2 * Physical memory management API
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
17 #ifndef CONFIG_USER_ONLY
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/ramlist.h"
23 #include "qemu/queue.h"
24 #include "qemu/int128.h"
25 #include "qemu/notify.h"
26 #include "qom/object.h"
28 #include "hw/qdev-core.h"
30 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
32 #define MAX_PHYS_ADDR_SPACE_BITS 62
33 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35 #define TYPE_MEMORY_REGION "qemu:memory-region"
36 #define MEMORY_REGION(obj) \
37 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
39 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
40 #define IOMMU_MEMORY_REGION(obj) \
41 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
42 #define IOMMU_MEMORY_REGION_CLASS(klass) \
43 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
44 TYPE_IOMMU_MEMORY_REGION)
45 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
46 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
47 TYPE_IOMMU_MEMORY_REGION)
49 typedef struct MemoryRegionOps MemoryRegionOps;
50 typedef struct MemoryRegionMmio MemoryRegionMmio;
52 struct MemoryRegionMmio {
53 CPUReadMemoryFunc *read[3];
54 CPUWriteMemoryFunc *write[3];
57 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
59 /* See address_space_translate: bit 0 is read, bit 1 is write. */
67 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
69 struct IOMMUTLBEntry {
70 AddressSpace *target_as;
72 hwaddr translated_addr;
73 hwaddr addr_mask; /* 0xfff = 4k translation */
74 IOMMUAccessFlags perm;
78 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
79 * register with one or multiple IOMMU Notifier capability bit(s).
82 IOMMU_NOTIFIER_NONE = 0,
83 /* Notify cache invalidations */
84 IOMMU_NOTIFIER_UNMAP = 0x1,
85 /* Notify entry changes (newly created entries) */
86 IOMMU_NOTIFIER_MAP = 0x2,
89 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
92 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
95 struct IOMMUNotifier {
97 IOMMUNotifierFlag notifier_flags;
98 /* Notify for address space range start <= addr <= end */
101 QLIST_ENTRY(IOMMUNotifier) node;
103 typedef struct IOMMUNotifier IOMMUNotifier;
105 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
106 IOMMUNotifierFlag flags,
107 hwaddr start, hwaddr end)
110 n->notifier_flags = flags;
116 * Memory region callbacks
118 struct MemoryRegionOps {
119 /* Read from the memory region. @addr is relative to @mr; @size is
121 uint64_t (*read)(void *opaque,
124 /* Write to the memory region. @addr is relative to @mr; @size is
126 void (*write)(void *opaque,
131 MemTxResult (*read_with_attrs)(void *opaque,
136 MemTxResult (*write_with_attrs)(void *opaque,
141 /* Instruction execution pre-callback:
142 * @addr is the address of the access relative to the @mr.
143 * @size is the size of the area returned by the callback.
144 * @offset is the location of the pointer inside @mr.
146 * Returns a pointer to a location which contains guest code.
148 void *(*request_ptr)(void *opaque, hwaddr addr, unsigned *size,
151 enum device_endian endianness;
152 /* Guest-visible constraints: */
154 /* If nonzero, specify bounds on access sizes beyond which a machine
157 unsigned min_access_size;
158 unsigned max_access_size;
159 /* If true, unaligned accesses are supported. Otherwise unaligned
160 * accesses throw machine checks.
164 * If present, and returns #false, the transaction is not accepted
165 * by the device (and results in machine dependent behaviour such
166 * as a machine check exception).
168 bool (*accepts)(void *opaque, hwaddr addr,
169 unsigned size, bool is_write);
171 /* Internal implementation constraints: */
173 /* If nonzero, specifies the minimum size implemented. Smaller sizes
174 * will be rounded upwards and a partial result will be returned.
176 unsigned min_access_size;
177 /* If nonzero, specifies the maximum size implemented. Larger sizes
178 * will be done as a series of accesses with smaller sizes.
180 unsigned max_access_size;
181 /* If true, unaligned accesses are supported. Otherwise all accesses
182 * are converted to (possibly multiple) naturally aligned accesses.
187 /* If .read and .write are not present, old_mmio may be used for
188 * backwards compatibility with old mmio registration
190 const MemoryRegionMmio old_mmio;
193 enum IOMMUMemoryRegionAttr {
194 IOMMU_ATTR_SPAPR_TCE_FD
197 typedef struct IOMMUMemoryRegionClass {
199 struct DeviceClass parent_class;
202 * Return a TLB entry that contains a given address. Flag should
203 * be the access permission of this translation operation. We can
204 * set flag to IOMMU_NONE to mean that we don't need any
205 * read/write permission checks, like, when for region replay.
207 IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
208 IOMMUAccessFlags flag);
209 /* Returns minimum supported page size */
210 uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
211 /* Called when IOMMU Notifier flag changed */
212 void (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
213 IOMMUNotifierFlag old_flags,
214 IOMMUNotifierFlag new_flags);
215 /* Set this up to provide customized IOMMU replay function */
216 void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
218 /* Get IOMMU misc attributes */
219 int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr,
221 } IOMMUMemoryRegionClass;
223 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
224 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
226 struct MemoryRegion {
229 /* All fields are private - violators will be prosecuted */
231 /* The following fields should fit in a cache line */
235 bool readonly; /* For RAM regions */
237 bool flush_coalesced_mmio;
239 uint8_t dirty_log_mask;
244 const MemoryRegionOps *ops;
246 MemoryRegion *container;
249 void (*destructor)(MemoryRegion *mr);
254 bool warning_printed; /* For reservations */
255 uint8_t vga_logging_count;
259 QTAILQ_HEAD(subregions, MemoryRegion) subregions;
260 QTAILQ_ENTRY(MemoryRegion) subregions_link;
261 QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
263 unsigned ioeventfd_nb;
264 MemoryRegionIoeventfd *ioeventfds;
267 struct IOMMUMemoryRegion {
268 MemoryRegion parent_obj;
270 QLIST_HEAD(, IOMMUNotifier) iommu_notify;
271 IOMMUNotifierFlag iommu_notify_flags;
274 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
275 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
278 * MemoryListener: callbacks structure for updates to the physical memory map
280 * Allows a component to adjust to changes in the guest-visible memory map.
281 * Use with memory_listener_register() and memory_listener_unregister().
283 struct MemoryListener {
284 void (*begin)(MemoryListener *listener);
285 void (*commit)(MemoryListener *listener);
286 void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
287 void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
288 void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
289 void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
291 void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
293 void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
294 void (*log_global_start)(MemoryListener *listener);
295 void (*log_global_stop)(MemoryListener *listener);
296 void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
297 bool match_data, uint64_t data, EventNotifier *e);
298 void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
299 bool match_data, uint64_t data, EventNotifier *e);
300 void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
301 hwaddr addr, hwaddr len);
302 void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
303 hwaddr addr, hwaddr len);
304 /* Lower = earlier (during add), later (during del) */
306 AddressSpace *address_space;
307 QTAILQ_ENTRY(MemoryListener) link;
308 QTAILQ_ENTRY(MemoryListener) link_as;
312 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
314 struct AddressSpace {
315 /* All fields are private. */
320 /* Accessed via RCU. */
321 struct FlatView *current_map;
324 struct MemoryRegionIoeventfd *ioeventfds;
325 QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
326 QTAILQ_ENTRY(AddressSpace) address_spaces_link;
329 FlatView *address_space_to_flatview(AddressSpace *as);
332 * MemoryRegionSection: describes a fragment of a #MemoryRegion
334 * @mr: the region, or %NULL if empty
335 * @fv: the flat view of the address space the region is mapped in
336 * @offset_within_region: the beginning of the section, relative to @mr's start
337 * @size: the size of the section; will not exceed @mr's boundaries
338 * @offset_within_address_space: the address of the first byte of the section
339 * relative to the region's address space
340 * @readonly: writes to this section are ignored
342 struct MemoryRegionSection {
345 hwaddr offset_within_region;
347 hwaddr offset_within_address_space;
352 * memory_region_init: Initialize a memory region
354 * The region typically acts as a container for other memory regions. Use
355 * memory_region_add_subregion() to add subregions.
357 * @mr: the #MemoryRegion to be initialized
358 * @owner: the object that tracks the region's reference count
359 * @name: used for debugging; not visible to the user or ABI
360 * @size: size of the region; any subregions beyond this size will be clipped
362 void memory_region_init(MemoryRegion *mr,
363 struct Object *owner,
368 * memory_region_ref: Add 1 to a memory region's reference count
370 * Whenever memory regions are accessed outside the BQL, they need to be
371 * preserved against hot-unplug. MemoryRegions actually do not have their
372 * own reference count; they piggyback on a QOM object, their "owner".
373 * This function adds a reference to the owner.
375 * All MemoryRegions must have an owner if they can disappear, even if the
376 * device they belong to operates exclusively under the BQL. This is because
377 * the region could be returned at any time by memory_region_find, and this
378 * is usually under guest control.
380 * @mr: the #MemoryRegion
382 void memory_region_ref(MemoryRegion *mr);
385 * memory_region_unref: Remove 1 to a memory region's reference count
387 * Whenever memory regions are accessed outside the BQL, they need to be
388 * preserved against hot-unplug. MemoryRegions actually do not have their
389 * own reference count; they piggyback on a QOM object, their "owner".
390 * This function removes a reference to the owner and possibly destroys it.
392 * @mr: the #MemoryRegion
394 void memory_region_unref(MemoryRegion *mr);
397 * memory_region_init_io: Initialize an I/O memory region.
399 * Accesses into the region will cause the callbacks in @ops to be called.
400 * if @size is nonzero, subregions will be clipped to @size.
402 * @mr: the #MemoryRegion to be initialized.
403 * @owner: the object that tracks the region's reference count
404 * @ops: a structure containing read and write callbacks to be used when
405 * I/O is performed on the region.
406 * @opaque: passed to the read and write callbacks of the @ops structure.
407 * @name: used for debugging; not visible to the user or ABI
408 * @size: size of the region.
410 void memory_region_init_io(MemoryRegion *mr,
411 struct Object *owner,
412 const MemoryRegionOps *ops,
418 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
419 * into the region will modify memory
422 * @mr: the #MemoryRegion to be initialized.
423 * @owner: the object that tracks the region's reference count
424 * @name: Region name, becomes part of RAMBlock name used in migration stream
425 * must be unique within any device
426 * @size: size of the region.
427 * @errp: pointer to Error*, to store an error if it happens.
429 * Note that this function does not do anything to cause the data in the
430 * RAM memory region to be migrated; that is the responsibility of the caller.
432 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
433 struct Object *owner,
439 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
440 * RAM. Accesses into the region will
441 * modify memory directly. Only an initial
442 * portion of this RAM is actually used.
443 * The used size can change across reboots.
445 * @mr: the #MemoryRegion to be initialized.
446 * @owner: the object that tracks the region's reference count
447 * @name: Region name, becomes part of RAMBlock name used in migration stream
448 * must be unique within any device
449 * @size: used size of the region.
450 * @max_size: max size of the region.
451 * @resized: callback to notify owner about used size change.
452 * @errp: pointer to Error*, to store an error if it happens.
454 * Note that this function does not do anything to cause the data in the
455 * RAM memory region to be migrated; that is the responsibility of the caller.
457 void memory_region_init_resizeable_ram(MemoryRegion *mr,
458 struct Object *owner,
462 void (*resized)(const char*,
468 * memory_region_init_ram_from_file: Initialize RAM memory region with a
471 * @mr: the #MemoryRegion to be initialized.
472 * @owner: the object that tracks the region's reference count
473 * @name: Region name, becomes part of RAMBlock name used in migration stream
474 * must be unique within any device
475 * @size: size of the region.
476 * @align: alignment of the region base address; if 0, the default alignment
477 * (getpagesize()) will be used.
478 * @share: %true if memory must be mmaped with the MAP_SHARED flag
479 * @path: the path in which to allocate the RAM.
480 * @errp: pointer to Error*, to store an error if it happens.
482 * Note that this function does not do anything to cause the data in the
483 * RAM memory region to be migrated; that is the responsibility of the caller.
485 void memory_region_init_ram_from_file(MemoryRegion *mr,
486 struct Object *owner,
495 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
498 * @mr: the #MemoryRegion to be initialized.
499 * @owner: the object that tracks the region's reference count
500 * @name: the name of the region.
501 * @size: size of the region.
502 * @share: %true if memory must be mmaped with the MAP_SHARED flag
503 * @fd: the fd to mmap.
504 * @errp: pointer to Error*, to store an error if it happens.
506 * Note that this function does not do anything to cause the data in the
507 * RAM memory region to be migrated; that is the responsibility of the caller.
509 void memory_region_init_ram_from_fd(MemoryRegion *mr,
510 struct Object *owner,
519 * memory_region_init_ram_ptr: Initialize RAM memory region from a
520 * user-provided pointer. Accesses into the
521 * region will modify memory directly.
523 * @mr: the #MemoryRegion to be initialized.
524 * @owner: the object that tracks the region's reference count
525 * @name: Region name, becomes part of RAMBlock name used in migration stream
526 * must be unique within any device
527 * @size: size of the region.
528 * @ptr: memory to be mapped; must contain at least @size bytes.
530 * Note that this function does not do anything to cause the data in the
531 * RAM memory region to be migrated; that is the responsibility of the caller.
533 void memory_region_init_ram_ptr(MemoryRegion *mr,
534 struct Object *owner,
540 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
541 * a user-provided pointer.
543 * A RAM device represents a mapping to a physical device, such as to a PCI
544 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
545 * into the VM address space and access to the region will modify memory
546 * directly. However, the memory region should not be included in a memory
547 * dump (device may not be enabled/mapped at the time of the dump), and
548 * operations incompatible with manipulating MMIO should be avoided. Replaces
551 * @mr: the #MemoryRegion to be initialized.
552 * @owner: the object that tracks the region's reference count
553 * @name: the name of the region.
554 * @size: size of the region.
555 * @ptr: memory to be mapped; must contain at least @size bytes.
557 * Note that this function does not do anything to cause the data in the
558 * RAM memory region to be migrated; that is the responsibility of the caller.
559 * (For RAM device memory regions, migrating the contents rarely makes sense.)
561 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
562 struct Object *owner,
568 * memory_region_init_alias: Initialize a memory region that aliases all or a
569 * part of another memory region.
571 * @mr: the #MemoryRegion to be initialized.
572 * @owner: the object that tracks the region's reference count
573 * @name: used for debugging; not visible to the user or ABI
574 * @orig: the region to be referenced; @mr will be equivalent to
575 * @orig between @offset and @offset + @size - 1.
576 * @offset: start of the section in @orig to be referenced.
577 * @size: size of the region.
579 void memory_region_init_alias(MemoryRegion *mr,
580 struct Object *owner,
587 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
589 * This has the same effect as calling memory_region_init_ram_nomigrate()
590 * and then marking the resulting region read-only with
591 * memory_region_set_readonly().
593 * Note that this function does not do anything to cause the data in the
594 * RAM side of the memory region to be migrated; that is the responsibility
597 * @mr: the #MemoryRegion to be initialized.
598 * @owner: the object that tracks the region's reference count
599 * @name: Region name, becomes part of RAMBlock name used in migration stream
600 * must be unique within any device
601 * @size: size of the region.
602 * @errp: pointer to Error*, to store an error if it happens.
604 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
605 struct Object *owner,
611 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
612 * Writes are handled via callbacks.
614 * Note that this function does not do anything to cause the data in the
615 * RAM side of the memory region to be migrated; that is the responsibility
618 * @mr: the #MemoryRegion to be initialized.
619 * @owner: the object that tracks the region's reference count
620 * @ops: callbacks for write access handling (must not be NULL).
621 * @opaque: passed to the read and write callbacks of the @ops structure.
622 * @name: Region name, becomes part of RAMBlock name used in migration stream
623 * must be unique within any device
624 * @size: size of the region.
625 * @errp: pointer to Error*, to store an error if it happens.
627 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
628 struct Object *owner,
629 const MemoryRegionOps *ops,
636 * memory_region_init_reservation: Initialize a memory region that reserves
639 * A reservation region primariy serves debugging purposes. It claims I/O
640 * space that is not supposed to be handled by QEMU itself. Any access via
641 * the memory API will cause an abort().
642 * This function is deprecated. Use memory_region_init_io() with NULL
645 * @mr: the #MemoryRegion to be initialized
646 * @owner: the object that tracks the region's reference count
647 * @name: used for debugging; not visible to the user or ABI
648 * @size: size of the region.
650 static inline void memory_region_init_reservation(MemoryRegion *mr,
655 memory_region_init_io(mr, owner, NULL, mr, name, size);
659 * memory_region_init_iommu: Initialize a memory region of a custom type
660 * that translates addresses
662 * An IOMMU region translates addresses and forwards accesses to a target
665 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
666 * @instance_size: the IOMMUMemoryRegion subclass instance size
667 * @mrtypename: the type name of the #IOMMUMemoryRegion
668 * @owner: the object that tracks the region's reference count
669 * @name: used for debugging; not visible to the user or ABI
670 * @size: size of the region.
672 void memory_region_init_iommu(void *_iommu_mr,
673 size_t instance_size,
674 const char *mrtypename,
680 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
681 * region will modify memory directly.
683 * @mr: the #MemoryRegion to be initialized
684 * @owner: the object that tracks the region's reference count (must be
685 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
686 * @name: name of the memory region
687 * @size: size of the region in bytes
688 * @errp: pointer to Error*, to store an error if it happens.
690 * This function allocates RAM for a board model or device, and
691 * arranges for it to be migrated (by calling vmstate_register_ram()
692 * if @owner is a DeviceState, or vmstate_register_ram_global() if
695 * TODO: Currently we restrict @owner to being either NULL (for
696 * global RAM regions with no owner) or devices, so that we can
697 * give the RAM block a unique name for migration purposes.
698 * We should lift this restriction and allow arbitrary Objects.
699 * If you pass a non-NULL non-device @owner then we will assert.
701 void memory_region_init_ram(MemoryRegion *mr,
702 struct Object *owner,
708 * memory_region_init_rom: Initialize a ROM memory region.
710 * This has the same effect as calling memory_region_init_ram()
711 * and then marking the resulting region read-only with
712 * memory_region_set_readonly(). This includes arranging for the
713 * contents to be migrated.
715 * TODO: Currently we restrict @owner to being either NULL (for
716 * global RAM regions with no owner) or devices, so that we can
717 * give the RAM block a unique name for migration purposes.
718 * We should lift this restriction and allow arbitrary Objects.
719 * If you pass a non-NULL non-device @owner then we will assert.
721 * @mr: the #MemoryRegion to be initialized.
722 * @owner: the object that tracks the region's reference count
723 * @name: Region name, becomes part of RAMBlock name used in migration stream
724 * must be unique within any device
725 * @size: size of the region.
726 * @errp: pointer to Error*, to store an error if it happens.
728 void memory_region_init_rom(MemoryRegion *mr,
729 struct Object *owner,
735 * memory_region_init_rom_device: Initialize a ROM memory region.
736 * Writes are handled via callbacks.
738 * This function initializes a memory region backed by RAM for reads
739 * and callbacks for writes, and arranges for the RAM backing to
740 * be migrated (by calling vmstate_register_ram()
741 * if @owner is a DeviceState, or vmstate_register_ram_global() if
744 * TODO: Currently we restrict @owner to being either NULL (for
745 * global RAM regions with no owner) or devices, so that we can
746 * give the RAM block a unique name for migration purposes.
747 * We should lift this restriction and allow arbitrary Objects.
748 * If you pass a non-NULL non-device @owner then we will assert.
750 * @mr: the #MemoryRegion to be initialized.
751 * @owner: the object that tracks the region's reference count
752 * @ops: callbacks for write access handling (must not be NULL).
753 * @name: Region name, becomes part of RAMBlock name used in migration stream
754 * must be unique within any device
755 * @size: size of the region.
756 * @errp: pointer to Error*, to store an error if it happens.
758 void memory_region_init_rom_device(MemoryRegion *mr,
759 struct Object *owner,
760 const MemoryRegionOps *ops,
768 * memory_region_owner: get a memory region's owner.
770 * @mr: the memory region being queried.
772 struct Object *memory_region_owner(MemoryRegion *mr);
775 * memory_region_size: get a memory region's size.
777 * @mr: the memory region being queried.
779 uint64_t memory_region_size(MemoryRegion *mr);
782 * memory_region_is_ram: check whether a memory region is random access
784 * Returns %true is a memory region is random access.
786 * @mr: the memory region being queried
788 static inline bool memory_region_is_ram(MemoryRegion *mr)
794 * memory_region_is_ram_device: check whether a memory region is a ram device
796 * Returns %true is a memory region is a device backed ram region
798 * @mr: the memory region being queried
800 bool memory_region_is_ram_device(MemoryRegion *mr);
803 * memory_region_is_romd: check whether a memory region is in ROMD mode
805 * Returns %true if a memory region is a ROM device and currently set to allow
808 * @mr: the memory region being queried
810 static inline bool memory_region_is_romd(MemoryRegion *mr)
812 return mr->rom_device && mr->romd_mode;
816 * memory_region_get_iommu: check whether a memory region is an iommu
818 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
821 * @mr: the memory region being queried
823 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
826 return memory_region_get_iommu(mr->alias);
829 return (IOMMUMemoryRegion *) mr;
835 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
836 * if an iommu or NULL if not
838 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
839 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
841 * @mr: the memory region being queried
843 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
844 IOMMUMemoryRegion *iommu_mr)
846 return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
849 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
852 * memory_region_iommu_get_min_page_size: get minimum supported page size
855 * Returns minimum supported page size for an iommu.
857 * @iommu_mr: the memory region being queried
859 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
862 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
864 * The notification type will be decided by entry.perm bits:
866 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
867 * - For MAP (newly added entry) notifies: set entry.perm to the
868 * permission of the page (which is definitely !IOMMU_NONE).
870 * Note: for any IOMMU implementation, an in-place mapping change
871 * should be notified with an UNMAP followed by a MAP.
873 * @iommu_mr: the memory region that was changed
874 * @entry: the new entry in the IOMMU translation table. The entry
875 * replaces all old entries for the same virtual I/O address range.
876 * Deleted entries have .@perm == 0.
878 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
879 IOMMUTLBEntry entry);
882 * memory_region_notify_one: notify a change in an IOMMU translation
883 * entry to a single notifier
885 * This works just like memory_region_notify_iommu(), but it only
886 * notifies a specific notifier, not all of them.
888 * @notifier: the notifier to be notified
889 * @entry: the new entry in the IOMMU translation table. The entry
890 * replaces all old entries for the same virtual I/O address range.
891 * Deleted entries have .@perm == 0.
893 void memory_region_notify_one(IOMMUNotifier *notifier,
894 IOMMUTLBEntry *entry);
897 * memory_region_register_iommu_notifier: register a notifier for changes to
898 * IOMMU translation entries.
900 * @mr: the memory region to observe
901 * @n: the IOMMUNotifier to be added; the notify callback receives a
902 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
903 * ceases to be valid on exit from the notifier.
905 void memory_region_register_iommu_notifier(MemoryRegion *mr,
909 * memory_region_iommu_replay: replay existing IOMMU translations to
910 * a notifier with the minimum page granularity returned by
911 * mr->iommu_ops->get_page_size().
913 * @iommu_mr: the memory region to observe
914 * @n: the notifier to which to replay iommu mappings
916 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
919 * memory_region_iommu_replay_all: replay existing IOMMU translations
920 * to all the notifiers registered.
922 * @iommu_mr: the memory region to observe
924 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr);
927 * memory_region_unregister_iommu_notifier: unregister a notifier for
928 * changes to IOMMU translation entries.
930 * @mr: the memory region which was observed and for which notity_stopped()
932 * @n: the notifier to be removed.
934 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
938 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
939 * defined on the IOMMU.
941 * Returns 0 if succeded, error code otherwise.
943 * @iommu_mr: the memory region
944 * @attr: the requested attribute
945 * @data: a pointer to the requested attribute data
947 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
948 enum IOMMUMemoryRegionAttr attr,
952 * memory_region_name: get a memory region's name
954 * Returns the string that was used to initialize the memory region.
956 * @mr: the memory region being queried
958 const char *memory_region_name(const MemoryRegion *mr);
961 * memory_region_is_logging: return whether a memory region is logging writes
963 * Returns %true if the memory region is logging writes for the given client
965 * @mr: the memory region being queried
966 * @client: the client being queried
968 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
971 * memory_region_get_dirty_log_mask: return the clients for which a
972 * memory region is logging writes.
974 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
975 * are the bit indices.
977 * @mr: the memory region being queried
979 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
982 * memory_region_is_rom: check whether a memory region is ROM
984 * Returns %true is a memory region is read-only memory.
986 * @mr: the memory region being queried
988 static inline bool memory_region_is_rom(MemoryRegion *mr)
990 return mr->ram && mr->readonly;
995 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
997 * Returns a file descriptor backing a file-based RAM memory region,
998 * or -1 if the region is not a file-based RAM memory region.
1000 * @mr: the RAM or alias memory region being queried.
1002 int memory_region_get_fd(MemoryRegion *mr);
1005 * memory_region_from_host: Convert a pointer into a RAM memory region
1006 * and an offset within it.
1008 * Given a host pointer inside a RAM memory region (created with
1009 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1010 * the MemoryRegion and the offset within it.
1012 * Use with care; by the time this function returns, the returned pointer is
1013 * not protected by RCU anymore. If the caller is not within an RCU critical
1014 * section and does not hold the iothread lock, it must have other means of
1015 * protecting the pointer, such as a reference to the region that includes
1016 * the incoming ram_addr_t.
1018 * @ptr: the host pointer to be converted
1019 * @offset: the offset within memory region
1021 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1024 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1026 * Returns a host pointer to a RAM memory region (created with
1027 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1029 * Use with care; by the time this function returns, the returned pointer is
1030 * not protected by RCU anymore. If the caller is not within an RCU critical
1031 * section and does not hold the iothread lock, it must have other means of
1032 * protecting the pointer, such as a reference to the region that includes
1033 * the incoming ram_addr_t.
1035 * @mr: the memory region being queried.
1037 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1039 /* memory_region_ram_resize: Resize a RAM region.
1041 * Only legal before guest might have detected the memory size: e.g. on
1042 * incoming migration, or right after reset.
1044 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1045 * @newsize: the new size the region
1046 * @errp: pointer to Error*, to store an error if it happens.
1048 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1052 * memory_region_set_log: Turn dirty logging on or off for a region.
1054 * Turns dirty logging on or off for a specified client (display, migration).
1055 * Only meaningful for RAM regions.
1057 * @mr: the memory region being updated.
1058 * @log: whether dirty logging is to be enabled or disabled.
1059 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1061 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1064 * memory_region_get_dirty: Check whether a range of bytes is dirty
1065 * for a specified client.
1067 * Checks whether a range of bytes has been written to since the last
1068 * call to memory_region_reset_dirty() with the same @client. Dirty logging
1071 * @mr: the memory region being queried.
1072 * @addr: the address (relative to the start of the region) being queried.
1073 * @size: the size of the range being queried.
1074 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1075 * %DIRTY_MEMORY_VGA.
1077 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1078 hwaddr size, unsigned client);
1081 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1083 * Marks a range of bytes as dirty, after it has been dirtied outside
1086 * @mr: the memory region being dirtied.
1087 * @addr: the address (relative to the start of the region) being dirtied.
1088 * @size: size of the range being dirtied.
1090 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1094 * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
1095 * for a specified client. It clears them.
1097 * Checks whether a range of bytes has been written to since the last
1098 * call to memory_region_reset_dirty() with the same @client. Dirty logging
1101 * @mr: the memory region being queried.
1102 * @addr: the address (relative to the start of the region) being queried.
1103 * @size: the size of the range being queried.
1104 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1105 * %DIRTY_MEMORY_VGA.
1107 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1108 hwaddr size, unsigned client);
1111 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1112 * bitmap and clear it.
1114 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1115 * returns the snapshot. The snapshot can then be used to query dirty
1116 * status, using memory_region_snapshot_get_dirty. Unlike
1117 * memory_region_test_and_clear_dirty this allows to query the same
1118 * page multiple times, which is especially useful for display updates
1119 * where the scanlines often are not page aligned.
1121 * The dirty bitmap region which gets copyed into the snapshot (and
1122 * cleared afterwards) can be larger than requested. The boundaries
1123 * are rounded up/down so complete bitmap longs (covering 64 pages on
1124 * 64bit hosts) can be copied over into the bitmap snapshot. Which
1125 * isn't a problem for display updates as the extra pages are outside
1126 * the visible area, and in case the visible area changes a full
1127 * display redraw is due anyway. Should other use cases for this
1128 * function emerge we might have to revisit this implementation
1131 * Use g_free to release DirtyBitmapSnapshot.
1133 * @mr: the memory region being queried.
1134 * @addr: the address (relative to the start of the region) being queried.
1135 * @size: the size of the range being queried.
1136 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1138 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1144 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1145 * in the specified dirty bitmap snapshot.
1147 * @mr: the memory region being queried.
1148 * @snap: the dirty bitmap snapshot
1149 * @addr: the address (relative to the start of the region) being queried.
1150 * @size: the size of the range being queried.
1152 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1153 DirtyBitmapSnapshot *snap,
1154 hwaddr addr, hwaddr size);
1157 * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
1158 * any external TLBs (e.g. kvm)
1160 * Flushes dirty information from accelerators such as kvm and vhost-net
1161 * and makes it available to users of the memory API.
1163 * @mr: the region being flushed.
1165 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
1168 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1171 * Marks a range of pages as no longer dirty.
1173 * @mr: the region being updated.
1174 * @addr: the start of the subrange being cleaned.
1175 * @size: the size of the subrange being cleaned.
1176 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1177 * %DIRTY_MEMORY_VGA.
1179 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1180 hwaddr size, unsigned client);
1183 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1185 * Allows a memory region to be marked as read-only (turning it into a ROM).
1186 * only useful on RAM regions.
1188 * @mr: the region being updated.
1189 * @readonly: whether rhe region is to be ROM or RAM.
1191 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1194 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1196 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1197 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
1198 * device is mapped to guest memory and satisfies read access directly.
1199 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1200 * Writes are always handled by the #MemoryRegion.write function.
1202 * @mr: the memory region to be updated
1203 * @romd_mode: %true to put the region into ROMD mode
1205 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1208 * memory_region_set_coalescing: Enable memory coalescing for the region.
1210 * Enabled writes to a region to be queued for later processing. MMIO ->write
1211 * callbacks may be delayed until a non-coalesced MMIO is issued.
1212 * Only useful for IO regions. Roughly similar to write-combining hardware.
1214 * @mr: the memory region to be write coalesced
1216 void memory_region_set_coalescing(MemoryRegion *mr);
1219 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1222 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1223 * Multiple calls can be issued coalesced disjoint ranges.
1225 * @mr: the memory region to be updated.
1226 * @offset: the start of the range within the region to be coalesced.
1227 * @size: the size of the subrange to be coalesced.
1229 void memory_region_add_coalescing(MemoryRegion *mr,
1234 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1236 * Disables any coalescing caused by memory_region_set_coalescing() or
1237 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
1240 * @mr: the memory region to be updated.
1242 void memory_region_clear_coalescing(MemoryRegion *mr);
1245 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1248 * Ensure that pending coalesced MMIO request are flushed before the memory
1249 * region is accessed. This property is automatically enabled for all regions
1250 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1252 * @mr: the memory region to be updated.
1254 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1257 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1260 * Clear the automatic coalesced MMIO flushing enabled via
1261 * memory_region_set_flush_coalesced. Note that this service has no effect on
1262 * memory regions that have MMIO coalescing enabled for themselves. For them,
1263 * automatic flushing will stop once coalescing is disabled.
1265 * @mr: the memory region to be updated.
1267 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1270 * memory_region_clear_global_locking: Declares that access processing does
1271 * not depend on the QEMU global lock.
1273 * By clearing this property, accesses to the memory region will be processed
1274 * outside of QEMU's global lock (unless the lock is held on when issuing the
1275 * access request). In this case, the device model implementing the access
1276 * handlers is responsible for synchronization of concurrency.
1278 * @mr: the memory region to be updated.
1280 void memory_region_clear_global_locking(MemoryRegion *mr);
1283 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1284 * is written to a location.
1286 * Marks a word in an IO region (initialized with memory_region_init_io())
1287 * as a trigger for an eventfd event. The I/O callback will not be called.
1288 * The caller must be prepared to handle failure (that is, take the required
1289 * action if the callback _is_ called).
1291 * @mr: the memory region being updated.
1292 * @addr: the address within @mr that is to be monitored
1293 * @size: the size of the access to trigger the eventfd
1294 * @match_data: whether to match against @data, instead of just @addr
1295 * @data: the data to match against the guest write
1296 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1298 void memory_region_add_eventfd(MemoryRegion *mr,
1306 * memory_region_del_eventfd: Cancel an eventfd.
1308 * Cancels an eventfd trigger requested by a previous
1309 * memory_region_add_eventfd() call.
1311 * @mr: the memory region being updated.
1312 * @addr: the address within @mr that is to be monitored
1313 * @size: the size of the access to trigger the eventfd
1314 * @match_data: whether to match against @data, instead of just @addr
1315 * @data: the data to match against the guest write
1316 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1318 void memory_region_del_eventfd(MemoryRegion *mr,
1326 * memory_region_add_subregion: Add a subregion to a container.
1328 * Adds a subregion at @offset. The subregion may not overlap with other
1329 * subregions (except for those explicitly marked as overlapping). A region
1330 * may only be added once as a subregion (unless removed with
1331 * memory_region_del_subregion()); use memory_region_init_alias() if you
1332 * want a region to be a subregion in multiple locations.
1334 * @mr: the region to contain the new subregion; must be a container
1335 * initialized with memory_region_init().
1336 * @offset: the offset relative to @mr where @subregion is added.
1337 * @subregion: the subregion to be added.
1339 void memory_region_add_subregion(MemoryRegion *mr,
1341 MemoryRegion *subregion);
1343 * memory_region_add_subregion_overlap: Add a subregion to a container
1346 * Adds a subregion at @offset. The subregion may overlap with other
1347 * subregions. Conflicts are resolved by having a higher @priority hide a
1348 * lower @priority. Subregions without priority are taken as @priority 0.
1349 * A region may only be added once as a subregion (unless removed with
1350 * memory_region_del_subregion()); use memory_region_init_alias() if you
1351 * want a region to be a subregion in multiple locations.
1353 * @mr: the region to contain the new subregion; must be a container
1354 * initialized with memory_region_init().
1355 * @offset: the offset relative to @mr where @subregion is added.
1356 * @subregion: the subregion to be added.
1357 * @priority: used for resolving overlaps; highest priority wins.
1359 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1361 MemoryRegion *subregion,
1365 * memory_region_get_ram_addr: Get the ram address associated with a memory
1368 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1370 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1372 * memory_region_del_subregion: Remove a subregion.
1374 * Removes a subregion from its container.
1376 * @mr: the container to be updated.
1377 * @subregion: the region being removed; must be a current subregion of @mr.
1379 void memory_region_del_subregion(MemoryRegion *mr,
1380 MemoryRegion *subregion);
1383 * memory_region_set_enabled: dynamically enable or disable a region
1385 * Enables or disables a memory region. A disabled memory region
1386 * ignores all accesses to itself and its subregions. It does not
1387 * obscure sibling subregions with lower priority - it simply behaves as
1388 * if it was removed from the hierarchy.
1390 * Regions default to being enabled.
1392 * @mr: the region to be updated
1393 * @enabled: whether to enable or disable the region
1395 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1398 * memory_region_set_address: dynamically update the address of a region
1400 * Dynamically updates the address of a region, relative to its container.
1401 * May be used on regions are currently part of a memory hierarchy.
1403 * @mr: the region to be updated
1404 * @addr: new address, relative to container region
1406 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1409 * memory_region_set_size: dynamically update the size of a region.
1411 * Dynamically updates the size of a region.
1413 * @mr: the region to be updated
1414 * @size: used size of the region.
1416 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1419 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1421 * Dynamically updates the offset into the target region that an alias points
1422 * to, as if the fourth argument to memory_region_init_alias() has changed.
1424 * @mr: the #MemoryRegion to be updated; should be an alias.
1425 * @offset: the new offset into the target memory region
1427 void memory_region_set_alias_offset(MemoryRegion *mr,
1431 * memory_region_present: checks if an address relative to a @container
1432 * translates into #MemoryRegion within @container
1434 * Answer whether a #MemoryRegion within @container covers the address
1437 * @container: a #MemoryRegion within which @addr is a relative address
1438 * @addr: the area within @container to be searched
1440 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1443 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1444 * into any address space.
1446 * @mr: a #MemoryRegion which should be checked if it's mapped
1448 bool memory_region_is_mapped(MemoryRegion *mr);
1451 * memory_region_find: translate an address/size relative to a
1452 * MemoryRegion into a #MemoryRegionSection.
1454 * Locates the first #MemoryRegion within @mr that overlaps the range
1455 * given by @addr and @size.
1457 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1458 * It will have the following characteristics:
1459 * .@size = 0 iff no overlap was found
1460 * .@mr is non-%NULL iff an overlap was found
1462 * Remember that in the return value the @offset_within_region is
1463 * relative to the returned region (in the .@mr field), not to the
1466 * Similarly, the .@offset_within_address_space is relative to the
1467 * address space that contains both regions, the passed and the
1468 * returned one. However, in the special case where the @mr argument
1469 * has no container (and thus is the root of the address space), the
1470 * following will hold:
1471 * .@offset_within_address_space >= @addr
1472 * .@offset_within_address_space + .@size <= @addr + @size
1474 * @mr: a MemoryRegion within which @addr is a relative address
1475 * @addr: start of the area within @as to be searched
1476 * @size: size of the area to be searched
1478 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1479 hwaddr addr, uint64_t size);
1482 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1484 * Synchronizes the dirty page log for all address spaces.
1486 void memory_global_dirty_log_sync(void);
1489 * memory_region_transaction_begin: Start a transaction.
1491 * During a transaction, changes will be accumulated and made visible
1492 * only when the transaction ends (is committed).
1494 void memory_region_transaction_begin(void);
1497 * memory_region_transaction_commit: Commit a transaction and make changes
1498 * visible to the guest.
1500 void memory_region_transaction_commit(void);
1503 * memory_listener_register: register callbacks to be called when memory
1504 * sections are mapped or unmapped into an address
1507 * @listener: an object containing the callbacks to be called
1508 * @filter: if non-%NULL, only regions in this address space will be observed
1510 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1513 * memory_listener_unregister: undo the effect of memory_listener_register()
1515 * @listener: an object containing the callbacks to be removed
1517 void memory_listener_unregister(MemoryListener *listener);
1520 * memory_global_dirty_log_start: begin dirty logging for all regions
1522 void memory_global_dirty_log_start(void);
1525 * memory_global_dirty_log_stop: end dirty logging for all regions
1527 void memory_global_dirty_log_stop(void);
1529 void mtree_info(fprintf_function mon_printf, void *f, bool flatview,
1530 bool dispatch_tree);
1533 * memory_region_request_mmio_ptr: request a pointer to an mmio
1534 * MemoryRegion. If it is possible map a RAM MemoryRegion with this pointer.
1535 * When the device wants to invalidate the pointer it will call
1536 * memory_region_invalidate_mmio_ptr.
1538 * @mr: #MemoryRegion to check
1539 * @addr: address within that region
1541 * Returns true on success, false otherwise.
1543 bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr);
1546 * memory_region_invalidate_mmio_ptr: invalidate the pointer to an mmio
1547 * previously requested.
1548 * In the end that means that if something wants to execute from this area it
1549 * will need to request the pointer again.
1551 * @mr: #MemoryRegion associated to the pointer.
1552 * @offset: offset within the memory region
1553 * @size: size of that area.
1555 void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
1559 * memory_region_dispatch_read: perform a read directly to the specified
1562 * @mr: #MemoryRegion to access
1563 * @addr: address within that region
1564 * @pval: pointer to uint64_t which the data is written to
1565 * @size: size of the access in bytes
1566 * @attrs: memory transaction attributes to use for the access
1568 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1574 * memory_region_dispatch_write: perform a write directly to the specified
1577 * @mr: #MemoryRegion to access
1578 * @addr: address within that region
1579 * @data: data to write
1580 * @size: size of the access in bytes
1581 * @attrs: memory transaction attributes to use for the access
1583 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1590 * address_space_init: initializes an address space
1592 * @as: an uninitialized #AddressSpace
1593 * @root: a #MemoryRegion that routes addresses for the address space
1594 * @name: an address space name. The name is only used for debugging
1597 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1600 * address_space_destroy: destroy an address space
1602 * Releases all resources associated with an address space. After an address space
1603 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1606 * @as: address space to be destroyed
1608 void address_space_destroy(AddressSpace *as);
1611 * address_space_rw: read from or write to an address space.
1613 * Return a MemTxResult indicating whether the operation succeeded
1614 * or failed (eg unassigned memory, device rejected the transaction,
1617 * @as: #AddressSpace to be accessed
1618 * @addr: address within that address space
1619 * @attrs: memory transaction attributes
1620 * @buf: buffer with the data transferred
1621 * @len: the number of bytes to read or write
1622 * @is_write: indicates the transfer direction
1624 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1625 MemTxAttrs attrs, uint8_t *buf,
1626 int len, bool is_write);
1629 * address_space_write: write to address space.
1631 * Return a MemTxResult indicating whether the operation succeeded
1632 * or failed (eg unassigned memory, device rejected the transaction,
1635 * @as: #AddressSpace to be accessed
1636 * @addr: address within that address space
1637 * @attrs: memory transaction attributes
1638 * @buf: buffer with the data transferred
1639 * @len: the number of bytes to write
1641 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1643 const uint8_t *buf, int len);
1645 /* address_space_ld*: load from an address space
1646 * address_space_st*: store to an address space
1648 * These functions perform a load or store of the byte, word,
1649 * longword or quad to the specified address within the AddressSpace.
1650 * The _le suffixed functions treat the data as little endian;
1651 * _be indicates big endian; no suffix indicates "same endianness
1654 * The "guest CPU endianness" accessors are deprecated for use outside
1655 * target-* code; devices should be CPU-agnostic and use either the LE
1656 * or the BE accessors.
1658 * @as #AddressSpace to be accessed
1659 * @addr: address within that address space
1660 * @val: data value, for stores
1661 * @attrs: memory transaction attributes
1662 * @result: location to write the success/failure of the transaction;
1663 * if NULL, this information is discarded
1665 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1666 MemTxAttrs attrs, MemTxResult *result);
1667 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1668 MemTxAttrs attrs, MemTxResult *result);
1669 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1670 MemTxAttrs attrs, MemTxResult *result);
1671 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1672 MemTxAttrs attrs, MemTxResult *result);
1673 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1674 MemTxAttrs attrs, MemTxResult *result);
1675 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1676 MemTxAttrs attrs, MemTxResult *result);
1677 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1678 MemTxAttrs attrs, MemTxResult *result);
1679 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1680 MemTxAttrs attrs, MemTxResult *result);
1681 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1682 MemTxAttrs attrs, MemTxResult *result);
1683 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1684 MemTxAttrs attrs, MemTxResult *result);
1685 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1686 MemTxAttrs attrs, MemTxResult *result);
1687 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1688 MemTxAttrs attrs, MemTxResult *result);
1689 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1690 MemTxAttrs attrs, MemTxResult *result);
1691 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1692 MemTxAttrs attrs, MemTxResult *result);
1694 uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
1695 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
1696 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
1697 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
1698 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
1699 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
1700 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
1701 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1702 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1703 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1704 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1705 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1706 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1707 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1709 struct MemoryRegionCache {
1715 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .as = NULL })
1717 /* address_space_cache_init: prepare for repeated access to a physical
1720 * @cache: #MemoryRegionCache to be filled
1721 * @as: #AddressSpace to be accessed
1722 * @addr: address within that address space
1723 * @len: length of buffer
1724 * @is_write: indicates the transfer direction
1726 * Will only work with RAM, and may map a subset of the requested range by
1727 * returning a value that is less than @len. On failure, return a negative
1730 * Because it only works with RAM, this function can be used for
1731 * read-modify-write operations. In this case, is_write should be %true.
1733 * Note that addresses passed to the address_space_*_cached functions
1734 * are relative to @addr.
1736 int64_t address_space_cache_init(MemoryRegionCache *cache,
1743 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1745 * @cache: The #MemoryRegionCache to operate on.
1746 * @addr: The first physical address that was written, relative to the
1747 * address that was passed to @address_space_cache_init.
1748 * @access_len: The number of bytes that were written starting at @addr.
1750 void address_space_cache_invalidate(MemoryRegionCache *cache,
1755 * address_space_cache_destroy: free a #MemoryRegionCache
1757 * @cache: The #MemoryRegionCache whose memory should be released.
1759 void address_space_cache_destroy(MemoryRegionCache *cache);
1761 /* address_space_ld*_cached: load from a cached #MemoryRegion
1762 * address_space_st*_cached: store into a cached #MemoryRegion
1764 * These functions perform a load or store of the byte, word,
1765 * longword or quad to the specified address. The address is
1766 * a physical address in the AddressSpace, but it must lie within
1767 * a #MemoryRegion that was mapped with address_space_cache_init.
1769 * The _le suffixed functions treat the data as little endian;
1770 * _be indicates big endian; no suffix indicates "same endianness
1773 * The "guest CPU endianness" accessors are deprecated for use outside
1774 * target-* code; devices should be CPU-agnostic and use either the LE
1775 * or the BE accessors.
1777 * @cache: previously initialized #MemoryRegionCache to be accessed
1778 * @addr: address within the address space
1779 * @val: data value, for stores
1780 * @attrs: memory transaction attributes
1781 * @result: location to write the success/failure of the transaction;
1782 * if NULL, this information is discarded
1784 uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr,
1785 MemTxAttrs attrs, MemTxResult *result);
1786 uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr,
1787 MemTxAttrs attrs, MemTxResult *result);
1788 uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr,
1789 MemTxAttrs attrs, MemTxResult *result);
1790 uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr,
1791 MemTxAttrs attrs, MemTxResult *result);
1792 uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr,
1793 MemTxAttrs attrs, MemTxResult *result);
1794 uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr,
1795 MemTxAttrs attrs, MemTxResult *result);
1796 uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr,
1797 MemTxAttrs attrs, MemTxResult *result);
1798 void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1799 MemTxAttrs attrs, MemTxResult *result);
1800 void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1801 MemTxAttrs attrs, MemTxResult *result);
1802 void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1803 MemTxAttrs attrs, MemTxResult *result);
1804 void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1805 MemTxAttrs attrs, MemTxResult *result);
1806 void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1807 MemTxAttrs attrs, MemTxResult *result);
1808 void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1809 MemTxAttrs attrs, MemTxResult *result);
1810 void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1811 MemTxAttrs attrs, MemTxResult *result);
1813 uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1814 uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1815 uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1816 uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1817 uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1818 uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1819 uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1820 void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1821 void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1822 void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1823 void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1824 void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1825 void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1826 void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1827 /* address_space_get_iotlb_entry: translate an address into an IOTLB
1828 * entry. Should be called from an RCU critical section.
1830 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1833 /* address_space_translate: translate an address range into an address space
1834 * into a MemoryRegion and an address range into that section. Should be
1835 * called from an RCU critical section, to avoid that the last reference
1836 * to the returned region disappears after address_space_translate returns.
1838 * @fv: #FlatView to be accessed
1839 * @addr: address within that address space
1840 * @xlat: pointer to address within the returned memory region section's
1842 * @len: pointer to length
1843 * @is_write: indicates the transfer direction
1845 MemoryRegion *flatview_translate(FlatView *fv,
1846 hwaddr addr, hwaddr *xlat,
1847 hwaddr *len, bool is_write);
1849 static inline MemoryRegion *address_space_translate(AddressSpace *as,
1850 hwaddr addr, hwaddr *xlat,
1851 hwaddr *len, bool is_write)
1853 return flatview_translate(address_space_to_flatview(as),
1854 addr, xlat, len, is_write);
1857 /* address_space_access_valid: check for validity of accessing an address
1860 * Check whether memory is assigned to the given address space range, and
1861 * access is permitted by any IOMMU regions that are active for the address
1864 * For now, addr and len should be aligned to a page size. This limitation
1865 * will be lifted in the future.
1867 * @as: #AddressSpace to be accessed
1868 * @addr: address within that address space
1869 * @len: length of the area to be checked
1870 * @is_write: indicates the transfer direction
1872 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1874 /* address_space_map: map a physical memory region into a host virtual address
1876 * May map a subset of the requested range, given by and returned in @plen.
1877 * May return %NULL if resources needed to perform the mapping are exhausted.
1878 * Use only for reads OR writes - not for read-modify-write operations.
1879 * Use cpu_register_map_client() to know when retrying the map operation is
1880 * likely to succeed.
1882 * @as: #AddressSpace to be accessed
1883 * @addr: address within that address space
1884 * @plen: pointer to length of buffer; updated on return
1885 * @is_write: indicates the transfer direction
1887 void *address_space_map(AddressSpace *as, hwaddr addr,
1888 hwaddr *plen, bool is_write);
1890 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1892 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1893 * the amount of memory that was actually read or written by the caller.
1895 * @as: #AddressSpace used
1896 * @buffer: host pointer as returned by address_space_map()
1897 * @len: buffer length as returned by address_space_map()
1898 * @access_len: amount of data actually transferred
1899 * @is_write: indicates the transfer direction
1901 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1902 int is_write, hwaddr access_len);
1905 /* Internal functions, part of the implementation of address_space_read. */
1906 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
1907 MemTxAttrs attrs, uint8_t *buf,
1908 int len, hwaddr addr1, hwaddr l,
1911 MemTxResult flatview_read_full(FlatView *fv, hwaddr addr,
1912 MemTxAttrs attrs, uint8_t *buf, int len);
1913 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1915 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1918 return memory_region_is_ram(mr) &&
1919 !mr->readonly && !memory_region_is_ram_device(mr);
1921 return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
1922 memory_region_is_romd(mr);
1927 * address_space_read: read from an address space.
1929 * Return a MemTxResult indicating whether the operation succeeded
1930 * or failed (eg unassigned memory, device rejected the transaction,
1933 * @fv: #FlatView to be accessed
1934 * @addr: address within that address space
1935 * @attrs: memory transaction attributes
1936 * @buf: buffer with the data transferred
1938 static inline __attribute__((__always_inline__))
1939 MemTxResult flatview_read(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
1940 uint8_t *buf, int len)
1942 MemTxResult result = MEMTX_OK;
1947 if (__builtin_constant_p(len)) {
1951 mr = flatview_translate(fv, addr, &addr1, &l, false);
1952 if (len == l && memory_access_is_direct(mr, false)) {
1953 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1954 memcpy(buf, ptr, len);
1956 result = flatview_read_continue(fv, addr, attrs, buf, len,
1962 result = flatview_read_full(fv, addr, attrs, buf, len);
1967 static inline MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
1968 MemTxAttrs attrs, uint8_t *buf,
1971 return flatview_read(address_space_to_flatview(as), addr, attrs, buf, len);
1975 * address_space_read_cached: read from a cached RAM region
1977 * @cache: Cached region to be addressed
1978 * @addr: address relative to the base of the RAM region
1979 * @buf: buffer with the data transferred
1980 * @len: length of the data transferred
1983 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
1986 assert(addr < cache->len && len <= cache->len - addr);
1987 address_space_read(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);
1991 * address_space_write_cached: write to a cached RAM region
1993 * @cache: Cached region to be addressed
1994 * @addr: address relative to the base of the RAM region
1995 * @buf: buffer with the data transferred
1996 * @len: length of the data transferred
1999 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2002 assert(addr < cache->len && len <= cache->len - addr);
2003 address_space_write(cache->as, cache->xlat + addr, MEMTXATTRS_UNSPECIFIED, buf, len);