 xn = desc & (1 << 4);
2372 if (arm_feature(env, ARM_FEATURE_PXN)) {
2373 pxn = (desc >> 2) & 1;
2375 /* Lookup l2 entry. */
2376 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2377 desc = ldl_phys(table);
2378 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
2380 case 0: /* Page translation fault. */
2383 case 1: /* 64k page. */
2384 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2385 xn = desc & (1 << 15);
2386 *page_size = 0x10000;
2388 case 2: case 3: /* 4k page. */
2389 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2391 *page_size = 0x1000;
2394 /* Never happens, but compiler isn't smart enough to tell. */
2399 if (domain_prot == 3) {
2400 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2402 if (pxn && !is_user) {
2405 if (xn && access_type == 2)
2408 /* The simplified model uses AP[0] as an access control bit. */
2409 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
2410 /* Access flag fault. */
2411 code = (code == 15) ? 6 : 3;
2414 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2416 /* Access permission fault. */
2423 *phys_ptr = phys_addr;
2426 return code | (domain << 4);
2429 /* Fault type for long-descriptor MMU fault reporting; this corresponds
2430 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
2433 translation_fault = 1,
2435 permission_fault = 3,
2438 static int get_phys_addr_lpae(CPUARMState *env, uint32_t address,
2439 int access_type, int is_user,
2440 hwaddr *phys_ptr, int *prot,
2441 target_ulong *page_size_ptr)
2443 /* Read an LPAE long-descriptor translation table. */
2444 MMUFaultType fault_type = translation_fault;
2452 uint32_t tableattrs;
2453 target_ulong page_size;
2456 /* Determine whether this address is in the region controlled by
2457 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
2458 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
2459 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
2461 uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3);
2462 uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3);
2463 if (t0sz && !extract32(address, 32 - t0sz, t0sz)) {
2464 /* there is a ttbr0 region and we are in it (high bits all zero) */
2466 } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) {
2467 /* there is a ttbr1 region and we are in it (high bits all one) */
2470 /* ttbr0 region is "everything not in the ttbr1 region" */
2473 /* ttbr1 region is "everything not in the ttbr0 region" */
2476 /* in the gap between the two regions, this is a Translation fault */
2477 fault_type = translation_fault;
2481 /* Note that QEMU ignores shareability and cacheability attributes,
2482 * so we don't need to do anything with the SH, ORGN, IRGN fields
2483 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
2484 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
2485 * implement any ASID-like capability so we can ignore it (instead
2486 * we will always flush the TLB any time the ASID is changed).
2488 if (ttbr_select == 0) {
2489 ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
2490 epd = extract32(env->cp15.c2_control, 7, 1);
2493 ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
2494 epd = extract32(env->cp15.c2_control, 23, 1);
2499 /* Translation table walk disabled => Translation fault on TLB miss */
2503 /* If the region is small enough we will skip straight to a 2nd level
2504 * lookup. This affects the number of bits of the address used in
2505 * combination with the TTBR to find the first descriptor. ('n' here
2506 * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
2507 * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
2516 /* Clear the vaddr bits which aren't part of the within-region address,
2517 * so that we don't have to special case things when calculating the
2518 * first descriptor address.
2520 address &= (0xffffffffU >> tsz);
2522 /* Now we can extract the actual base address from the TTBR */
2523 descaddr = extract64(ttbr, 0, 40);
2524 descaddr &= ~((1ULL << n) - 1);
2528 uint64_t descriptor;
2530 descaddr |= ((address >> (9 * (4 - level))) & 0xff8);
2531 descriptor = ldq_phys(descaddr);
2532 if (!(descriptor & 1) ||
2533 (!(descriptor & 2) && (level == 3))) {
2534 /* Invalid, or the Reserved level 3 encoding */
2537 descaddr = descriptor & 0xfffffff000ULL;
2539 if ((descriptor & 2) && (level < 3)) {
2540 /* Table entry. The top five bits are attributes which may
2541 * propagate down through lower levels of the table (and
2542 * which are all arranged so that 0 means "no effect", so
2543 * we can gather them up by ORing in the bits at each level).
2545 tableattrs |= extract64(descriptor, 59, 5);
2549 /* Block entry at level 1 or 2, or page entry at level 3.
2550 * These are basically the same thing, although the number
2551 * of bits we pull in from the vaddr varies.
2553 page_size = (1 << (39 - (9 * level)));
2554 descaddr |= (address & (page_size - 1));
2555 /* Extract attributes from the descriptor and merge with table attrs */
2556 attrs = extract64(descriptor, 2, 10)
2557 | (extract64(descriptor, 52, 12) << 10);
2558 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
2559 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
2560 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
2561 * means "force PL1 access only", which means forcing AP[1] to 0.
2563 if (extract32(tableattrs, 2, 1)) {
2566 /* Since we're always in the Non-secure state, NSTable is ignored. */
2569 /* Here descaddr is the final physical address, and attributes
2572 fault_type = access_fault;
2573 if ((attrs & (1 << 8)) == 0) {
2577 fault_type = permission_fault;
2578 if (is_user && !(attrs & (1 << 4))) {
2579 /* Unprivileged access not enabled */
2582 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2583 if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
2585 if (access_type == 2) {
2588 *prot &= ~PAGE_EXEC;
2590 if (attrs & (1 << 5)) {
2591 /* Write access forbidden */
2592 if (access_type == 1) {
2595 *prot &= ~PAGE_WRITE;
2598 *phys_ptr = descaddr;
2599 *page_size_ptr = page_size;
2603 /* Long-descriptor format IFSR/DFSR value */
2604 return (1 << 9) | (fault_type << 2) | level;
2607 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
2608 int access_type, int is_user,
2609 hwaddr *phys_ptr, int *prot)
2615 *phys_ptr = address;
2616 for (n = 7; n >= 0; n--) {
2617 base = env->cp15.c6_region[n];
2618 if ((base & 1) == 0)
2620 mask = 1 << ((base >> 1) & 0x1f);
2621 /* Keep this shift separate from the above to avoid an
2622 (undefined) << 32. */
2623 mask = (mask << 1) - 1;
2624 if (((base ^ address) & ~mask) == 0)
2630 if (access_type == 2) {
2631 mask = env->cp15.c5_insn;
2633 mask = env->cp15.c5_data;
2635 mask = (mask >> (n * 4)) & 0xf;
2642 *prot = PAGE_READ | PAGE_WRITE;
2647 *prot |= PAGE_WRITE;
2650 *prot = PAGE_READ | PAGE_WRITE;
2661 /* Bad permission. */
2668 /* get_phys_addr - get the physical address for this virtual address
2670 * Find the physical address corresponding to the given virtual address,
2671 * by doing a translation table walk on MMU based systems or using the
2672 * MPU state on MPU based systems.
2674 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
2675 * prot and page_size are not filled in, and the return value provides
2676 * information on why the translation aborted, in the format of a
2677 * DFSR/IFSR fault register, with the following caveats:
2678 * * we honour the short vs long DFSR format differences.
2679 * * the WnR bit is never set (the caller must do this).
2680 * * for MPU based systems we don't bother to return a full FSR format
2684 * @address: virtual address to get physical address for
2685 * @access_type: 0 for read, 1 for write, 2 for execute
2686 * @is_user: 0 for privileged access, 1 for user
2687 * @phys_ptr: set to the physical address corresponding to the virtual address
2688 * @prot: set to the permissions for the page containing phys_ptr
2689 * @page_size: set to the size of the page containing phys_ptr
2691 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
2692 int access_type, int is_user,
2693 hwaddr *phys_ptr, int *prot,
2694 target_ulong *page_size)
2696 /* Fast Context Switch Extension. */
2697 if (address < 0x02000000)
2698 address += env->cp15.c13_fcse;
2700 if ((env->cp15.c1_sys & 1) == 0) {
2701 /* MMU/MPU disabled. */
2702 *phys_ptr = address;
2703 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2704 *page_size = TARGET_PAGE_SIZE;
2706 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
2707 *page_size = TARGET_PAGE_SIZE;
2708 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
2710 } else if (extended_addresses_enabled(env)) {
2711 return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
2713 } else if (env->cp15.c1_sys & (1 << 23)) {
2714 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
2717 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
2722 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
2723 int access_type, int mmu_idx)
2726 target_ulong page_size;
2730 is_user = mmu_idx == MMU_USER_IDX;
2731 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
2734 /* Map a single [sub]page. */
2735 phys_addr &= ~(hwaddr)0x3ff;
2736 address &= ~(uint32_t)0x3ff;
2737 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
2741 if (access_type == 2) {
2742 env->cp15.c5_insn = ret;
2743 env->cp15.c6_insn = address;
2744 env->exception_index = EXCP_PREFETCH_ABORT;
2746 env->cp15.c5_data = ret;
2747 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
2748 env->cp15.c5_data |= (1 << 11);
2749 env->cp15.c6_data = address;
2750 env->exception_index = EXCP_DATA_ABORT;
2755 hwaddr cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr)
2758 target_ulong page_size;
2762 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
2770 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2772 if ((env->uncached_cpsr & CPSR_M) == mode) {
2773 env->regs[13] = val;
2775 env->banked_r13[bank_number(mode)] = val;
2779 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2781 if ((env->uncached_cpsr & CPSR_M) == mode) {
2782 return env->regs[13];
2784 return env->banked_r13[bank_number(mode)];
2788 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2792 return xpsr_read(env) & 0xf8000000;
2794 return xpsr_read(env) & 0xf80001ff;
2796 return xpsr_read(env) & 0xff00fc00;
2798 return xpsr_read(env) & 0xff00fdff;
2800 return xpsr_read(env) & 0x000001ff;
2802 return xpsr_read(env) & 0x0700fc00;
2804 return xpsr_read(env) & 0x0700edff;
2806 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2808 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2809 case 16: /* PRIMASK */
2810 return (env->uncached_cpsr & CPSR_I) != 0;
2811 case 17: /* BASEPRI */
2812 case 18: /* BASEPRI_MAX */
2813 return env->v7m.basepri;
2814 case 19: /* FAULTMASK */
2815 return (env->uncached_cpsr & CPSR_F) != 0;
2816 case 20: /* CONTROL */
2817 return env->v7m.control;
2819 /* ??? For debugging only. */
2820 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2825 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2829 xpsr_write(env, val, 0xf8000000);
2832 xpsr_write(env, val, 0xf8000000);
2835 xpsr_write(env, val, 0xfe00fc00);
2838 xpsr_write(env, val, 0xfe00fc00);
2841 /* IPSR bits are readonly. */
2844 xpsr_write(env, val, 0x0600fc00);
2847 xpsr_write(env, val, 0x0600fc00);
2850 if (env->v7m.current_sp)
2851 env->v7m.other_sp = val;
2853 env->regs[13] = val;
2856 if (env->v7m.current_sp)
2857 env->regs[13] = val;
2859 env->v7m.other_sp = val;
2861 case 16: /* PRIMASK */
2863 env->uncached_cpsr |= CPSR_I;
2865 env->uncached_cpsr &= ~CPSR_I;
2867 case 17: /* BASEPRI */
2868 env->v7m.basepri = val & 0xff;
2870 case 18: /* BASEPRI_MAX */
2872 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2873 env->v7m.basepri = val;
2875 case 19: /* FAULTMASK */
2877 env->uncached_cpsr |= CPSR_F;
2879 env->uncached_cpsr &= ~CPSR_F;
2881 case 20: /* CONTROL */
2882 env->v7m.control = val & 3;
2883 switch_v7m_sp(env, (val & 2) != 0);
2886 /* ??? For debugging only. */
2887 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2894 /* Note that signed overflow is undefined in C. The following routines are
2895 careful to use unsigned types where modulo arithmetic is required.
2896 Failure to do so _will_ break on newer gcc. */
2898 /* Signed saturating arithmetic. */
2900 /* Perform 16-bit signed saturating addition. */
2901 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2906 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2915 /* Perform 8-bit signed saturating addition. */
2916 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2921 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2930 /* Perform 16-bit signed saturating subtraction. */
2931 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2936 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2945 /* Perform 8-bit signed saturating subtraction. */
2946 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2951 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2960 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2961 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2962 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2963 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2966 #include "op_addsub.h"
2968 /* Unsigned saturating arithmetic. */
2969 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2978 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2986 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2995 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
3003 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
3004 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
3005 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
3006 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
3009 #include "op_addsub.h"
3011 /* Signed modulo arithmetic. */
3012 #define SARITH16(a, b, n, op) do { \
3014 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
3015 RESULT(sum, n, 16); \
3017 ge |= 3 << (n * 2); \
3020 #define SARITH8(a, b, n, op) do { \
3022 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
3023 RESULT(sum, n, 8); \
3029 #define ADD16(a, b, n) SARITH16(a, b, n, +)
3030 #define SUB16(a, b, n) SARITH16(a, b, n, -)
3031 #define ADD8(a, b, n) SARITH8(a, b, n, +)
3032 #define SUB8(a, b, n) SARITH8(a, b, n, -)
3036 #include "op_addsub.h"
3038 /* Unsigned modulo arithmetic. */
3039 #define ADD16(a, b, n) do { \
3041 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
3042 RESULT(sum, n, 16); \
3043 if ((sum >> 16) == 1) \
3044 ge |= 3 << (n * 2); \
3047 #define ADD8(a, b, n) do { \
3049 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
3050 RESULT(sum, n, 8); \
3051 if ((sum >> 8) == 1) \
3055 #define SUB16(a, b, n) do { \
3057 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
3058 RESULT(sum, n, 16); \
3059 if ((sum >> 16) == 0) \
3060 ge |= 3 << (n * 2); \
3063 #define SUB8(a, b, n) do { \
3065 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
3066 RESULT(sum, n, 8); \
3067 if ((sum >> 8) == 0) \
3074 #include "op_addsub.h"
3076 /* Halved signed arithmetic. */
3077 #define ADD16(a, b, n) \
3078 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
3079 #define SUB16(a, b, n) \
3080 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
3081 #define ADD8(a, b, n) \
3082 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
3083 #define SUB8(a, b, n) \
3084 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
3087 #include "op_addsub.h"
3089 /* Halved unsigned arithmetic. */
3090 #define ADD16(a, b, n) \
3091 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3092 #define SUB16(a, b, n) \
3093 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3094 #define ADD8(a, b, n) \
3095 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3096 #define SUB8(a, b, n) \
3097 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3100 #include "op_addsub.h"
3102 static inline uint8_t do_usad(uint8_t a, uint8_t b)
3110 /* Unsigned sum of absolute byte differences. */
3111 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
3114 sum = do_usad(a, b);
3115 sum += do_usad(a >> 8, b >> 8);
3116 sum += do_usad(a >> 16, b >>16);
3117 sum += do_usad(a >> 24, b >> 24);
3121 /* For ARMv6 SEL instruction. */
3122 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
3135 return (a & mask) | (b & ~mask);
3138 /* VFP support. We follow the convention used for VFP instructions:
3139 Single precision routines have a "s" suffix, double precision a
3142 /* Convert host exception flags to vfp form. */
3143 static inline int vfp_exceptbits_from_host(int host_bits)
3145 int target_bits = 0;
3147 if (host_bits & float_flag_invalid)
3149 if (host_bits & float_flag_divbyzero)
3151 if (host_bits & float_flag_overflow)
3153 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
3155 if (host_bits & float_flag_inexact)
3156 target_bits |= 0x10;
3157 if (host_bits & float_flag_input_denormal)
3158 target_bits |= 0x80;
3162 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
3167 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
3168 | (env->vfp.vec_len << 16)
3169 | (env->vfp.vec_stride << 20);
3170 i = get_float_exception_flags(&env->vfp.fp_status);
3171 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
3172 fpscr |= vfp_exceptbits_from_host(i);
3176 uint32_t vfp_get_fpscr(CPUARMState *env)
3178 return HELPER(vfp_get_fpscr)(env);
3181 /* Convert vfp exception flags to target form. */
3182 static inline int vfp_exceptbits_to_host(int target_bits)
3186 if (target_bits & 1)
3187 host_bits |= float_flag_invalid;
3188 if (target_bits & 2)
3189 host_bits |= float_flag_divbyzero;
3190 if (target_bits & 4)
3191 host_bits |= float_flag_overflow;
3192 if (target_bits & 8)
3193 host_bits |= float_flag_underflow;
3194 if (target_bits & 0x10)
3195 host_bits |= float_flag_inexact;
3196 if (target_bits & 0x80)
3197 host_bits |= float_flag_input_denormal;
3201 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
3206 changed = env->vfp.xregs[ARM_VFP_FPSCR];
3207 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
3208 env->vfp.vec_len = (val >> 16) & 7;
3209 env->vfp.vec_stride = (val >> 20) & 3;
3212 if (changed & (3 << 22)) {
3213 i = (val >> 22) & 3;
3216 i = float_round_nearest_even;
3222 i = float_round_down;
3225 i = float_round_to_zero;
3228 set_float_rounding_mode(i, &env->vfp.fp_status);
3230 if (changed & (1 << 24)) {
3231 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
3232 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
3234 if (changed & (1 << 25))
3235 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
3237 i = vfp_exceptbits_to_host(val);
3238 set_float_exception_flags(i, &env->vfp.fp_status);
3239 set_float_exception_flags(0, &env->vfp.standard_fp_status);
3242 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
3244 HELPER(vfp_set_fpscr)(env, val);
3247 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
3249 #define VFP_BINOP(name) \
3250 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
3252 float_status *fpst = fpstp; \
3253 return float32_ ## name(a, b, fpst); \
3255 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
3257 float_status *fpst = fpstp; \
3258 return float64_ ## name(a, b, fpst); \
3266 float32 VFP_HELPER(neg, s)(float32 a)
3268 return float32_chs(a);
3271 float64 VFP_HELPER(neg, d)(float64 a)
3273 return float64_chs(a);
3276 float32 VFP_HELPER(abs, s)(float32 a)
3278 return float32_abs(a);
3281 float64 VFP_HELPER(abs, d)(float64 a)
3283 return float64_abs(a);
3286 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
3288 return float32_sqrt(a, &env->vfp.fp_status);
3291 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
3293 return float64_sqrt(a, &env->vfp.fp_status);
3296 /* XXX: check quiet/signaling case */
3297 #define DO_VFP_cmp(p, type) \
3298 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
3301 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
3302 case 0: flags = 0x6; break; \
3303 case -1: flags = 0x8; break; \
3304 case 1: flags = 0x2; break; \
3305 default: case 2: flags = 0x3; break; \
3307 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3308 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3310 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
3313 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
3314 case 0: flags = 0x6; break; \
3315 case -1: flags = 0x8; break; \
3316 case 1: flags = 0x2; break; \
3317 default: case 2: flags = 0x3; break; \
3319 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3320 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3322 DO_VFP_cmp(s, float32)
3323 DO_VFP_cmp(d, float64)
3326 /* Integer to float and float to integer conversions */
3328 #define CONV_ITOF(name, fsz, sign) \
3329 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
3331 float_status *fpst = fpstp; \
3332 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
3335 #define CONV_FTOI(name, fsz, sign, round) \
3336 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
3338 float_status *fpst = fpstp; \
3339 if (float##fsz##_is_any_nan(x)) { \
3340 float_raise(float_flag_invalid, fpst); \
3343 return float##fsz##_to_##sign##int32##round(x, fpst); \
3346 #define FLOAT_CONVS(name, p, fsz, sign) \
3347 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
3348 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
3349 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
3351 FLOAT_CONVS(si, s, 32, )
3352 FLOAT_CONVS(si, d, 64, )
3353 FLOAT_CONVS(ui, s, 32, u)
3354 FLOAT_CONVS(ui, d, 64, u)
3360 /* floating point conversion */
3361 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
3363 float64 r = float32_to_float64(x, &env->vfp.fp_status);
3364 /* ARM requires that S<->D conversion of any kind of NaN generates
3365 * a quiet NaN by forcing the most significant frac bit to 1.
3367 return float64_maybe_silence_nan(r);
3370 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
3372 float32 r = float64_to_float32(x, &env->vfp.fp_status);
3373 /* ARM requires that S<->D conversion of any kind of NaN generates
3374 * a quiet NaN by forcing the most significant frac bit to 1.
3376 return float32_maybe_silence_nan(r);
3379 /* VFP3 fixed point conversion. */
3380 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
3381 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
3384 float_status *fpst = fpstp; \
3386 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
3387 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
3389 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
3392 float_status *fpst = fpstp; \
3394 if (float##fsz##_is_any_nan(x)) { \
3395 float_raise(float_flag_invalid, fpst); \
3398 tmp = float##fsz##_scalbn(x, shift, fpst); \
3399 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
3402 VFP_CONV_FIX(sh, d, 64, int16, )
3403 VFP_CONV_FIX(sl, d, 64, int32, )
3404 VFP_CONV_FIX(uh, d, 64, uint16, u)
3405 VFP_CONV_FIX(ul, d, 64, uint32, u)
3406 VFP_CONV_FIX(sh, s, 32, int16, )
3407 VFP_CONV_FIX(sl, s, 32, int32, )
3408 VFP_CONV_FIX(uh, s, 32, uint16, u)
3409 VFP_CONV_FIX(ul, s, 32, uint32, u)
3412 /* Half precision conversions. */
3413 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
3415 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3416 float32 r = float16_to_float32(make_float16(a), ieee, s);
3418 return float32_maybe_silence_nan(r);
3423 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
3425 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3426 float16 r = float32_to_float16(a, ieee, s);
3428 r = float16_maybe_silence_nan(r);
3430 return float16_val(r);
3433 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3435 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
3438 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3440 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
3443 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3445 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
3448 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3450 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
3453 #define float32_two make_float32(0x40000000)
3454 #define float32_three make_float32(0x40400000)
3455 #define float32_one_point_five make_float32(0x3fc00000)
3457 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
3459 float_status *s = &env->vfp.standard_fp_status;
3460 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3461 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3462 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3463 float_raise(float_flag_input_denormal, s);
3467 return float32_sub(float32_two, float32_mul(a, b, s), s);
3470 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
3472 float_status *s = &env->vfp.standard_fp_status;
3474 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3475 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3476 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3477 float_raise(float_flag_input_denormal, s);
3479 return float32_one_point_five;
3481 product = float32_mul(a, b, s);
3482 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
3487 /* Constants 256 and 512 are used in some helpers; we avoid relying on
3488 * int->float conversions at run-time. */
3489 #define float64_256 make_float64(0x4070000000000000LL)
3490 #define float64_512 make_float64(0x4080000000000000LL)
3492 /* The algorithm that must be used to calculate the estimate
3493 * is specified by the ARM ARM.
3495 static float64 recip_estimate(float64 a, CPUARMState *env)
3497 /* These calculations mustn't set any fp exception flags,
3498 * so we use a local copy of the fp_status.
3500 float_status dummy_status = env->vfp.standard_fp_status;
3501 float_status *s = &dummy_status;
3502 /* q = (int)(a * 512.0) */
3503 float64 q = float64_mul(float64_512, a, s);
3504 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3506 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
3507 q = int64_to_float64(q_int, s);
3508 q = float64_add(q, float64_half, s);
3509 q = float64_div(q, float64_512, s);
3510 q = float64_div(float64_one, q, s);
3512 /* s = (int)(256.0 * r + 0.5) */
3513 q = float64_mul(q, float64_256, s);
3514 q = float64_add(q, float64_half, s);
3515 q_int = float64_to_int64_round_to_zero(q, s);
3517 /* return (double)s / 256.0 */
3518 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3521 float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
3523 float_status *s = &env->vfp.standard_fp_status;
3525 uint32_t val32 = float32_val(a);
3528 int a_exp = (val32 & 0x7f800000) >> 23;
3529 int sign = val32 & 0x80000000;
3531 if (float32_is_any_nan(a)) {
3532 if (float32_is_signaling_nan(a)) {
3533 float_raise(float_flag_invalid, s);
3535 return float32_default_nan;
3536 } else if (float32_is_infinity(a)) {
3537 return float32_set_sign(float32_zero, float32_is_neg(a));
3538 } else if (float32_is_zero_or_denormal(a)) {
3539 if (!float32_is_zero(a)) {
3540 float_raise(float_flag_input_denormal, s);
3542 float_raise(float_flag_divbyzero, s);
3543 return float32_set_sign(float32_infinity, float32_is_neg(a));
3544 } else if (a_exp >= 253) {
3545 float_raise(float_flag_underflow, s);
3546 return float32_set_sign(float32_zero, float32_is_neg(a));
3549 f64 = make_float64((0x3feULL << 52)
3550 | ((int64_t)(val32 & 0x7fffff) << 29));
3552 result_exp = 253 - a_exp;
3554 f64 = recip_estimate(f64, env);
3557 | ((result_exp & 0xff) << 23)
3558 | ((float64_val(f64) >> 29) & 0x7fffff);
3559 return make_float32(val32);
3562 /* The algorithm that must be used to calculate the estimate
3563 * is specified by the ARM ARM.
3565 static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
3567 /* These calculations mustn't set any fp exception flags,
3568 * so we use a local copy of the fp_status.
3570 float_status dummy_status = env->vfp.standard_fp_status;
3571 float_status *s = &dummy_status;
3575 if (float64_lt(a, float64_half, s)) {
3576 /* range 0.25 <= a < 0.5 */
3578 /* a in units of 1/512 rounded down */
3579 /* q0 = (int)(a * 512.0); */
3580 q = float64_mul(float64_512, a, s);
3581 q_int = float64_to_int64_round_to_zero(q, s);
3583 /* reciprocal root r */
3584 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
3585 q = int64_to_float64(q_int, s);
3586 q = float64_add(q, float64_half, s);
3587 q = float64_div(q, float64_512, s);
3588 q = float64_sqrt(q, s);
3589 q = float64_div(float64_one, q, s);
3591 /* range 0.5 <= a < 1.0 */
3593 /* a in units of 1/256 rounded down */
3594 /* q1 = (int)(a * 256.0); */
3595 q = float64_mul(float64_256, a, s);
3596 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3598 /* reciprocal root r */
3599 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3600 q = int64_to_float64(q_int, s);
3601 q = float64_add(q, float64_half, s);
3602 q = float64_div(q, float64_256, s);
3603 q = float64_sqrt(q, s);
3604 q = float64_div(float64_one, q, s);
3606 /* r in units of 1/256 rounded to nearest */
3607 /* s = (int)(256.0 * r + 0.5); */
3609 q = float64_mul(q, float64_256,s );
3610 q = float64_add(q, float64_half, s);
3611 q_int = float64_to_int64_round_to_zero(q, s);
3613 /* return (double)s / 256.0;*/
3614 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3617 float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
3619 float_status *s = &env->vfp.standard_fp_status;
3625 val = float32_val(a);
3627 if (float32_is_any_nan(a)) {
3628 if (float32_is_signaling_nan(a)) {
3629 float_raise(float_flag_invalid, s);
3631 return float32_default_nan;
3632 } else if (float32_is_zero_or_denormal(a)) {
3633 if (!float32_is_zero(a)) {
3634 float_raise(float_flag_input_denormal, s);
3636 float_raise(float_flag_divbyzero, s);
3637 return float32_set_sign(float32_infinity, float32_is_neg(a));
3638 } else if (float32_is_neg(a)) {
3639 float_raise(float_flag_invalid, s);
3640 return float32_default_nan;
3641 } else if (float32_is_infinity(a)) {
3642 return float32_zero;
3645 /* Normalize to a double-precision value between 0.25 and 1.0,
3646 * preserving the parity of the exponent. */
3647 if ((val & 0x800000) == 0) {
3648 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3650 | ((uint64_t)(val & 0x7fffff) << 29));
3652 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3654 | ((uint64_t)(val & 0x7fffff) << 29));
3657 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
3659 f64 = recip_sqrt_estimate(f64, env);
3661 val64 = float64_val(f64);
3663 val = ((result_exp & 0xff) << 23)
3664 | ((val64 >> 29) & 0x7fffff);
3665 return make_float32(val);
3668 uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
3672 if ((a & 0x80000000) == 0) {
3676 f64 = make_float64((0x3feULL << 52)
3677 | ((int64_t)(a & 0x7fffffff) << 21));
3679 f64 = recip_estimate (f64, env);
3681 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3684 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
3688 if ((a & 0xc0000000) == 0) {
3692 if (a & 0x80000000) {
3693 f64 = make_float64((0x3feULL << 52)
3694 | ((uint64_t)(a & 0x7fffffff) << 21));
3695 } else { /* bits 31-30 == '01' */
3696 f64 = make_float64((0x3fdULL << 52)
3697 | ((uint64_t)(a & 0x3fffffff) << 22));
3700 f64 = recip_sqrt_estimate(f64, env);
3702 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3705 /* VFPv4 fused multiply-accumulate */
3706 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
3708 float_status *fpst = fpstp;
3709 return float32_muladd(a, b, c, 0, fpst);
3712 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
3714 float_status *fpst = fpstp;
3715 return float64_muladd(a, b, c, 0, fpst);