2 * QEMU Executable loader
4 * Copyright (c) 2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * Gunzip functionality in this file is derived from u-boot:
26 * (C) Copyright 2008 Semihalf
28 * (C) Copyright 2000-2005
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License as
33 * published by the Free Software Foundation; either version 2 of
34 * the License, or (at your option) any later version.
36 * This program is distributed in the hope that it will be useful,
37 * but WITHOUT ANY WARRANTY; without even the implied warranty of
38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
39 * GNU General Public License for more details.
41 * You should have received a copy of the GNU General Public License along
42 * with this program; if not, see <http://www.gnu.org/licenses/>.
45 #include "qemu/osdep.h"
46 #include "qemu-common.h"
47 #include "qapi/error.h"
50 #include "disas/disas.h"
51 #include "migration/vmstate.h"
52 #include "monitor/monitor.h"
53 #include "sysemu/reset.h"
54 #include "sysemu/sysemu.h"
55 #include "uboot_image.h"
56 #include "hw/loader.h"
57 #include "hw/nvram/fw_cfg.h"
58 #include "exec/memory.h"
59 #include "exec/address-spaces.h"
60 #include "hw/boards.h"
61 #include "qemu/cutils.h"
62 #include "sysemu/runstate.h"
66 static int roms_loaded;
68 /* return the size or -1 if error */
69 int64_t get_image_size(const char *filename)
73 fd = open(filename, O_RDONLY | O_BINARY);
76 size = lseek(fd, 0, SEEK_END);
81 /* return the size or -1 if error */
82 ssize_t load_image_size(const char *filename, void *addr, size_t size)
85 ssize_t actsize, l = 0;
87 fd = open(filename, O_RDONLY | O_BINARY);
92 while ((actsize = read(fd, addr + l, size - l)) > 0) {
98 return actsize < 0 ? -1 : l;
101 /* read()-like version */
102 ssize_t read_targphys(const char *name,
103 int fd, hwaddr dst_addr, size_t nbytes)
108 buf = g_malloc(nbytes);
109 did = read(fd, buf, nbytes);
111 rom_add_blob_fixed("read", buf, did, dst_addr);
116 int load_image_targphys(const char *filename,
117 hwaddr addr, uint64_t max_sz)
119 return load_image_targphys_as(filename, addr, max_sz, NULL);
122 /* return the size or -1 if error */
123 int load_image_targphys_as(const char *filename,
124 hwaddr addr, uint64_t max_sz, AddressSpace *as)
128 size = get_image_size(filename);
129 if (size < 0 || size > max_sz) {
133 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
140 int load_image_mr(const char *filename, MemoryRegion *mr)
144 if (!memory_access_is_direct(mr, false)) {
145 /* Can only load an image into RAM or ROM */
149 size = get_image_size(filename);
151 if (size < 0 || size > memory_region_size(mr)) {
155 if (rom_add_file_mr(filename, mr, -1) < 0) {
162 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
168 if (buf_size <= 0) return;
169 nulp = memchr(source, 0, buf_size);
171 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
173 rom_add_blob_fixed(name, source, buf_size, dest);
174 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
183 uint32_t a_info; /* Use macros N_MAGIC, etc for access */
184 uint32_t a_text; /* length of text, in bytes */
185 uint32_t a_data; /* length of data, in bytes */
186 uint32_t a_bss; /* length of uninitialized data area, in bytes */
187 uint32_t a_syms; /* length of symbol table data in file, in bytes */
188 uint32_t a_entry; /* start address */
189 uint32_t a_trsize; /* length of relocation info for text, in bytes */
190 uint32_t a_drsize; /* length of relocation info for data, in bytes */
193 static void bswap_ahdr(struct exec *e)
195 bswap32s(&e->a_info);
196 bswap32s(&e->a_text);
197 bswap32s(&e->a_data);
199 bswap32s(&e->a_syms);
200 bswap32s(&e->a_entry);
201 bswap32s(&e->a_trsize);
202 bswap32s(&e->a_drsize);
205 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
210 #define _N_HDROFF(x) (1024 - sizeof (struct exec))
211 #define N_TXTOFF(x) \
212 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \
213 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
214 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
215 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
217 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
219 #define N_DATADDR(x, target_page_size) \
220 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
221 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
224 int load_aout(const char *filename, hwaddr addr, int max_sz,
225 int bswap_needed, hwaddr target_page_size)
232 fd = open(filename, O_RDONLY | O_BINARY);
236 size = read(fd, &e, sizeof(e));
249 if (e.a_text + e.a_data > max_sz)
251 lseek(fd, N_TXTOFF(e), SEEK_SET);
252 size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
257 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
259 lseek(fd, N_TXTOFF(e), SEEK_SET);
260 size = read_targphys(filename, fd, addr, e.a_text);
263 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
281 static void *load_at(int fd, off_t offset, size_t size)
284 if (lseek(fd, offset, SEEK_SET) < 0)
286 ptr = g_malloc(size);
287 if (read(fd, ptr, size) != size) {
298 #define ELF_CLASS ELFCLASS32
302 #define elf_word uint32_t
303 #define elf_sword int32_t
304 #define bswapSZs bswap32s
305 #include "hw/elf_ops.h"
317 #define elfhdr elf64_hdr
318 #define elf_phdr elf64_phdr
319 #define elf_note elf64_note
320 #define elf_shdr elf64_shdr
321 #define elf_sym elf64_sym
322 #define elf_rela elf64_rela
323 #define elf_word uint64_t
324 #define elf_sword int64_t
325 #define bswapSZs bswap64s
327 #include "hw/elf_ops.h"
329 const char *load_elf_strerror(int error)
334 case ELF_LOAD_FAILED:
335 return "Failed to load ELF";
336 case ELF_LOAD_NOT_ELF:
337 return "The image is not ELF";
338 case ELF_LOAD_WRONG_ARCH:
339 return "The image is from incompatible architecture";
340 case ELF_LOAD_WRONG_ENDIAN:
341 return "The image has incorrect endianness";
342 case ELF_LOAD_TOO_BIG:
343 return "The image segments are too big to load";
345 return "Unknown error";
349 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
352 uint8_t e_ident_local[EI_NIDENT];
354 size_t hdr_size, off;
362 fd = open(filename, O_RDONLY | O_BINARY);
364 error_setg_errno(errp, errno, "Failed to open file: %s", filename);
367 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
368 error_setg_errno(errp, errno, "Failed to read file: %s", filename);
371 if (e_ident[0] != ELFMAG0 ||
372 e_ident[1] != ELFMAG1 ||
373 e_ident[2] != ELFMAG2 ||
374 e_ident[3] != ELFMAG3) {
375 error_setg(errp, "Bad ELF magic");
379 is64l = e_ident[EI_CLASS] == ELFCLASS64;
380 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
386 while (hdr != e_ident_local && off < hdr_size) {
387 size_t br = read(fd, hdr + off, hdr_size - off);
390 error_setg(errp, "File too short: %s", filename);
393 error_setg_errno(errp, errno, "Failed to read file: %s",
404 /* return < 0 if error, otherwise the number of bytes loaded in memory */
405 int load_elf(const char *filename,
406 uint64_t (*elf_note_fn)(void *, void *, bool),
407 uint64_t (*translate_fn)(void *, uint64_t),
408 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
409 uint64_t *highaddr, int big_endian, int elf_machine,
410 int clear_lsb, int data_swab)
412 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
413 pentry, lowaddr, highaddr, big_endian, elf_machine,
414 clear_lsb, data_swab, NULL);
417 /* return < 0 if error, otherwise the number of bytes loaded in memory */
418 int load_elf_as(const char *filename,
419 uint64_t (*elf_note_fn)(void *, void *, bool),
420 uint64_t (*translate_fn)(void *, uint64_t),
421 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
422 uint64_t *highaddr, int big_endian, int elf_machine,
423 int clear_lsb, int data_swab, AddressSpace *as)
425 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque,
426 pentry, lowaddr, highaddr, big_endian, elf_machine,
427 clear_lsb, data_swab, as, true);
430 /* return < 0 if error, otherwise the number of bytes loaded in memory */
431 int load_elf_ram(const char *filename,
432 uint64_t (*elf_note_fn)(void *, void *, bool),
433 uint64_t (*translate_fn)(void *, uint64_t),
434 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
435 uint64_t *highaddr, int big_endian, int elf_machine,
436 int clear_lsb, int data_swab, AddressSpace *as,
439 return load_elf_ram_sym(filename, elf_note_fn,
440 translate_fn, translate_opaque,
441 pentry, lowaddr, highaddr, big_endian,
442 elf_machine, clear_lsb, data_swab, as,
446 /* return < 0 if error, otherwise the number of bytes loaded in memory */
447 int load_elf_ram_sym(const char *filename,
448 uint64_t (*elf_note_fn)(void *, void *, bool),
449 uint64_t (*translate_fn)(void *, uint64_t),
450 void *translate_opaque, uint64_t *pentry,
451 uint64_t *lowaddr, uint64_t *highaddr, int big_endian,
452 int elf_machine, int clear_lsb, int data_swab,
453 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
455 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED;
456 uint8_t e_ident[EI_NIDENT];
458 fd = open(filename, O_RDONLY | O_BINARY);
463 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
465 if (e_ident[0] != ELFMAG0 ||
466 e_ident[1] != ELFMAG1 ||
467 e_ident[2] != ELFMAG2 ||
468 e_ident[3] != ELFMAG3) {
469 ret = ELF_LOAD_NOT_ELF;
472 #ifdef HOST_WORDS_BIGENDIAN
473 data_order = ELFDATA2MSB;
475 data_order = ELFDATA2LSB;
477 must_swab = data_order != e_ident[EI_DATA];
479 target_data_order = ELFDATA2MSB;
481 target_data_order = ELFDATA2LSB;
484 if (target_data_order != e_ident[EI_DATA]) {
485 ret = ELF_LOAD_WRONG_ENDIAN;
489 lseek(fd, 0, SEEK_SET);
490 if (e_ident[EI_CLASS] == ELFCLASS64) {
491 ret = load_elf64(filename, fd, elf_note_fn,
492 translate_fn, translate_opaque, must_swab,
493 pentry, lowaddr, highaddr, elf_machine, clear_lsb,
494 data_swab, as, load_rom, sym_cb);
496 ret = load_elf32(filename, fd, elf_note_fn,
497 translate_fn, translate_opaque, must_swab,
498 pentry, lowaddr, highaddr, elf_machine, clear_lsb,
499 data_swab, as, load_rom, sym_cb);
507 static void bswap_uboot_header(uboot_image_header_t *hdr)
509 #ifndef HOST_WORDS_BIGENDIAN
510 bswap32s(&hdr->ih_magic);
511 bswap32s(&hdr->ih_hcrc);
512 bswap32s(&hdr->ih_time);
513 bswap32s(&hdr->ih_size);
514 bswap32s(&hdr->ih_load);
515 bswap32s(&hdr->ih_ep);
516 bswap32s(&hdr->ih_dcrc);
521 #define ZALLOC_ALIGNMENT 16
523 static void *zalloc(void *x, unsigned items, unsigned size)
528 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
535 static void zfree(void *x, void *addr)
542 #define EXTRA_FIELD 4
545 #define RESERVED 0xe0
549 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
558 if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
559 puts ("Error: Bad gzipped data\n");
562 if ((flags & EXTRA_FIELD) != 0)
563 i = 12 + src[10] + (src[11] << 8);
564 if ((flags & ORIG_NAME) != 0)
565 while (src[i++] != 0)
567 if ((flags & COMMENT) != 0)
568 while (src[i++] != 0)
570 if ((flags & HEAD_CRC) != 0)
573 puts ("Error: gunzip out of data in header\n");
580 r = inflateInit2(&s, -MAX_WBITS);
582 printf ("Error: inflateInit2() returned %d\n", r);
586 s.avail_in = srclen - i;
588 s.avail_out = dstlen;
589 r = inflate(&s, Z_FINISH);
590 if (r != Z_OK && r != Z_STREAM_END) {
591 printf ("Error: inflate() returned %d\n", r);
594 dstbytes = s.next_out - (unsigned char *) dst;
600 /* Load a U-Boot image. */
601 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr,
602 int *is_linux, uint8_t image_type,
603 uint64_t (*translate_fn)(void *, uint64_t),
604 void *translate_opaque, AddressSpace *as)
609 uboot_image_header_t h;
610 uboot_image_header_t *hdr = &h;
611 uint8_t *data = NULL;
613 int do_uncompress = 0;
615 fd = open(filename, O_RDONLY | O_BINARY);
619 size = read(fd, hdr, sizeof(uboot_image_header_t));
620 if (size < sizeof(uboot_image_header_t)) {
624 bswap_uboot_header(hdr);
626 if (hdr->ih_magic != IH_MAGIC)
629 if (hdr->ih_type != image_type) {
630 if (!(image_type == IH_TYPE_KERNEL &&
631 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
632 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
638 /* TODO: Implement other image types. */
639 switch (hdr->ih_type) {
640 case IH_TYPE_KERNEL_NOLOAD:
641 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
642 fprintf(stderr, "this image format (kernel_noload) cannot be "
643 "loaded on this machine type");
647 hdr->ih_load = *loadaddr + sizeof(*hdr);
648 hdr->ih_ep += hdr->ih_load;
651 address = hdr->ih_load;
653 address = translate_fn(translate_opaque, address);
656 *loadaddr = hdr->ih_load;
659 switch (hdr->ih_comp) {
667 "Unable to load u-boot images with compression type %d\n",
676 /* TODO: Check CPU type. */
678 if (hdr->ih_os == IH_OS_LINUX) {
686 case IH_TYPE_RAMDISK:
690 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
694 data = g_malloc(hdr->ih_size);
696 if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
697 fprintf(stderr, "Error reading file\n");
702 uint8_t *compressed_data;
706 compressed_data = data;
707 max_bytes = UBOOT_MAX_GUNZIP_BYTES;
708 data = g_malloc(max_bytes);
710 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
711 g_free(compressed_data);
713 fprintf(stderr, "Unable to decompress gzipped image!\n");
716 hdr->ih_size = bytes;
719 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
729 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
731 uint64_t (*translate_fn)(void *, uint64_t),
732 void *translate_opaque)
734 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
735 translate_fn, translate_opaque, NULL);
738 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
740 uint64_t (*translate_fn)(void *, uint64_t),
741 void *translate_opaque, AddressSpace *as)
743 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
744 translate_fn, translate_opaque, as);
747 /* Load a ramdisk. */
748 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
750 return load_ramdisk_as(filename, addr, max_sz, NULL);
753 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
756 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
760 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */
761 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
764 uint8_t *compressed_data = NULL;
765 uint8_t *data = NULL;
770 if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
775 /* Is it a gzip-compressed file? */
777 compressed_data[0] != 0x1f ||
778 compressed_data[1] != 0x8b) {
782 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
783 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
786 data = g_malloc(max_sz);
787 bytes = gunzip(data, max_sz, compressed_data, len);
789 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
794 /* trim to actual size and return to caller */
795 *buffer = g_realloc(data, bytes);
797 /* ownership has been transferred to caller */
801 g_free(compressed_data);
806 /* Load a gzip-compressed kernel. */
807 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
812 bytes = load_image_gzipped_buffer(filename, max_sz, &data);
814 rom_add_blob_fixed(filename, data, bytes, addr);
821 * Functions for reboot-persistent memory regions.
822 * - used for vga bios and option roms.
823 * - also linux kernel (-kernel / -initrd).
826 typedef struct Rom Rom;
832 /* datasize is the amount of memory allocated in "data". If datasize is less
833 * than romsize, it means that the area from datasize to romsize is filled
845 GMappedFile *mapped_file;
850 QTAILQ_ENTRY(Rom) next;
853 static FWCfgState *fw_cfg;
854 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
857 * rom->data can be heap-allocated or memory-mapped (e.g. when added with
858 * rom_add_elf_program())
860 static void rom_free_data(Rom *rom)
862 if (rom->mapped_file) {
863 g_mapped_file_unref(rom->mapped_file);
864 rom->mapped_file = NULL;
872 static void rom_free(Rom *rom)
878 g_free(rom->fw_file);
882 static inline bool rom_order_compare(Rom *rom, Rom *item)
884 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
885 (rom->as == item->as && rom->addr >= item->addr);
888 static void rom_insert(Rom *rom)
893 hw_error ("ROM images must be loaded at startup\n");
896 /* The user didn't specify an address space, this is the default */
898 rom->as = &address_space_memory;
901 rom->committed = false;
903 /* List is ordered by load address in the same address space */
904 QTAILQ_FOREACH(item, &roms, next) {
905 if (rom_order_compare(rom, item)) {
908 QTAILQ_INSERT_BEFORE(item, rom, next);
911 QTAILQ_INSERT_TAIL(&roms, rom, next);
914 static void fw_cfg_resized(const char *id, uint64_t length, void *host)
917 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
921 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
925 rom->mr = g_malloc(sizeof(*rom->mr));
926 memory_region_init_resizeable_ram(rom->mr, owner, name,
927 rom->datasize, rom->romsize,
930 memory_region_set_readonly(rom->mr, ro);
931 vmstate_register_ram_global(rom->mr);
933 data = memory_region_get_ram_ptr(rom->mr);
934 memcpy(data, rom->data, rom->datasize);
939 int rom_add_file(const char *file, const char *fw_dir,
940 hwaddr addr, int32_t bootindex,
941 bool option_rom, MemoryRegion *mr,
944 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
950 fprintf(stderr, "Specifying an Address Space and Memory Region is " \
951 "not valid when loading a rom\n");
952 /* We haven't allocated anything so we don't need any cleanup */
956 rom = g_malloc0(sizeof(*rom));
957 rom->name = g_strdup(file);
958 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
960 if (rom->path == NULL) {
961 rom->path = g_strdup(file);
964 fd = open(rom->path, O_RDONLY | O_BINARY);
966 fprintf(stderr, "Could not open option rom '%s': %s\n",
967 rom->path, strerror(errno));
972 rom->fw_dir = g_strdup(fw_dir);
973 rom->fw_file = g_strdup(file);
976 rom->romsize = lseek(fd, 0, SEEK_END);
977 if (rom->romsize == -1) {
978 fprintf(stderr, "rom: file %-20s: get size error: %s\n",
979 rom->name, strerror(errno));
983 rom->datasize = rom->romsize;
984 rom->data = g_malloc0(rom->datasize);
985 lseek(fd, 0, SEEK_SET);
986 rc = read(fd, rom->data, rom->datasize);
987 if (rc != rom->datasize) {
988 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n",
989 rom->name, rc, rom->datasize);
994 if (rom->fw_file && fw_cfg) {
995 const char *basename;
996 char fw_file_name[FW_CFG_MAX_FILE_PATH];
999 basename = strrchr(rom->fw_file, '/');
1003 basename = rom->fw_file;
1005 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
1007 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1009 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
1010 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
1015 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
1019 snprintf(devpath, sizeof(devpath), "/rom@%s", file);
1021 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr);
1025 add_boot_device_path(bootindex, NULL, devpath);
1036 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
1037 size_t max_len, hwaddr addr, const char *fw_file_name,
1038 FWCfgCallback fw_callback, void *callback_opaque,
1039 AddressSpace *as, bool read_only)
1041 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1043 MemoryRegion *mr = NULL;
1045 rom = g_malloc0(sizeof(*rom));
1046 rom->name = g_strdup(name);
1049 rom->romsize = max_len ? max_len : len;
1050 rom->datasize = len;
1051 g_assert(rom->romsize >= rom->datasize);
1052 rom->data = g_malloc0(rom->datasize);
1053 memcpy(rom->data, blob, len);
1055 if (fw_file_name && fw_cfg) {
1060 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1062 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1065 if (mc->rom_file_has_mr) {
1066 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1072 fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1073 fw_callback, NULL, callback_opaque,
1074 data, rom->datasize, read_only);
1079 /* This function is specific for elf program because we don't need to allocate
1080 * all the rom. We just allocate the first part and the rest is just zeros. This
1081 * is why romsize and datasize are different. Also, this function takes its own
1082 * reference to "mapped_file", so we don't have to allocate and copy the buffer.
1084 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data,
1085 size_t datasize, size_t romsize, hwaddr addr,
1090 rom = g_malloc0(sizeof(*rom));
1091 rom->name = g_strdup(name);
1093 rom->datasize = datasize;
1094 rom->romsize = romsize;
1098 if (mapped_file && data) {
1099 g_mapped_file_ref(mapped_file);
1100 rom->mapped_file = mapped_file;
1107 int rom_add_vga(const char *file)
1109 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1112 int rom_add_option(const char *file, int32_t bootindex)
1114 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1117 static void rom_reset(void *unused)
1122 * We don't need to fill in the RAM with ROM data because we'll fill
1123 * the data in during the next incoming migration in all cases. Note
1124 * that some of those RAMs can actually be modified by the guest on ARM
1125 * so this is probably the only right thing to do here.
1127 if (runstate_check(RUN_STATE_INMIGRATE))
1130 QTAILQ_FOREACH(rom, &roms, next) {
1134 if (rom->data == NULL) {
1138 void *host = memory_region_get_ram_ptr(rom->mr);
1139 memcpy(host, rom->data, rom->datasize);
1141 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
1142 rom->data, rom->datasize);
1145 /* rom needs to be written only once */
1149 * The rom loader is really on the same level as firmware in the guest
1150 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1151 * that the instruction cache for that new region is clear, so that the
1152 * CPU definitely fetches its instructions from the just written data.
1154 cpu_flush_icache_range(rom->addr, rom->datasize);
1156 trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom);
1160 int rom_check_and_register_reset(void)
1163 MemoryRegionSection section;
1165 AddressSpace *as = NULL;
1167 QTAILQ_FOREACH(rom, &roms, next) {
1172 if ((addr > rom->addr) && (as == rom->as)) {
1173 fprintf(stderr, "rom: requested regions overlap "
1174 "(rom %s. free=0x" TARGET_FMT_plx
1175 ", addr=0x" TARGET_FMT_plx ")\n",
1176 rom->name, addr, rom->addr);
1180 addr += rom->romsize;
1183 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1185 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1186 memory_region_unref(section.mr);
1188 qemu_register_reset(rom_reset, NULL);
1193 void rom_set_fw(FWCfgState *f)
1198 void rom_set_order_override(int order)
1202 fw_cfg_set_order_override(fw_cfg, order);
1205 void rom_reset_order_override(void)
1209 fw_cfg_reset_order_override(fw_cfg);
1212 void rom_transaction_begin(void)
1216 /* Ignore ROMs added without the transaction API */
1217 QTAILQ_FOREACH(rom, &roms, next) {
1218 rom->committed = true;
1222 void rom_transaction_end(bool commit)
1227 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
1228 if (rom->committed) {
1232 rom->committed = true;
1234 QTAILQ_REMOVE(&roms, rom, next);
1240 static Rom *find_rom(hwaddr addr, size_t size)
1244 QTAILQ_FOREACH(rom, &roms, next) {
1251 if (rom->addr > addr) {
1254 if (rom->addr + rom->romsize < addr + size) {
1263 * Copies memory from registered ROMs to dest. Any memory that is contained in
1264 * a ROM between addr and addr + size is copied. Note that this can involve
1265 * multiple ROMs, which need not start at addr and need not end at addr + size.
1267 int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1269 hwaddr end = addr + size;
1270 uint8_t *s, *d = dest;
1274 QTAILQ_FOREACH(rom, &roms, next) {
1281 if (rom->addr + rom->romsize < addr) {
1284 if (rom->addr > end || rom->addr < addr) {
1288 d = dest + (rom->addr - addr);
1292 if ((d + l) > (dest + size)) {
1300 if (rom->romsize > rom->datasize) {
1301 /* If datasize is less than romsize, it means that we didn't
1302 * allocate all the ROM because the trailing data are only zeros.
1306 l = rom->romsize - rom->datasize;
1308 if ((d + l) > (dest + size)) {
1309 /* Rom size doesn't fit in the destination area. Adjust to avoid
1321 return (d + l) - dest;
1324 void *rom_ptr(hwaddr addr, size_t size)
1328 rom = find_rom(addr, size);
1329 if (!rom || !rom->data)
1331 return rom->data + (addr - rom->addr);
1334 void hmp_info_roms(Monitor *mon, const QDict *qdict)
1338 QTAILQ_FOREACH(rom, &roms, next) {
1340 monitor_printf(mon, "%s"
1341 " size=0x%06zx name=\"%s\"\n",
1342 memory_region_name(rom->mr),
1345 } else if (!rom->fw_file) {
1346 monitor_printf(mon, "addr=" TARGET_FMT_plx
1347 " size=0x%06zx mem=%s name=\"%s\"\n",
1348 rom->addr, rom->romsize,
1349 rom->isrom ? "rom" : "ram",
1352 monitor_printf(mon, "fw=%s/%s"
1353 " size=0x%06zx name=\"%s\"\n",
1362 typedef enum HexRecord HexRecord;
1366 EXT_SEG_ADDR_RECORD,
1367 START_SEG_ADDR_RECORD,
1368 EXT_LINEAR_ADDR_RECORD,
1369 START_LINEAR_ADDR_RECORD,
1372 /* Each record contains a 16-bit address which is combined with the upper 16
1373 * bits of the implicit "next address" to form a 32-bit address.
1375 #define NEXT_ADDR_MASK 0xffff0000
1377 #define DATA_FIELD_MAX_LEN 0xff
1378 #define LEN_EXCEPT_DATA 0x5
1379 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
1380 * sizeof(checksum) */
1384 uint8_t record_type;
1385 uint8_t data[DATA_FIELD_MAX_LEN];
1389 /* return 0 or -1 if error */
1390 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
1391 uint32_t *index, const bool in_process)
1393 /* +-------+---------------+-------+---------------------+--------+
1394 * | byte | |record | | |
1395 * | count | address | type | data |checksum|
1396 * +-------+---------------+-------+---------------------+--------+
1398 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte |
1401 uint32_t idx = *index;
1403 if (g_ascii_isspace(c)) {
1406 if (!g_ascii_isxdigit(c) || !in_process) {
1409 value = g_ascii_xdigit_value(c);
1410 value = (idx & 0x1) ? (value & 0xf) : (value << 4);
1412 line->byte_count |= value;
1413 } else if (2 <= idx && idx < 6) {
1414 line->address <<= 4;
1415 line->address += g_ascii_xdigit_value(c);
1416 } else if (6 <= idx && idx < 8) {
1417 line->record_type |= value;
1418 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
1419 line->data[(idx - 8) >> 1] |= value;
1420 } else if (8 + 2 * line->byte_count <= idx &&
1421 idx < 10 + 2 * line->byte_count) {
1422 line->checksum |= value;
1426 *our_checksum += value;
1432 const char *filename;
1437 uint32_t next_address_to_write;
1438 uint32_t current_address;
1439 uint32_t current_rom_index;
1440 uint32_t rom_start_address;
1444 /* return size or -1 if error */
1445 static int handle_record_type(HexParser *parser)
1447 HexLine *line = &(parser->line);
1448 switch (line->record_type) {
1450 parser->current_address =
1451 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
1452 /* verify this is a contiguous block of memory */
1453 if (parser->current_address != parser->next_address_to_write) {
1454 if (parser->current_rom_index != 0) {
1455 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1456 parser->current_rom_index,
1457 parser->rom_start_address, parser->as);
1459 parser->rom_start_address = parser->current_address;
1460 parser->current_rom_index = 0;
1463 /* copy from line buffer to output bin_buf */
1464 memcpy(parser->bin_buf + parser->current_rom_index, line->data,
1466 parser->current_rom_index += line->byte_count;
1467 parser->total_size += line->byte_count;
1468 /* save next address to write */
1469 parser->next_address_to_write =
1470 parser->current_address + line->byte_count;
1474 if (parser->current_rom_index != 0) {
1475 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1476 parser->current_rom_index,
1477 parser->rom_start_address, parser->as);
1479 return parser->total_size;
1480 case EXT_SEG_ADDR_RECORD:
1481 case EXT_LINEAR_ADDR_RECORD:
1482 if (line->byte_count != 2 && line->address != 0) {
1486 if (parser->current_rom_index != 0) {
1487 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1488 parser->current_rom_index,
1489 parser->rom_start_address, parser->as);
1492 /* save next address to write,
1493 * in case of non-contiguous block of memory */
1494 parser->next_address_to_write = (line->data[0] << 12) |
1495 (line->data[1] << 4);
1496 if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
1497 parser->next_address_to_write <<= 12;
1500 parser->rom_start_address = parser->next_address_to_write;
1501 parser->current_rom_index = 0;
1504 case START_SEG_ADDR_RECORD:
1505 if (line->byte_count != 4 && line->address != 0) {
1509 /* x86 16-bit CS:IP segmented addressing */
1510 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
1511 ((line->data[2] << 8) | line->data[3]);
1514 case START_LINEAR_ADDR_RECORD:
1515 if (line->byte_count != 4 && line->address != 0) {
1519 *(parser->start_addr) = ldl_be_p(line->data);
1526 return parser->total_size;
1529 /* return size or -1 if error */
1530 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
1531 size_t hex_blob_size, AddressSpace *as)
1533 bool in_process = false; /* avoid re-enter and
1534 * check whether record begin with ':' */
1535 uint8_t *end = hex_blob + hex_blob_size;
1536 uint8_t our_checksum = 0;
1537 uint32_t record_index = 0;
1538 HexParser parser = {
1539 .filename = filename,
1540 .bin_buf = g_malloc(hex_blob_size),
1545 rom_transaction_begin();
1547 for (; hex_blob < end; ++hex_blob) {
1548 switch (*hex_blob) {
1556 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
1558 our_checksum != 0) {
1559 parser.total_size = -1;
1563 if (handle_record_type(&parser) == -1) {
1564 parser.total_size = -1;
1569 /* start of a new record. */
1571 memset(&parser.line, 0, sizeof(HexLine));
1576 /* decoding lines */
1578 if (!parse_record(&parser.line, &our_checksum, *hex_blob,
1579 &record_index, in_process)) {
1580 parser.total_size = -1;
1588 g_free(parser.bin_buf);
1589 rom_transaction_end(parser.total_size != -1);
1590 return parser.total_size;
1593 /* return size or -1 if error */
1594 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as)
1596 gsize hex_blob_size;
1600 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
1604 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,