2 * i386 emulator main execution loop
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 //#define DEBUG_SIGNAL
27 #if defined(TARGET_ARM) || defined(TARGET_SPARC)
28 /* XXX: unify with i386 target */
29 void cpu_loop_exit(void)
31 longjmp(env->jmp_env, 1);
35 /* main execution loop */
37 int cpu_exec(CPUState *env1)
39 int saved_T0, saved_T1, saved_T2;
68 int code_gen_size, ret, interrupt_request;
69 void (*gen_func)(void);
70 TranslationBlock *tb, **ptb;
71 uint8_t *tc_ptr, *cs_base, *pc;
74 /* first we save global registers */
81 /* we also save i7 because longjmp may not restore it */
82 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
85 #if defined(TARGET_I386)
88 EAX = env->regs[R_EAX];
92 ECX = env->regs[R_ECX];
96 EDX = env->regs[R_EDX];
100 EBX = env->regs[R_EBX];
104 ESP = env->regs[R_ESP];
108 EBP = env->regs[R_EBP];
112 ESI = env->regs[R_ESI];
116 EDI = env->regs[R_EDI];
119 /* put eflags in CPU temporary format */
120 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
121 DF = 1 - (2 * ((env->eflags >> 10) & 1));
122 CC_OP = CC_OP_EFLAGS;
123 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
124 #elif defined(TARGET_ARM)
128 env->CF = (psr >> 29) & 1;
129 env->NZF = (psr & 0xc0000000) ^ 0x40000000;
130 env->VF = (psr << 3) & 0x80000000;
131 env->cpsr = psr & ~0xf0000000;
133 #elif defined(TARGET_SPARC)
135 #error unsupported target CPU
137 env->exception_index = -1;
139 /* prepare setjmp context for exception handling */
141 if (setjmp(env->jmp_env) == 0) {
142 /* if an exception is pending, we execute it here */
143 if (env->exception_index >= 0) {
144 if (env->exception_index >= EXCP_INTERRUPT) {
145 /* exit request from the cpu execution loop */
146 ret = env->exception_index;
148 } else if (env->user_mode_only) {
149 /* if user mode only, we simulate a fake exception
150 which will be hanlded outside the cpu execution
152 #if defined(TARGET_I386)
153 do_interrupt_user(env->exception_index,
154 env->exception_is_int,
156 env->exception_next_eip);
158 ret = env->exception_index;
161 #if defined(TARGET_I386)
162 /* simulate a real cpu exception. On i386, it can
163 trigger new exceptions, but we do not handle
164 double or triple faults yet. */
165 do_interrupt(env->exception_index,
166 env->exception_is_int,
168 env->exception_next_eip, 0);
171 env->exception_index = -1;
173 T0 = 0; /* force lookup of first TB */
176 /* g1 can be modified by some libc? functions */
179 interrupt_request = env->interrupt_request;
180 if (__builtin_expect(interrupt_request, 0)) {
181 #if defined(TARGET_I386)
182 /* if hardware interrupt pending, we execute it */
183 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
184 (env->eflags & IF_MASK) &&
185 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
187 intno = cpu_x86_get_pic_interrupt(env);
189 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
191 do_interrupt(intno, 0, 0, 0, 1);
192 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
193 /* ensure that no TB jump will be modified as
194 the program flow was changed */
202 if (interrupt_request & CPU_INTERRUPT_EXIT) {
203 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
204 env->exception_index = EXCP_INTERRUPT;
210 #if defined(TARGET_I386)
211 /* restore flags in standard format */
212 env->regs[R_EAX] = EAX;
213 env->regs[R_EBX] = EBX;
214 env->regs[R_ECX] = ECX;
215 env->regs[R_EDX] = EDX;
216 env->regs[R_ESI] = ESI;
217 env->regs[R_EDI] = EDI;
218 env->regs[R_EBP] = EBP;
219 env->regs[R_ESP] = ESP;
220 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
221 cpu_x86_dump_state(env, logfile, X86_DUMP_CCOP);
222 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
223 #elif defined(TARGET_ARM)
224 env->cpsr = compute_cpsr();
225 cpu_arm_dump_state(env, logfile, 0);
226 env->cpsr &= ~0xf0000000;
227 #elif defined(TARGET_SPARC)
228 cpu_sparc_dump_state (env, logfile, 0);
230 #error unsupported target CPU
234 /* we record a subset of the CPU state. It will
235 always be the same before a given translated block
237 #if defined(TARGET_I386)
239 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
240 cs_base = env->segs[R_CS].base;
241 pc = cs_base + env->eip;
242 #elif defined(TARGET_ARM)
245 pc = (uint8_t *)env->regs[15];
246 #elif defined(TARGET_SPARC)
253 pc = (uint8_t *) env->pc;
255 #error unsupported CPU
257 tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base,
261 /* if no translated code available, then translate it now */
262 tb = tb_alloc((unsigned long)pc);
264 /* flush must be done */
266 /* cannot fail at this point */
267 tb = tb_alloc((unsigned long)pc);
268 /* don't forget to invalidate previous TB info */
269 ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
272 tc_ptr = code_gen_ptr;
274 tb->cs_base = (unsigned long)cs_base;
276 /* XXX: an MMU exception can occur here */
277 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
279 tb->hash_next = NULL;
281 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
282 spin_unlock(&tb_lock);
286 fprintf(logfile, "Trace 0x%08lx [0x%08lx] %s\n",
287 (long)tb->tc_ptr, (long)tb->pc,
288 lookup_symbol((void *)tb->pc));
294 /* see if we can patch the calling TB. */
297 tb_add_jump((TranslationBlock *)(T0 & ~3), T0 & 3, tb);
298 spin_unlock(&tb_lock);
301 env->current_tb = tb;
302 /* execute the generated code */
303 gen_func = (void *)tc_ptr;
304 #if defined(__sparc__)
305 __asm__ __volatile__("call %0\n\t"
309 : "i0", "i1", "i2", "i3", "i4", "i5");
310 #elif defined(__arm__)
311 asm volatile ("mov pc, %0\n\t"
312 ".global exec_loop\n\t"
316 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
320 env->current_tb = NULL;
321 /* reset soft MMU for next block (it can currently
322 only be set by a memory fault) */
323 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
324 if (env->hflags & HF_SOFTMMU_MASK) {
325 env->hflags &= ~HF_SOFTMMU_MASK;
326 /* do not allow linking to another block */
336 #if defined(TARGET_I386)
337 /* restore flags in standard format */
338 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
340 /* restore global registers */
365 #elif defined(TARGET_ARM)
366 env->cpsr = compute_cpsr();
367 #elif defined(TARGET_SPARC)
369 #error unsupported target CPU
372 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
381 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
383 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
385 CPUX86State *saved_env;
389 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
391 cpu_x86_load_seg_cache(env, seg_reg, selector,
392 (uint8_t *)(selector << 4), 0xffff, 0);
394 load_seg(seg_reg, selector, 0);
399 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
401 CPUX86State *saved_env;
406 helper_fsave(ptr, data32);
411 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
413 CPUX86State *saved_env;
418 helper_frstor(ptr, data32);
423 #endif /* TARGET_I386 */
435 #include <sys/ucontext.h>
437 #if defined(TARGET_I386)
439 /* 'pc' is the host PC at which the exception was raised. 'address' is
440 the effective address of the memory exception. 'is_write' is 1 if a
441 write caused the exception and otherwise 0'. 'old_set' is the
442 signal set which should be restored */
443 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
444 int is_write, sigset_t *old_set)
446 TranslationBlock *tb;
450 env = cpu_single_env; /* XXX: find a correct solution for multithread */
451 #if defined(DEBUG_SIGNAL)
452 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
453 pc, address, is_write, *(unsigned long *)old_set);
455 /* XXX: locking issue */
456 if (is_write && page_unprotect(address)) {
459 /* see if it is an MMU fault */
460 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
461 ((env->hflags & HF_CPL_MASK) == 3), 0);
463 return 0; /* not an MMU fault */
465 return 1; /* the MMU fault was handled without causing real CPU fault */
466 /* now we have a real cpu fault */
469 /* the PC is inside the translated code. It means that we have
470 a virtual CPU fault */
471 cpu_restore_state(tb, env, pc);
475 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
476 env->eip, env->cr[2], env->error_code);
478 /* we restore the process signal mask as the sigreturn should
479 do it (XXX: use sigsetjmp) */
480 sigprocmask(SIG_SETMASK, old_set, NULL);
481 raise_exception_err(EXCP0E_PAGE, env->error_code);
483 /* activate soft MMU for this block */
484 env->hflags |= HF_SOFTMMU_MASK;
485 sigprocmask(SIG_SETMASK, old_set, NULL);
488 /* never comes here */
492 #elif defined(TARGET_ARM)
493 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
494 int is_write, sigset_t *old_set)
499 #elif defined(TARGET_SPARC)
500 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
501 int is_write, sigset_t *old_set)
506 #error unsupported target CPU
509 #if defined(__i386__)
511 int cpu_signal_handler(int host_signum, struct siginfo *info,
514 struct ucontext *uc = puc;
521 #define REG_TRAPNO TRAPNO
523 pc = uc->uc_mcontext.gregs[REG_EIP];
524 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
525 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
526 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
530 #elif defined(__powerpc)
532 int cpu_signal_handler(int host_signum, struct siginfo *info,
535 struct ucontext *uc = puc;
536 struct pt_regs *regs = uc->uc_mcontext.regs;
544 if (regs->dsisr & 0x00800000)
547 if (regs->trap != 0x400 && (regs->dsisr & 0x02000000))
550 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
551 is_write, &uc->uc_sigmask);
554 #elif defined(__alpha__)
556 int cpu_signal_handler(int host_signum, struct siginfo *info,
559 struct ucontext *uc = puc;
560 uint32_t *pc = uc->uc_mcontext.sc_pc;
564 /* XXX: need kernel patch to get write flag faster */
565 switch (insn >> 26) {
580 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
581 is_write, &uc->uc_sigmask);
583 #elif defined(__sparc__)
585 int cpu_signal_handler(int host_signum, struct siginfo *info,
588 uint32_t *regs = (uint32_t *)(info + 1);
589 void *sigmask = (regs + 20);
594 /* XXX: is there a standard glibc define ? */
596 /* XXX: need kernel patch to get write flag faster */
598 insn = *(uint32_t *)pc;
599 if ((insn >> 30) == 3) {
600 switch((insn >> 19) & 0x3f) {
612 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
616 #elif defined(__arm__)
618 int cpu_signal_handler(int host_signum, struct siginfo *info,
621 struct ucontext *uc = puc;
625 pc = uc->uc_mcontext.gregs[R15];
626 /* XXX: compute is_write */
628 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
633 #elif defined(__mc68000)
635 int cpu_signal_handler(int host_signum, struct siginfo *info,
638 struct ucontext *uc = puc;
642 pc = uc->uc_mcontext.gregs[16];
643 /* XXX: compute is_write */
645 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
652 #error host CPU specific signal handler needed