]> Git Repo - qemu.git/blob - hw/block/nvme.c
Merge remote-tracking branch 'remotes/berrange/tags/pull-qio-2017-02-27-2' into staging
[qemu.git] / hw / block / nvme.c
1 /*
2  * QEMU NVM Express Controller
3  *
4  * Copyright (c) 2012, Intel Corporation
5  *
6  * Written by Keith Busch <[email protected]>
7  *
8  * This code is licensed under the GNU GPL v2 or later.
9  */
10
11 /**
12  * Reference Specs: http://www.nvmexpress.org, 1.1, 1.0e
13  *
14  *  http://www.nvmexpress.org/resources/
15  */
16
17 /**
18  * Usage: add options:
19  *      -drive file=<file>,if=none,id=<drive_id>
20  *      -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>
21  */
22
23 #include "qemu/osdep.h"
24 #include "hw/block/block.h"
25 #include "hw/hw.h"
26 #include "hw/pci/msix.h"
27 #include "hw/pci/pci.h"
28 #include "sysemu/sysemu.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/block-backend.h"
32
33 #include "nvme.h"
34
35 static void nvme_process_sq(void *opaque);
36
37 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
38 {
39     return sqid < n->num_queues && n->sq[sqid] != NULL ? 0 : -1;
40 }
41
42 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
43 {
44     return cqid < n->num_queues && n->cq[cqid] != NULL ? 0 : -1;
45 }
46
47 static void nvme_inc_cq_tail(NvmeCQueue *cq)
48 {
49     cq->tail++;
50     if (cq->tail >= cq->size) {
51         cq->tail = 0;
52         cq->phase = !cq->phase;
53     }
54 }
55
56 static void nvme_inc_sq_head(NvmeSQueue *sq)
57 {
58     sq->head = (sq->head + 1) % sq->size;
59 }
60
61 static uint8_t nvme_cq_full(NvmeCQueue *cq)
62 {
63     return (cq->tail + 1) % cq->size == cq->head;
64 }
65
66 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
67 {
68     return sq->head == sq->tail;
69 }
70
71 static void nvme_isr_notify(NvmeCtrl *n, NvmeCQueue *cq)
72 {
73     if (cq->irq_enabled) {
74         if (msix_enabled(&(n->parent_obj))) {
75             msix_notify(&(n->parent_obj), cq->vector);
76         } else {
77             pci_irq_pulse(&n->parent_obj);
78         }
79     }
80 }
81
82 static uint16_t nvme_map_prp(QEMUSGList *qsg, uint64_t prp1, uint64_t prp2,
83     uint32_t len, NvmeCtrl *n)
84 {
85     hwaddr trans_len = n->page_size - (prp1 % n->page_size);
86     trans_len = MIN(len, trans_len);
87     int num_prps = (len >> n->page_bits) + 1;
88
89     if (!prp1) {
90         return NVME_INVALID_FIELD | NVME_DNR;
91     }
92
93     pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
94     qemu_sglist_add(qsg, prp1, trans_len);
95     len -= trans_len;
96     if (len) {
97         if (!prp2) {
98             goto unmap;
99         }
100         if (len > n->page_size) {
101             uint64_t prp_list[n->max_prp_ents];
102             uint32_t nents, prp_trans;
103             int i = 0;
104
105             nents = (len + n->page_size - 1) >> n->page_bits;
106             prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
107             pci_dma_read(&n->parent_obj, prp2, (void *)prp_list, prp_trans);
108             while (len != 0) {
109                 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
110
111                 if (i == n->max_prp_ents - 1 && len > n->page_size) {
112                     if (!prp_ent || prp_ent & (n->page_size - 1)) {
113                         goto unmap;
114                     }
115
116                     i = 0;
117                     nents = (len + n->page_size - 1) >> n->page_bits;
118                     prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
119                     pci_dma_read(&n->parent_obj, prp_ent, (void *)prp_list,
120                         prp_trans);
121                     prp_ent = le64_to_cpu(prp_list[i]);
122                 }
123
124                 if (!prp_ent || prp_ent & (n->page_size - 1)) {
125                     goto unmap;
126                 }
127
128                 trans_len = MIN(len, n->page_size);
129                 qemu_sglist_add(qsg, prp_ent, trans_len);
130                 len -= trans_len;
131                 i++;
132             }
133         } else {
134             if (prp2 & (n->page_size - 1)) {
135                 goto unmap;
136             }
137             qemu_sglist_add(qsg, prp2, len);
138         }
139     }
140     return NVME_SUCCESS;
141
142  unmap:
143     qemu_sglist_destroy(qsg);
144     return NVME_INVALID_FIELD | NVME_DNR;
145 }
146
147 static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
148     uint64_t prp1, uint64_t prp2)
149 {
150     QEMUSGList qsg;
151
152     if (nvme_map_prp(&qsg, prp1, prp2, len, n)) {
153         return NVME_INVALID_FIELD | NVME_DNR;
154     }
155     if (dma_buf_read(ptr, len, &qsg)) {
156         qemu_sglist_destroy(&qsg);
157         return NVME_INVALID_FIELD | NVME_DNR;
158     }
159     qemu_sglist_destroy(&qsg);
160     return NVME_SUCCESS;
161 }
162
163 static void nvme_post_cqes(void *opaque)
164 {
165     NvmeCQueue *cq = opaque;
166     NvmeCtrl *n = cq->ctrl;
167     NvmeRequest *req, *next;
168
169     QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
170         NvmeSQueue *sq;
171         hwaddr addr;
172
173         if (nvme_cq_full(cq)) {
174             break;
175         }
176
177         QTAILQ_REMOVE(&cq->req_list, req, entry);
178         sq = req->sq;
179         req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
180         req->cqe.sq_id = cpu_to_le16(sq->sqid);
181         req->cqe.sq_head = cpu_to_le16(sq->head);
182         addr = cq->dma_addr + cq->tail * n->cqe_size;
183         nvme_inc_cq_tail(cq);
184         pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
185             sizeof(req->cqe));
186         QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
187     }
188     nvme_isr_notify(n, cq);
189 }
190
191 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
192 {
193     assert(cq->cqid == req->sq->cqid);
194     QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
195     QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
196     timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
197 }
198
199 static void nvme_rw_cb(void *opaque, int ret)
200 {
201     NvmeRequest *req = opaque;
202     NvmeSQueue *sq = req->sq;
203     NvmeCtrl *n = sq->ctrl;
204     NvmeCQueue *cq = n->cq[sq->cqid];
205
206     if (!ret) {
207         block_acct_done(blk_get_stats(n->conf.blk), &req->acct);
208         req->status = NVME_SUCCESS;
209     } else {
210         block_acct_failed(blk_get_stats(n->conf.blk), &req->acct);
211         req->status = NVME_INTERNAL_DEV_ERROR;
212     }
213     if (req->has_sg) {
214         qemu_sglist_destroy(&req->qsg);
215     }
216     nvme_enqueue_req_completion(cq, req);
217 }
218
219 static uint16_t nvme_flush(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
220     NvmeRequest *req)
221 {
222     req->has_sg = false;
223     block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
224          BLOCK_ACCT_FLUSH);
225     req->aiocb = blk_aio_flush(n->conf.blk, nvme_rw_cb, req);
226
227     return NVME_NO_COMPLETE;
228 }
229
230 static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
231     NvmeRequest *req)
232 {
233     NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
234     uint32_t nlb  = le32_to_cpu(rw->nlb) + 1;
235     uint64_t slba = le64_to_cpu(rw->slba);
236     uint64_t prp1 = le64_to_cpu(rw->prp1);
237     uint64_t prp2 = le64_to_cpu(rw->prp2);
238
239     uint8_t lba_index  = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
240     uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
241     uint64_t data_size = (uint64_t)nlb << data_shift;
242     uint64_t data_offset = slba << data_shift;
243     int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
244     enum BlockAcctType acct = is_write ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;
245
246     if ((slba + nlb) > ns->id_ns.nsze) {
247         block_acct_invalid(blk_get_stats(n->conf.blk), acct);
248         return NVME_LBA_RANGE | NVME_DNR;
249     }
250
251     if (nvme_map_prp(&req->qsg, prp1, prp2, data_size, n)) {
252         block_acct_invalid(blk_get_stats(n->conf.blk), acct);
253         return NVME_INVALID_FIELD | NVME_DNR;
254     }
255
256     assert((nlb << data_shift) == req->qsg.size);
257
258     req->has_sg = true;
259     dma_acct_start(n->conf.blk, &req->acct, &req->qsg, acct);
260     req->aiocb = is_write ?
261         dma_blk_write(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
262                       nvme_rw_cb, req) :
263         dma_blk_read(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
264                      nvme_rw_cb, req);
265
266     return NVME_NO_COMPLETE;
267 }
268
269 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
270 {
271     NvmeNamespace *ns;
272     uint32_t nsid = le32_to_cpu(cmd->nsid);
273
274     if (nsid == 0 || nsid > n->num_namespaces) {
275         return NVME_INVALID_NSID | NVME_DNR;
276     }
277
278     ns = &n->namespaces[nsid - 1];
279     switch (cmd->opcode) {
280     case NVME_CMD_FLUSH:
281         return nvme_flush(n, ns, cmd, req);
282     case NVME_CMD_WRITE:
283     case NVME_CMD_READ:
284         return nvme_rw(n, ns, cmd, req);
285     default:
286         return NVME_INVALID_OPCODE | NVME_DNR;
287     }
288 }
289
290 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
291 {
292     n->sq[sq->sqid] = NULL;
293     timer_del(sq->timer);
294     timer_free(sq->timer);
295     g_free(sq->io_req);
296     if (sq->sqid) {
297         g_free(sq);
298     }
299 }
300
301 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
302 {
303     NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
304     NvmeRequest *req, *next;
305     NvmeSQueue *sq;
306     NvmeCQueue *cq;
307     uint16_t qid = le16_to_cpu(c->qid);
308
309     if (!qid || nvme_check_sqid(n, qid)) {
310         return NVME_INVALID_QID | NVME_DNR;
311     }
312
313     sq = n->sq[qid];
314     while (!QTAILQ_EMPTY(&sq->out_req_list)) {
315         req = QTAILQ_FIRST(&sq->out_req_list);
316         assert(req->aiocb);
317         blk_aio_cancel(req->aiocb);
318     }
319     if (!nvme_check_cqid(n, sq->cqid)) {
320         cq = n->cq[sq->cqid];
321         QTAILQ_REMOVE(&cq->sq_list, sq, entry);
322
323         nvme_post_cqes(cq);
324         QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
325             if (req->sq == sq) {
326                 QTAILQ_REMOVE(&cq->req_list, req, entry);
327                 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
328             }
329         }
330     }
331
332     nvme_free_sq(sq, n);
333     return NVME_SUCCESS;
334 }
335
336 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
337     uint16_t sqid, uint16_t cqid, uint16_t size)
338 {
339     int i;
340     NvmeCQueue *cq;
341
342     sq->ctrl = n;
343     sq->dma_addr = dma_addr;
344     sq->sqid = sqid;
345     sq->size = size;
346     sq->cqid = cqid;
347     sq->head = sq->tail = 0;
348     sq->io_req = g_new(NvmeRequest, sq->size);
349
350     QTAILQ_INIT(&sq->req_list);
351     QTAILQ_INIT(&sq->out_req_list);
352     for (i = 0; i < sq->size; i++) {
353         sq->io_req[i].sq = sq;
354         QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
355     }
356     sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
357
358     assert(n->cq[cqid]);
359     cq = n->cq[cqid];
360     QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
361     n->sq[sqid] = sq;
362 }
363
364 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
365 {
366     NvmeSQueue *sq;
367     NvmeCreateSq *c = (NvmeCreateSq *)cmd;
368
369     uint16_t cqid = le16_to_cpu(c->cqid);
370     uint16_t sqid = le16_to_cpu(c->sqid);
371     uint16_t qsize = le16_to_cpu(c->qsize);
372     uint16_t qflags = le16_to_cpu(c->sq_flags);
373     uint64_t prp1 = le64_to_cpu(c->prp1);
374
375     if (!cqid || nvme_check_cqid(n, cqid)) {
376         return NVME_INVALID_CQID | NVME_DNR;
377     }
378     if (!sqid || !nvme_check_sqid(n, sqid)) {
379         return NVME_INVALID_QID | NVME_DNR;
380     }
381     if (!qsize || qsize > NVME_CAP_MQES(n->bar.cap)) {
382         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
383     }
384     if (!prp1 || prp1 & (n->page_size - 1)) {
385         return NVME_INVALID_FIELD | NVME_DNR;
386     }
387     if (!(NVME_SQ_FLAGS_PC(qflags))) {
388         return NVME_INVALID_FIELD | NVME_DNR;
389     }
390     sq = g_malloc0(sizeof(*sq));
391     nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
392     return NVME_SUCCESS;
393 }
394
395 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
396 {
397     n->cq[cq->cqid] = NULL;
398     timer_del(cq->timer);
399     timer_free(cq->timer);
400     msix_vector_unuse(&n->parent_obj, cq->vector);
401     if (cq->cqid) {
402         g_free(cq);
403     }
404 }
405
406 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
407 {
408     NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
409     NvmeCQueue *cq;
410     uint16_t qid = le16_to_cpu(c->qid);
411
412     if (!qid || nvme_check_cqid(n, qid)) {
413         return NVME_INVALID_CQID | NVME_DNR;
414     }
415
416     cq = n->cq[qid];
417     if (!QTAILQ_EMPTY(&cq->sq_list)) {
418         return NVME_INVALID_QUEUE_DEL;
419     }
420     nvme_free_cq(cq, n);
421     return NVME_SUCCESS;
422 }
423
424 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
425     uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
426 {
427     cq->ctrl = n;
428     cq->cqid = cqid;
429     cq->size = size;
430     cq->dma_addr = dma_addr;
431     cq->phase = 1;
432     cq->irq_enabled = irq_enabled;
433     cq->vector = vector;
434     cq->head = cq->tail = 0;
435     QTAILQ_INIT(&cq->req_list);
436     QTAILQ_INIT(&cq->sq_list);
437     msix_vector_use(&n->parent_obj, cq->vector);
438     n->cq[cqid] = cq;
439     cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
440 }
441
442 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
443 {
444     NvmeCQueue *cq;
445     NvmeCreateCq *c = (NvmeCreateCq *)cmd;
446     uint16_t cqid = le16_to_cpu(c->cqid);
447     uint16_t vector = le16_to_cpu(c->irq_vector);
448     uint16_t qsize = le16_to_cpu(c->qsize);
449     uint16_t qflags = le16_to_cpu(c->cq_flags);
450     uint64_t prp1 = le64_to_cpu(c->prp1);
451
452     if (!cqid || !nvme_check_cqid(n, cqid)) {
453         return NVME_INVALID_CQID | NVME_DNR;
454     }
455     if (!qsize || qsize > NVME_CAP_MQES(n->bar.cap)) {
456         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
457     }
458     if (!prp1) {
459         return NVME_INVALID_FIELD | NVME_DNR;
460     }
461     if (vector > n->num_queues) {
462         return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
463     }
464     if (!(NVME_CQ_FLAGS_PC(qflags))) {
465         return NVME_INVALID_FIELD | NVME_DNR;
466     }
467
468     cq = g_malloc0(sizeof(*cq));
469     nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
470         NVME_CQ_FLAGS_IEN(qflags));
471     return NVME_SUCCESS;
472 }
473
474 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeIdentify *c)
475 {
476     uint64_t prp1 = le64_to_cpu(c->prp1);
477     uint64_t prp2 = le64_to_cpu(c->prp2);
478
479     return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
480         prp1, prp2);
481 }
482
483 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeIdentify *c)
484 {
485     NvmeNamespace *ns;
486     uint32_t nsid = le32_to_cpu(c->nsid);
487     uint64_t prp1 = le64_to_cpu(c->prp1);
488     uint64_t prp2 = le64_to_cpu(c->prp2);
489
490     if (nsid == 0 || nsid > n->num_namespaces) {
491         return NVME_INVALID_NSID | NVME_DNR;
492     }
493
494     ns = &n->namespaces[nsid - 1];
495     return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
496         prp1, prp2);
497 }
498
499 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeIdentify *c)
500 {
501     static const int data_len = 4096;
502     uint32_t min_nsid = le32_to_cpu(c->nsid);
503     uint64_t prp1 = le64_to_cpu(c->prp1);
504     uint64_t prp2 = le64_to_cpu(c->prp2);
505     uint32_t *list;
506     uint16_t ret;
507     int i, j = 0;
508
509     list = g_malloc0(data_len);
510     for (i = 0; i < n->num_namespaces; i++) {
511         if (i < min_nsid) {
512             continue;
513         }
514         list[j++] = cpu_to_le32(i + 1);
515         if (j == data_len / sizeof(uint32_t)) {
516             break;
517         }
518     }
519     ret = nvme_dma_read_prp(n, (uint8_t *)list, data_len, prp1, prp2);
520     g_free(list);
521     return ret;
522 }
523
524
525 static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
526 {
527     NvmeIdentify *c = (NvmeIdentify *)cmd;
528
529     switch (le32_to_cpu(c->cns)) {
530     case 0x00:
531         return nvme_identify_ns(n, c);
532     case 0x01:
533         return nvme_identify_ctrl(n, c);
534     case 0x02:
535         return nvme_identify_nslist(n, c);
536     default:
537         return NVME_INVALID_FIELD | NVME_DNR;
538     }
539 }
540
541 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
542 {
543     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
544     uint32_t result;
545
546     switch (dw10) {
547     case NVME_VOLATILE_WRITE_CACHE:
548         result = blk_enable_write_cache(n->conf.blk);
549         break;
550     case NVME_NUMBER_OF_QUEUES:
551         result = cpu_to_le32((n->num_queues - 1) | ((n->num_queues - 1) << 16));
552         break;
553     default:
554         return NVME_INVALID_FIELD | NVME_DNR;
555     }
556
557     req->cqe.result = result;
558     return NVME_SUCCESS;
559 }
560
561 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
562 {
563     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
564     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
565
566     switch (dw10) {
567     case NVME_VOLATILE_WRITE_CACHE:
568         blk_set_enable_write_cache(n->conf.blk, dw11 & 1);
569         break;
570     case NVME_NUMBER_OF_QUEUES:
571         req->cqe.result =
572             cpu_to_le32((n->num_queues - 1) | ((n->num_queues - 1) << 16));
573         break;
574     default:
575         return NVME_INVALID_FIELD | NVME_DNR;
576     }
577     return NVME_SUCCESS;
578 }
579
580 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
581 {
582     switch (cmd->opcode) {
583     case NVME_ADM_CMD_DELETE_SQ:
584         return nvme_del_sq(n, cmd);
585     case NVME_ADM_CMD_CREATE_SQ:
586         return nvme_create_sq(n, cmd);
587     case NVME_ADM_CMD_DELETE_CQ:
588         return nvme_del_cq(n, cmd);
589     case NVME_ADM_CMD_CREATE_CQ:
590         return nvme_create_cq(n, cmd);
591     case NVME_ADM_CMD_IDENTIFY:
592         return nvme_identify(n, cmd);
593     case NVME_ADM_CMD_SET_FEATURES:
594         return nvme_set_feature(n, cmd, req);
595     case NVME_ADM_CMD_GET_FEATURES:
596         return nvme_get_feature(n, cmd, req);
597     default:
598         return NVME_INVALID_OPCODE | NVME_DNR;
599     }
600 }
601
602 static void nvme_process_sq(void *opaque)
603 {
604     NvmeSQueue *sq = opaque;
605     NvmeCtrl *n = sq->ctrl;
606     NvmeCQueue *cq = n->cq[sq->cqid];
607
608     uint16_t status;
609     hwaddr addr;
610     NvmeCmd cmd;
611     NvmeRequest *req;
612
613     while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
614         addr = sq->dma_addr + sq->head * n->sqe_size;
615         pci_dma_read(&n->parent_obj, addr, (void *)&cmd, sizeof(cmd));
616         nvme_inc_sq_head(sq);
617
618         req = QTAILQ_FIRST(&sq->req_list);
619         QTAILQ_REMOVE(&sq->req_list, req, entry);
620         QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
621         memset(&req->cqe, 0, sizeof(req->cqe));
622         req->cqe.cid = cmd.cid;
623
624         status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
625             nvme_admin_cmd(n, &cmd, req);
626         if (status != NVME_NO_COMPLETE) {
627             req->status = status;
628             nvme_enqueue_req_completion(cq, req);
629         }
630     }
631 }
632
633 static void nvme_clear_ctrl(NvmeCtrl *n)
634 {
635     int i;
636
637     for (i = 0; i < n->num_queues; i++) {
638         if (n->sq[i] != NULL) {
639             nvme_free_sq(n->sq[i], n);
640         }
641     }
642     for (i = 0; i < n->num_queues; i++) {
643         if (n->cq[i] != NULL) {
644             nvme_free_cq(n->cq[i], n);
645         }
646     }
647
648     blk_flush(n->conf.blk);
649     n->bar.cc = 0;
650 }
651
652 static int nvme_start_ctrl(NvmeCtrl *n)
653 {
654     uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
655     uint32_t page_size = 1 << page_bits;
656
657     if (n->cq[0] || n->sq[0] || !n->bar.asq || !n->bar.acq ||
658             n->bar.asq & (page_size - 1) || n->bar.acq & (page_size - 1) ||
659             NVME_CC_MPS(n->bar.cc) < NVME_CAP_MPSMIN(n->bar.cap) ||
660             NVME_CC_MPS(n->bar.cc) > NVME_CAP_MPSMAX(n->bar.cap) ||
661             NVME_CC_IOCQES(n->bar.cc) < NVME_CTRL_CQES_MIN(n->id_ctrl.cqes) ||
662             NVME_CC_IOCQES(n->bar.cc) > NVME_CTRL_CQES_MAX(n->id_ctrl.cqes) ||
663             NVME_CC_IOSQES(n->bar.cc) < NVME_CTRL_SQES_MIN(n->id_ctrl.sqes) ||
664             NVME_CC_IOSQES(n->bar.cc) > NVME_CTRL_SQES_MAX(n->id_ctrl.sqes) ||
665             !NVME_AQA_ASQS(n->bar.aqa) || !NVME_AQA_ACQS(n->bar.aqa)) {
666         return -1;
667     }
668
669     n->page_bits = page_bits;
670     n->page_size = page_size;
671     n->max_prp_ents = n->page_size / sizeof(uint64_t);
672     n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
673     n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
674     nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
675         NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
676     nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
677         NVME_AQA_ASQS(n->bar.aqa) + 1);
678
679     return 0;
680 }
681
682 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
683     unsigned size)
684 {
685     switch (offset) {
686     case 0xc:
687         n->bar.intms |= data & 0xffffffff;
688         n->bar.intmc = n->bar.intms;
689         break;
690     case 0x10:
691         n->bar.intms &= ~(data & 0xffffffff);
692         n->bar.intmc = n->bar.intms;
693         break;
694     case 0x14:
695         /* Windows first sends data, then sends enable bit */
696         if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
697             !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
698         {
699             n->bar.cc = data;
700         }
701
702         if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
703             n->bar.cc = data;
704             if (nvme_start_ctrl(n)) {
705                 n->bar.csts = NVME_CSTS_FAILED;
706             } else {
707                 n->bar.csts = NVME_CSTS_READY;
708             }
709         } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
710             nvme_clear_ctrl(n);
711             n->bar.csts &= ~NVME_CSTS_READY;
712         }
713         if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
714                 nvme_clear_ctrl(n);
715                 n->bar.cc = data;
716                 n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
717         } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
718                 n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
719                 n->bar.cc = data;
720         }
721         break;
722     case 0x24:
723         n->bar.aqa = data & 0xffffffff;
724         break;
725     case 0x28:
726         n->bar.asq = data;
727         break;
728     case 0x2c:
729         n->bar.asq |= data << 32;
730         break;
731     case 0x30:
732         n->bar.acq = data;
733         break;
734     case 0x34:
735         n->bar.acq |= data << 32;
736         break;
737     default:
738         break;
739     }
740 }
741
742 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
743 {
744     NvmeCtrl *n = (NvmeCtrl *)opaque;
745     uint8_t *ptr = (uint8_t *)&n->bar;
746     uint64_t val = 0;
747
748     if (addr < sizeof(n->bar)) {
749         memcpy(&val, ptr + addr, size);
750     }
751     return val;
752 }
753
754 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
755 {
756     uint32_t qid;
757
758     if (addr & ((1 << 2) - 1)) {
759         return;
760     }
761
762     if (((addr - 0x1000) >> 2) & 1) {
763         uint16_t new_head = val & 0xffff;
764         int start_sqs;
765         NvmeCQueue *cq;
766
767         qid = (addr - (0x1000 + (1 << 2))) >> 3;
768         if (nvme_check_cqid(n, qid)) {
769             return;
770         }
771
772         cq = n->cq[qid];
773         if (new_head >= cq->size) {
774             return;
775         }
776
777         start_sqs = nvme_cq_full(cq) ? 1 : 0;
778         cq->head = new_head;
779         if (start_sqs) {
780             NvmeSQueue *sq;
781             QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
782                 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
783             }
784             timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
785         }
786
787         if (cq->tail != cq->head) {
788             nvme_isr_notify(n, cq);
789         }
790     } else {
791         uint16_t new_tail = val & 0xffff;
792         NvmeSQueue *sq;
793
794         qid = (addr - 0x1000) >> 3;
795         if (nvme_check_sqid(n, qid)) {
796             return;
797         }
798
799         sq = n->sq[qid];
800         if (new_tail >= sq->size) {
801             return;
802         }
803
804         sq->tail = new_tail;
805         timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
806     }
807 }
808
809 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
810     unsigned size)
811 {
812     NvmeCtrl *n = (NvmeCtrl *)opaque;
813     if (addr < sizeof(n->bar)) {
814         nvme_write_bar(n, addr, data, size);
815     } else if (addr >= 0x1000) {
816         nvme_process_db(n, addr, data);
817     }
818 }
819
820 static const MemoryRegionOps nvme_mmio_ops = {
821     .read = nvme_mmio_read,
822     .write = nvme_mmio_write,
823     .endianness = DEVICE_LITTLE_ENDIAN,
824     .impl = {
825         .min_access_size = 2,
826         .max_access_size = 8,
827     },
828 };
829
830 static int nvme_init(PCIDevice *pci_dev)
831 {
832     NvmeCtrl *n = NVME(pci_dev);
833     NvmeIdCtrl *id = &n->id_ctrl;
834
835     int i;
836     int64_t bs_size;
837     uint8_t *pci_conf;
838     Error *local_err = NULL;
839
840     if (!n->conf.blk) {
841         return -1;
842     }
843
844     bs_size = blk_getlength(n->conf.blk);
845     if (bs_size < 0) {
846         return -1;
847     }
848
849     blkconf_serial(&n->conf, &n->serial);
850     if (!n->serial) {
851         return -1;
852     }
853     blkconf_blocksizes(&n->conf);
854     blkconf_apply_backend_options(&n->conf, blk_is_read_only(n->conf.blk),
855                                   false, &local_err);
856     if (local_err) {
857         error_report_err(local_err);
858         return -1;
859     }
860
861     pci_conf = pci_dev->config;
862     pci_conf[PCI_INTERRUPT_PIN] = 1;
863     pci_config_set_prog_interface(pci_dev->config, 0x2);
864     pci_config_set_class(pci_dev->config, PCI_CLASS_STORAGE_EXPRESS);
865     pcie_endpoint_cap_init(&n->parent_obj, 0x80);
866
867     n->num_namespaces = 1;
868     n->num_queues = 64;
869     n->reg_size = pow2ceil(0x1004 + 2 * (n->num_queues + 1) * 4);
870     n->ns_size = bs_size / (uint64_t)n->num_namespaces;
871
872     n->namespaces = g_new0(NvmeNamespace, n->num_namespaces);
873     n->sq = g_new0(NvmeSQueue *, n->num_queues);
874     n->cq = g_new0(NvmeCQueue *, n->num_queues);
875
876     memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n,
877                           "nvme", n->reg_size);
878     pci_register_bar(&n->parent_obj, 0,
879         PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64,
880         &n->iomem);
881     msix_init_exclusive_bar(&n->parent_obj, n->num_queues, 4, NULL);
882
883     id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
884     id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
885     strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
886     strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
887     strpadcpy((char *)id->sn, sizeof(id->sn), n->serial, ' ');
888     id->rab = 6;
889     id->ieee[0] = 0x00;
890     id->ieee[1] = 0x02;
891     id->ieee[2] = 0xb3;
892     id->oacs = cpu_to_le16(0);
893     id->frmw = 7 << 1;
894     id->lpa = 1 << 0;
895     id->sqes = (0x6 << 4) | 0x6;
896     id->cqes = (0x4 << 4) | 0x4;
897     id->nn = cpu_to_le32(n->num_namespaces);
898     id->psd[0].mp = cpu_to_le16(0x9c4);
899     id->psd[0].enlat = cpu_to_le32(0x10);
900     id->psd[0].exlat = cpu_to_le32(0x4);
901     if (blk_enable_write_cache(n->conf.blk)) {
902         id->vwc = 1;
903     }
904
905     n->bar.cap = 0;
906     NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
907     NVME_CAP_SET_CQR(n->bar.cap, 1);
908     NVME_CAP_SET_AMS(n->bar.cap, 1);
909     NVME_CAP_SET_TO(n->bar.cap, 0xf);
910     NVME_CAP_SET_CSS(n->bar.cap, 1);
911     NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
912
913     n->bar.vs = 0x00010100;
914     n->bar.intmc = n->bar.intms = 0;
915
916     for (i = 0; i < n->num_namespaces; i++) {
917         NvmeNamespace *ns = &n->namespaces[i];
918         NvmeIdNs *id_ns = &ns->id_ns;
919         id_ns->nsfeat = 0;
920         id_ns->nlbaf = 0;
921         id_ns->flbas = 0;
922         id_ns->mc = 0;
923         id_ns->dpc = 0;
924         id_ns->dps = 0;
925         id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
926         id_ns->ncap  = id_ns->nuse = id_ns->nsze =
927             cpu_to_le64(n->ns_size >>
928                 id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas)].ds);
929     }
930     return 0;
931 }
932
933 static void nvme_exit(PCIDevice *pci_dev)
934 {
935     NvmeCtrl *n = NVME(pci_dev);
936
937     nvme_clear_ctrl(n);
938     g_free(n->namespaces);
939     g_free(n->cq);
940     g_free(n->sq);
941     msix_uninit_exclusive_bar(pci_dev);
942 }
943
944 static Property nvme_props[] = {
945     DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
946     DEFINE_PROP_STRING("serial", NvmeCtrl, serial),
947     DEFINE_PROP_END_OF_LIST(),
948 };
949
950 static const VMStateDescription nvme_vmstate = {
951     .name = "nvme",
952     .unmigratable = 1,
953 };
954
955 static void nvme_class_init(ObjectClass *oc, void *data)
956 {
957     DeviceClass *dc = DEVICE_CLASS(oc);
958     PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
959
960     pc->init = nvme_init;
961     pc->exit = nvme_exit;
962     pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
963     pc->vendor_id = PCI_VENDOR_ID_INTEL;
964     pc->device_id = 0x5845;
965     pc->revision = 2;
966     pc->is_express = 1;
967
968     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
969     dc->desc = "Non-Volatile Memory Express";
970     dc->props = nvme_props;
971     dc->vmsd = &nvme_vmstate;
972 }
973
974 static void nvme_instance_init(Object *obj)
975 {
976     NvmeCtrl *s = NVME(obj);
977
978     device_add_bootindex_property(obj, &s->conf.bootindex,
979                                   "bootindex", "/namespace@1,0",
980                                   DEVICE(obj), &error_abort);
981 }
982
983 static const TypeInfo nvme_info = {
984     .name          = "nvme",
985     .parent        = TYPE_PCI_DEVICE,
986     .instance_size = sizeof(NvmeCtrl),
987     .class_init    = nvme_class_init,
988     .instance_init = nvme_instance_init,
989 };
990
991 static void nvme_register_types(void)
992 {
993     type_register_static(&nvme_info);
994 }
995
996 type_init(nvme_register_types)
This page took 0.075916 seconds and 4 git commands to generate.