4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
29 #include "qemu/osdep.h"
32 #include "qemu/cutils.h"
33 #include "qemu/bitops.h"
34 #include "qemu/bitmap.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/pmem.h"
39 #include "migration.h"
41 #include "migration/register.h"
42 #include "migration/misc.h"
43 #include "qemu-file.h"
44 #include "postcopy-ram.h"
45 #include "page_cache.h"
46 #include "qemu/error-report.h"
47 #include "qapi/error.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qmp/qerror.h"
51 #include "exec/ram_addr.h"
52 #include "exec/target_page.h"
53 #include "qemu/rcu_queue.h"
54 #include "migration/colo.h"
56 #include "sysemu/sysemu.h"
57 #include "qemu/uuid.h"
61 /***********************************************************/
62 /* ram save/restore */
64 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
65 * worked for pages that where filled with the same char. We switched
66 * it to only search for the zero value. And to avoid confusion with
67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
70 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
71 #define RAM_SAVE_FLAG_ZERO 0x02
72 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
73 #define RAM_SAVE_FLAG_PAGE 0x08
74 #define RAM_SAVE_FLAG_EOS 0x10
75 #define RAM_SAVE_FLAG_CONTINUE 0x20
76 #define RAM_SAVE_FLAG_XBZRLE 0x40
77 /* 0x80 is reserved in migration.h start with 0x100 next */
78 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
80 static inline bool is_zero_range(uint8_t *p, uint64_t size)
82 return buffer_is_zero(p, size);
85 XBZRLECacheStats xbzrle_counters;
87 /* struct contains XBZRLE cache and a static page
88 used by the compression */
90 /* buffer used for XBZRLE encoding */
92 /* buffer for storing page content */
94 /* Cache for XBZRLE, Protected by lock. */
97 /* it will store a page full of zeros */
98 uint8_t *zero_target_page;
99 /* buffer used for XBZRLE decoding */
100 uint8_t *decoded_buf;
103 static void XBZRLE_cache_lock(void)
105 if (migrate_use_xbzrle())
106 qemu_mutex_lock(&XBZRLE.lock);
109 static void XBZRLE_cache_unlock(void)
111 if (migrate_use_xbzrle())
112 qemu_mutex_unlock(&XBZRLE.lock);
116 * xbzrle_cache_resize: resize the xbzrle cache
118 * This function is called from qmp_migrate_set_cache_size in main
119 * thread, possibly while a migration is in progress. A running
120 * migration may be using the cache and might finish during this call,
121 * hence changes to the cache are protected by XBZRLE.lock().
123 * Returns 0 for success or -1 for error
125 * @new_size: new cache size
126 * @errp: set *errp if the check failed, with reason
128 int xbzrle_cache_resize(int64_t new_size, Error **errp)
130 PageCache *new_cache;
133 /* Check for truncation */
134 if (new_size != (size_t)new_size) {
135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
136 "exceeding address space");
140 if (new_size == migrate_xbzrle_cache_size()) {
147 if (XBZRLE.cache != NULL) {
148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
154 cache_fini(XBZRLE.cache);
155 XBZRLE.cache = new_cache;
158 XBZRLE_cache_unlock();
162 static bool ramblock_is_ignored(RAMBlock *block)
164 return !qemu_ram_is_migratable(block) ||
165 (migrate_ignore_shared() && qemu_ram_is_shared(block));
168 /* Should be holding either ram_list.mutex, or the RCU lock. */
169 #define RAMBLOCK_FOREACH_NOT_IGNORED(block) \
170 INTERNAL_RAMBLOCK_FOREACH(block) \
171 if (ramblock_is_ignored(block)) {} else
173 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \
174 INTERNAL_RAMBLOCK_FOREACH(block) \
175 if (!qemu_ram_is_migratable(block)) {} else
177 #undef RAMBLOCK_FOREACH
179 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
185 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
186 ret = func(block, opaque);
195 static void ramblock_recv_map_init(void)
199 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
200 assert(!rb->receivedmap);
201 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
205 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
207 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
211 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
213 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
216 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
218 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
221 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
224 bitmap_set_atomic(rb->receivedmap,
225 ramblock_recv_bitmap_offset(host_addr, rb),
229 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
234 * Returns >0 if success with sent bytes, or <0 if error.
236 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
237 const char *block_name)
239 RAMBlock *block = qemu_ram_block_by_name(block_name);
240 unsigned long *le_bitmap, nbits;
244 error_report("%s: invalid block name: %s", __func__, block_name);
248 nbits = block->used_length >> TARGET_PAGE_BITS;
251 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
252 * machines we may need 4 more bytes for padding (see below
253 * comment). So extend it a bit before hand.
255 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
258 * Always use little endian when sending the bitmap. This is
259 * required that when source and destination VMs are not using the
260 * same endianess. (Note: big endian won't work.)
262 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
264 /* Size of the bitmap, in bytes */
265 size = DIV_ROUND_UP(nbits, 8);
268 * size is always aligned to 8 bytes for 64bit machines, but it
269 * may not be true for 32bit machines. We need this padding to
270 * make sure the migration can survive even between 32bit and
273 size = ROUND_UP(size, 8);
275 qemu_put_be64(file, size);
276 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
278 * Mark as an end, in case the middle part is screwed up due to
279 * some "misterious" reason.
281 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
286 if (qemu_file_get_error(file)) {
287 return qemu_file_get_error(file);
290 return size + sizeof(size);
294 * An outstanding page request, on the source, having been received
297 struct RAMSrcPageRequest {
302 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
305 /* State of RAM for migration */
307 /* QEMUFile used for this migration */
309 /* Last block that we have visited searching for dirty pages */
310 RAMBlock *last_seen_block;
311 /* Last block from where we have sent data */
312 RAMBlock *last_sent_block;
313 /* Last dirty target page we have sent */
314 ram_addr_t last_page;
315 /* last ram version we have seen */
316 uint32_t last_version;
317 /* We are in the first round */
319 /* The free page optimization is enabled */
321 /* How many times we have dirty too many pages */
322 int dirty_rate_high_cnt;
323 /* these variables are used for bitmap sync */
324 /* last time we did a full bitmap_sync */
325 int64_t time_last_bitmap_sync;
326 /* bytes transferred at start_time */
327 uint64_t bytes_xfer_prev;
328 /* number of dirty pages since start_time */
329 uint64_t num_dirty_pages_period;
330 /* xbzrle misses since the beginning of the period */
331 uint64_t xbzrle_cache_miss_prev;
333 /* compression statistics since the beginning of the period */
334 /* amount of count that no free thread to compress data */
335 uint64_t compress_thread_busy_prev;
336 /* amount bytes after compression */
337 uint64_t compressed_size_prev;
338 /* amount of compressed pages */
339 uint64_t compress_pages_prev;
341 /* total handled target pages at the beginning of period */
342 uint64_t target_page_count_prev;
343 /* total handled target pages since start */
344 uint64_t target_page_count;
345 /* number of dirty bits in the bitmap */
346 uint64_t migration_dirty_pages;
347 /* Protects modification of the bitmap and migration dirty pages */
348 QemuMutex bitmap_mutex;
349 /* The RAMBlock used in the last src_page_requests */
350 RAMBlock *last_req_rb;
351 /* Queue of outstanding page requests from the destination */
352 QemuMutex src_page_req_mutex;
353 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
355 typedef struct RAMState RAMState;
357 static RAMState *ram_state;
359 static NotifierWithReturnList precopy_notifier_list;
361 void precopy_infrastructure_init(void)
363 notifier_with_return_list_init(&precopy_notifier_list);
366 void precopy_add_notifier(NotifierWithReturn *n)
368 notifier_with_return_list_add(&precopy_notifier_list, n);
371 void precopy_remove_notifier(NotifierWithReturn *n)
373 notifier_with_return_remove(n);
376 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
378 PrecopyNotifyData pnd;
382 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
385 void precopy_enable_free_page_optimization(void)
391 ram_state->fpo_enabled = true;
394 uint64_t ram_bytes_remaining(void)
396 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
400 MigrationStats ram_counters;
402 /* used by the search for pages to send */
403 struct PageSearchStatus {
404 /* Current block being searched */
406 /* Current page to search from */
408 /* Set once we wrap around */
411 typedef struct PageSearchStatus PageSearchStatus;
413 CompressionStats compression_counters;
415 struct CompressParam {
425 /* internally used fields */
429 typedef struct CompressParam CompressParam;
431 struct DecompressParam {
441 typedef struct DecompressParam DecompressParam;
443 static CompressParam *comp_param;
444 static QemuThread *compress_threads;
445 /* comp_done_cond is used to wake up the migration thread when
446 * one of the compression threads has finished the compression.
447 * comp_done_lock is used to co-work with comp_done_cond.
449 static QemuMutex comp_done_lock;
450 static QemuCond comp_done_cond;
451 /* The empty QEMUFileOps will be used by file in CompressParam */
452 static const QEMUFileOps empty_ops = { };
454 static QEMUFile *decomp_file;
455 static DecompressParam *decomp_param;
456 static QemuThread *decompress_threads;
457 static QemuMutex decomp_done_lock;
458 static QemuCond decomp_done_cond;
460 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
461 ram_addr_t offset, uint8_t *source_buf);
463 static void *do_data_compress(void *opaque)
465 CompressParam *param = opaque;
470 qemu_mutex_lock(¶m->mutex);
471 while (!param->quit) {
473 block = param->block;
474 offset = param->offset;
476 qemu_mutex_unlock(¶m->mutex);
478 zero_page = do_compress_ram_page(param->file, ¶m->stream,
479 block, offset, param->originbuf);
481 qemu_mutex_lock(&comp_done_lock);
483 param->zero_page = zero_page;
484 qemu_cond_signal(&comp_done_cond);
485 qemu_mutex_unlock(&comp_done_lock);
487 qemu_mutex_lock(¶m->mutex);
489 qemu_cond_wait(¶m->cond, ¶m->mutex);
492 qemu_mutex_unlock(¶m->mutex);
497 static void compress_threads_save_cleanup(void)
501 if (!migrate_use_compression() || !comp_param) {
505 thread_count = migrate_compress_threads();
506 for (i = 0; i < thread_count; i++) {
508 * we use it as a indicator which shows if the thread is
509 * properly init'd or not
511 if (!comp_param[i].file) {
515 qemu_mutex_lock(&comp_param[i].mutex);
516 comp_param[i].quit = true;
517 qemu_cond_signal(&comp_param[i].cond);
518 qemu_mutex_unlock(&comp_param[i].mutex);
520 qemu_thread_join(compress_threads + i);
521 qemu_mutex_destroy(&comp_param[i].mutex);
522 qemu_cond_destroy(&comp_param[i].cond);
523 deflateEnd(&comp_param[i].stream);
524 g_free(comp_param[i].originbuf);
525 qemu_fclose(comp_param[i].file);
526 comp_param[i].file = NULL;
528 qemu_mutex_destroy(&comp_done_lock);
529 qemu_cond_destroy(&comp_done_cond);
530 g_free(compress_threads);
532 compress_threads = NULL;
536 static int compress_threads_save_setup(void)
540 if (!migrate_use_compression()) {
543 thread_count = migrate_compress_threads();
544 compress_threads = g_new0(QemuThread, thread_count);
545 comp_param = g_new0(CompressParam, thread_count);
546 qemu_cond_init(&comp_done_cond);
547 qemu_mutex_init(&comp_done_lock);
548 for (i = 0; i < thread_count; i++) {
549 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
550 if (!comp_param[i].originbuf) {
554 if (deflateInit(&comp_param[i].stream,
555 migrate_compress_level()) != Z_OK) {
556 g_free(comp_param[i].originbuf);
560 /* comp_param[i].file is just used as a dummy buffer to save data,
561 * set its ops to empty.
563 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
564 comp_param[i].done = true;
565 comp_param[i].quit = false;
566 qemu_mutex_init(&comp_param[i].mutex);
567 qemu_cond_init(&comp_param[i].cond);
568 qemu_thread_create(compress_threads + i, "compress",
569 do_data_compress, comp_param + i,
570 QEMU_THREAD_JOINABLE);
575 compress_threads_save_cleanup();
581 #define MULTIFD_MAGIC 0x11223344U
582 #define MULTIFD_VERSION 1
584 #define MULTIFD_FLAG_SYNC (1 << 0)
586 /* This value needs to be a multiple of qemu_target_page_size() */
587 #define MULTIFD_PACKET_SIZE (512 * 1024)
592 unsigned char uuid[16]; /* QemuUUID */
594 uint8_t unused1[7]; /* Reserved for future use */
595 uint64_t unused2[4]; /* Reserved for future use */
596 } __attribute__((packed)) MultiFDInit_t;
602 /* maximum number of allocated pages */
603 uint32_t pages_alloc;
605 /* size of the next packet that contains pages */
606 uint32_t next_packet_size;
608 uint64_t unused[4]; /* Reserved for future use */
611 } __attribute__((packed)) MultiFDPacket_t;
614 /* number of used pages */
616 /* number of allocated pages */
618 /* global number of generated multifd packets */
620 /* offset of each page */
622 /* pointer to each page */
628 /* this fields are not changed once the thread is created */
631 /* channel thread name */
633 /* channel thread id */
635 /* communication channel */
637 /* sem where to wait for more work */
639 /* this mutex protects the following parameters */
641 /* is this channel thread running */
643 /* should this thread finish */
645 /* thread has work to do */
647 /* array of pages to sent */
648 MultiFDPages_t *pages;
649 /* packet allocated len */
651 /* pointer to the packet */
652 MultiFDPacket_t *packet;
653 /* multifd flags for each packet */
655 /* size of the next packet that contains pages */
656 uint32_t next_packet_size;
657 /* global number of generated multifd packets */
659 /* thread local variables */
660 /* packets sent through this channel */
661 uint64_t num_packets;
662 /* pages sent through this channel */
667 /* this fields are not changed once the thread is created */
670 /* channel thread name */
672 /* channel thread id */
674 /* communication channel */
676 /* this mutex protects the following parameters */
678 /* is this channel thread running */
680 /* should this thread finish */
682 /* array of pages to receive */
683 MultiFDPages_t *pages;
684 /* packet allocated len */
686 /* pointer to the packet */
687 MultiFDPacket_t *packet;
688 /* multifd flags for each packet */
690 /* global number of generated multifd packets */
692 /* thread local variables */
693 /* size of the next packet that contains pages */
694 uint32_t next_packet_size;
695 /* packets sent through this channel */
696 uint64_t num_packets;
697 /* pages sent through this channel */
699 /* syncs main thread and channels */
700 QemuSemaphore sem_sync;
703 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
708 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
709 msg.version = cpu_to_be32(MULTIFD_VERSION);
711 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
713 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
720 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
725 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
730 msg.magic = be32_to_cpu(msg.magic);
731 msg.version = be32_to_cpu(msg.version);
733 if (msg.magic != MULTIFD_MAGIC) {
734 error_setg(errp, "multifd: received packet magic %x "
735 "expected %x", msg.magic, MULTIFD_MAGIC);
739 if (msg.version != MULTIFD_VERSION) {
740 error_setg(errp, "multifd: received packet version %d "
741 "expected %d", msg.version, MULTIFD_VERSION);
745 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
746 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
747 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
749 error_setg(errp, "multifd: received uuid '%s' and expected "
750 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
756 if (msg.id > migrate_multifd_channels()) {
757 error_setg(errp, "multifd: received channel version %d "
758 "expected %d", msg.version, MULTIFD_VERSION);
765 static MultiFDPages_t *multifd_pages_init(size_t size)
767 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
769 pages->allocated = size;
770 pages->iov = g_new0(struct iovec, size);
771 pages->offset = g_new0(ram_addr_t, size);
776 static void multifd_pages_clear(MultiFDPages_t *pages)
779 pages->allocated = 0;
780 pages->packet_num = 0;
784 g_free(pages->offset);
785 pages->offset = NULL;
789 static void multifd_send_fill_packet(MultiFDSendParams *p)
791 MultiFDPacket_t *packet = p->packet;
792 uint32_t page_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
795 packet->magic = cpu_to_be32(MULTIFD_MAGIC);
796 packet->version = cpu_to_be32(MULTIFD_VERSION);
797 packet->flags = cpu_to_be32(p->flags);
798 packet->pages_alloc = cpu_to_be32(page_max);
799 packet->pages_used = cpu_to_be32(p->pages->used);
800 packet->next_packet_size = cpu_to_be32(p->next_packet_size);
801 packet->packet_num = cpu_to_be64(p->packet_num);
803 if (p->pages->block) {
804 strncpy(packet->ramblock, p->pages->block->idstr, 256);
807 for (i = 0; i < p->pages->used; i++) {
808 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
812 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
814 MultiFDPacket_t *packet = p->packet;
815 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
819 packet->magic = be32_to_cpu(packet->magic);
820 if (packet->magic != MULTIFD_MAGIC) {
821 error_setg(errp, "multifd: received packet "
822 "magic %x and expected magic %x",
823 packet->magic, MULTIFD_MAGIC);
827 packet->version = be32_to_cpu(packet->version);
828 if (packet->version != MULTIFD_VERSION) {
829 error_setg(errp, "multifd: received packet "
830 "version %d and expected version %d",
831 packet->version, MULTIFD_VERSION);
835 p->flags = be32_to_cpu(packet->flags);
837 packet->pages_alloc = be32_to_cpu(packet->pages_alloc);
839 * If we recevied a packet that is 100 times bigger than expected
840 * just stop migration. It is a magic number.
842 if (packet->pages_alloc > pages_max * 100) {
843 error_setg(errp, "multifd: received packet "
844 "with size %d and expected a maximum size of %d",
845 packet->pages_alloc, pages_max * 100) ;
849 * We received a packet that is bigger than expected but inside
850 * reasonable limits (see previous comment). Just reallocate.
852 if (packet->pages_alloc > p->pages->allocated) {
853 multifd_pages_clear(p->pages);
854 p->pages = multifd_pages_init(packet->pages_alloc);
857 p->pages->used = be32_to_cpu(packet->pages_used);
858 if (p->pages->used > packet->pages_alloc) {
859 error_setg(errp, "multifd: received packet "
860 "with %d pages and expected maximum pages are %d",
861 p->pages->used, packet->pages_alloc) ;
865 p->next_packet_size = be32_to_cpu(packet->next_packet_size);
866 p->packet_num = be64_to_cpu(packet->packet_num);
868 if (p->pages->used) {
869 /* make sure that ramblock is 0 terminated */
870 packet->ramblock[255] = 0;
871 block = qemu_ram_block_by_name(packet->ramblock);
873 error_setg(errp, "multifd: unknown ram block %s",
879 for (i = 0; i < p->pages->used; i++) {
880 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
882 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
883 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
884 " (max " RAM_ADDR_FMT ")",
885 offset, block->max_length);
888 p->pages->iov[i].iov_base = block->host + offset;
889 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
896 MultiFDSendParams *params;
897 /* array of pages to sent */
898 MultiFDPages_t *pages;
899 /* syncs main thread and channels */
900 QemuSemaphore sem_sync;
901 /* global number of generated multifd packets */
903 /* send channels ready */
904 QemuSemaphore channels_ready;
905 } *multifd_send_state;
908 * How we use multifd_send_state->pages and channel->pages?
910 * We create a pages for each channel, and a main one. Each time that
911 * we need to send a batch of pages we interchange the ones between
912 * multifd_send_state and the channel that is sending it. There are
913 * two reasons for that:
914 * - to not have to do so many mallocs during migration
915 * - to make easier to know what to free at the end of migration
917 * This way we always know who is the owner of each "pages" struct,
918 * and we don't need any locking. It belongs to the migration thread
919 * or to the channel thread. Switching is safe because the migration
920 * thread is using the channel mutex when changing it, and the channel
921 * have to had finish with its own, otherwise pending_job can't be
925 static int multifd_send_pages(RAMState *rs)
928 static int next_channel;
929 MultiFDSendParams *p = NULL; /* make happy gcc */
930 MultiFDPages_t *pages = multifd_send_state->pages;
931 uint64_t transferred;
933 qemu_sem_wait(&multifd_send_state->channels_ready);
934 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
935 p = &multifd_send_state->params[i];
937 qemu_mutex_lock(&p->mutex);
939 error_report("%s: channel %d has already quit!", __func__, i);
940 qemu_mutex_unlock(&p->mutex);
943 if (!p->pending_job) {
945 next_channel = (i + 1) % migrate_multifd_channels();
948 qemu_mutex_unlock(&p->mutex);
952 p->packet_num = multifd_send_state->packet_num++;
953 p->pages->block = NULL;
954 multifd_send_state->pages = p->pages;
956 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
957 qemu_file_update_transfer(rs->f, transferred);
958 ram_counters.multifd_bytes += transferred;
959 ram_counters.transferred += transferred;;
960 qemu_mutex_unlock(&p->mutex);
961 qemu_sem_post(&p->sem);
966 static int multifd_queue_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
968 MultiFDPages_t *pages = multifd_send_state->pages;
971 pages->block = block;
974 if (pages->block == block) {
975 pages->offset[pages->used] = offset;
976 pages->iov[pages->used].iov_base = block->host + offset;
977 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
980 if (pages->used < pages->allocated) {
985 if (multifd_send_pages(rs) < 0) {
989 if (pages->block != block) {
990 return multifd_queue_page(rs, block, offset);
996 static void multifd_send_terminate_threads(Error *err)
1001 MigrationState *s = migrate_get_current();
1002 migrate_set_error(s, err);
1003 if (s->state == MIGRATION_STATUS_SETUP ||
1004 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
1005 s->state == MIGRATION_STATUS_DEVICE ||
1006 s->state == MIGRATION_STATUS_ACTIVE) {
1007 migrate_set_state(&s->state, s->state,
1008 MIGRATION_STATUS_FAILED);
1012 for (i = 0; i < migrate_multifd_channels(); i++) {
1013 MultiFDSendParams *p = &multifd_send_state->params[i];
1015 qemu_mutex_lock(&p->mutex);
1017 qemu_sem_post(&p->sem);
1018 qemu_mutex_unlock(&p->mutex);
1022 void multifd_save_cleanup(void)
1026 if (!migrate_use_multifd()) {
1029 multifd_send_terminate_threads(NULL);
1030 for (i = 0; i < migrate_multifd_channels(); i++) {
1031 MultiFDSendParams *p = &multifd_send_state->params[i];
1034 qemu_thread_join(&p->thread);
1036 socket_send_channel_destroy(p->c);
1038 qemu_mutex_destroy(&p->mutex);
1039 qemu_sem_destroy(&p->sem);
1042 multifd_pages_clear(p->pages);
1048 qemu_sem_destroy(&multifd_send_state->channels_ready);
1049 qemu_sem_destroy(&multifd_send_state->sem_sync);
1050 g_free(multifd_send_state->params);
1051 multifd_send_state->params = NULL;
1052 multifd_pages_clear(multifd_send_state->pages);
1053 multifd_send_state->pages = NULL;
1054 g_free(multifd_send_state);
1055 multifd_send_state = NULL;
1058 static void multifd_send_sync_main(RAMState *rs)
1062 if (!migrate_use_multifd()) {
1065 if (multifd_send_state->pages->used) {
1066 if (multifd_send_pages(rs) < 0) {
1067 error_report("%s: multifd_send_pages fail", __func__);
1071 for (i = 0; i < migrate_multifd_channels(); i++) {
1072 MultiFDSendParams *p = &multifd_send_state->params[i];
1074 trace_multifd_send_sync_main_signal(p->id);
1076 qemu_mutex_lock(&p->mutex);
1079 error_report("%s: channel %d has already quit", __func__, i);
1080 qemu_mutex_unlock(&p->mutex);
1084 p->packet_num = multifd_send_state->packet_num++;
1085 p->flags |= MULTIFD_FLAG_SYNC;
1087 qemu_file_update_transfer(rs->f, p->packet_len);
1088 qemu_mutex_unlock(&p->mutex);
1089 qemu_sem_post(&p->sem);
1091 for (i = 0; i < migrate_multifd_channels(); i++) {
1092 MultiFDSendParams *p = &multifd_send_state->params[i];
1094 trace_multifd_send_sync_main_wait(p->id);
1095 qemu_sem_wait(&multifd_send_state->sem_sync);
1097 trace_multifd_send_sync_main(multifd_send_state->packet_num);
1100 static void *multifd_send_thread(void *opaque)
1102 MultiFDSendParams *p = opaque;
1103 Error *local_err = NULL;
1107 trace_multifd_send_thread_start(p->id);
1108 rcu_register_thread();
1110 if (multifd_send_initial_packet(p, &local_err) < 0) {
1113 /* initial packet */
1117 qemu_sem_wait(&p->sem);
1118 qemu_mutex_lock(&p->mutex);
1120 if (p->pending_job) {
1121 uint32_t used = p->pages->used;
1122 uint64_t packet_num = p->packet_num;
1125 p->next_packet_size = used * qemu_target_page_size();
1126 multifd_send_fill_packet(p);
1129 p->num_pages += used;
1131 qemu_mutex_unlock(&p->mutex);
1133 trace_multifd_send(p->id, packet_num, used, flags,
1134 p->next_packet_size);
1136 ret = qio_channel_write_all(p->c, (void *)p->packet,
1137 p->packet_len, &local_err);
1143 ret = qio_channel_writev_all(p->c, p->pages->iov,
1150 qemu_mutex_lock(&p->mutex);
1152 qemu_mutex_unlock(&p->mutex);
1154 if (flags & MULTIFD_FLAG_SYNC) {
1155 qemu_sem_post(&multifd_send_state->sem_sync);
1157 qemu_sem_post(&multifd_send_state->channels_ready);
1158 } else if (p->quit) {
1159 qemu_mutex_unlock(&p->mutex);
1162 qemu_mutex_unlock(&p->mutex);
1163 /* sometimes there are spurious wakeups */
1169 multifd_send_terminate_threads(local_err);
1173 * Error happen, I will exit, but I can't just leave, tell
1174 * who pay attention to me.
1177 if (flags & MULTIFD_FLAG_SYNC) {
1178 qemu_sem_post(&multifd_send_state->sem_sync);
1180 qemu_sem_post(&multifd_send_state->channels_ready);
1183 qemu_mutex_lock(&p->mutex);
1185 qemu_mutex_unlock(&p->mutex);
1187 rcu_unregister_thread();
1188 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1193 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1195 MultiFDSendParams *p = opaque;
1196 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1197 Error *local_err = NULL;
1199 if (qio_task_propagate_error(task, &local_err)) {
1200 migrate_set_error(migrate_get_current(), local_err);
1201 multifd_save_cleanup();
1203 p->c = QIO_CHANNEL(sioc);
1204 qio_channel_set_delay(p->c, false);
1206 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1207 QEMU_THREAD_JOINABLE);
1211 int multifd_save_setup(void)
1214 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1217 if (!migrate_use_multifd()) {
1220 thread_count = migrate_multifd_channels();
1221 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1222 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
1223 multifd_send_state->pages = multifd_pages_init(page_count);
1224 qemu_sem_init(&multifd_send_state->sem_sync, 0);
1225 qemu_sem_init(&multifd_send_state->channels_ready, 0);
1227 for (i = 0; i < thread_count; i++) {
1228 MultiFDSendParams *p = &multifd_send_state->params[i];
1230 qemu_mutex_init(&p->mutex);
1231 qemu_sem_init(&p->sem, 0);
1235 p->pages = multifd_pages_init(page_count);
1236 p->packet_len = sizeof(MultiFDPacket_t)
1237 + sizeof(ram_addr_t) * page_count;
1238 p->packet = g_malloc0(p->packet_len);
1239 p->name = g_strdup_printf("multifdsend_%d", i);
1240 socket_send_channel_create(multifd_new_send_channel_async, p);
1246 MultiFDRecvParams *params;
1247 /* number of created threads */
1249 /* syncs main thread and channels */
1250 QemuSemaphore sem_sync;
1251 /* global number of generated multifd packets */
1252 uint64_t packet_num;
1253 } *multifd_recv_state;
1255 static void multifd_recv_terminate_threads(Error *err)
1260 MigrationState *s = migrate_get_current();
1261 migrate_set_error(s, err);
1262 if (s->state == MIGRATION_STATUS_SETUP ||
1263 s->state == MIGRATION_STATUS_ACTIVE) {
1264 migrate_set_state(&s->state, s->state,
1265 MIGRATION_STATUS_FAILED);
1269 for (i = 0; i < migrate_multifd_channels(); i++) {
1270 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1272 qemu_mutex_lock(&p->mutex);
1274 /* We could arrive here for two reasons:
1275 - normal quit, i.e. everything went fine, just finished
1276 - error quit: We close the channels so the channel threads
1277 finish the qio_channel_read_all_eof() */
1278 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
1279 qemu_mutex_unlock(&p->mutex);
1283 int multifd_load_cleanup(Error **errp)
1288 if (!migrate_use_multifd()) {
1291 multifd_recv_terminate_threads(NULL);
1292 for (i = 0; i < migrate_multifd_channels(); i++) {
1293 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1298 * multifd_recv_thread may hung at MULTIFD_FLAG_SYNC handle code,
1299 * however try to wakeup it without harm in cleanup phase.
1301 qemu_sem_post(&p->sem_sync);
1302 qemu_thread_join(&p->thread);
1304 object_unref(OBJECT(p->c));
1306 qemu_mutex_destroy(&p->mutex);
1307 qemu_sem_destroy(&p->sem_sync);
1310 multifd_pages_clear(p->pages);
1316 qemu_sem_destroy(&multifd_recv_state->sem_sync);
1317 g_free(multifd_recv_state->params);
1318 multifd_recv_state->params = NULL;
1319 g_free(multifd_recv_state);
1320 multifd_recv_state = NULL;
1325 static void multifd_recv_sync_main(void)
1329 if (!migrate_use_multifd()) {
1332 for (i = 0; i < migrate_multifd_channels(); i++) {
1333 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1335 trace_multifd_recv_sync_main_wait(p->id);
1336 qemu_sem_wait(&multifd_recv_state->sem_sync);
1338 for (i = 0; i < migrate_multifd_channels(); i++) {
1339 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1341 qemu_mutex_lock(&p->mutex);
1342 if (multifd_recv_state->packet_num < p->packet_num) {
1343 multifd_recv_state->packet_num = p->packet_num;
1345 qemu_mutex_unlock(&p->mutex);
1346 trace_multifd_recv_sync_main_signal(p->id);
1347 qemu_sem_post(&p->sem_sync);
1349 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1352 static void *multifd_recv_thread(void *opaque)
1354 MultiFDRecvParams *p = opaque;
1355 Error *local_err = NULL;
1358 trace_multifd_recv_thread_start(p->id);
1359 rcu_register_thread();
1369 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1370 p->packet_len, &local_err);
1371 if (ret == 0) { /* EOF */
1374 if (ret == -1) { /* Error */
1378 qemu_mutex_lock(&p->mutex);
1379 ret = multifd_recv_unfill_packet(p, &local_err);
1381 qemu_mutex_unlock(&p->mutex);
1385 used = p->pages->used;
1387 trace_multifd_recv(p->id, p->packet_num, used, flags,
1388 p->next_packet_size);
1390 p->num_pages += used;
1391 qemu_mutex_unlock(&p->mutex);
1394 ret = qio_channel_readv_all(p->c, p->pages->iov,
1401 if (flags & MULTIFD_FLAG_SYNC) {
1402 qemu_sem_post(&multifd_recv_state->sem_sync);
1403 qemu_sem_wait(&p->sem_sync);
1408 multifd_recv_terminate_threads(local_err);
1410 qemu_mutex_lock(&p->mutex);
1412 qemu_mutex_unlock(&p->mutex);
1414 rcu_unregister_thread();
1415 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1420 int multifd_load_setup(void)
1423 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1426 if (!migrate_use_multifd()) {
1429 thread_count = migrate_multifd_channels();
1430 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1431 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
1432 atomic_set(&multifd_recv_state->count, 0);
1433 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
1435 for (i = 0; i < thread_count; i++) {
1436 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1438 qemu_mutex_init(&p->mutex);
1439 qemu_sem_init(&p->sem_sync, 0);
1442 p->pages = multifd_pages_init(page_count);
1443 p->packet_len = sizeof(MultiFDPacket_t)
1444 + sizeof(ram_addr_t) * page_count;
1445 p->packet = g_malloc0(p->packet_len);
1446 p->name = g_strdup_printf("multifdrecv_%d", i);
1451 bool multifd_recv_all_channels_created(void)
1453 int thread_count = migrate_multifd_channels();
1455 if (!migrate_use_multifd()) {
1459 return thread_count == atomic_read(&multifd_recv_state->count);
1463 * Try to receive all multifd channels to get ready for the migration.
1464 * - Return true and do not set @errp when correctly receving all channels;
1465 * - Return false and do not set @errp when correctly receiving the current one;
1466 * - Return false and set @errp when failing to receive the current channel.
1468 bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
1470 MultiFDRecvParams *p;
1471 Error *local_err = NULL;
1474 id = multifd_recv_initial_packet(ioc, &local_err);
1476 multifd_recv_terminate_threads(local_err);
1477 error_propagate_prepend(errp, local_err,
1478 "failed to receive packet"
1479 " via multifd channel %d: ",
1480 atomic_read(&multifd_recv_state->count));
1484 p = &multifd_recv_state->params[id];
1486 error_setg(&local_err, "multifd: received id '%d' already setup'",
1488 multifd_recv_terminate_threads(local_err);
1489 error_propagate(errp, local_err);
1493 object_ref(OBJECT(ioc));
1494 /* initial packet */
1498 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1499 QEMU_THREAD_JOINABLE);
1500 atomic_inc(&multifd_recv_state->count);
1501 return atomic_read(&multifd_recv_state->count) ==
1502 migrate_multifd_channels();
1506 * save_page_header: write page header to wire
1508 * If this is the 1st block, it also writes the block identification
1510 * Returns the number of bytes written
1512 * @f: QEMUFile where to send the data
1513 * @block: block that contains the page we want to send
1514 * @offset: offset inside the block for the page
1515 * in the lower bits, it contains flags
1517 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1522 if (block == rs->last_sent_block) {
1523 offset |= RAM_SAVE_FLAG_CONTINUE;
1525 qemu_put_be64(f, offset);
1528 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
1529 len = strlen(block->idstr);
1530 qemu_put_byte(f, len);
1531 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
1533 rs->last_sent_block = block;
1539 * mig_throttle_guest_down: throotle down the guest
1541 * Reduce amount of guest cpu execution to hopefully slow down memory
1542 * writes. If guest dirty memory rate is reduced below the rate at
1543 * which we can transfer pages to the destination then we should be
1544 * able to complete migration. Some workloads dirty memory way too
1545 * fast and will not effectively converge, even with auto-converge.
1547 static void mig_throttle_guest_down(void)
1549 MigrationState *s = migrate_get_current();
1550 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1551 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
1552 int pct_max = s->parameters.max_cpu_throttle;
1554 /* We have not started throttling yet. Let's start it. */
1555 if (!cpu_throttle_active()) {
1556 cpu_throttle_set(pct_initial);
1558 /* Throttling already on, just increase the rate */
1559 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1565 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1567 * @rs: current RAM state
1568 * @current_addr: address for the zero page
1570 * Update the xbzrle cache to reflect a page that's been sent as all 0.
1571 * The important thing is that a stale (not-yet-0'd) page be replaced
1573 * As a bonus, if the page wasn't in the cache it gets added so that
1574 * when a small write is made into the 0'd page it gets XBZRLE sent.
1576 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
1578 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
1582 /* We don't care if this fails to allocate a new cache page
1583 * as long as it updated an old one */
1584 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
1585 ram_counters.dirty_sync_count);
1588 #define ENCODING_FLAG_XBZRLE 0x1
1591 * save_xbzrle_page: compress and send current page
1593 * Returns: 1 means that we wrote the page
1594 * 0 means that page is identical to the one already sent
1595 * -1 means that xbzrle would be longer than normal
1597 * @rs: current RAM state
1598 * @current_data: pointer to the address of the page contents
1599 * @current_addr: addr of the page
1600 * @block: block that contains the page we want to send
1601 * @offset: offset inside the block for the page
1602 * @last_stage: if we are at the completion stage
1604 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
1605 ram_addr_t current_addr, RAMBlock *block,
1606 ram_addr_t offset, bool last_stage)
1608 int encoded_len = 0, bytes_xbzrle;
1609 uint8_t *prev_cached_page;
1611 if (!cache_is_cached(XBZRLE.cache, current_addr,
1612 ram_counters.dirty_sync_count)) {
1613 xbzrle_counters.cache_miss++;
1615 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
1616 ram_counters.dirty_sync_count) == -1) {
1619 /* update *current_data when the page has been
1620 inserted into cache */
1621 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1627 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1629 /* save current buffer into memory */
1630 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1632 /* XBZRLE encoding (if there is no overflow) */
1633 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1634 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1638 * Update the cache contents, so that it corresponds to the data
1639 * sent, in all cases except where we skip the page.
1641 if (!last_stage && encoded_len != 0) {
1642 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1644 * In the case where we couldn't compress, ensure that the caller
1645 * sends the data from the cache, since the guest might have
1646 * changed the RAM since we copied it.
1648 *current_data = prev_cached_page;
1651 if (encoded_len == 0) {
1652 trace_save_xbzrle_page_skipping();
1654 } else if (encoded_len == -1) {
1655 trace_save_xbzrle_page_overflow();
1656 xbzrle_counters.overflow++;
1660 /* Send XBZRLE based compressed page */
1661 bytes_xbzrle = save_page_header(rs, rs->f, block,
1662 offset | RAM_SAVE_FLAG_XBZRLE);
1663 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1664 qemu_put_be16(rs->f, encoded_len);
1665 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
1666 bytes_xbzrle += encoded_len + 1 + 2;
1667 xbzrle_counters.pages++;
1668 xbzrle_counters.bytes += bytes_xbzrle;
1669 ram_counters.transferred += bytes_xbzrle;
1675 * migration_bitmap_find_dirty: find the next dirty page from start
1677 * Returns the page offset within memory region of the start of a dirty page
1679 * @rs: current RAM state
1680 * @rb: RAMBlock where to search for dirty pages
1681 * @start: page where we start the search
1684 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
1685 unsigned long start)
1687 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1688 unsigned long *bitmap = rb->bmap;
1691 if (ramblock_is_ignored(rb)) {
1696 * When the free page optimization is enabled, we need to check the bitmap
1697 * to send the non-free pages rather than all the pages in the bulk stage.
1699 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
1702 next = find_next_bit(bitmap, size, start);
1708 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
1714 qemu_mutex_lock(&rs->bitmap_mutex);
1717 * Clear dirty bitmap if needed. This _must_ be called before we
1718 * send any of the page in the chunk because we need to make sure
1719 * we can capture further page content changes when we sync dirty
1720 * log the next time. So as long as we are going to send any of
1721 * the page in the chunk we clear the remote dirty bitmap for all.
1722 * Clearing it earlier won't be a problem, but too late will.
1724 if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) {
1725 uint8_t shift = rb->clear_bmap_shift;
1726 hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift);
1727 hwaddr start = (page << TARGET_PAGE_BITS) & (-size);
1730 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
1731 * can make things easier sometimes since then start address
1732 * of the small chunk will always be 64 pages aligned so the
1733 * bitmap will always be aligned to unsigned long. We should
1734 * even be able to remove this restriction but I'm simply
1738 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
1739 memory_region_clear_dirty_bitmap(rb->mr, start, size);
1742 ret = test_and_clear_bit(page, rb->bmap);
1745 rs->migration_dirty_pages--;
1747 qemu_mutex_unlock(&rs->bitmap_mutex);
1752 /* Called with RCU critical section */
1753 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb)
1755 rs->migration_dirty_pages +=
1756 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length,
1757 &rs->num_dirty_pages_period);
1761 * ram_pagesize_summary: calculate all the pagesizes of a VM
1763 * Returns a summary bitmap of the page sizes of all RAMBlocks
1765 * For VMs with just normal pages this is equivalent to the host page
1766 * size. If it's got some huge pages then it's the OR of all the
1767 * different page sizes.
1769 uint64_t ram_pagesize_summary(void)
1772 uint64_t summary = 0;
1774 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1775 summary |= block->page_size;
1781 uint64_t ram_get_total_transferred_pages(void)
1783 return ram_counters.normal + ram_counters.duplicate +
1784 compression_counters.pages + xbzrle_counters.pages;
1787 static void migration_update_rates(RAMState *rs, int64_t end_time)
1789 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
1790 double compressed_size;
1792 /* calculate period counters */
1793 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1794 / (end_time - rs->time_last_bitmap_sync);
1800 if (migrate_use_xbzrle()) {
1801 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1802 rs->xbzrle_cache_miss_prev) / page_count;
1803 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1806 if (migrate_use_compression()) {
1807 compression_counters.busy_rate = (double)(compression_counters.busy -
1808 rs->compress_thread_busy_prev) / page_count;
1809 rs->compress_thread_busy_prev = compression_counters.busy;
1811 compressed_size = compression_counters.compressed_size -
1812 rs->compressed_size_prev;
1813 if (compressed_size) {
1814 double uncompressed_size = (compression_counters.pages -
1815 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1817 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1818 compression_counters.compression_rate =
1819 uncompressed_size / compressed_size;
1821 rs->compress_pages_prev = compression_counters.pages;
1822 rs->compressed_size_prev = compression_counters.compressed_size;
1827 static void migration_bitmap_sync(RAMState *rs)
1831 uint64_t bytes_xfer_now;
1833 ram_counters.dirty_sync_count++;
1835 if (!rs->time_last_bitmap_sync) {
1836 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1839 trace_migration_bitmap_sync_start();
1840 memory_global_dirty_log_sync();
1842 qemu_mutex_lock(&rs->bitmap_mutex);
1844 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1845 migration_bitmap_sync_range(rs, block);
1847 ram_counters.remaining = ram_bytes_remaining();
1849 qemu_mutex_unlock(&rs->bitmap_mutex);
1851 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1853 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1855 /* more than 1 second = 1000 millisecons */
1856 if (end_time > rs->time_last_bitmap_sync + 1000) {
1857 bytes_xfer_now = ram_counters.transferred;
1859 /* During block migration the auto-converge logic incorrectly detects
1860 * that ram migration makes no progress. Avoid this by disabling the
1861 * throttling logic during the bulk phase of block migration. */
1862 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1863 /* The following detection logic can be refined later. For now:
1864 Check to see if the dirtied bytes is 50% more than the approx.
1865 amount of bytes that just got transferred since the last time we
1866 were in this routine. If that happens twice, start or increase
1869 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
1870 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
1871 (++rs->dirty_rate_high_cnt >= 2)) {
1872 trace_migration_throttle();
1873 rs->dirty_rate_high_cnt = 0;
1874 mig_throttle_guest_down();
1878 migration_update_rates(rs, end_time);
1880 rs->target_page_count_prev = rs->target_page_count;
1882 /* reset period counters */
1883 rs->time_last_bitmap_sync = end_time;
1884 rs->num_dirty_pages_period = 0;
1885 rs->bytes_xfer_prev = bytes_xfer_now;
1887 if (migrate_use_events()) {
1888 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
1892 static void migration_bitmap_sync_precopy(RAMState *rs)
1894 Error *local_err = NULL;
1897 * The current notifier usage is just an optimization to migration, so we
1898 * don't stop the normal migration process in the error case.
1900 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1901 error_report_err(local_err);
1904 migration_bitmap_sync(rs);
1906 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1907 error_report_err(local_err);
1912 * save_zero_page_to_file: send the zero page to the file
1914 * Returns the size of data written to the file, 0 means the page is not
1917 * @rs: current RAM state
1918 * @file: the file where the data is saved
1919 * @block: block that contains the page we want to send
1920 * @offset: offset inside the block for the page
1922 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1923 RAMBlock *block, ram_addr_t offset)
1925 uint8_t *p = block->host + offset;
1928 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1929 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1930 qemu_put_byte(file, 0);
1937 * save_zero_page: send the zero page to the stream
1939 * Returns the number of pages written.
1941 * @rs: current RAM state
1942 * @block: block that contains the page we want to send
1943 * @offset: offset inside the block for the page
1945 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1947 int len = save_zero_page_to_file(rs, rs->f, block, offset);
1950 ram_counters.duplicate++;
1951 ram_counters.transferred += len;
1957 static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
1959 if (!migrate_release_ram() || !migration_in_postcopy()) {
1963 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
1967 * @pages: the number of pages written by the control path,
1969 * > 0 - number of pages written
1971 * Return true if the pages has been saved, otherwise false is returned.
1973 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1976 uint64_t bytes_xmit = 0;
1980 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1982 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1987 ram_counters.transferred += bytes_xmit;
1991 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1995 if (bytes_xmit > 0) {
1996 ram_counters.normal++;
1997 } else if (bytes_xmit == 0) {
1998 ram_counters.duplicate++;
2005 * directly send the page to the stream
2007 * Returns the number of pages written.
2009 * @rs: current RAM state
2010 * @block: block that contains the page we want to send
2011 * @offset: offset inside the block for the page
2012 * @buf: the page to be sent
2013 * @async: send to page asyncly
2015 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
2016 uint8_t *buf, bool async)
2018 ram_counters.transferred += save_page_header(rs, rs->f, block,
2019 offset | RAM_SAVE_FLAG_PAGE);
2021 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
2022 migrate_release_ram() &
2023 migration_in_postcopy());
2025 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
2027 ram_counters.transferred += TARGET_PAGE_SIZE;
2028 ram_counters.normal++;
2033 * ram_save_page: send the given page to the stream
2035 * Returns the number of pages written.
2037 * >=0 - Number of pages written - this might legally be 0
2038 * if xbzrle noticed the page was the same.
2040 * @rs: current RAM state
2041 * @block: block that contains the page we want to send
2042 * @offset: offset inside the block for the page
2043 * @last_stage: if we are at the completion stage
2045 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
2049 bool send_async = true;
2050 RAMBlock *block = pss->block;
2051 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2052 ram_addr_t current_addr = block->offset + offset;
2054 p = block->host + offset;
2055 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
2057 XBZRLE_cache_lock();
2058 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
2059 migrate_use_xbzrle()) {
2060 pages = save_xbzrle_page(rs, &p, current_addr, block,
2061 offset, last_stage);
2063 /* Can't send this cached data async, since the cache page
2064 * might get updated before it gets to the wire
2070 /* XBZRLE overflow or normal page */
2072 pages = save_normal_page(rs, block, offset, p, send_async);
2075 XBZRLE_cache_unlock();
2080 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
2083 if (multifd_queue_page(rs, block, offset) < 0) {
2086 ram_counters.normal++;
2091 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
2092 ram_addr_t offset, uint8_t *source_buf)
2094 RAMState *rs = ram_state;
2095 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
2096 bool zero_page = false;
2099 if (save_zero_page_to_file(rs, f, block, offset)) {
2104 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
2107 * copy it to a internal buffer to avoid it being modified by VM
2108 * so that we can catch up the error during compression and
2111 memcpy(source_buf, p, TARGET_PAGE_SIZE);
2112 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
2114 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
2115 error_report("compressed data failed!");
2120 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
2125 update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
2127 ram_counters.transferred += bytes_xmit;
2129 if (param->zero_page) {
2130 ram_counters.duplicate++;
2134 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
2135 compression_counters.compressed_size += bytes_xmit - 8;
2136 compression_counters.pages++;
2139 static bool save_page_use_compression(RAMState *rs);
2141 static void flush_compressed_data(RAMState *rs)
2143 int idx, len, thread_count;
2145 if (!save_page_use_compression(rs)) {
2148 thread_count = migrate_compress_threads();
2150 qemu_mutex_lock(&comp_done_lock);
2151 for (idx = 0; idx < thread_count; idx++) {
2152 while (!comp_param[idx].done) {
2153 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2156 qemu_mutex_unlock(&comp_done_lock);
2158 for (idx = 0; idx < thread_count; idx++) {
2159 qemu_mutex_lock(&comp_param[idx].mutex);
2160 if (!comp_param[idx].quit) {
2161 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2163 * it's safe to fetch zero_page without holding comp_done_lock
2164 * as there is no further request submitted to the thread,
2165 * i.e, the thread should be waiting for a request at this point.
2167 update_compress_thread_counts(&comp_param[idx], len);
2169 qemu_mutex_unlock(&comp_param[idx].mutex);
2173 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
2176 param->block = block;
2177 param->offset = offset;
2180 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
2183 int idx, thread_count, bytes_xmit = -1, pages = -1;
2184 bool wait = migrate_compress_wait_thread();
2186 thread_count = migrate_compress_threads();
2187 qemu_mutex_lock(&comp_done_lock);
2189 for (idx = 0; idx < thread_count; idx++) {
2190 if (comp_param[idx].done) {
2191 comp_param[idx].done = false;
2192 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2193 qemu_mutex_lock(&comp_param[idx].mutex);
2194 set_compress_params(&comp_param[idx], block, offset);
2195 qemu_cond_signal(&comp_param[idx].cond);
2196 qemu_mutex_unlock(&comp_param[idx].mutex);
2198 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
2204 * wait for the free thread if the user specifies 'compress-wait-thread',
2205 * otherwise we will post the page out in the main thread as normal page.
2207 if (pages < 0 && wait) {
2208 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2211 qemu_mutex_unlock(&comp_done_lock);
2217 * find_dirty_block: find the next dirty page and update any state
2218 * associated with the search process.
2220 * Returns true if a page is found
2222 * @rs: current RAM state
2223 * @pss: data about the state of the current dirty page scan
2224 * @again: set to false if the search has scanned the whole of RAM
2226 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
2228 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
2229 if (pss->complete_round && pss->block == rs->last_seen_block &&
2230 pss->page >= rs->last_page) {
2232 * We've been once around the RAM and haven't found anything.
2238 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
2239 /* Didn't find anything in this RAM Block */
2241 pss->block = QLIST_NEXT_RCU(pss->block, next);
2244 * If memory migration starts over, we will meet a dirtied page
2245 * which may still exists in compression threads's ring, so we
2246 * should flush the compressed data to make sure the new page
2247 * is not overwritten by the old one in the destination.
2249 * Also If xbzrle is on, stop using the data compression at this
2250 * point. In theory, xbzrle can do better than compression.
2252 flush_compressed_data(rs);
2254 /* Hit the end of the list */
2255 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2256 /* Flag that we've looped */
2257 pss->complete_round = true;
2258 rs->ram_bulk_stage = false;
2260 /* Didn't find anything this time, but try again on the new block */
2264 /* Can go around again, but... */
2266 /* We've found something so probably don't need to */
2272 * unqueue_page: gets a page of the queue
2274 * Helper for 'get_queued_page' - gets a page off the queue
2276 * Returns the block of the page (or NULL if none available)
2278 * @rs: current RAM state
2279 * @offset: used to return the offset within the RAMBlock
2281 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
2283 RAMBlock *block = NULL;
2285 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2289 qemu_mutex_lock(&rs->src_page_req_mutex);
2290 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2291 struct RAMSrcPageRequest *entry =
2292 QSIMPLEQ_FIRST(&rs->src_page_requests);
2294 *offset = entry->offset;
2296 if (entry->len > TARGET_PAGE_SIZE) {
2297 entry->len -= TARGET_PAGE_SIZE;
2298 entry->offset += TARGET_PAGE_SIZE;
2300 memory_region_unref(block->mr);
2301 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2303 migration_consume_urgent_request();
2306 qemu_mutex_unlock(&rs->src_page_req_mutex);
2312 * get_queued_page: unqueue a page from the postcopy requests
2314 * Skips pages that are already sent (!dirty)
2316 * Returns true if a queued page is found
2318 * @rs: current RAM state
2319 * @pss: data about the state of the current dirty page scan
2321 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
2328 block = unqueue_page(rs, &offset);
2330 * We're sending this page, and since it's postcopy nothing else
2331 * will dirty it, and we must make sure it doesn't get sent again
2332 * even if this queue request was received after the background
2333 * search already sent it.
2338 page = offset >> TARGET_PAGE_BITS;
2339 dirty = test_bit(page, block->bmap);
2341 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
2342 page, test_bit(page, block->unsentmap));
2344 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
2348 } while (block && !dirty);
2352 * As soon as we start servicing pages out of order, then we have
2353 * to kill the bulk stage, since the bulk stage assumes
2354 * in (migration_bitmap_find_and_reset_dirty) that every page is
2355 * dirty, that's no longer true.
2357 rs->ram_bulk_stage = false;
2360 * We want the background search to continue from the queued page
2361 * since the guest is likely to want other pages near to the page
2362 * it just requested.
2365 pss->page = offset >> TARGET_PAGE_BITS;
2368 * This unqueued page would break the "one round" check, even is
2371 pss->complete_round = false;
2378 * migration_page_queue_free: drop any remaining pages in the ram
2381 * It should be empty at the end anyway, but in error cases there may
2382 * be some left. in case that there is any page left, we drop it.
2385 static void migration_page_queue_free(RAMState *rs)
2387 struct RAMSrcPageRequest *mspr, *next_mspr;
2388 /* This queue generally should be empty - but in the case of a failed
2389 * migration might have some droppings in.
2392 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
2393 memory_region_unref(mspr->rb->mr);
2394 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2401 * ram_save_queue_pages: queue the page for transmission
2403 * A request from postcopy destination for example.
2405 * Returns zero on success or negative on error
2407 * @rbname: Name of the RAMBLock of the request. NULL means the
2408 * same that last one.
2409 * @start: starting address from the start of the RAMBlock
2410 * @len: length (in bytes) to send
2412 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
2415 RAMState *rs = ram_state;
2417 ram_counters.postcopy_requests++;
2420 /* Reuse last RAMBlock */
2421 ramblock = rs->last_req_rb;
2425 * Shouldn't happen, we can't reuse the last RAMBlock if
2426 * it's the 1st request.
2428 error_report("ram_save_queue_pages no previous block");
2432 ramblock = qemu_ram_block_by_name(rbname);
2435 /* We shouldn't be asked for a non-existent RAMBlock */
2436 error_report("ram_save_queue_pages no block '%s'", rbname);
2439 rs->last_req_rb = ramblock;
2441 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2442 if (start+len > ramblock->used_length) {
2443 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2444 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
2445 __func__, start, len, ramblock->used_length);
2449 struct RAMSrcPageRequest *new_entry =
2450 g_malloc0(sizeof(struct RAMSrcPageRequest));
2451 new_entry->rb = ramblock;
2452 new_entry->offset = start;
2453 new_entry->len = len;
2455 memory_region_ref(ramblock->mr);
2456 qemu_mutex_lock(&rs->src_page_req_mutex);
2457 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2458 migration_make_urgent_request();
2459 qemu_mutex_unlock(&rs->src_page_req_mutex);
2469 static bool save_page_use_compression(RAMState *rs)
2471 if (!migrate_use_compression()) {
2476 * If xbzrle is on, stop using the data compression after first
2477 * round of migration even if compression is enabled. In theory,
2478 * xbzrle can do better than compression.
2480 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2488 * try to compress the page before posting it out, return true if the page
2489 * has been properly handled by compression, otherwise needs other
2490 * paths to handle it
2492 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2494 if (!save_page_use_compression(rs)) {
2499 * When starting the process of a new block, the first page of
2500 * the block should be sent out before other pages in the same
2501 * block, and all the pages in last block should have been sent
2502 * out, keeping this order is important, because the 'cont' flag
2503 * is used to avoid resending the block name.
2505 * We post the fist page as normal page as compression will take
2506 * much CPU resource.
2508 if (block != rs->last_sent_block) {
2509 flush_compressed_data(rs);
2513 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2517 compression_counters.busy++;
2522 * ram_save_target_page: save one target page
2524 * Returns the number of pages written
2526 * @rs: current RAM state
2527 * @pss: data about the page we want to send
2528 * @last_stage: if we are at the completion stage
2530 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
2533 RAMBlock *block = pss->block;
2534 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2537 if (control_save_page(rs, block, offset, &res)) {
2541 if (save_compress_page(rs, block, offset)) {
2545 res = save_zero_page(rs, block, offset);
2547 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2548 * page would be stale
2550 if (!save_page_use_compression(rs)) {
2551 XBZRLE_cache_lock();
2552 xbzrle_cache_zero_page(rs, block->offset + offset);
2553 XBZRLE_cache_unlock();
2555 ram_release_pages(block->idstr, offset, res);
2560 * do not use multifd for compression as the first page in the new
2561 * block should be posted out before sending the compressed page
2563 if (!save_page_use_compression(rs) && migrate_use_multifd()) {
2564 return ram_save_multifd_page(rs, block, offset);
2567 return ram_save_page(rs, pss, last_stage);
2571 * ram_save_host_page: save a whole host page
2573 * Starting at *offset send pages up to the end of the current host
2574 * page. It's valid for the initial offset to point into the middle of
2575 * a host page in which case the remainder of the hostpage is sent.
2576 * Only dirty target pages are sent. Note that the host page size may
2577 * be a huge page for this block.
2578 * The saving stops at the boundary of the used_length of the block
2579 * if the RAMBlock isn't a multiple of the host page size.
2581 * Returns the number of pages written or negative on error
2583 * @rs: current RAM state
2584 * @ms: current migration state
2585 * @pss: data about the page we want to send
2586 * @last_stage: if we are at the completion stage
2588 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
2591 int tmppages, pages = 0;
2592 size_t pagesize_bits =
2593 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2595 if (ramblock_is_ignored(pss->block)) {
2596 error_report("block %s should not be migrated !", pss->block->idstr);
2601 /* Check the pages is dirty and if it is send it */
2602 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2607 tmppages = ram_save_target_page(rs, pss, last_stage);
2613 if (pss->block->unsentmap) {
2614 clear_bit(pss->page, pss->block->unsentmap);
2618 } while ((pss->page & (pagesize_bits - 1)) &&
2619 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
2621 /* The offset we leave with is the last one we looked at */
2627 * ram_find_and_save_block: finds a dirty page and sends it to f
2629 * Called within an RCU critical section.
2631 * Returns the number of pages written where zero means no dirty pages,
2632 * or negative on error
2634 * @rs: current RAM state
2635 * @last_stage: if we are at the completion stage
2637 * On systems where host-page-size > target-page-size it will send all the
2638 * pages in a host page that are dirty.
2641 static int ram_find_and_save_block(RAMState *rs, bool last_stage)
2643 PageSearchStatus pss;
2647 /* No dirty page as there is zero RAM */
2648 if (!ram_bytes_total()) {
2652 pss.block = rs->last_seen_block;
2653 pss.page = rs->last_page;
2654 pss.complete_round = false;
2657 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2662 found = get_queued_page(rs, &pss);
2665 /* priority queue empty, so just search for something dirty */
2666 found = find_dirty_block(rs, &pss, &again);
2670 pages = ram_save_host_page(rs, &pss, last_stage);
2672 } while (!pages && again);
2674 rs->last_seen_block = pss.block;
2675 rs->last_page = pss.page;
2680 void acct_update_position(QEMUFile *f, size_t size, bool zero)
2682 uint64_t pages = size / TARGET_PAGE_SIZE;
2685 ram_counters.duplicate += pages;
2687 ram_counters.normal += pages;
2688 ram_counters.transferred += size;
2689 qemu_update_position(f, size);
2693 static uint64_t ram_bytes_total_common(bool count_ignored)
2699 if (count_ignored) {
2700 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2701 total += block->used_length;
2704 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2705 total += block->used_length;
2712 uint64_t ram_bytes_total(void)
2714 return ram_bytes_total_common(false);
2717 static void xbzrle_load_setup(void)
2719 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2722 static void xbzrle_load_cleanup(void)
2724 g_free(XBZRLE.decoded_buf);
2725 XBZRLE.decoded_buf = NULL;
2728 static void ram_state_cleanup(RAMState **rsp)
2731 migration_page_queue_free(*rsp);
2732 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2733 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2739 static void xbzrle_cleanup(void)
2741 XBZRLE_cache_lock();
2743 cache_fini(XBZRLE.cache);
2744 g_free(XBZRLE.encoded_buf);
2745 g_free(XBZRLE.current_buf);
2746 g_free(XBZRLE.zero_target_page);
2747 XBZRLE.cache = NULL;
2748 XBZRLE.encoded_buf = NULL;
2749 XBZRLE.current_buf = NULL;
2750 XBZRLE.zero_target_page = NULL;
2752 XBZRLE_cache_unlock();
2755 static void ram_save_cleanup(void *opaque)
2757 RAMState **rsp = opaque;
2760 /* caller have hold iothread lock or is in a bh, so there is
2761 * no writing race against the migration bitmap
2763 memory_global_dirty_log_stop();
2765 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2766 g_free(block->clear_bmap);
2767 block->clear_bmap = NULL;
2768 g_free(block->bmap);
2770 g_free(block->unsentmap);
2771 block->unsentmap = NULL;
2775 compress_threads_save_cleanup();
2776 ram_state_cleanup(rsp);
2779 static void ram_state_reset(RAMState *rs)
2781 rs->last_seen_block = NULL;
2782 rs->last_sent_block = NULL;
2784 rs->last_version = ram_list.version;
2785 rs->ram_bulk_stage = true;
2786 rs->fpo_enabled = false;
2789 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2792 * 'expected' is the value you expect the bitmap mostly to be full
2793 * of; it won't bother printing lines that are all this value.
2794 * If 'todump' is null the migration bitmap is dumped.
2796 void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2797 unsigned long pages)
2800 int64_t linelen = 128;
2803 for (cur = 0; cur < pages; cur += linelen) {
2807 * Last line; catch the case where the line length
2808 * is longer than remaining ram
2810 if (cur + linelen > pages) {
2811 linelen = pages - cur;
2813 for (curb = 0; curb < linelen; curb++) {
2814 bool thisbit = test_bit(cur + curb, todump);
2815 linebuf[curb] = thisbit ? '1' : '.';
2816 found = found || (thisbit != expected);
2819 linebuf[curb] = '\0';
2820 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2825 /* **** functions for postcopy ***** */
2827 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2829 struct RAMBlock *block;
2831 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2832 unsigned long *bitmap = block->bmap;
2833 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2834 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2836 while (run_start < range) {
2837 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2838 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
2839 (run_end - run_start) << TARGET_PAGE_BITS);
2840 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2846 * postcopy_send_discard_bm_ram: discard a RAMBlock
2848 * Returns zero on success
2850 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2851 * Note: At this point the 'unsentmap' is the processed bitmap combined
2852 * with the dirtymap; so a '1' means it's either dirty or unsent.
2854 * @ms: current migration state
2855 * @block: RAMBlock to discard
2857 static int postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2859 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2860 unsigned long current;
2861 unsigned long *unsentmap = block->unsentmap;
2863 for (current = 0; current < end; ) {
2864 unsigned long one = find_next_bit(unsentmap, end, current);
2865 unsigned long zero, discard_length;
2871 zero = find_next_zero_bit(unsentmap, end, one + 1);
2874 discard_length = end - one;
2876 discard_length = zero - one;
2878 postcopy_discard_send_range(ms, one, discard_length);
2879 current = one + discard_length;
2886 * postcopy_each_ram_send_discard: discard all RAMBlocks
2888 * Returns 0 for success or negative for error
2890 * Utility for the outgoing postcopy code.
2891 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2892 * passing it bitmap indexes and name.
2893 * (qemu_ram_foreach_block ends up passing unscaled lengths
2894 * which would mean postcopy code would have to deal with target page)
2896 * @ms: current migration state
2898 static int postcopy_each_ram_send_discard(MigrationState *ms)
2900 struct RAMBlock *block;
2903 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2904 postcopy_discard_send_init(ms, block->idstr);
2907 * Postcopy sends chunks of bitmap over the wire, but it
2908 * just needs indexes at this point, avoids it having
2909 * target page specific code.
2911 ret = postcopy_send_discard_bm_ram(ms, block);
2912 postcopy_discard_send_finish(ms);
2922 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
2924 * Helper for postcopy_chunk_hostpages; it's called twice to
2925 * canonicalize the two bitmaps, that are similar, but one is
2928 * Postcopy requires that all target pages in a hostpage are dirty or
2929 * clean, not a mix. This function canonicalizes the bitmaps.
2931 * @ms: current migration state
2932 * @unsent_pass: if true we need to canonicalize partially unsent host pages
2933 * otherwise we need to canonicalize partially dirty host pages
2934 * @block: block that contains the page we want to canonicalize
2936 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
2939 RAMState *rs = ram_state;
2940 unsigned long *bitmap = block->bmap;
2941 unsigned long *unsentmap = block->unsentmap;
2942 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2943 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2944 unsigned long run_start;
2946 if (block->page_size == TARGET_PAGE_SIZE) {
2947 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2952 /* Find a sent page */
2953 run_start = find_next_zero_bit(unsentmap, pages, 0);
2955 /* Find a dirty page */
2956 run_start = find_next_bit(bitmap, pages, 0);
2959 while (run_start < pages) {
2962 * If the start of this run of pages is in the middle of a host
2963 * page, then we need to fixup this host page.
2965 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2966 /* Find the end of this run */
2968 run_start = find_next_bit(unsentmap, pages, run_start + 1);
2970 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2973 * If the end isn't at the start of a host page, then the
2974 * run doesn't finish at the end of a host page
2975 * and we need to discard.
2979 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2981 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2983 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2985 /* Tell the destination to discard this page */
2986 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
2987 /* For the unsent_pass we:
2988 * discard partially sent pages
2989 * For the !unsent_pass (dirty) we:
2990 * discard partially dirty pages that were sent
2991 * (any partially sent pages were already discarded
2992 * by the previous unsent_pass)
2994 postcopy_discard_send_range(ms, fixup_start_addr, host_ratio);
2997 /* Clean up the bitmap */
2998 for (page = fixup_start_addr;
2999 page < fixup_start_addr + host_ratio; page++) {
3000 /* All pages in this host page are now not sent */
3001 set_bit(page, unsentmap);
3004 * Remark them as dirty, updating the count for any pages
3005 * that weren't previously dirty.
3007 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
3012 /* Find the next sent page for the next iteration */
3013 run_start = find_next_zero_bit(unsentmap, pages, run_start);
3015 /* Find the next dirty page for the next iteration */
3016 run_start = find_next_bit(bitmap, pages, run_start);
3022 * postcopy_chunk_hostpages: discard any partially sent host page
3024 * Utility for the outgoing postcopy code.
3026 * Discard any partially sent host-page size chunks, mark any partially
3027 * dirty host-page size chunks as all dirty. In this case the host-page
3028 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
3030 * Returns zero on success
3032 * @ms: current migration state
3033 * @block: block we want to work with
3035 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
3037 postcopy_discard_send_init(ms, block->idstr);
3039 /* First pass: Discard all partially sent host pages */
3040 postcopy_chunk_hostpages_pass(ms, true, block);
3042 * Second pass: Ensure that all partially dirty host pages are made
3045 postcopy_chunk_hostpages_pass(ms, false, block);
3047 postcopy_discard_send_finish(ms);
3052 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
3054 * Returns zero on success
3056 * Transmit the set of pages to be discarded after precopy to the target
3057 * these are pages that:
3058 * a) Have been previously transmitted but are now dirty again
3059 * b) Pages that have never been transmitted, this ensures that
3060 * any pages on the destination that have been mapped by background
3061 * tasks get discarded (transparent huge pages is the specific concern)
3062 * Hopefully this is pretty sparse
3064 * @ms: current migration state
3066 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
3068 RAMState *rs = ram_state;
3074 /* This should be our last sync, the src is now paused */
3075 migration_bitmap_sync(rs);
3077 /* Easiest way to make sure we don't resume in the middle of a host-page */
3078 rs->last_seen_block = NULL;
3079 rs->last_sent_block = NULL;
3082 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3083 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
3084 unsigned long *bitmap = block->bmap;
3085 unsigned long *unsentmap = block->unsentmap;
3088 /* We don't have a safe way to resize the sentmap, so
3089 * if the bitmap was resized it will be NULL at this
3092 error_report("migration ram resized during precopy phase");
3096 /* Deal with TPS != HPS and huge pages */
3097 ret = postcopy_chunk_hostpages(ms, block);
3104 * Update the unsentmap to be unsentmap = unsentmap | dirty
3106 bitmap_or(unsentmap, unsentmap, bitmap, pages);
3107 #ifdef DEBUG_POSTCOPY
3108 ram_debug_dump_bitmap(unsentmap, true, pages);
3111 trace_ram_postcopy_send_discard_bitmap();
3113 ret = postcopy_each_ram_send_discard(ms);
3120 * ram_discard_range: discard dirtied pages at the beginning of postcopy
3122 * Returns zero on success
3124 * @rbname: name of the RAMBlock of the request. NULL means the
3125 * same that last one.
3126 * @start: RAMBlock starting page
3127 * @length: RAMBlock size
3129 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
3133 trace_ram_discard_range(rbname, start, length);
3136 RAMBlock *rb = qemu_ram_block_by_name(rbname);
3139 error_report("ram_discard_range: Failed to find block '%s'", rbname);
3144 * On source VM, we don't need to update the received bitmap since
3145 * we don't even have one.
3147 if (rb->receivedmap) {
3148 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
3149 length >> qemu_target_page_bits());
3152 ret = ram_block_discard_range(rb, start, length);
3161 * For every allocation, we will try not to crash the VM if the
3162 * allocation failed.
3164 static int xbzrle_init(void)
3166 Error *local_err = NULL;
3168 if (!migrate_use_xbzrle()) {
3172 XBZRLE_cache_lock();
3174 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
3175 if (!XBZRLE.zero_target_page) {
3176 error_report("%s: Error allocating zero page", __func__);
3180 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
3181 TARGET_PAGE_SIZE, &local_err);
3182 if (!XBZRLE.cache) {
3183 error_report_err(local_err);
3184 goto free_zero_page;
3187 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
3188 if (!XBZRLE.encoded_buf) {
3189 error_report("%s: Error allocating encoded_buf", __func__);
3193 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
3194 if (!XBZRLE.current_buf) {
3195 error_report("%s: Error allocating current_buf", __func__);
3196 goto free_encoded_buf;
3199 /* We are all good */
3200 XBZRLE_cache_unlock();
3204 g_free(XBZRLE.encoded_buf);
3205 XBZRLE.encoded_buf = NULL;
3207 cache_fini(XBZRLE.cache);
3208 XBZRLE.cache = NULL;
3210 g_free(XBZRLE.zero_target_page);
3211 XBZRLE.zero_target_page = NULL;
3213 XBZRLE_cache_unlock();
3217 static int ram_state_init(RAMState **rsp)
3219 *rsp = g_try_new0(RAMState, 1);
3222 error_report("%s: Init ramstate fail", __func__);
3226 qemu_mutex_init(&(*rsp)->bitmap_mutex);
3227 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
3228 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
3231 * Count the total number of pages used by ram blocks not including any
3232 * gaps due to alignment or unplugs.
3233 * This must match with the initial values of dirty bitmap.
3235 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
3236 ram_state_reset(*rsp);
3241 static void ram_list_init_bitmaps(void)
3243 MigrationState *ms = migrate_get_current();
3245 unsigned long pages;
3248 /* Skip setting bitmap if there is no RAM */
3249 if (ram_bytes_total()) {
3250 shift = ms->clear_bitmap_shift;
3251 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
3252 error_report("clear_bitmap_shift (%u) too big, using "
3253 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
3254 shift = CLEAR_BITMAP_SHIFT_MAX;
3255 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
3256 error_report("clear_bitmap_shift (%u) too small, using "
3257 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
3258 shift = CLEAR_BITMAP_SHIFT_MIN;
3261 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3262 pages = block->max_length >> TARGET_PAGE_BITS;
3264 * The initial dirty bitmap for migration must be set with all
3265 * ones to make sure we'll migrate every guest RAM page to
3267 * Here we set RAMBlock.bmap all to 1 because when rebegin a
3268 * new migration after a failed migration, ram_list.
3269 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
3272 block->bmap = bitmap_new(pages);
3273 bitmap_set(block->bmap, 0, pages);
3274 block->clear_bmap_shift = shift;
3275 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
3276 if (migrate_postcopy_ram()) {
3277 block->unsentmap = bitmap_new(pages);
3278 bitmap_set(block->unsentmap, 0, pages);
3284 static void ram_init_bitmaps(RAMState *rs)
3286 /* For memory_global_dirty_log_start below. */
3287 qemu_mutex_lock_iothread();
3288 qemu_mutex_lock_ramlist();
3291 ram_list_init_bitmaps();
3292 memory_global_dirty_log_start();
3293 migration_bitmap_sync_precopy(rs);
3296 qemu_mutex_unlock_ramlist();
3297 qemu_mutex_unlock_iothread();
3300 static int ram_init_all(RAMState **rsp)
3302 if (ram_state_init(rsp)) {
3306 if (xbzrle_init()) {
3307 ram_state_cleanup(rsp);
3311 ram_init_bitmaps(*rsp);
3316 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3322 * Postcopy is not using xbzrle/compression, so no need for that.
3323 * Also, since source are already halted, we don't need to care
3324 * about dirty page logging as well.
3327 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3328 pages += bitmap_count_one(block->bmap,
3329 block->used_length >> TARGET_PAGE_BITS);
3332 /* This may not be aligned with current bitmaps. Recalculate. */
3333 rs->migration_dirty_pages = pages;
3335 rs->last_seen_block = NULL;
3336 rs->last_sent_block = NULL;
3338 rs->last_version = ram_list.version;
3340 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3341 * matter what we have sent.
3343 rs->ram_bulk_stage = false;
3345 /* Update RAMState cache of output QEMUFile */
3348 trace_ram_state_resume_prepare(pages);
3352 * This function clears bits of the free pages reported by the caller from the
3353 * migration dirty bitmap. @addr is the host address corresponding to the
3354 * start of the continuous guest free pages, and @len is the total bytes of
3357 void qemu_guest_free_page_hint(void *addr, size_t len)
3361 size_t used_len, start, npages;
3362 MigrationState *s = migrate_get_current();
3364 /* This function is currently expected to be used during live migration */
3365 if (!migration_is_setup_or_active(s->state)) {
3369 for (; len > 0; len -= used_len, addr += used_len) {
3370 block = qemu_ram_block_from_host(addr, false, &offset);
3371 if (unlikely(!block || offset >= block->used_length)) {
3373 * The implementation might not support RAMBlock resize during
3374 * live migration, but it could happen in theory with future
3375 * updates. So we add a check here to capture that case.
3377 error_report_once("%s unexpected error", __func__);
3381 if (len <= block->used_length - offset) {
3384 used_len = block->used_length - offset;
3387 start = offset >> TARGET_PAGE_BITS;
3388 npages = used_len >> TARGET_PAGE_BITS;
3390 qemu_mutex_lock(&ram_state->bitmap_mutex);
3391 ram_state->migration_dirty_pages -=
3392 bitmap_count_one_with_offset(block->bmap, start, npages);
3393 bitmap_clear(block->bmap, start, npages);
3394 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3399 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3400 * long-running RCU critical section. When rcu-reclaims in the code
3401 * start to become numerous it will be necessary to reduce the
3402 * granularity of these critical sections.
3406 * ram_save_setup: Setup RAM for migration
3408 * Returns zero to indicate success and negative for error
3410 * @f: QEMUFile where to send the data
3411 * @opaque: RAMState pointer
3413 static int ram_save_setup(QEMUFile *f, void *opaque)
3415 RAMState **rsp = opaque;
3418 if (compress_threads_save_setup()) {
3422 /* migration has already setup the bitmap, reuse it. */
3423 if (!migration_in_colo_state()) {
3424 if (ram_init_all(rsp) != 0) {
3425 compress_threads_save_cleanup();
3433 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
3435 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3436 qemu_put_byte(f, strlen(block->idstr));
3437 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3438 qemu_put_be64(f, block->used_length);
3439 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
3440 qemu_put_be64(f, block->page_size);
3442 if (migrate_ignore_shared()) {
3443 qemu_put_be64(f, block->mr->addr);
3449 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3450 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3452 multifd_send_sync_main(*rsp);
3453 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3460 * ram_save_iterate: iterative stage for migration
3462 * Returns zero to indicate success and negative for error
3464 * @f: QEMUFile where to send the data
3465 * @opaque: RAMState pointer
3467 static int ram_save_iterate(QEMUFile *f, void *opaque)
3469 RAMState **temp = opaque;
3470 RAMState *rs = *temp;
3476 if (blk_mig_bulk_active()) {
3477 /* Avoid transferring ram during bulk phase of block migration as
3478 * the bulk phase will usually take a long time and transferring
3479 * ram updates during that time is pointless. */
3484 if (ram_list.version != rs->last_version) {
3485 ram_state_reset(rs);
3488 /* Read version before ram_list.blocks */
3491 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3493 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3495 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3496 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
3499 if (qemu_file_get_error(f)) {
3503 pages = ram_find_and_save_block(rs, false);
3504 /* no more pages to sent */
3511 qemu_file_set_error(f, pages);
3515 rs->target_page_count += pages;
3517 /* we want to check in the 1st loop, just in case it was the 1st time
3518 and we had to sync the dirty bitmap.
3519 qemu_clock_get_ns() is a bit expensive, so we only check each some
3522 if ((i & 63) == 0) {
3523 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
3524 if (t1 > MAX_WAIT) {
3525 trace_ram_save_iterate_big_wait(t1, i);
3534 * Must occur before EOS (or any QEMUFile operation)
3535 * because of RDMA protocol.
3537 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3540 multifd_send_sync_main(rs);
3541 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3543 ram_counters.transferred += 8;
3545 ret = qemu_file_get_error(f);
3554 * ram_save_complete: function called to send the remaining amount of ram
3556 * Returns zero to indicate success or negative on error
3558 * Called with iothread lock
3560 * @f: QEMUFile where to send the data
3561 * @opaque: RAMState pointer
3563 static int ram_save_complete(QEMUFile *f, void *opaque)
3565 RAMState **temp = opaque;
3566 RAMState *rs = *temp;
3571 if (!migration_in_postcopy()) {
3572 migration_bitmap_sync_precopy(rs);
3575 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3577 /* try transferring iterative blocks of memory */
3579 /* flush all remaining blocks regardless of rate limiting */
3583 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
3584 /* no more blocks to sent */
3594 flush_compressed_data(rs);
3595 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3599 multifd_send_sync_main(rs);
3600 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3606 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
3607 uint64_t *res_precopy_only,
3608 uint64_t *res_compatible,
3609 uint64_t *res_postcopy_only)
3611 RAMState **temp = opaque;
3612 RAMState *rs = *temp;
3613 uint64_t remaining_size;
3615 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3617 if (!migration_in_postcopy() &&
3618 remaining_size < max_size) {
3619 qemu_mutex_lock_iothread();
3621 migration_bitmap_sync_precopy(rs);
3623 qemu_mutex_unlock_iothread();
3624 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3627 if (migrate_postcopy_ram()) {
3628 /* We can do postcopy, and all the data is postcopiable */
3629 *res_compatible += remaining_size;
3631 *res_precopy_only += remaining_size;
3635 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3637 unsigned int xh_len;
3639 uint8_t *loaded_data;
3641 /* extract RLE header */
3642 xh_flags = qemu_get_byte(f);
3643 xh_len = qemu_get_be16(f);
3645 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3646 error_report("Failed to load XBZRLE page - wrong compression!");
3650 if (xh_len > TARGET_PAGE_SIZE) {
3651 error_report("Failed to load XBZRLE page - len overflow!");
3654 loaded_data = XBZRLE.decoded_buf;
3655 /* load data and decode */
3656 /* it can change loaded_data to point to an internal buffer */
3657 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3660 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3661 TARGET_PAGE_SIZE) == -1) {
3662 error_report("Failed to load XBZRLE page - decode error!");
3670 * ram_block_from_stream: read a RAMBlock id from the migration stream
3672 * Must be called from within a rcu critical section.
3674 * Returns a pointer from within the RCU-protected ram_list.
3676 * @f: QEMUFile where to read the data from
3677 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3679 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
3681 static RAMBlock *block = NULL;
3685 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3687 error_report("Ack, bad migration stream!");
3693 len = qemu_get_byte(f);
3694 qemu_get_buffer(f, (uint8_t *)id, len);
3697 block = qemu_ram_block_by_name(id);
3699 error_report("Can't find block %s", id);
3703 if (ramblock_is_ignored(block)) {
3704 error_report("block %s should not be migrated !", id);
3711 static inline void *host_from_ram_block_offset(RAMBlock *block,
3714 if (!offset_in_ramblock(block, offset)) {
3718 return block->host + offset;
3721 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3724 if (!offset_in_ramblock(block, offset)) {
3727 if (!block->colo_cache) {
3728 error_report("%s: colo_cache is NULL in block :%s",
3729 __func__, block->idstr);
3734 * During colo checkpoint, we need bitmap of these migrated pages.
3735 * It help us to decide which pages in ram cache should be flushed
3736 * into VM's RAM later.
3738 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3739 ram_state->migration_dirty_pages++;
3741 return block->colo_cache + offset;
3745 * ram_handle_compressed: handle the zero page case
3747 * If a page (or a whole RDMA chunk) has been
3748 * determined to be zero, then zap it.
3750 * @host: host address for the zero page
3751 * @ch: what the page is filled from. We only support zero
3752 * @size: size of the zero page
3754 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3756 if (ch != 0 || !is_zero_range(host, size)) {
3757 memset(host, ch, size);
3761 /* return the size after decompression, or negative value on error */
3763 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3764 const uint8_t *source, size_t source_len)
3768 err = inflateReset(stream);
3773 stream->avail_in = source_len;
3774 stream->next_in = (uint8_t *)source;
3775 stream->avail_out = dest_len;
3776 stream->next_out = dest;
3778 err = inflate(stream, Z_NO_FLUSH);
3779 if (err != Z_STREAM_END) {
3783 return stream->total_out;
3786 static void *do_data_decompress(void *opaque)
3788 DecompressParam *param = opaque;
3789 unsigned long pagesize;
3793 qemu_mutex_lock(¶m->mutex);
3794 while (!param->quit) {
3799 qemu_mutex_unlock(¶m->mutex);
3801 pagesize = TARGET_PAGE_SIZE;
3803 ret = qemu_uncompress_data(¶m->stream, des, pagesize,
3804 param->compbuf, len);
3805 if (ret < 0 && migrate_get_current()->decompress_error_check) {
3806 error_report("decompress data failed");
3807 qemu_file_set_error(decomp_file, ret);
3810 qemu_mutex_lock(&decomp_done_lock);
3812 qemu_cond_signal(&decomp_done_cond);
3813 qemu_mutex_unlock(&decomp_done_lock);
3815 qemu_mutex_lock(¶m->mutex);
3817 qemu_cond_wait(¶m->cond, ¶m->mutex);
3820 qemu_mutex_unlock(¶m->mutex);
3825 static int wait_for_decompress_done(void)
3827 int idx, thread_count;
3829 if (!migrate_use_compression()) {
3833 thread_count = migrate_decompress_threads();
3834 qemu_mutex_lock(&decomp_done_lock);
3835 for (idx = 0; idx < thread_count; idx++) {
3836 while (!decomp_param[idx].done) {
3837 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3840 qemu_mutex_unlock(&decomp_done_lock);
3841 return qemu_file_get_error(decomp_file);
3844 static void compress_threads_load_cleanup(void)
3846 int i, thread_count;
3848 if (!migrate_use_compression()) {
3851 thread_count = migrate_decompress_threads();
3852 for (i = 0; i < thread_count; i++) {
3854 * we use it as a indicator which shows if the thread is
3855 * properly init'd or not
3857 if (!decomp_param[i].compbuf) {
3861 qemu_mutex_lock(&decomp_param[i].mutex);
3862 decomp_param[i].quit = true;
3863 qemu_cond_signal(&decomp_param[i].cond);
3864 qemu_mutex_unlock(&decomp_param[i].mutex);
3866 for (i = 0; i < thread_count; i++) {
3867 if (!decomp_param[i].compbuf) {
3871 qemu_thread_join(decompress_threads + i);
3872 qemu_mutex_destroy(&decomp_param[i].mutex);
3873 qemu_cond_destroy(&decomp_param[i].cond);
3874 inflateEnd(&decomp_param[i].stream);
3875 g_free(decomp_param[i].compbuf);
3876 decomp_param[i].compbuf = NULL;
3878 g_free(decompress_threads);
3879 g_free(decomp_param);
3880 decompress_threads = NULL;
3881 decomp_param = NULL;
3885 static int compress_threads_load_setup(QEMUFile *f)
3887 int i, thread_count;
3889 if (!migrate_use_compression()) {
3893 thread_count = migrate_decompress_threads();
3894 decompress_threads = g_new0(QemuThread, thread_count);
3895 decomp_param = g_new0(DecompressParam, thread_count);
3896 qemu_mutex_init(&decomp_done_lock);
3897 qemu_cond_init(&decomp_done_cond);
3899 for (i = 0; i < thread_count; i++) {
3900 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3904 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3905 qemu_mutex_init(&decomp_param[i].mutex);
3906 qemu_cond_init(&decomp_param[i].cond);
3907 decomp_param[i].done = true;
3908 decomp_param[i].quit = false;
3909 qemu_thread_create(decompress_threads + i, "decompress",
3910 do_data_decompress, decomp_param + i,
3911 QEMU_THREAD_JOINABLE);
3915 compress_threads_load_cleanup();
3919 static void decompress_data_with_multi_threads(QEMUFile *f,
3920 void *host, int len)
3922 int idx, thread_count;
3924 thread_count = migrate_decompress_threads();
3925 qemu_mutex_lock(&decomp_done_lock);
3927 for (idx = 0; idx < thread_count; idx++) {
3928 if (decomp_param[idx].done) {
3929 decomp_param[idx].done = false;
3930 qemu_mutex_lock(&decomp_param[idx].mutex);
3931 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
3932 decomp_param[idx].des = host;
3933 decomp_param[idx].len = len;
3934 qemu_cond_signal(&decomp_param[idx].cond);
3935 qemu_mutex_unlock(&decomp_param[idx].mutex);
3939 if (idx < thread_count) {
3942 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3945 qemu_mutex_unlock(&decomp_done_lock);
3949 * colo cache: this is for secondary VM, we cache the whole
3950 * memory of the secondary VM, it is need to hold the global lock
3951 * to call this helper.
3953 int colo_init_ram_cache(void)
3958 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3959 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3962 if (!block->colo_cache) {
3963 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3964 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3965 block->used_length);
3968 memcpy(block->colo_cache, block->host, block->used_length);
3972 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3973 * with to decide which page in cache should be flushed into SVM's RAM. Here
3974 * we use the same name 'ram_bitmap' as for migration.
3976 if (ram_bytes_total()) {
3979 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3980 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3982 block->bmap = bitmap_new(pages);
3983 bitmap_set(block->bmap, 0, pages);
3986 ram_state = g_new0(RAMState, 1);
3987 ram_state->migration_dirty_pages = 0;
3988 qemu_mutex_init(&ram_state->bitmap_mutex);
3989 memory_global_dirty_log_start();
3995 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3996 if (block->colo_cache) {
3997 qemu_anon_ram_free(block->colo_cache, block->used_length);
3998 block->colo_cache = NULL;
4006 /* It is need to hold the global lock to call this helper */
4007 void colo_release_ram_cache(void)
4011 memory_global_dirty_log_stop();
4012 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4013 g_free(block->bmap);
4019 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4020 if (block->colo_cache) {
4021 qemu_anon_ram_free(block->colo_cache, block->used_length);
4022 block->colo_cache = NULL;
4027 qemu_mutex_destroy(&ram_state->bitmap_mutex);
4033 * ram_load_setup: Setup RAM for migration incoming side
4035 * Returns zero to indicate success and negative for error
4037 * @f: QEMUFile where to receive the data
4038 * @opaque: RAMState pointer
4040 static int ram_load_setup(QEMUFile *f, void *opaque)
4042 if (compress_threads_load_setup(f)) {
4046 xbzrle_load_setup();
4047 ramblock_recv_map_init();
4052 static int ram_load_cleanup(void *opaque)
4056 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4057 if (ramblock_is_pmem(rb)) {
4058 pmem_persist(rb->host, rb->used_length);
4062 xbzrle_load_cleanup();
4063 compress_threads_load_cleanup();
4065 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4066 g_free(rb->receivedmap);
4067 rb->receivedmap = NULL;
4074 * ram_postcopy_incoming_init: allocate postcopy data structures
4076 * Returns 0 for success and negative if there was one error
4078 * @mis: current migration incoming state
4080 * Allocate data structures etc needed by incoming migration with
4081 * postcopy-ram. postcopy-ram's similarly names
4082 * postcopy_ram_incoming_init does the work.
4084 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
4086 return postcopy_ram_incoming_init(mis);
4090 * ram_load_postcopy: load a page in postcopy case
4092 * Returns 0 for success or -errno in case of error
4094 * Called in postcopy mode by ram_load().
4095 * rcu_read_lock is taken prior to this being called.
4097 * @f: QEMUFile where to send the data
4099 static int ram_load_postcopy(QEMUFile *f)
4101 int flags = 0, ret = 0;
4102 bool place_needed = false;
4103 bool matches_target_page_size = false;
4104 MigrationIncomingState *mis = migration_incoming_get_current();
4105 /* Temporary page that is later 'placed' */
4106 void *postcopy_host_page = postcopy_get_tmp_page(mis);
4107 void *last_host = NULL;
4108 bool all_zero = false;
4110 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4113 void *page_buffer = NULL;
4114 void *place_source = NULL;
4115 RAMBlock *block = NULL;
4118 addr = qemu_get_be64(f);
4121 * If qemu file error, we should stop here, and then "addr"
4124 ret = qemu_file_get_error(f);
4129 flags = addr & ~TARGET_PAGE_MASK;
4130 addr &= TARGET_PAGE_MASK;
4132 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
4133 place_needed = false;
4134 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
4135 block = ram_block_from_stream(f, flags);
4137 host = host_from_ram_block_offset(block, addr);
4139 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4143 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
4145 * Postcopy requires that we place whole host pages atomically;
4146 * these may be huge pages for RAMBlocks that are backed by
4148 * To make it atomic, the data is read into a temporary page
4149 * that's moved into place later.
4150 * The migration protocol uses, possibly smaller, target-pages
4151 * however the source ensures it always sends all the components
4152 * of a host page in order.
4154 page_buffer = postcopy_host_page +
4155 ((uintptr_t)host & (block->page_size - 1));
4156 /* If all TP are zero then we can optimise the place */
4157 if (!((uintptr_t)host & (block->page_size - 1))) {
4160 /* not the 1st TP within the HP */
4161 if (host != (last_host + TARGET_PAGE_SIZE)) {
4162 error_report("Non-sequential target page %p/%p",
4171 * If it's the last part of a host page then we place the host
4174 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
4175 (block->page_size - 1)) == 0;
4176 place_source = postcopy_host_page;
4180 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4181 case RAM_SAVE_FLAG_ZERO:
4182 ch = qemu_get_byte(f);
4183 memset(page_buffer, ch, TARGET_PAGE_SIZE);
4189 case RAM_SAVE_FLAG_PAGE:
4191 if (!matches_target_page_size) {
4192 /* For huge pages, we always use temporary buffer */
4193 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
4196 * For small pages that matches target page size, we
4197 * avoid the qemu_file copy. Instead we directly use
4198 * the buffer of QEMUFile to place the page. Note: we
4199 * cannot do any QEMUFile operation before using that
4200 * buffer to make sure the buffer is valid when
4203 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
4207 case RAM_SAVE_FLAG_EOS:
4209 multifd_recv_sync_main();
4212 error_report("Unknown combination of migration flags: %#x"
4213 " (postcopy mode)", flags);
4218 /* Detect for any possible file errors */
4219 if (!ret && qemu_file_get_error(f)) {
4220 ret = qemu_file_get_error(f);
4223 if (!ret && place_needed) {
4224 /* This gets called at the last target page in the host page */
4225 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
4228 ret = postcopy_place_page_zero(mis, place_dest,
4231 ret = postcopy_place_page(mis, place_dest,
4232 place_source, block);
4240 static bool postcopy_is_advised(void)
4242 PostcopyState ps = postcopy_state_get();
4243 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
4246 static bool postcopy_is_running(void)
4248 PostcopyState ps = postcopy_state_get();
4249 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
4253 * Flush content of RAM cache into SVM's memory.
4254 * Only flush the pages that be dirtied by PVM or SVM or both.
4256 static void colo_flush_ram_cache(void)
4258 RAMBlock *block = NULL;
4261 unsigned long offset = 0;
4263 memory_global_dirty_log_sync();
4265 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4266 migration_bitmap_sync_range(ram_state, block);
4270 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
4272 block = QLIST_FIRST_RCU(&ram_list.blocks);
4275 offset = migration_bitmap_find_dirty(ram_state, block, offset);
4277 if (offset << TARGET_PAGE_BITS >= block->used_length) {
4279 block = QLIST_NEXT_RCU(block, next);
4281 migration_bitmap_clear_dirty(ram_state, block, offset);
4282 dst_host = block->host + (offset << TARGET_PAGE_BITS);
4283 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS);
4284 memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
4289 trace_colo_flush_ram_cache_end();
4293 * ram_load_precopy: load pages in precopy case
4295 * Returns 0 for success or -errno in case of error
4297 * Called in precopy mode by ram_load().
4298 * rcu_read_lock is taken prior to this being called.
4300 * @f: QEMUFile where to send the data
4302 static int ram_load_precopy(QEMUFile *f)
4304 int flags = 0, ret = 0, invalid_flags = 0, len = 0;
4305 /* ADVISE is earlier, it shows the source has the postcopy capability on */
4306 bool postcopy_advised = postcopy_is_advised();
4307 if (!migrate_use_compression()) {
4308 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4311 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4312 ram_addr_t addr, total_ram_bytes;
4316 addr = qemu_get_be64(f);
4317 flags = addr & ~TARGET_PAGE_MASK;
4318 addr &= TARGET_PAGE_MASK;
4320 if (flags & invalid_flags) {
4321 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4322 error_report("Received an unexpected compressed page");
4329 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4330 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4331 RAMBlock *block = ram_block_from_stream(f, flags);
4334 * After going into COLO, we should load the Page into colo_cache.
4336 if (migration_incoming_in_colo_state()) {
4337 host = colo_cache_from_block_offset(block, addr);
4339 host = host_from_ram_block_offset(block, addr);
4342 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4347 if (!migration_incoming_in_colo_state()) {
4348 ramblock_recv_bitmap_set(block, host);
4351 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4354 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4355 case RAM_SAVE_FLAG_MEM_SIZE:
4356 /* Synchronize RAM block list */
4357 total_ram_bytes = addr;
4358 while (!ret && total_ram_bytes) {
4363 len = qemu_get_byte(f);
4364 qemu_get_buffer(f, (uint8_t *)id, len);
4366 length = qemu_get_be64(f);
4368 block = qemu_ram_block_by_name(id);
4369 if (block && !qemu_ram_is_migratable(block)) {
4370 error_report("block %s should not be migrated !", id);
4373 if (length != block->used_length) {
4374 Error *local_err = NULL;
4376 ret = qemu_ram_resize(block, length,
4379 error_report_err(local_err);
4382 /* For postcopy we need to check hugepage sizes match */
4383 if (postcopy_advised &&
4384 block->page_size != qemu_host_page_size) {
4385 uint64_t remote_page_size = qemu_get_be64(f);
4386 if (remote_page_size != block->page_size) {
4387 error_report("Mismatched RAM page size %s "
4388 "(local) %zd != %" PRId64,
4389 id, block->page_size,
4394 if (migrate_ignore_shared()) {
4395 hwaddr addr = qemu_get_be64(f);
4396 if (ramblock_is_ignored(block) &&
4397 block->mr->addr != addr) {
4398 error_report("Mismatched GPAs for block %s "
4399 "%" PRId64 "!= %" PRId64,
4401 (uint64_t)block->mr->addr);
4405 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4408 error_report("Unknown ramblock \"%s\", cannot "
4409 "accept migration", id);
4413 total_ram_bytes -= length;
4417 case RAM_SAVE_FLAG_ZERO:
4418 ch = qemu_get_byte(f);
4419 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4422 case RAM_SAVE_FLAG_PAGE:
4423 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4426 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4427 len = qemu_get_be32(f);
4428 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4429 error_report("Invalid compressed data length: %d", len);
4433 decompress_data_with_multi_threads(f, host, len);
4436 case RAM_SAVE_FLAG_XBZRLE:
4437 if (load_xbzrle(f, addr, host) < 0) {
4438 error_report("Failed to decompress XBZRLE page at "
4439 RAM_ADDR_FMT, addr);
4444 case RAM_SAVE_FLAG_EOS:
4446 multifd_recv_sync_main();
4449 if (flags & RAM_SAVE_FLAG_HOOK) {
4450 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
4452 error_report("Unknown combination of migration flags: %#x",
4458 ret = qemu_file_get_error(f);
4465 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4468 static uint64_t seq_iter;
4470 * If system is running in postcopy mode, page inserts to host memory must
4473 bool postcopy_running = postcopy_is_running();
4477 if (version_id != 4) {
4482 * This RCU critical section can be very long running.
4483 * When RCU reclaims in the code start to become numerous,
4484 * it will be necessary to reduce the granularity of this
4489 if (postcopy_running) {
4490 ret = ram_load_postcopy(f);
4492 ret = ram_load_precopy(f);
4495 ret |= wait_for_decompress_done();
4497 trace_ram_load_complete(ret, seq_iter);
4499 if (!ret && migration_incoming_in_colo_state()) {
4500 colo_flush_ram_cache();
4505 static bool ram_has_postcopy(void *opaque)
4508 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4509 if (ramblock_is_pmem(rb)) {
4510 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4511 "is not supported now!", rb->idstr, rb->host);
4516 return migrate_postcopy_ram();
4519 /* Sync all the dirty bitmap with destination VM. */
4520 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4523 QEMUFile *file = s->to_dst_file;
4524 int ramblock_count = 0;
4526 trace_ram_dirty_bitmap_sync_start();
4528 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4529 qemu_savevm_send_recv_bitmap(file, block->idstr);
4530 trace_ram_dirty_bitmap_request(block->idstr);
4534 trace_ram_dirty_bitmap_sync_wait();
4536 /* Wait until all the ramblocks' dirty bitmap synced */
4537 while (ramblock_count--) {
4538 qemu_sem_wait(&s->rp_state.rp_sem);
4541 trace_ram_dirty_bitmap_sync_complete();
4546 static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4548 qemu_sem_post(&s->rp_state.rp_sem);
4552 * Read the received bitmap, revert it as the initial dirty bitmap.
4553 * This is only used when the postcopy migration is paused but wants
4554 * to resume from a middle point.
4556 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4559 QEMUFile *file = s->rp_state.from_dst_file;
4560 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
4561 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4562 uint64_t size, end_mark;
4564 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4566 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4567 error_report("%s: incorrect state %s", __func__,
4568 MigrationStatus_str(s->state));
4573 * Note: see comments in ramblock_recv_bitmap_send() on why we
4574 * need the endianess convertion, and the paddings.
4576 local_size = ROUND_UP(local_size, 8);
4579 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4581 size = qemu_get_be64(file);
4583 /* The size of the bitmap should match with our ramblock */
4584 if (size != local_size) {
4585 error_report("%s: ramblock '%s' bitmap size mismatch "
4586 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4587 block->idstr, size, local_size);
4592 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4593 end_mark = qemu_get_be64(file);
4595 ret = qemu_file_get_error(file);
4596 if (ret || size != local_size) {
4597 error_report("%s: read bitmap failed for ramblock '%s': %d"
4598 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4599 __func__, block->idstr, ret, local_size, size);
4604 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4605 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4606 __func__, block->idstr, end_mark);
4612 * Endianess convertion. We are during postcopy (though paused).
4613 * The dirty bitmap won't change. We can directly modify it.
4615 bitmap_from_le(block->bmap, le_bitmap, nbits);
4618 * What we received is "received bitmap". Revert it as the initial
4619 * dirty bitmap for this ramblock.
4621 bitmap_complement(block->bmap, block->bmap, nbits);
4623 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4626 * We succeeded to sync bitmap for current ramblock. If this is
4627 * the last one to sync, we need to notify the main send thread.
4629 ram_dirty_bitmap_reload_notify(s);
4637 static int ram_resume_prepare(MigrationState *s, void *opaque)
4639 RAMState *rs = *(RAMState **)opaque;
4642 ret = ram_dirty_bitmap_sync_all(s, rs);
4647 ram_state_resume_prepare(rs, s->to_dst_file);
4652 static SaveVMHandlers savevm_ram_handlers = {
4653 .save_setup = ram_save_setup,
4654 .save_live_iterate = ram_save_iterate,
4655 .save_live_complete_postcopy = ram_save_complete,
4656 .save_live_complete_precopy = ram_save_complete,
4657 .has_postcopy = ram_has_postcopy,
4658 .save_live_pending = ram_save_pending,
4659 .load_state = ram_load,
4660 .save_cleanup = ram_save_cleanup,
4661 .load_setup = ram_load_setup,
4662 .load_cleanup = ram_load_cleanup,
4663 .resume_prepare = ram_resume_prepare,
4666 void ram_mig_init(void)
4668 qemu_mutex_init(&XBZRLE.lock);
4669 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);