4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
22 #include "qemu-common.h"
27 #include "host-utils.h"
33 #ifdef CONFIG_KVM_PARA
34 #include <linux/kvm_para.h>
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
43 #define DPRINTF(fmt, ...) \
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
51 #define BUS_MCEERR_AR 4
54 #define BUS_MCEERR_AO 5
57 static int lm_capable_kernel;
59 #ifdef KVM_CAP_EXT_CPUID
61 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
63 struct kvm_cpuid2 *cpuid;
66 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
67 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
69 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
70 if (r == 0 && cpuid->nent >= max) {
78 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
86 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
87 uint32_t index, int reg)
89 struct kvm_cpuid2 *cpuid;
94 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
99 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
103 for (i = 0; i < cpuid->nent; ++i) {
104 if (cpuid->entries[i].function == function &&
105 cpuid->entries[i].index == index) {
108 ret = cpuid->entries[i].eax;
111 ret = cpuid->entries[i].ebx;
114 ret = cpuid->entries[i].ecx;
117 ret = cpuid->entries[i].edx;
120 /* KVM before 2.6.30 misreports the following features */
121 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
124 /* On Intel, kvm returns cpuid according to the Intel spec,
125 * so add missing bits according to the AMD spec:
127 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
128 ret |= cpuid_1_edx & 0x183f7ff;
143 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
144 uint32_t index, int reg)
151 #ifdef CONFIG_KVM_PARA
152 struct kvm_para_features {
155 } para_features[] = {
156 #ifdef KVM_CAP_CLOCKSOURCE
157 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
159 #ifdef KVM_CAP_NOP_IO_DELAY
160 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
162 #ifdef KVM_CAP_PV_MMU
163 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
165 #ifdef KVM_CAP_ASYNC_PF
166 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
171 static int get_para_features(CPUState *env)
175 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
176 if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
177 features |= (1 << para_features[i].feature);
185 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
190 r = kvm_check_extension(s, KVM_CAP_MCE);
193 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
198 static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
200 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
203 static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
205 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
208 static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
210 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
214 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
215 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
216 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
221 /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
222 static int kvm_mce_in_progress(CPUState *env)
224 struct kvm_msr_entry msr_mcg_status = {
225 .index = MSR_MCG_STATUS,
229 r = kvm_get_msr(env, &msr_mcg_status, 1);
230 if (r == -1 || r == 0) {
231 fprintf(stderr, "Failed to get MCE status\n");
234 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
237 struct kvm_x86_mce_data
240 struct kvm_x86_mce *mce;
244 static void kvm_do_inject_x86_mce(void *_data)
246 struct kvm_x86_mce_data *data = _data;
249 /* If there is an MCE exception being processed, ignore this SRAO MCE */
250 if ((data->env->mcg_cap & MCG_SER_P) &&
251 !(data->mce->status & MCI_STATUS_AR)) {
252 if (kvm_mce_in_progress(data->env)) {
257 r = kvm_set_mce(data->env, data->mce);
259 perror("kvm_set_mce FAILED");
260 if (data->abort_on_error) {
266 static void kvm_inject_x86_mce_on(CPUState *env, struct kvm_x86_mce *mce,
269 struct kvm_x86_mce_data data = {
272 .abort_on_error = (flag & ABORT_ON_ERROR),
276 fprintf(stderr, "MCE support is not enabled!\n");
280 run_on_cpu(env, kvm_do_inject_x86_mce, &data);
283 static void kvm_mce_broadcast_rest(CPUState *env);
286 void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
287 uint64_t mcg_status, uint64_t addr, uint64_t misc,
291 struct kvm_x86_mce mce = {
294 .mcg_status = mcg_status,
299 if (flag & MCE_BROADCAST) {
300 kvm_mce_broadcast_rest(cenv);
303 kvm_inject_x86_mce_on(cenv, &mce, flag);
305 if (flag & ABORT_ON_ERROR) {
311 int kvm_arch_init_vcpu(CPUState *env)
314 struct kvm_cpuid2 cpuid;
315 struct kvm_cpuid_entry2 entries[100];
316 } __attribute__((packed)) cpuid_data;
317 uint32_t limit, i, j, cpuid_i;
319 struct kvm_cpuid_entry2 *c;
320 #ifdef KVM_CPUID_SIGNATURE
321 uint32_t signature[3];
324 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
326 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
327 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
328 env->cpuid_ext_features |= i;
330 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
332 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
334 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
340 #ifdef CONFIG_KVM_PARA
341 /* Paravirtualization CPUIDs */
342 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
343 c = &cpuid_data.entries[cpuid_i++];
344 memset(c, 0, sizeof(*c));
345 c->function = KVM_CPUID_SIGNATURE;
347 c->ebx = signature[0];
348 c->ecx = signature[1];
349 c->edx = signature[2];
351 c = &cpuid_data.entries[cpuid_i++];
352 memset(c, 0, sizeof(*c));
353 c->function = KVM_CPUID_FEATURES;
354 c->eax = env->cpuid_kvm_features & get_para_features(env);
357 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
359 for (i = 0; i <= limit; i++) {
360 c = &cpuid_data.entries[cpuid_i++];
364 /* Keep reading function 2 till all the input is received */
368 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
369 KVM_CPUID_FLAG_STATE_READ_NEXT;
370 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
371 times = c->eax & 0xff;
373 for (j = 1; j < times; ++j) {
374 c = &cpuid_data.entries[cpuid_i++];
376 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
377 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
386 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
388 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
390 if (i == 4 && c->eax == 0) {
393 if (i == 0xb && !(c->ecx & 0xff00)) {
396 if (i == 0xd && c->eax == 0) {
399 c = &cpuid_data.entries[cpuid_i++];
405 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
409 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
411 for (i = 0x80000000; i <= limit; i++) {
412 c = &cpuid_data.entries[cpuid_i++];
416 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
419 cpuid_data.cpuid.nent = cpuid_i;
422 if (((env->cpuid_version >> 8)&0xF) >= 6
423 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
424 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
428 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) {
429 perror("kvm_get_mce_cap_supported FAILED");
431 if (banks > MCE_BANKS_DEF)
432 banks = MCE_BANKS_DEF;
433 mcg_cap &= MCE_CAP_DEF;
435 if (kvm_setup_mce(env, &mcg_cap)) {
436 perror("kvm_setup_mce FAILED");
438 env->mcg_cap = mcg_cap;
444 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
447 void kvm_arch_reset_vcpu(CPUState *env)
449 env->exception_injected = -1;
450 env->interrupt_injected = -1;
451 env->nmi_injected = 0;
452 env->nmi_pending = 0;
454 if (kvm_irqchip_in_kernel()) {
455 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
456 KVM_MP_STATE_UNINITIALIZED;
458 env->mp_state = KVM_MP_STATE_RUNNABLE;
463 int has_msr_hsave_pa;
465 static void kvm_supported_msrs(CPUState *env)
467 static int kvm_supported_msrs;
471 if (kvm_supported_msrs == 0) {
472 struct kvm_msr_list msr_list, *kvm_msr_list;
474 kvm_supported_msrs = -1;
476 /* Obtain MSR list from KVM. These are the MSRs that we must
479 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
480 if (ret < 0 && ret != -E2BIG) {
483 /* Old kernel modules had a bug and could write beyond the provided
484 memory. Allocate at least a safe amount of 1K. */
485 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
487 sizeof(msr_list.indices[0])));
489 kvm_msr_list->nmsrs = msr_list.nmsrs;
490 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
494 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
495 if (kvm_msr_list->indices[i] == MSR_STAR) {
499 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
500 has_msr_hsave_pa = 1;
512 static int kvm_has_msr_hsave_pa(CPUState *env)
514 kvm_supported_msrs(env);
515 return has_msr_hsave_pa;
518 static int kvm_has_msr_star(CPUState *env)
520 kvm_supported_msrs(env);
524 static int kvm_init_identity_map_page(KVMState *s)
526 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
528 uint64_t addr = 0xfffbc000;
530 if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
534 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
536 fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
543 int kvm_arch_init(KVMState *s, int smp_cpus)
547 struct utsname utsname;
550 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
552 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
553 * directly. In order to use vm86 mode, a TSS is needed. Since this
554 * must be part of guest physical memory, we need to allocate it. Older
555 * versions of KVM just assumed that it would be at the end of physical
556 * memory but that doesn't work with more than 4GB of memory. We simply
557 * refuse to work with those older versions of KVM. */
558 ret = kvm_check_extension(s, KVM_CAP_SET_TSS_ADDR);
560 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
564 /* this address is 3 pages before the bios, and the bios should present
565 * as unavaible memory. FIXME, need to ensure the e820 map deals with
569 * Tell fw_cfg to notify the BIOS to reserve the range.
571 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
572 perror("e820_add_entry() table is full");
575 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
580 return kvm_init_identity_map_page(s);
583 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
585 lhs->selector = rhs->selector;
586 lhs->base = rhs->base;
587 lhs->limit = rhs->limit;
599 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
601 unsigned flags = rhs->flags;
602 lhs->selector = rhs->selector;
603 lhs->base = rhs->base;
604 lhs->limit = rhs->limit;
605 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
606 lhs->present = (flags & DESC_P_MASK) != 0;
607 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
608 lhs->db = (flags >> DESC_B_SHIFT) & 1;
609 lhs->s = (flags & DESC_S_MASK) != 0;
610 lhs->l = (flags >> DESC_L_SHIFT) & 1;
611 lhs->g = (flags & DESC_G_MASK) != 0;
612 lhs->avl = (flags & DESC_AVL_MASK) != 0;
616 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
618 lhs->selector = rhs->selector;
619 lhs->base = rhs->base;
620 lhs->limit = rhs->limit;
621 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
622 (rhs->present * DESC_P_MASK) |
623 (rhs->dpl << DESC_DPL_SHIFT) |
624 (rhs->db << DESC_B_SHIFT) |
625 (rhs->s * DESC_S_MASK) |
626 (rhs->l << DESC_L_SHIFT) |
627 (rhs->g * DESC_G_MASK) |
628 (rhs->avl * DESC_AVL_MASK);
631 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
634 *kvm_reg = *qemu_reg;
636 *qemu_reg = *kvm_reg;
640 static int kvm_getput_regs(CPUState *env, int set)
642 struct kvm_regs regs;
646 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s);
652 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set);
653 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set);
654 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set);
655 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set);
656 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set);
657 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set);
658 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set);
659 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set);
661 kvm_getput_reg(®s.r8, &env->regs[8], set);
662 kvm_getput_reg(®s.r9, &env->regs[9], set);
663 kvm_getput_reg(®s.r10, &env->regs[10], set);
664 kvm_getput_reg(®s.r11, &env->regs[11], set);
665 kvm_getput_reg(®s.r12, &env->regs[12], set);
666 kvm_getput_reg(®s.r13, &env->regs[13], set);
667 kvm_getput_reg(®s.r14, &env->regs[14], set);
668 kvm_getput_reg(®s.r15, &env->regs[15], set);
671 kvm_getput_reg(®s.rflags, &env->eflags, set);
672 kvm_getput_reg(®s.rip, &env->eip, set);
675 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s);
681 static int kvm_put_fpu(CPUState *env)
686 memset(&fpu, 0, sizeof fpu);
687 fpu.fsw = env->fpus & ~(7 << 11);
688 fpu.fsw |= (env->fpstt & 7) << 11;
690 for (i = 0; i < 8; ++i) {
691 fpu.ftwx |= (!env->fptags[i]) << i;
693 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
694 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
695 fpu.mxcsr = env->mxcsr;
697 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
701 #define XSAVE_CWD_RIP 2
702 #define XSAVE_CWD_RDP 4
703 #define XSAVE_MXCSR 6
704 #define XSAVE_ST_SPACE 8
705 #define XSAVE_XMM_SPACE 40
706 #define XSAVE_XSTATE_BV 128
707 #define XSAVE_YMMH_SPACE 144
710 static int kvm_put_xsave(CPUState *env)
714 struct kvm_xsave* xsave;
715 uint16_t cwd, swd, twd, fop;
717 if (!kvm_has_xsave()) {
718 return kvm_put_fpu(env);
721 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
722 memset(xsave, 0, sizeof(struct kvm_xsave));
723 cwd = swd = twd = fop = 0;
724 swd = env->fpus & ~(7 << 11);
725 swd |= (env->fpstt & 7) << 11;
727 for (i = 0; i < 8; ++i) {
728 twd |= (!env->fptags[i]) << i;
730 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
731 xsave->region[1] = (uint32_t)(fop << 16) + twd;
732 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
734 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
735 sizeof env->xmm_regs);
736 xsave->region[XSAVE_MXCSR] = env->mxcsr;
737 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
738 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
739 sizeof env->ymmh_regs);
740 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
744 return kvm_put_fpu(env);
748 static int kvm_put_xcrs(CPUState *env)
751 struct kvm_xcrs xcrs;
753 if (!kvm_has_xcrs()) {
759 xcrs.xcrs[0].xcr = 0;
760 xcrs.xcrs[0].value = env->xcr0;
761 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
767 static int kvm_put_sregs(CPUState *env)
769 struct kvm_sregs sregs;
771 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
772 if (env->interrupt_injected >= 0) {
773 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
774 (uint64_t)1 << (env->interrupt_injected % 64);
777 if ((env->eflags & VM_MASK)) {
778 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
779 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
780 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
781 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
782 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
783 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
785 set_seg(&sregs.cs, &env->segs[R_CS]);
786 set_seg(&sregs.ds, &env->segs[R_DS]);
787 set_seg(&sregs.es, &env->segs[R_ES]);
788 set_seg(&sregs.fs, &env->segs[R_FS]);
789 set_seg(&sregs.gs, &env->segs[R_GS]);
790 set_seg(&sregs.ss, &env->segs[R_SS]);
793 set_seg(&sregs.tr, &env->tr);
794 set_seg(&sregs.ldt, &env->ldt);
796 sregs.idt.limit = env->idt.limit;
797 sregs.idt.base = env->idt.base;
798 sregs.gdt.limit = env->gdt.limit;
799 sregs.gdt.base = env->gdt.base;
801 sregs.cr0 = env->cr[0];
802 sregs.cr2 = env->cr[2];
803 sregs.cr3 = env->cr[3];
804 sregs.cr4 = env->cr[4];
806 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
807 sregs.apic_base = cpu_get_apic_base(env->apic_state);
809 sregs.efer = env->efer;
811 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
814 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
815 uint32_t index, uint64_t value)
817 entry->index = index;
821 static int kvm_put_msrs(CPUState *env, int level)
824 struct kvm_msrs info;
825 struct kvm_msr_entry entries[100];
827 struct kvm_msr_entry *msrs = msr_data.entries;
830 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
831 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
832 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
833 if (kvm_has_msr_star(env)) {
834 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
836 if (kvm_has_msr_hsave_pa(env)) {
837 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
840 if (lm_capable_kernel) {
841 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
842 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
843 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
844 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
847 if (level == KVM_PUT_FULL_STATE) {
849 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
850 * writeback. Until this is fixed, we only write the offset to SMP
851 * guests after migration, desynchronizing the VCPUs, but avoiding
852 * huge jump-backs that would occur without any writeback at all.
854 if (smp_cpus == 1 || env->tsc != 0) {
855 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
857 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
858 env->system_time_msr);
859 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
860 #ifdef KVM_CAP_ASYNC_PF
861 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
868 if (level == KVM_PUT_RESET_STATE) {
869 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
870 } else if (level == KVM_PUT_FULL_STATE) {
871 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
872 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
873 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
874 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
880 msr_data.info.nmsrs = n;
882 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
887 static int kvm_get_fpu(CPUState *env)
892 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
897 env->fpstt = (fpu.fsw >> 11) & 7;
900 for (i = 0; i < 8; ++i) {
901 env->fptags[i] = !((fpu.ftwx >> i) & 1);
903 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
904 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
905 env->mxcsr = fpu.mxcsr;
910 static int kvm_get_xsave(CPUState *env)
913 struct kvm_xsave* xsave;
915 uint16_t cwd, swd, twd, fop;
917 if (!kvm_has_xsave()) {
918 return kvm_get_fpu(env);
921 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
922 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
928 cwd = (uint16_t)xsave->region[0];
929 swd = (uint16_t)(xsave->region[0] >> 16);
930 twd = (uint16_t)xsave->region[1];
931 fop = (uint16_t)(xsave->region[1] >> 16);
932 env->fpstt = (swd >> 11) & 7;
935 for (i = 0; i < 8; ++i) {
936 env->fptags[i] = !((twd >> i) & 1);
938 env->mxcsr = xsave->region[XSAVE_MXCSR];
939 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
941 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
942 sizeof env->xmm_regs);
943 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
944 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
945 sizeof env->ymmh_regs);
949 return kvm_get_fpu(env);
953 static int kvm_get_xcrs(CPUState *env)
957 struct kvm_xcrs xcrs;
959 if (!kvm_has_xcrs()) {
963 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
968 for (i = 0; i < xcrs.nr_xcrs; i++) {
969 /* Only support xcr0 now */
970 if (xcrs.xcrs[0].xcr == 0) {
971 env->xcr0 = xcrs.xcrs[0].value;
981 static int kvm_get_sregs(CPUState *env)
983 struct kvm_sregs sregs;
987 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
992 /* There can only be one pending IRQ set in the bitmap at a time, so try
993 to find it and save its number instead (-1 for none). */
994 env->interrupt_injected = -1;
995 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
996 if (sregs.interrupt_bitmap[i]) {
997 bit = ctz64(sregs.interrupt_bitmap[i]);
998 env->interrupt_injected = i * 64 + bit;
1003 get_seg(&env->segs[R_CS], &sregs.cs);
1004 get_seg(&env->segs[R_DS], &sregs.ds);
1005 get_seg(&env->segs[R_ES], &sregs.es);
1006 get_seg(&env->segs[R_FS], &sregs.fs);
1007 get_seg(&env->segs[R_GS], &sregs.gs);
1008 get_seg(&env->segs[R_SS], &sregs.ss);
1010 get_seg(&env->tr, &sregs.tr);
1011 get_seg(&env->ldt, &sregs.ldt);
1013 env->idt.limit = sregs.idt.limit;
1014 env->idt.base = sregs.idt.base;
1015 env->gdt.limit = sregs.gdt.limit;
1016 env->gdt.base = sregs.gdt.base;
1018 env->cr[0] = sregs.cr0;
1019 env->cr[2] = sregs.cr2;
1020 env->cr[3] = sregs.cr3;
1021 env->cr[4] = sregs.cr4;
1023 cpu_set_apic_base(env->apic_state, sregs.apic_base);
1025 env->efer = sregs.efer;
1026 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1028 #define HFLAG_COPY_MASK \
1029 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1030 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1031 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1032 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1034 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1035 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1036 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1037 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1038 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1039 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1040 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1042 if (env->efer & MSR_EFER_LMA) {
1043 hflags |= HF_LMA_MASK;
1046 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1047 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1049 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1050 (DESC_B_SHIFT - HF_CS32_SHIFT);
1051 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1052 (DESC_B_SHIFT - HF_SS32_SHIFT);
1053 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1054 !(hflags & HF_CS32_MASK)) {
1055 hflags |= HF_ADDSEG_MASK;
1057 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1058 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1061 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1066 static int kvm_get_msrs(CPUState *env)
1069 struct kvm_msrs info;
1070 struct kvm_msr_entry entries[100];
1072 struct kvm_msr_entry *msrs = msr_data.entries;
1076 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1077 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1078 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1079 if (kvm_has_msr_star(env)) {
1080 msrs[n++].index = MSR_STAR;
1082 if (kvm_has_msr_hsave_pa(env)) {
1083 msrs[n++].index = MSR_VM_HSAVE_PA;
1085 msrs[n++].index = MSR_IA32_TSC;
1086 #ifdef TARGET_X86_64
1087 if (lm_capable_kernel) {
1088 msrs[n++].index = MSR_CSTAR;
1089 msrs[n++].index = MSR_KERNELGSBASE;
1090 msrs[n++].index = MSR_FMASK;
1091 msrs[n++].index = MSR_LSTAR;
1094 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1095 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1096 #ifdef KVM_CAP_ASYNC_PF
1097 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1102 msrs[n++].index = MSR_MCG_STATUS;
1103 msrs[n++].index = MSR_MCG_CTL;
1104 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1105 msrs[n++].index = MSR_MC0_CTL + i;
1110 msr_data.info.nmsrs = n;
1111 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1116 for (i = 0; i < ret; i++) {
1117 switch (msrs[i].index) {
1118 case MSR_IA32_SYSENTER_CS:
1119 env->sysenter_cs = msrs[i].data;
1121 case MSR_IA32_SYSENTER_ESP:
1122 env->sysenter_esp = msrs[i].data;
1124 case MSR_IA32_SYSENTER_EIP:
1125 env->sysenter_eip = msrs[i].data;
1128 env->star = msrs[i].data;
1130 #ifdef TARGET_X86_64
1132 env->cstar = msrs[i].data;
1134 case MSR_KERNELGSBASE:
1135 env->kernelgsbase = msrs[i].data;
1138 env->fmask = msrs[i].data;
1141 env->lstar = msrs[i].data;
1145 env->tsc = msrs[i].data;
1147 case MSR_VM_HSAVE_PA:
1148 env->vm_hsave = msrs[i].data;
1150 case MSR_KVM_SYSTEM_TIME:
1151 env->system_time_msr = msrs[i].data;
1153 case MSR_KVM_WALL_CLOCK:
1154 env->wall_clock_msr = msrs[i].data;
1157 case MSR_MCG_STATUS:
1158 env->mcg_status = msrs[i].data;
1161 env->mcg_ctl = msrs[i].data;
1166 if (msrs[i].index >= MSR_MC0_CTL &&
1167 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1168 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1172 #ifdef KVM_CAP_ASYNC_PF
1173 case MSR_KVM_ASYNC_PF_EN:
1174 env->async_pf_en_msr = msrs[i].data;
1183 static int kvm_put_mp_state(CPUState *env)
1185 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1187 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1190 static int kvm_get_mp_state(CPUState *env)
1192 struct kvm_mp_state mp_state;
1195 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1199 env->mp_state = mp_state.mp_state;
1200 if (kvm_irqchip_in_kernel()) {
1201 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1206 static int kvm_put_vcpu_events(CPUState *env, int level)
1208 #ifdef KVM_CAP_VCPU_EVENTS
1209 struct kvm_vcpu_events events;
1211 if (!kvm_has_vcpu_events()) {
1215 events.exception.injected = (env->exception_injected >= 0);
1216 events.exception.nr = env->exception_injected;
1217 events.exception.has_error_code = env->has_error_code;
1218 events.exception.error_code = env->error_code;
1220 events.interrupt.injected = (env->interrupt_injected >= 0);
1221 events.interrupt.nr = env->interrupt_injected;
1222 events.interrupt.soft = env->soft_interrupt;
1224 events.nmi.injected = env->nmi_injected;
1225 events.nmi.pending = env->nmi_pending;
1226 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1228 events.sipi_vector = env->sipi_vector;
1231 if (level >= KVM_PUT_RESET_STATE) {
1233 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1236 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1242 static int kvm_get_vcpu_events(CPUState *env)
1244 #ifdef KVM_CAP_VCPU_EVENTS
1245 struct kvm_vcpu_events events;
1248 if (!kvm_has_vcpu_events()) {
1252 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1256 env->exception_injected =
1257 events.exception.injected ? events.exception.nr : -1;
1258 env->has_error_code = events.exception.has_error_code;
1259 env->error_code = events.exception.error_code;
1261 env->interrupt_injected =
1262 events.interrupt.injected ? events.interrupt.nr : -1;
1263 env->soft_interrupt = events.interrupt.soft;
1265 env->nmi_injected = events.nmi.injected;
1266 env->nmi_pending = events.nmi.pending;
1267 if (events.nmi.masked) {
1268 env->hflags2 |= HF2_NMI_MASK;
1270 env->hflags2 &= ~HF2_NMI_MASK;
1273 env->sipi_vector = events.sipi_vector;
1279 static int kvm_guest_debug_workarounds(CPUState *env)
1282 #ifdef KVM_CAP_SET_GUEST_DEBUG
1283 unsigned long reinject_trap = 0;
1285 if (!kvm_has_vcpu_events()) {
1286 if (env->exception_injected == 1) {
1287 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1288 } else if (env->exception_injected == 3) {
1289 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1291 env->exception_injected = -1;
1295 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1296 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1297 * by updating the debug state once again if single-stepping is on.
1298 * Another reason to call kvm_update_guest_debug here is a pending debug
1299 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1300 * reinject them via SET_GUEST_DEBUG.
1302 if (reinject_trap ||
1303 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1304 ret = kvm_update_guest_debug(env, reinject_trap);
1306 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1310 static int kvm_put_debugregs(CPUState *env)
1312 #ifdef KVM_CAP_DEBUGREGS
1313 struct kvm_debugregs dbgregs;
1316 if (!kvm_has_debugregs()) {
1320 for (i = 0; i < 4; i++) {
1321 dbgregs.db[i] = env->dr[i];
1323 dbgregs.dr6 = env->dr[6];
1324 dbgregs.dr7 = env->dr[7];
1327 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1333 static int kvm_get_debugregs(CPUState *env)
1335 #ifdef KVM_CAP_DEBUGREGS
1336 struct kvm_debugregs dbgregs;
1339 if (!kvm_has_debugregs()) {
1343 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1347 for (i = 0; i < 4; i++) {
1348 env->dr[i] = dbgregs.db[i];
1350 env->dr[4] = env->dr[6] = dbgregs.dr6;
1351 env->dr[5] = env->dr[7] = dbgregs.dr7;
1357 int kvm_arch_put_registers(CPUState *env, int level)
1361 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1363 ret = kvm_getput_regs(env, 1);
1367 ret = kvm_put_xsave(env);
1371 ret = kvm_put_xcrs(env);
1375 ret = kvm_put_sregs(env);
1379 ret = kvm_put_msrs(env, level);
1383 if (level >= KVM_PUT_RESET_STATE) {
1384 ret = kvm_put_mp_state(env);
1389 ret = kvm_put_vcpu_events(env, level);
1393 ret = kvm_put_debugregs(env);
1398 ret = kvm_guest_debug_workarounds(env);
1405 int kvm_arch_get_registers(CPUState *env)
1409 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1411 ret = kvm_getput_regs(env, 0);
1415 ret = kvm_get_xsave(env);
1419 ret = kvm_get_xcrs(env);
1423 ret = kvm_get_sregs(env);
1427 ret = kvm_get_msrs(env);
1431 ret = kvm_get_mp_state(env);
1435 ret = kvm_get_vcpu_events(env);
1439 ret = kvm_get_debugregs(env);
1446 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1449 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1450 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1451 DPRINTF("injected NMI\n");
1452 kvm_vcpu_ioctl(env, KVM_NMI);
1455 /* Try to inject an interrupt if the guest can accept it */
1456 if (run->ready_for_interrupt_injection &&
1457 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1458 (env->eflags & IF_MASK)) {
1461 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1462 irq = cpu_get_pic_interrupt(env);
1464 struct kvm_interrupt intr;
1467 DPRINTF("injected interrupt %d\n", irq);
1468 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1472 /* If we have an interrupt but the guest is not ready to receive an
1473 * interrupt, request an interrupt window exit. This will
1474 * cause a return to userspace as soon as the guest is ready to
1475 * receive interrupts. */
1476 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1477 run->request_interrupt_window = 1;
1479 run->request_interrupt_window = 0;
1482 DPRINTF("setting tpr\n");
1483 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1488 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1491 env->eflags |= IF_MASK;
1493 env->eflags &= ~IF_MASK;
1495 cpu_set_apic_tpr(env->apic_state, run->cr8);
1496 cpu_set_apic_base(env->apic_state, run->apic_base);
1501 int kvm_arch_process_irqchip_events(CPUState *env)
1503 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1504 kvm_cpu_synchronize_state(env);
1506 env->exception_index = EXCP_HALTED;
1509 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1510 kvm_cpu_synchronize_state(env);
1517 static int kvm_handle_halt(CPUState *env)
1519 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1520 (env->eflags & IF_MASK)) &&
1521 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1523 env->exception_index = EXCP_HLT;
1530 static bool host_supports_vmx(void)
1532 uint32_t ecx, unused;
1534 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1535 return ecx & CPUID_EXT_VMX;
1538 #define VMX_INVALID_GUEST_STATE 0x80000021
1540 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1545 switch (run->exit_reason) {
1547 DPRINTF("handle_hlt\n");
1548 ret = kvm_handle_halt(env);
1550 case KVM_EXIT_SET_TPR:
1553 case KVM_EXIT_FAIL_ENTRY:
1554 code = run->fail_entry.hardware_entry_failure_reason;
1555 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1557 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1559 "\nIf you're runnning a guest on an Intel machine without "
1560 "unrestricted mode\n"
1561 "support, the failure can be most likely due to the guest "
1562 "entering an invalid\n"
1563 "state for Intel VT. For example, the guest maybe running "
1564 "in big real mode\n"
1565 "which is not supported on less recent Intel processors."
1570 case KVM_EXIT_EXCEPTION:
1571 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1572 run->ex.exception, run->ex.error_code);
1576 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1584 #ifdef KVM_CAP_SET_GUEST_DEBUG
1585 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1587 static const uint8_t int3 = 0xcc;
1589 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1590 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1596 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1600 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1601 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1613 static int nb_hw_breakpoint;
1615 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1619 for (n = 0; n < nb_hw_breakpoint; n++) {
1620 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1621 (hw_breakpoint[n].len == len || len == -1)) {
1628 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1629 target_ulong len, int type)
1632 case GDB_BREAKPOINT_HW:
1635 case GDB_WATCHPOINT_WRITE:
1636 case GDB_WATCHPOINT_ACCESS:
1643 if (addr & (len - 1)) {
1655 if (nb_hw_breakpoint == 4) {
1658 if (find_hw_breakpoint(addr, len, type) >= 0) {
1661 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1662 hw_breakpoint[nb_hw_breakpoint].len = len;
1663 hw_breakpoint[nb_hw_breakpoint].type = type;
1669 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1670 target_ulong len, int type)
1674 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1679 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1684 void kvm_arch_remove_all_hw_breakpoints(void)
1686 nb_hw_breakpoint = 0;
1689 static CPUWatchpoint hw_watchpoint;
1691 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1696 if (arch_info->exception == 1) {
1697 if (arch_info->dr6 & (1 << 14)) {
1698 if (cpu_single_env->singlestep_enabled) {
1702 for (n = 0; n < 4; n++) {
1703 if (arch_info->dr6 & (1 << n)) {
1704 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1710 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1711 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1712 hw_watchpoint.flags = BP_MEM_WRITE;
1716 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1717 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1718 hw_watchpoint.flags = BP_MEM_ACCESS;
1724 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1728 cpu_synchronize_state(cpu_single_env);
1729 assert(cpu_single_env->exception_injected == -1);
1731 cpu_single_env->exception_injected = arch_info->exception;
1732 cpu_single_env->has_error_code = 0;
1738 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1740 const uint8_t type_code[] = {
1741 [GDB_BREAKPOINT_HW] = 0x0,
1742 [GDB_WATCHPOINT_WRITE] = 0x1,
1743 [GDB_WATCHPOINT_ACCESS] = 0x3
1745 const uint8_t len_code[] = {
1746 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1750 if (kvm_sw_breakpoints_active(env)) {
1751 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1753 if (nb_hw_breakpoint > 0) {
1754 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1755 dbg->arch.debugreg[7] = 0x0600;
1756 for (n = 0; n < nb_hw_breakpoint; n++) {
1757 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1758 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1759 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1760 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1764 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1766 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1768 return !(env->cr[0] & CR0_PE_MASK) ||
1769 ((env->segs[R_CS].selector & 3) != 3);
1772 static void hardware_memory_error(void)
1774 fprintf(stderr, "Hardware memory error!\n");
1779 static void kvm_mce_broadcast_rest(CPUState *env)
1781 struct kvm_x86_mce mce = {
1783 .status = MCI_STATUS_VAL | MCI_STATUS_UC,
1784 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1790 /* Broadcast MCA signal for processor version 06H_EH and above */
1791 if (cpu_x86_support_mca_broadcast(env)) {
1792 for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1796 kvm_inject_x86_mce_on(cenv, &mce, ABORT_ON_ERROR);
1801 static void kvm_mce_inj_srar_dataload(CPUState *env, target_phys_addr_t paddr)
1803 struct kvm_x86_mce mce = {
1805 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1806 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1807 | MCI_STATUS_AR | 0x134,
1808 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV,
1810 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1814 r = kvm_set_mce(env, &mce);
1816 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1819 kvm_mce_broadcast_rest(env);
1822 static void kvm_mce_inj_srao_memscrub(CPUState *env, target_phys_addr_t paddr)
1824 struct kvm_x86_mce mce = {
1826 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1827 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1829 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1831 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1835 r = kvm_set_mce(env, &mce);
1837 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1840 kvm_mce_broadcast_rest(env);
1843 static void kvm_mce_inj_srao_memscrub2(CPUState *env, target_phys_addr_t paddr)
1845 struct kvm_x86_mce mce = {
1847 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1848 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1850 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1852 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1855 kvm_inject_x86_mce_on(env, &mce, ABORT_ON_ERROR);
1856 kvm_mce_broadcast_rest(env);
1861 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1863 #if defined(KVM_CAP_MCE)
1865 ram_addr_t ram_addr;
1866 target_phys_addr_t paddr;
1868 if ((env->mcg_cap & MCG_SER_P) && addr
1869 && (code == BUS_MCEERR_AR
1870 || code == BUS_MCEERR_AO)) {
1871 vaddr = (void *)addr;
1872 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1873 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1874 fprintf(stderr, "Hardware memory error for memory used by "
1875 "QEMU itself instead of guest system!\n");
1876 /* Hope we are lucky for AO MCE */
1877 if (code == BUS_MCEERR_AO) {
1880 hardware_memory_error();
1884 if (code == BUS_MCEERR_AR) {
1885 /* Fake an Intel architectural Data Load SRAR UCR */
1886 kvm_mce_inj_srar_dataload(env, paddr);
1889 * If there is an MCE excpetion being processed, ignore
1892 if (!kvm_mce_in_progress(env)) {
1893 /* Fake an Intel architectural Memory scrubbing UCR */
1894 kvm_mce_inj_srao_memscrub(env, paddr);
1900 if (code == BUS_MCEERR_AO) {
1902 } else if (code == BUS_MCEERR_AR) {
1903 hardware_memory_error();
1911 int kvm_on_sigbus(int code, void *addr)
1913 #if defined(KVM_CAP_MCE)
1914 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1916 ram_addr_t ram_addr;
1917 target_phys_addr_t paddr;
1919 /* Hope we are lucky for AO MCE */
1921 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1922 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1923 fprintf(stderr, "Hardware memory error for memory used by "
1924 "QEMU itself instead of guest system!: %p\n", addr);
1927 kvm_mce_inj_srao_memscrub2(first_cpu, paddr);
1931 if (code == BUS_MCEERR_AO) {
1933 } else if (code == BUS_MCEERR_AR) {
1934 hardware_memory_error();