4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
29 #include "qemu/osdep.h"
32 #include "qemu/cutils.h"
33 #include "qemu/bitops.h"
34 #include "qemu/bitmap.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/pmem.h"
39 #include "migration.h"
41 #include "migration/register.h"
42 #include "migration/misc.h"
43 #include "qemu-file.h"
44 #include "postcopy-ram.h"
45 #include "page_cache.h"
46 #include "qemu/error-report.h"
47 #include "qapi/error.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qmp/qerror.h"
51 #include "exec/ram_addr.h"
52 #include "exec/target_page.h"
53 #include "qemu/rcu_queue.h"
54 #include "migration/colo.h"
56 #include "sysemu/sysemu.h"
57 #include "qemu/uuid.h"
61 /***********************************************************/
62 /* ram save/restore */
64 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
65 * worked for pages that where filled with the same char. We switched
66 * it to only search for the zero value. And to avoid confusion with
67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
70 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
71 #define RAM_SAVE_FLAG_ZERO 0x02
72 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
73 #define RAM_SAVE_FLAG_PAGE 0x08
74 #define RAM_SAVE_FLAG_EOS 0x10
75 #define RAM_SAVE_FLAG_CONTINUE 0x20
76 #define RAM_SAVE_FLAG_XBZRLE 0x40
77 /* 0x80 is reserved in migration.h start with 0x100 next */
78 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
80 static inline bool is_zero_range(uint8_t *p, uint64_t size)
82 return buffer_is_zero(p, size);
85 XBZRLECacheStats xbzrle_counters;
87 /* struct contains XBZRLE cache and a static page
88 used by the compression */
90 /* buffer used for XBZRLE encoding */
92 /* buffer for storing page content */
94 /* Cache for XBZRLE, Protected by lock. */
97 /* it will store a page full of zeros */
98 uint8_t *zero_target_page;
99 /* buffer used for XBZRLE decoding */
100 uint8_t *decoded_buf;
103 static void XBZRLE_cache_lock(void)
105 if (migrate_use_xbzrle())
106 qemu_mutex_lock(&XBZRLE.lock);
109 static void XBZRLE_cache_unlock(void)
111 if (migrate_use_xbzrle())
112 qemu_mutex_unlock(&XBZRLE.lock);
116 * xbzrle_cache_resize: resize the xbzrle cache
118 * This function is called from qmp_migrate_set_cache_size in main
119 * thread, possibly while a migration is in progress. A running
120 * migration may be using the cache and might finish during this call,
121 * hence changes to the cache are protected by XBZRLE.lock().
123 * Returns 0 for success or -1 for error
125 * @new_size: new cache size
126 * @errp: set *errp if the check failed, with reason
128 int xbzrle_cache_resize(int64_t new_size, Error **errp)
130 PageCache *new_cache;
133 /* Check for truncation */
134 if (new_size != (size_t)new_size) {
135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
136 "exceeding address space");
140 if (new_size == migrate_xbzrle_cache_size()) {
147 if (XBZRLE.cache != NULL) {
148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
154 cache_fini(XBZRLE.cache);
155 XBZRLE.cache = new_cache;
158 XBZRLE_cache_unlock();
162 static bool ramblock_is_ignored(RAMBlock *block)
164 return !qemu_ram_is_migratable(block) ||
165 (migrate_ignore_shared() && qemu_ram_is_shared(block));
168 /* Should be holding either ram_list.mutex, or the RCU lock. */
169 #define RAMBLOCK_FOREACH_NOT_IGNORED(block) \
170 INTERNAL_RAMBLOCK_FOREACH(block) \
171 if (ramblock_is_ignored(block)) {} else
173 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \
174 INTERNAL_RAMBLOCK_FOREACH(block) \
175 if (!qemu_ram_is_migratable(block)) {} else
177 #undef RAMBLOCK_FOREACH
179 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
185 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
186 ret = func(block, opaque);
195 static void ramblock_recv_map_init(void)
199 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
200 assert(!rb->receivedmap);
201 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
205 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
207 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
211 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
213 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
216 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
218 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
221 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
224 bitmap_set_atomic(rb->receivedmap,
225 ramblock_recv_bitmap_offset(host_addr, rb),
229 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
234 * Returns >0 if success with sent bytes, or <0 if error.
236 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
237 const char *block_name)
239 RAMBlock *block = qemu_ram_block_by_name(block_name);
240 unsigned long *le_bitmap, nbits;
244 error_report("%s: invalid block name: %s", __func__, block_name);
248 nbits = block->used_length >> TARGET_PAGE_BITS;
251 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
252 * machines we may need 4 more bytes for padding (see below
253 * comment). So extend it a bit before hand.
255 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
258 * Always use little endian when sending the bitmap. This is
259 * required that when source and destination VMs are not using the
260 * same endianess. (Note: big endian won't work.)
262 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
264 /* Size of the bitmap, in bytes */
265 size = DIV_ROUND_UP(nbits, 8);
268 * size is always aligned to 8 bytes for 64bit machines, but it
269 * may not be true for 32bit machines. We need this padding to
270 * make sure the migration can survive even between 32bit and
273 size = ROUND_UP(size, 8);
275 qemu_put_be64(file, size);
276 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
278 * Mark as an end, in case the middle part is screwed up due to
279 * some "misterious" reason.
281 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
286 if (qemu_file_get_error(file)) {
287 return qemu_file_get_error(file);
290 return size + sizeof(size);
294 * An outstanding page request, on the source, having been received
297 struct RAMSrcPageRequest {
302 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
305 /* State of RAM for migration */
307 /* QEMUFile used for this migration */
309 /* Last block that we have visited searching for dirty pages */
310 RAMBlock *last_seen_block;
311 /* Last block from where we have sent data */
312 RAMBlock *last_sent_block;
313 /* Last dirty target page we have sent */
314 ram_addr_t last_page;
315 /* last ram version we have seen */
316 uint32_t last_version;
317 /* We are in the first round */
319 /* The free page optimization is enabled */
321 /* How many times we have dirty too many pages */
322 int dirty_rate_high_cnt;
323 /* these variables are used for bitmap sync */
324 /* last time we did a full bitmap_sync */
325 int64_t time_last_bitmap_sync;
326 /* bytes transferred at start_time */
327 uint64_t bytes_xfer_prev;
328 /* number of dirty pages since start_time */
329 uint64_t num_dirty_pages_period;
330 /* xbzrle misses since the beginning of the period */
331 uint64_t xbzrle_cache_miss_prev;
333 /* compression statistics since the beginning of the period */
334 /* amount of count that no free thread to compress data */
335 uint64_t compress_thread_busy_prev;
336 /* amount bytes after compression */
337 uint64_t compressed_size_prev;
338 /* amount of compressed pages */
339 uint64_t compress_pages_prev;
341 /* total handled target pages at the beginning of period */
342 uint64_t target_page_count_prev;
343 /* total handled target pages since start */
344 uint64_t target_page_count;
345 /* number of dirty bits in the bitmap */
346 uint64_t migration_dirty_pages;
347 /* Protects modification of the bitmap and migration dirty pages */
348 QemuMutex bitmap_mutex;
349 /* The RAMBlock used in the last src_page_requests */
350 RAMBlock *last_req_rb;
351 /* Queue of outstanding page requests from the destination */
352 QemuMutex src_page_req_mutex;
353 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
355 typedef struct RAMState RAMState;
357 static RAMState *ram_state;
359 static NotifierWithReturnList precopy_notifier_list;
361 void precopy_infrastructure_init(void)
363 notifier_with_return_list_init(&precopy_notifier_list);
366 void precopy_add_notifier(NotifierWithReturn *n)
368 notifier_with_return_list_add(&precopy_notifier_list, n);
371 void precopy_remove_notifier(NotifierWithReturn *n)
373 notifier_with_return_remove(n);
376 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
378 PrecopyNotifyData pnd;
382 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
385 void precopy_enable_free_page_optimization(void)
391 ram_state->fpo_enabled = true;
394 uint64_t ram_bytes_remaining(void)
396 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
400 MigrationStats ram_counters;
402 /* used by the search for pages to send */
403 struct PageSearchStatus {
404 /* Current block being searched */
406 /* Current page to search from */
408 /* Set once we wrap around */
411 typedef struct PageSearchStatus PageSearchStatus;
413 CompressionStats compression_counters;
415 struct CompressParam {
425 /* internally used fields */
429 typedef struct CompressParam CompressParam;
431 struct DecompressParam {
441 typedef struct DecompressParam DecompressParam;
443 static CompressParam *comp_param;
444 static QemuThread *compress_threads;
445 /* comp_done_cond is used to wake up the migration thread when
446 * one of the compression threads has finished the compression.
447 * comp_done_lock is used to co-work with comp_done_cond.
449 static QemuMutex comp_done_lock;
450 static QemuCond comp_done_cond;
451 /* The empty QEMUFileOps will be used by file in CompressParam */
452 static const QEMUFileOps empty_ops = { };
454 static QEMUFile *decomp_file;
455 static DecompressParam *decomp_param;
456 static QemuThread *decompress_threads;
457 static QemuMutex decomp_done_lock;
458 static QemuCond decomp_done_cond;
460 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
461 ram_addr_t offset, uint8_t *source_buf);
463 static void *do_data_compress(void *opaque)
465 CompressParam *param = opaque;
470 qemu_mutex_lock(¶m->mutex);
471 while (!param->quit) {
473 block = param->block;
474 offset = param->offset;
476 qemu_mutex_unlock(¶m->mutex);
478 zero_page = do_compress_ram_page(param->file, ¶m->stream,
479 block, offset, param->originbuf);
481 qemu_mutex_lock(&comp_done_lock);
483 param->zero_page = zero_page;
484 qemu_cond_signal(&comp_done_cond);
485 qemu_mutex_unlock(&comp_done_lock);
487 qemu_mutex_lock(¶m->mutex);
489 qemu_cond_wait(¶m->cond, ¶m->mutex);
492 qemu_mutex_unlock(¶m->mutex);
497 static void compress_threads_save_cleanup(void)
501 if (!migrate_use_compression() || !comp_param) {
505 thread_count = migrate_compress_threads();
506 for (i = 0; i < thread_count; i++) {
508 * we use it as a indicator which shows if the thread is
509 * properly init'd or not
511 if (!comp_param[i].file) {
515 qemu_mutex_lock(&comp_param[i].mutex);
516 comp_param[i].quit = true;
517 qemu_cond_signal(&comp_param[i].cond);
518 qemu_mutex_unlock(&comp_param[i].mutex);
520 qemu_thread_join(compress_threads + i);
521 qemu_mutex_destroy(&comp_param[i].mutex);
522 qemu_cond_destroy(&comp_param[i].cond);
523 deflateEnd(&comp_param[i].stream);
524 g_free(comp_param[i].originbuf);
525 qemu_fclose(comp_param[i].file);
526 comp_param[i].file = NULL;
528 qemu_mutex_destroy(&comp_done_lock);
529 qemu_cond_destroy(&comp_done_cond);
530 g_free(compress_threads);
532 compress_threads = NULL;
536 static int compress_threads_save_setup(void)
540 if (!migrate_use_compression()) {
543 thread_count = migrate_compress_threads();
544 compress_threads = g_new0(QemuThread, thread_count);
545 comp_param = g_new0(CompressParam, thread_count);
546 qemu_cond_init(&comp_done_cond);
547 qemu_mutex_init(&comp_done_lock);
548 for (i = 0; i < thread_count; i++) {
549 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
550 if (!comp_param[i].originbuf) {
554 if (deflateInit(&comp_param[i].stream,
555 migrate_compress_level()) != Z_OK) {
556 g_free(comp_param[i].originbuf);
560 /* comp_param[i].file is just used as a dummy buffer to save data,
561 * set its ops to empty.
563 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
564 comp_param[i].done = true;
565 comp_param[i].quit = false;
566 qemu_mutex_init(&comp_param[i].mutex);
567 qemu_cond_init(&comp_param[i].cond);
568 qemu_thread_create(compress_threads + i, "compress",
569 do_data_compress, comp_param + i,
570 QEMU_THREAD_JOINABLE);
575 compress_threads_save_cleanup();
581 #define MULTIFD_MAGIC 0x11223344U
582 #define MULTIFD_VERSION 1
584 #define MULTIFD_FLAG_SYNC (1 << 0)
586 /* This value needs to be a multiple of qemu_target_page_size() */
587 #define MULTIFD_PACKET_SIZE (512 * 1024)
592 unsigned char uuid[16]; /* QemuUUID */
594 uint8_t unused1[7]; /* Reserved for future use */
595 uint64_t unused2[4]; /* Reserved for future use */
596 } __attribute__((packed)) MultiFDInit_t;
602 /* maximum number of allocated pages */
603 uint32_t pages_alloc;
605 /* size of the next packet that contains pages */
606 uint32_t next_packet_size;
608 uint64_t unused[4]; /* Reserved for future use */
611 } __attribute__((packed)) MultiFDPacket_t;
614 /* number of used pages */
616 /* number of allocated pages */
618 /* global number of generated multifd packets */
620 /* offset of each page */
622 /* pointer to each page */
628 /* this fields are not changed once the thread is created */
631 /* channel thread name */
633 /* channel thread id */
635 /* communication channel */
637 /* sem where to wait for more work */
639 /* this mutex protects the following parameters */
641 /* is this channel thread running */
643 /* should this thread finish */
645 /* thread has work to do */
647 /* array of pages to sent */
648 MultiFDPages_t *pages;
649 /* packet allocated len */
651 /* pointer to the packet */
652 MultiFDPacket_t *packet;
653 /* multifd flags for each packet */
655 /* size of the next packet that contains pages */
656 uint32_t next_packet_size;
657 /* global number of generated multifd packets */
659 /* thread local variables */
660 /* packets sent through this channel */
661 uint64_t num_packets;
662 /* pages sent through this channel */
664 /* syncs main thread and channels */
665 QemuSemaphore sem_sync;
669 /* this fields are not changed once the thread is created */
672 /* channel thread name */
674 /* channel thread id */
676 /* communication channel */
678 /* this mutex protects the following parameters */
680 /* is this channel thread running */
682 /* should this thread finish */
684 /* array of pages to receive */
685 MultiFDPages_t *pages;
686 /* packet allocated len */
688 /* pointer to the packet */
689 MultiFDPacket_t *packet;
690 /* multifd flags for each packet */
692 /* global number of generated multifd packets */
694 /* thread local variables */
695 /* size of the next packet that contains pages */
696 uint32_t next_packet_size;
697 /* packets sent through this channel */
698 uint64_t num_packets;
699 /* pages sent through this channel */
701 /* syncs main thread and channels */
702 QemuSemaphore sem_sync;
705 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
710 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
711 msg.version = cpu_to_be32(MULTIFD_VERSION);
713 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
715 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
722 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
727 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
732 msg.magic = be32_to_cpu(msg.magic);
733 msg.version = be32_to_cpu(msg.version);
735 if (msg.magic != MULTIFD_MAGIC) {
736 error_setg(errp, "multifd: received packet magic %x "
737 "expected %x", msg.magic, MULTIFD_MAGIC);
741 if (msg.version != MULTIFD_VERSION) {
742 error_setg(errp, "multifd: received packet version %d "
743 "expected %d", msg.version, MULTIFD_VERSION);
747 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
748 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
749 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
751 error_setg(errp, "multifd: received uuid '%s' and expected "
752 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
758 if (msg.id > migrate_multifd_channels()) {
759 error_setg(errp, "multifd: received channel version %d "
760 "expected %d", msg.version, MULTIFD_VERSION);
767 static MultiFDPages_t *multifd_pages_init(size_t size)
769 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
771 pages->allocated = size;
772 pages->iov = g_new0(struct iovec, size);
773 pages->offset = g_new0(ram_addr_t, size);
778 static void multifd_pages_clear(MultiFDPages_t *pages)
781 pages->allocated = 0;
782 pages->packet_num = 0;
786 g_free(pages->offset);
787 pages->offset = NULL;
791 static void multifd_send_fill_packet(MultiFDSendParams *p)
793 MultiFDPacket_t *packet = p->packet;
794 uint32_t page_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
797 packet->magic = cpu_to_be32(MULTIFD_MAGIC);
798 packet->version = cpu_to_be32(MULTIFD_VERSION);
799 packet->flags = cpu_to_be32(p->flags);
800 packet->pages_alloc = cpu_to_be32(page_max);
801 packet->pages_used = cpu_to_be32(p->pages->used);
802 packet->next_packet_size = cpu_to_be32(p->next_packet_size);
803 packet->packet_num = cpu_to_be64(p->packet_num);
805 if (p->pages->block) {
806 strncpy(packet->ramblock, p->pages->block->idstr, 256);
809 for (i = 0; i < p->pages->used; i++) {
810 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
814 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
816 MultiFDPacket_t *packet = p->packet;
817 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
821 packet->magic = be32_to_cpu(packet->magic);
822 if (packet->magic != MULTIFD_MAGIC) {
823 error_setg(errp, "multifd: received packet "
824 "magic %x and expected magic %x",
825 packet->magic, MULTIFD_MAGIC);
829 packet->version = be32_to_cpu(packet->version);
830 if (packet->version != MULTIFD_VERSION) {
831 error_setg(errp, "multifd: received packet "
832 "version %d and expected version %d",
833 packet->version, MULTIFD_VERSION);
837 p->flags = be32_to_cpu(packet->flags);
839 packet->pages_alloc = be32_to_cpu(packet->pages_alloc);
841 * If we recevied a packet that is 100 times bigger than expected
842 * just stop migration. It is a magic number.
844 if (packet->pages_alloc > pages_max * 100) {
845 error_setg(errp, "multifd: received packet "
846 "with size %d and expected a maximum size of %d",
847 packet->pages_alloc, pages_max * 100) ;
851 * We received a packet that is bigger than expected but inside
852 * reasonable limits (see previous comment). Just reallocate.
854 if (packet->pages_alloc > p->pages->allocated) {
855 multifd_pages_clear(p->pages);
856 p->pages = multifd_pages_init(packet->pages_alloc);
859 p->pages->used = be32_to_cpu(packet->pages_used);
860 if (p->pages->used > packet->pages_alloc) {
861 error_setg(errp, "multifd: received packet "
862 "with %d pages and expected maximum pages are %d",
863 p->pages->used, packet->pages_alloc) ;
867 p->next_packet_size = be32_to_cpu(packet->next_packet_size);
868 p->packet_num = be64_to_cpu(packet->packet_num);
870 if (p->pages->used) {
871 /* make sure that ramblock is 0 terminated */
872 packet->ramblock[255] = 0;
873 block = qemu_ram_block_by_name(packet->ramblock);
875 error_setg(errp, "multifd: unknown ram block %s",
881 for (i = 0; i < p->pages->used; i++) {
882 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
884 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
885 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
886 " (max " RAM_ADDR_FMT ")",
887 offset, block->max_length);
890 p->pages->iov[i].iov_base = block->host + offset;
891 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
898 MultiFDSendParams *params;
899 /* array of pages to sent */
900 MultiFDPages_t *pages;
901 /* global number of generated multifd packets */
903 /* send channels ready */
904 QemuSemaphore channels_ready;
905 } *multifd_send_state;
908 * How we use multifd_send_state->pages and channel->pages?
910 * We create a pages for each channel, and a main one. Each time that
911 * we need to send a batch of pages we interchange the ones between
912 * multifd_send_state and the channel that is sending it. There are
913 * two reasons for that:
914 * - to not have to do so many mallocs during migration
915 * - to make easier to know what to free at the end of migration
917 * This way we always know who is the owner of each "pages" struct,
918 * and we don't need any locking. It belongs to the migration thread
919 * or to the channel thread. Switching is safe because the migration
920 * thread is using the channel mutex when changing it, and the channel
921 * have to had finish with its own, otherwise pending_job can't be
925 static int multifd_send_pages(RAMState *rs)
928 static int next_channel;
929 MultiFDSendParams *p = NULL; /* make happy gcc */
930 MultiFDPages_t *pages = multifd_send_state->pages;
931 uint64_t transferred;
933 qemu_sem_wait(&multifd_send_state->channels_ready);
934 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
935 p = &multifd_send_state->params[i];
937 qemu_mutex_lock(&p->mutex);
939 error_report("%s: channel %d has already quit!", __func__, i);
940 qemu_mutex_unlock(&p->mutex);
943 if (!p->pending_job) {
945 next_channel = (i + 1) % migrate_multifd_channels();
948 qemu_mutex_unlock(&p->mutex);
952 p->packet_num = multifd_send_state->packet_num++;
953 p->pages->block = NULL;
954 multifd_send_state->pages = p->pages;
956 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
957 qemu_file_update_transfer(rs->f, transferred);
958 ram_counters.multifd_bytes += transferred;
959 ram_counters.transferred += transferred;;
960 qemu_mutex_unlock(&p->mutex);
961 qemu_sem_post(&p->sem);
966 static int multifd_queue_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
968 MultiFDPages_t *pages = multifd_send_state->pages;
971 pages->block = block;
974 if (pages->block == block) {
975 pages->offset[pages->used] = offset;
976 pages->iov[pages->used].iov_base = block->host + offset;
977 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
980 if (pages->used < pages->allocated) {
985 if (multifd_send_pages(rs) < 0) {
989 if (pages->block != block) {
990 return multifd_queue_page(rs, block, offset);
996 static void multifd_send_terminate_threads(Error *err)
1000 trace_multifd_send_terminate_threads(err != NULL);
1003 MigrationState *s = migrate_get_current();
1004 migrate_set_error(s, err);
1005 if (s->state == MIGRATION_STATUS_SETUP ||
1006 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
1007 s->state == MIGRATION_STATUS_DEVICE ||
1008 s->state == MIGRATION_STATUS_ACTIVE) {
1009 migrate_set_state(&s->state, s->state,
1010 MIGRATION_STATUS_FAILED);
1014 for (i = 0; i < migrate_multifd_channels(); i++) {
1015 MultiFDSendParams *p = &multifd_send_state->params[i];
1017 qemu_mutex_lock(&p->mutex);
1019 qemu_sem_post(&p->sem);
1020 qemu_mutex_unlock(&p->mutex);
1024 void multifd_save_cleanup(void)
1028 if (!migrate_use_multifd()) {
1031 multifd_send_terminate_threads(NULL);
1032 for (i = 0; i < migrate_multifd_channels(); i++) {
1033 MultiFDSendParams *p = &multifd_send_state->params[i];
1036 qemu_thread_join(&p->thread);
1038 socket_send_channel_destroy(p->c);
1040 qemu_mutex_destroy(&p->mutex);
1041 qemu_sem_destroy(&p->sem);
1042 qemu_sem_destroy(&p->sem_sync);
1045 multifd_pages_clear(p->pages);
1051 qemu_sem_destroy(&multifd_send_state->channels_ready);
1052 g_free(multifd_send_state->params);
1053 multifd_send_state->params = NULL;
1054 multifd_pages_clear(multifd_send_state->pages);
1055 multifd_send_state->pages = NULL;
1056 g_free(multifd_send_state);
1057 multifd_send_state = NULL;
1060 static void multifd_send_sync_main(RAMState *rs)
1064 if (!migrate_use_multifd()) {
1067 if (multifd_send_state->pages->used) {
1068 if (multifd_send_pages(rs) < 0) {
1069 error_report("%s: multifd_send_pages fail", __func__);
1073 for (i = 0; i < migrate_multifd_channels(); i++) {
1074 MultiFDSendParams *p = &multifd_send_state->params[i];
1076 trace_multifd_send_sync_main_signal(p->id);
1078 qemu_mutex_lock(&p->mutex);
1081 error_report("%s: channel %d has already quit", __func__, i);
1082 qemu_mutex_unlock(&p->mutex);
1086 p->packet_num = multifd_send_state->packet_num++;
1087 p->flags |= MULTIFD_FLAG_SYNC;
1089 qemu_file_update_transfer(rs->f, p->packet_len);
1090 ram_counters.multifd_bytes += p->packet_len;
1091 ram_counters.transferred += p->packet_len;
1092 qemu_mutex_unlock(&p->mutex);
1093 qemu_sem_post(&p->sem);
1095 for (i = 0; i < migrate_multifd_channels(); i++) {
1096 MultiFDSendParams *p = &multifd_send_state->params[i];
1098 trace_multifd_send_sync_main_wait(p->id);
1099 qemu_sem_wait(&p->sem_sync);
1101 trace_multifd_send_sync_main(multifd_send_state->packet_num);
1104 static void *multifd_send_thread(void *opaque)
1106 MultiFDSendParams *p = opaque;
1107 Error *local_err = NULL;
1111 trace_multifd_send_thread_start(p->id);
1112 rcu_register_thread();
1114 if (multifd_send_initial_packet(p, &local_err) < 0) {
1117 /* initial packet */
1121 qemu_sem_wait(&p->sem);
1122 qemu_mutex_lock(&p->mutex);
1124 if (p->pending_job) {
1125 uint32_t used = p->pages->used;
1126 uint64_t packet_num = p->packet_num;
1129 p->next_packet_size = used * qemu_target_page_size();
1130 multifd_send_fill_packet(p);
1133 p->num_pages += used;
1135 qemu_mutex_unlock(&p->mutex);
1137 trace_multifd_send(p->id, packet_num, used, flags,
1138 p->next_packet_size);
1140 ret = qio_channel_write_all(p->c, (void *)p->packet,
1141 p->packet_len, &local_err);
1147 ret = qio_channel_writev_all(p->c, p->pages->iov,
1154 qemu_mutex_lock(&p->mutex);
1156 qemu_mutex_unlock(&p->mutex);
1158 if (flags & MULTIFD_FLAG_SYNC) {
1159 qemu_sem_post(&p->sem_sync);
1161 qemu_sem_post(&multifd_send_state->channels_ready);
1162 } else if (p->quit) {
1163 qemu_mutex_unlock(&p->mutex);
1166 qemu_mutex_unlock(&p->mutex);
1167 /* sometimes there are spurious wakeups */
1173 multifd_send_terminate_threads(local_err);
1177 * Error happen, I will exit, but I can't just leave, tell
1178 * who pay attention to me.
1181 if (flags & MULTIFD_FLAG_SYNC) {
1182 qemu_sem_post(&p->sem_sync);
1184 qemu_sem_post(&multifd_send_state->channels_ready);
1187 qemu_mutex_lock(&p->mutex);
1189 qemu_mutex_unlock(&p->mutex);
1191 rcu_unregister_thread();
1192 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1197 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1199 MultiFDSendParams *p = opaque;
1200 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1201 Error *local_err = NULL;
1203 if (qio_task_propagate_error(task, &local_err)) {
1204 migrate_set_error(migrate_get_current(), local_err);
1205 multifd_save_cleanup();
1207 p->c = QIO_CHANNEL(sioc);
1208 qio_channel_set_delay(p->c, false);
1210 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1211 QEMU_THREAD_JOINABLE);
1215 int multifd_save_setup(void)
1218 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1221 if (!migrate_use_multifd()) {
1224 thread_count = migrate_multifd_channels();
1225 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1226 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
1227 multifd_send_state->pages = multifd_pages_init(page_count);
1228 qemu_sem_init(&multifd_send_state->channels_ready, 0);
1230 for (i = 0; i < thread_count; i++) {
1231 MultiFDSendParams *p = &multifd_send_state->params[i];
1233 qemu_mutex_init(&p->mutex);
1234 qemu_sem_init(&p->sem, 0);
1235 qemu_sem_init(&p->sem_sync, 0);
1239 p->pages = multifd_pages_init(page_count);
1240 p->packet_len = sizeof(MultiFDPacket_t)
1241 + sizeof(ram_addr_t) * page_count;
1242 p->packet = g_malloc0(p->packet_len);
1243 p->name = g_strdup_printf("multifdsend_%d", i);
1244 socket_send_channel_create(multifd_new_send_channel_async, p);
1250 MultiFDRecvParams *params;
1251 /* number of created threads */
1253 /* syncs main thread and channels */
1254 QemuSemaphore sem_sync;
1255 /* global number of generated multifd packets */
1256 uint64_t packet_num;
1257 } *multifd_recv_state;
1259 static void multifd_recv_terminate_threads(Error *err)
1263 trace_multifd_recv_terminate_threads(err != NULL);
1266 MigrationState *s = migrate_get_current();
1267 migrate_set_error(s, err);
1268 if (s->state == MIGRATION_STATUS_SETUP ||
1269 s->state == MIGRATION_STATUS_ACTIVE) {
1270 migrate_set_state(&s->state, s->state,
1271 MIGRATION_STATUS_FAILED);
1275 for (i = 0; i < migrate_multifd_channels(); i++) {
1276 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1278 qemu_mutex_lock(&p->mutex);
1280 /* We could arrive here for two reasons:
1281 - normal quit, i.e. everything went fine, just finished
1282 - error quit: We close the channels so the channel threads
1283 finish the qio_channel_read_all_eof() */
1284 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
1285 qemu_mutex_unlock(&p->mutex);
1289 int multifd_load_cleanup(Error **errp)
1294 if (!migrate_use_multifd()) {
1297 multifd_recv_terminate_threads(NULL);
1298 for (i = 0; i < migrate_multifd_channels(); i++) {
1299 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1304 * multifd_recv_thread may hung at MULTIFD_FLAG_SYNC handle code,
1305 * however try to wakeup it without harm in cleanup phase.
1307 qemu_sem_post(&p->sem_sync);
1308 qemu_thread_join(&p->thread);
1310 object_unref(OBJECT(p->c));
1312 qemu_mutex_destroy(&p->mutex);
1313 qemu_sem_destroy(&p->sem_sync);
1316 multifd_pages_clear(p->pages);
1322 qemu_sem_destroy(&multifd_recv_state->sem_sync);
1323 g_free(multifd_recv_state->params);
1324 multifd_recv_state->params = NULL;
1325 g_free(multifd_recv_state);
1326 multifd_recv_state = NULL;
1331 static void multifd_recv_sync_main(void)
1335 if (!migrate_use_multifd()) {
1338 for (i = 0; i < migrate_multifd_channels(); i++) {
1339 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1341 trace_multifd_recv_sync_main_wait(p->id);
1342 qemu_sem_wait(&multifd_recv_state->sem_sync);
1344 for (i = 0; i < migrate_multifd_channels(); i++) {
1345 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1347 qemu_mutex_lock(&p->mutex);
1348 if (multifd_recv_state->packet_num < p->packet_num) {
1349 multifd_recv_state->packet_num = p->packet_num;
1351 qemu_mutex_unlock(&p->mutex);
1352 trace_multifd_recv_sync_main_signal(p->id);
1353 qemu_sem_post(&p->sem_sync);
1355 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1358 static void *multifd_recv_thread(void *opaque)
1360 MultiFDRecvParams *p = opaque;
1361 Error *local_err = NULL;
1364 trace_multifd_recv_thread_start(p->id);
1365 rcu_register_thread();
1375 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1376 p->packet_len, &local_err);
1377 if (ret == 0) { /* EOF */
1380 if (ret == -1) { /* Error */
1384 qemu_mutex_lock(&p->mutex);
1385 ret = multifd_recv_unfill_packet(p, &local_err);
1387 qemu_mutex_unlock(&p->mutex);
1391 used = p->pages->used;
1393 trace_multifd_recv(p->id, p->packet_num, used, flags,
1394 p->next_packet_size);
1396 p->num_pages += used;
1397 qemu_mutex_unlock(&p->mutex);
1400 ret = qio_channel_readv_all(p->c, p->pages->iov,
1407 if (flags & MULTIFD_FLAG_SYNC) {
1408 qemu_sem_post(&multifd_recv_state->sem_sync);
1409 qemu_sem_wait(&p->sem_sync);
1414 multifd_recv_terminate_threads(local_err);
1416 qemu_mutex_lock(&p->mutex);
1418 qemu_mutex_unlock(&p->mutex);
1420 rcu_unregister_thread();
1421 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1426 int multifd_load_setup(void)
1429 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
1432 if (!migrate_use_multifd()) {
1435 thread_count = migrate_multifd_channels();
1436 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1437 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
1438 atomic_set(&multifd_recv_state->count, 0);
1439 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
1441 for (i = 0; i < thread_count; i++) {
1442 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1444 qemu_mutex_init(&p->mutex);
1445 qemu_sem_init(&p->sem_sync, 0);
1448 p->pages = multifd_pages_init(page_count);
1449 p->packet_len = sizeof(MultiFDPacket_t)
1450 + sizeof(ram_addr_t) * page_count;
1451 p->packet = g_malloc0(p->packet_len);
1452 p->name = g_strdup_printf("multifdrecv_%d", i);
1457 bool multifd_recv_all_channels_created(void)
1459 int thread_count = migrate_multifd_channels();
1461 if (!migrate_use_multifd()) {
1465 return thread_count == atomic_read(&multifd_recv_state->count);
1469 * Try to receive all multifd channels to get ready for the migration.
1470 * - Return true and do not set @errp when correctly receving all channels;
1471 * - Return false and do not set @errp when correctly receiving the current one;
1472 * - Return false and set @errp when failing to receive the current channel.
1474 bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
1476 MultiFDRecvParams *p;
1477 Error *local_err = NULL;
1480 id = multifd_recv_initial_packet(ioc, &local_err);
1482 multifd_recv_terminate_threads(local_err);
1483 error_propagate_prepend(errp, local_err,
1484 "failed to receive packet"
1485 " via multifd channel %d: ",
1486 atomic_read(&multifd_recv_state->count));
1490 p = &multifd_recv_state->params[id];
1492 error_setg(&local_err, "multifd: received id '%d' already setup'",
1494 multifd_recv_terminate_threads(local_err);
1495 error_propagate(errp, local_err);
1499 object_ref(OBJECT(ioc));
1500 /* initial packet */
1504 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1505 QEMU_THREAD_JOINABLE);
1506 atomic_inc(&multifd_recv_state->count);
1507 return atomic_read(&multifd_recv_state->count) ==
1508 migrate_multifd_channels();
1512 * save_page_header: write page header to wire
1514 * If this is the 1st block, it also writes the block identification
1516 * Returns the number of bytes written
1518 * @f: QEMUFile where to send the data
1519 * @block: block that contains the page we want to send
1520 * @offset: offset inside the block for the page
1521 * in the lower bits, it contains flags
1523 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1528 if (block == rs->last_sent_block) {
1529 offset |= RAM_SAVE_FLAG_CONTINUE;
1531 qemu_put_be64(f, offset);
1534 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
1535 len = strlen(block->idstr);
1536 qemu_put_byte(f, len);
1537 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
1539 rs->last_sent_block = block;
1545 * mig_throttle_guest_down: throotle down the guest
1547 * Reduce amount of guest cpu execution to hopefully slow down memory
1548 * writes. If guest dirty memory rate is reduced below the rate at
1549 * which we can transfer pages to the destination then we should be
1550 * able to complete migration. Some workloads dirty memory way too
1551 * fast and will not effectively converge, even with auto-converge.
1553 static void mig_throttle_guest_down(void)
1555 MigrationState *s = migrate_get_current();
1556 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1557 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
1558 int pct_max = s->parameters.max_cpu_throttle;
1560 /* We have not started throttling yet. Let's start it. */
1561 if (!cpu_throttle_active()) {
1562 cpu_throttle_set(pct_initial);
1564 /* Throttling already on, just increase the rate */
1565 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1571 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1573 * @rs: current RAM state
1574 * @current_addr: address for the zero page
1576 * Update the xbzrle cache to reflect a page that's been sent as all 0.
1577 * The important thing is that a stale (not-yet-0'd) page be replaced
1579 * As a bonus, if the page wasn't in the cache it gets added so that
1580 * when a small write is made into the 0'd page it gets XBZRLE sent.
1582 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
1584 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
1588 /* We don't care if this fails to allocate a new cache page
1589 * as long as it updated an old one */
1590 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
1591 ram_counters.dirty_sync_count);
1594 #define ENCODING_FLAG_XBZRLE 0x1
1597 * save_xbzrle_page: compress and send current page
1599 * Returns: 1 means that we wrote the page
1600 * 0 means that page is identical to the one already sent
1601 * -1 means that xbzrle would be longer than normal
1603 * @rs: current RAM state
1604 * @current_data: pointer to the address of the page contents
1605 * @current_addr: addr of the page
1606 * @block: block that contains the page we want to send
1607 * @offset: offset inside the block for the page
1608 * @last_stage: if we are at the completion stage
1610 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
1611 ram_addr_t current_addr, RAMBlock *block,
1612 ram_addr_t offset, bool last_stage)
1614 int encoded_len = 0, bytes_xbzrle;
1615 uint8_t *prev_cached_page;
1617 if (!cache_is_cached(XBZRLE.cache, current_addr,
1618 ram_counters.dirty_sync_count)) {
1619 xbzrle_counters.cache_miss++;
1621 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
1622 ram_counters.dirty_sync_count) == -1) {
1625 /* update *current_data when the page has been
1626 inserted into cache */
1627 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1633 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1635 /* save current buffer into memory */
1636 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1638 /* XBZRLE encoding (if there is no overflow) */
1639 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1640 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1644 * Update the cache contents, so that it corresponds to the data
1645 * sent, in all cases except where we skip the page.
1647 if (!last_stage && encoded_len != 0) {
1648 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1650 * In the case where we couldn't compress, ensure that the caller
1651 * sends the data from the cache, since the guest might have
1652 * changed the RAM since we copied it.
1654 *current_data = prev_cached_page;
1657 if (encoded_len == 0) {
1658 trace_save_xbzrle_page_skipping();
1660 } else if (encoded_len == -1) {
1661 trace_save_xbzrle_page_overflow();
1662 xbzrle_counters.overflow++;
1666 /* Send XBZRLE based compressed page */
1667 bytes_xbzrle = save_page_header(rs, rs->f, block,
1668 offset | RAM_SAVE_FLAG_XBZRLE);
1669 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1670 qemu_put_be16(rs->f, encoded_len);
1671 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
1672 bytes_xbzrle += encoded_len + 1 + 2;
1673 xbzrle_counters.pages++;
1674 xbzrle_counters.bytes += bytes_xbzrle;
1675 ram_counters.transferred += bytes_xbzrle;
1681 * migration_bitmap_find_dirty: find the next dirty page from start
1683 * Returns the page offset within memory region of the start of a dirty page
1685 * @rs: current RAM state
1686 * @rb: RAMBlock where to search for dirty pages
1687 * @start: page where we start the search
1690 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
1691 unsigned long start)
1693 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1694 unsigned long *bitmap = rb->bmap;
1697 if (ramblock_is_ignored(rb)) {
1702 * When the free page optimization is enabled, we need to check the bitmap
1703 * to send the non-free pages rather than all the pages in the bulk stage.
1705 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
1708 next = find_next_bit(bitmap, size, start);
1714 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
1720 qemu_mutex_lock(&rs->bitmap_mutex);
1723 * Clear dirty bitmap if needed. This _must_ be called before we
1724 * send any of the page in the chunk because we need to make sure
1725 * we can capture further page content changes when we sync dirty
1726 * log the next time. So as long as we are going to send any of
1727 * the page in the chunk we clear the remote dirty bitmap for all.
1728 * Clearing it earlier won't be a problem, but too late will.
1730 if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) {
1731 uint8_t shift = rb->clear_bmap_shift;
1732 hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift);
1733 hwaddr start = (page << TARGET_PAGE_BITS) & (-size);
1736 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
1737 * can make things easier sometimes since then start address
1738 * of the small chunk will always be 64 pages aligned so the
1739 * bitmap will always be aligned to unsigned long. We should
1740 * even be able to remove this restriction but I'm simply
1744 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
1745 memory_region_clear_dirty_bitmap(rb->mr, start, size);
1748 ret = test_and_clear_bit(page, rb->bmap);
1751 rs->migration_dirty_pages--;
1753 qemu_mutex_unlock(&rs->bitmap_mutex);
1758 /* Called with RCU critical section */
1759 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
1761 rs->migration_dirty_pages +=
1762 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length,
1763 &rs->num_dirty_pages_period);
1767 * ram_pagesize_summary: calculate all the pagesizes of a VM
1769 * Returns a summary bitmap of the page sizes of all RAMBlocks
1771 * For VMs with just normal pages this is equivalent to the host page
1772 * size. If it's got some huge pages then it's the OR of all the
1773 * different page sizes.
1775 uint64_t ram_pagesize_summary(void)
1778 uint64_t summary = 0;
1780 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1781 summary |= block->page_size;
1787 uint64_t ram_get_total_transferred_pages(void)
1789 return ram_counters.normal + ram_counters.duplicate +
1790 compression_counters.pages + xbzrle_counters.pages;
1793 static void migration_update_rates(RAMState *rs, int64_t end_time)
1795 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
1796 double compressed_size;
1798 /* calculate period counters */
1799 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1800 / (end_time - rs->time_last_bitmap_sync);
1806 if (migrate_use_xbzrle()) {
1807 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1808 rs->xbzrle_cache_miss_prev) / page_count;
1809 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1812 if (migrate_use_compression()) {
1813 compression_counters.busy_rate = (double)(compression_counters.busy -
1814 rs->compress_thread_busy_prev) / page_count;
1815 rs->compress_thread_busy_prev = compression_counters.busy;
1817 compressed_size = compression_counters.compressed_size -
1818 rs->compressed_size_prev;
1819 if (compressed_size) {
1820 double uncompressed_size = (compression_counters.pages -
1821 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1823 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1824 compression_counters.compression_rate =
1825 uncompressed_size / compressed_size;
1827 rs->compress_pages_prev = compression_counters.pages;
1828 rs->compressed_size_prev = compression_counters.compressed_size;
1833 static void migration_bitmap_sync(RAMState *rs)
1837 uint64_t bytes_xfer_now;
1839 ram_counters.dirty_sync_count++;
1841 if (!rs->time_last_bitmap_sync) {
1842 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1845 trace_migration_bitmap_sync_start();
1846 memory_global_dirty_log_sync();
1848 qemu_mutex_lock(&rs->bitmap_mutex);
1850 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1851 ramblock_sync_dirty_bitmap(rs, block);
1853 ram_counters.remaining = ram_bytes_remaining();
1855 qemu_mutex_unlock(&rs->bitmap_mutex);
1857 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1859 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1861 /* more than 1 second = 1000 millisecons */
1862 if (end_time > rs->time_last_bitmap_sync + 1000) {
1863 bytes_xfer_now = ram_counters.transferred;
1865 /* During block migration the auto-converge logic incorrectly detects
1866 * that ram migration makes no progress. Avoid this by disabling the
1867 * throttling logic during the bulk phase of block migration. */
1868 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1869 /* The following detection logic can be refined later. For now:
1870 Check to see if the dirtied bytes is 50% more than the approx.
1871 amount of bytes that just got transferred since the last time we
1872 were in this routine. If that happens twice, start or increase
1875 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
1876 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
1877 (++rs->dirty_rate_high_cnt >= 2)) {
1878 trace_migration_throttle();
1879 rs->dirty_rate_high_cnt = 0;
1880 mig_throttle_guest_down();
1884 migration_update_rates(rs, end_time);
1886 rs->target_page_count_prev = rs->target_page_count;
1888 /* reset period counters */
1889 rs->time_last_bitmap_sync = end_time;
1890 rs->num_dirty_pages_period = 0;
1891 rs->bytes_xfer_prev = bytes_xfer_now;
1893 if (migrate_use_events()) {
1894 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
1898 static void migration_bitmap_sync_precopy(RAMState *rs)
1900 Error *local_err = NULL;
1903 * The current notifier usage is just an optimization to migration, so we
1904 * don't stop the normal migration process in the error case.
1906 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1907 error_report_err(local_err);
1910 migration_bitmap_sync(rs);
1912 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1913 error_report_err(local_err);
1918 * save_zero_page_to_file: send the zero page to the file
1920 * Returns the size of data written to the file, 0 means the page is not
1923 * @rs: current RAM state
1924 * @file: the file where the data is saved
1925 * @block: block that contains the page we want to send
1926 * @offset: offset inside the block for the page
1928 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1929 RAMBlock *block, ram_addr_t offset)
1931 uint8_t *p = block->host + offset;
1934 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1935 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1936 qemu_put_byte(file, 0);
1943 * save_zero_page: send the zero page to the stream
1945 * Returns the number of pages written.
1947 * @rs: current RAM state
1948 * @block: block that contains the page we want to send
1949 * @offset: offset inside the block for the page
1951 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1953 int len = save_zero_page_to_file(rs, rs->f, block, offset);
1956 ram_counters.duplicate++;
1957 ram_counters.transferred += len;
1963 static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
1965 if (!migrate_release_ram() || !migration_in_postcopy()) {
1969 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
1973 * @pages: the number of pages written by the control path,
1975 * > 0 - number of pages written
1977 * Return true if the pages has been saved, otherwise false is returned.
1979 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1982 uint64_t bytes_xmit = 0;
1986 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1988 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1993 ram_counters.transferred += bytes_xmit;
1997 if (ret == RAM_SAVE_CONTROL_DELAYED) {
2001 if (bytes_xmit > 0) {
2002 ram_counters.normal++;
2003 } else if (bytes_xmit == 0) {
2004 ram_counters.duplicate++;
2011 * directly send the page to the stream
2013 * Returns the number of pages written.
2015 * @rs: current RAM state
2016 * @block: block that contains the page we want to send
2017 * @offset: offset inside the block for the page
2018 * @buf: the page to be sent
2019 * @async: send to page asyncly
2021 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
2022 uint8_t *buf, bool async)
2024 ram_counters.transferred += save_page_header(rs, rs->f, block,
2025 offset | RAM_SAVE_FLAG_PAGE);
2027 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
2028 migrate_release_ram() &
2029 migration_in_postcopy());
2031 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
2033 ram_counters.transferred += TARGET_PAGE_SIZE;
2034 ram_counters.normal++;
2039 * ram_save_page: send the given page to the stream
2041 * Returns the number of pages written.
2043 * >=0 - Number of pages written - this might legally be 0
2044 * if xbzrle noticed the page was the same.
2046 * @rs: current RAM state
2047 * @block: block that contains the page we want to send
2048 * @offset: offset inside the block for the page
2049 * @last_stage: if we are at the completion stage
2051 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
2055 bool send_async = true;
2056 RAMBlock *block = pss->block;
2057 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2058 ram_addr_t current_addr = block->offset + offset;
2060 p = block->host + offset;
2061 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
2063 XBZRLE_cache_lock();
2064 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
2065 migrate_use_xbzrle()) {
2066 pages = save_xbzrle_page(rs, &p, current_addr, block,
2067 offset, last_stage);
2069 /* Can't send this cached data async, since the cache page
2070 * might get updated before it gets to the wire
2076 /* XBZRLE overflow or normal page */
2078 pages = save_normal_page(rs, block, offset, p, send_async);
2081 XBZRLE_cache_unlock();
2086 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
2089 if (multifd_queue_page(rs, block, offset) < 0) {
2092 ram_counters.normal++;
2097 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
2098 ram_addr_t offset, uint8_t *source_buf)
2100 RAMState *rs = ram_state;
2101 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
2102 bool zero_page = false;
2105 if (save_zero_page_to_file(rs, f, block, offset)) {
2110 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
2113 * copy it to a internal buffer to avoid it being modified by VM
2114 * so that we can catch up the error during compression and
2117 memcpy(source_buf, p, TARGET_PAGE_SIZE);
2118 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
2120 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
2121 error_report("compressed data failed!");
2126 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
2131 update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
2133 ram_counters.transferred += bytes_xmit;
2135 if (param->zero_page) {
2136 ram_counters.duplicate++;
2140 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
2141 compression_counters.compressed_size += bytes_xmit - 8;
2142 compression_counters.pages++;
2145 static bool save_page_use_compression(RAMState *rs);
2147 static void flush_compressed_data(RAMState *rs)
2149 int idx, len, thread_count;
2151 if (!save_page_use_compression(rs)) {
2154 thread_count = migrate_compress_threads();
2156 qemu_mutex_lock(&comp_done_lock);
2157 for (idx = 0; idx < thread_count; idx++) {
2158 while (!comp_param[idx].done) {
2159 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2162 qemu_mutex_unlock(&comp_done_lock);
2164 for (idx = 0; idx < thread_count; idx++) {
2165 qemu_mutex_lock(&comp_param[idx].mutex);
2166 if (!comp_param[idx].quit) {
2167 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2169 * it's safe to fetch zero_page without holding comp_done_lock
2170 * as there is no further request submitted to the thread,
2171 * i.e, the thread should be waiting for a request at this point.
2173 update_compress_thread_counts(&comp_param[idx], len);
2175 qemu_mutex_unlock(&comp_param[idx].mutex);
2179 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
2182 param->block = block;
2183 param->offset = offset;
2186 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
2189 int idx, thread_count, bytes_xmit = -1, pages = -1;
2190 bool wait = migrate_compress_wait_thread();
2192 thread_count = migrate_compress_threads();
2193 qemu_mutex_lock(&comp_done_lock);
2195 for (idx = 0; idx < thread_count; idx++) {
2196 if (comp_param[idx].done) {
2197 comp_param[idx].done = false;
2198 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2199 qemu_mutex_lock(&comp_param[idx].mutex);
2200 set_compress_params(&comp_param[idx], block, offset);
2201 qemu_cond_signal(&comp_param[idx].cond);
2202 qemu_mutex_unlock(&comp_param[idx].mutex);
2204 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
2210 * wait for the free thread if the user specifies 'compress-wait-thread',
2211 * otherwise we will post the page out in the main thread as normal page.
2213 if (pages < 0 && wait) {
2214 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2217 qemu_mutex_unlock(&comp_done_lock);
2223 * find_dirty_block: find the next dirty page and update any state
2224 * associated with the search process.
2226 * Returns true if a page is found
2228 * @rs: current RAM state
2229 * @pss: data about the state of the current dirty page scan
2230 * @again: set to false if the search has scanned the whole of RAM
2232 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
2234 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
2235 if (pss->complete_round && pss->block == rs->last_seen_block &&
2236 pss->page >= rs->last_page) {
2238 * We've been once around the RAM and haven't found anything.
2244 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
2245 /* Didn't find anything in this RAM Block */
2247 pss->block = QLIST_NEXT_RCU(pss->block, next);
2250 * If memory migration starts over, we will meet a dirtied page
2251 * which may still exists in compression threads's ring, so we
2252 * should flush the compressed data to make sure the new page
2253 * is not overwritten by the old one in the destination.
2255 * Also If xbzrle is on, stop using the data compression at this
2256 * point. In theory, xbzrle can do better than compression.
2258 flush_compressed_data(rs);
2260 /* Hit the end of the list */
2261 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2262 /* Flag that we've looped */
2263 pss->complete_round = true;
2264 rs->ram_bulk_stage = false;
2266 /* Didn't find anything this time, but try again on the new block */
2270 /* Can go around again, but... */
2272 /* We've found something so probably don't need to */
2278 * unqueue_page: gets a page of the queue
2280 * Helper for 'get_queued_page' - gets a page off the queue
2282 * Returns the block of the page (or NULL if none available)
2284 * @rs: current RAM state
2285 * @offset: used to return the offset within the RAMBlock
2287 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
2289 RAMBlock *block = NULL;
2291 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2295 qemu_mutex_lock(&rs->src_page_req_mutex);
2296 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2297 struct RAMSrcPageRequest *entry =
2298 QSIMPLEQ_FIRST(&rs->src_page_requests);
2300 *offset = entry->offset;
2302 if (entry->len > TARGET_PAGE_SIZE) {
2303 entry->len -= TARGET_PAGE_SIZE;
2304 entry->offset += TARGET_PAGE_SIZE;
2306 memory_region_unref(block->mr);
2307 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2309 migration_consume_urgent_request();
2312 qemu_mutex_unlock(&rs->src_page_req_mutex);
2318 * get_queued_page: unqueue a page from the postcopy requests
2320 * Skips pages that are already sent (!dirty)
2322 * Returns true if a queued page is found
2324 * @rs: current RAM state
2325 * @pss: data about the state of the current dirty page scan
2327 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
2334 block = unqueue_page(rs, &offset);
2336 * We're sending this page, and since it's postcopy nothing else
2337 * will dirty it, and we must make sure it doesn't get sent again
2338 * even if this queue request was received after the background
2339 * search already sent it.
2344 page = offset >> TARGET_PAGE_BITS;
2345 dirty = test_bit(page, block->bmap);
2347 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
2348 page, test_bit(page, block->unsentmap));
2350 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
2354 } while (block && !dirty);
2358 * As soon as we start servicing pages out of order, then we have
2359 * to kill the bulk stage, since the bulk stage assumes
2360 * in (migration_bitmap_find_and_reset_dirty) that every page is
2361 * dirty, that's no longer true.
2363 rs->ram_bulk_stage = false;
2366 * We want the background search to continue from the queued page
2367 * since the guest is likely to want other pages near to the page
2368 * it just requested.
2371 pss->page = offset >> TARGET_PAGE_BITS;
2374 * This unqueued page would break the "one round" check, even is
2377 pss->complete_round = false;
2384 * migration_page_queue_free: drop any remaining pages in the ram
2387 * It should be empty at the end anyway, but in error cases there may
2388 * be some left. in case that there is any page left, we drop it.
2391 static void migration_page_queue_free(RAMState *rs)
2393 struct RAMSrcPageRequest *mspr, *next_mspr;
2394 /* This queue generally should be empty - but in the case of a failed
2395 * migration might have some droppings in.
2398 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
2399 memory_region_unref(mspr->rb->mr);
2400 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2407 * ram_save_queue_pages: queue the page for transmission
2409 * A request from postcopy destination for example.
2411 * Returns zero on success or negative on error
2413 * @rbname: Name of the RAMBLock of the request. NULL means the
2414 * same that last one.
2415 * @start: starting address from the start of the RAMBlock
2416 * @len: length (in bytes) to send
2418 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
2421 RAMState *rs = ram_state;
2423 ram_counters.postcopy_requests++;
2426 /* Reuse last RAMBlock */
2427 ramblock = rs->last_req_rb;
2431 * Shouldn't happen, we can't reuse the last RAMBlock if
2432 * it's the 1st request.
2434 error_report("ram_save_queue_pages no previous block");
2438 ramblock = qemu_ram_block_by_name(rbname);
2441 /* We shouldn't be asked for a non-existent RAMBlock */
2442 error_report("ram_save_queue_pages no block '%s'", rbname);
2445 rs->last_req_rb = ramblock;
2447 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2448 if (start+len > ramblock->used_length) {
2449 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2450 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
2451 __func__, start, len, ramblock->used_length);
2455 struct RAMSrcPageRequest *new_entry =
2456 g_malloc0(sizeof(struct RAMSrcPageRequest));
2457 new_entry->rb = ramblock;
2458 new_entry->offset = start;
2459 new_entry->len = len;
2461 memory_region_ref(ramblock->mr);
2462 qemu_mutex_lock(&rs->src_page_req_mutex);
2463 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2464 migration_make_urgent_request();
2465 qemu_mutex_unlock(&rs->src_page_req_mutex);
2475 static bool save_page_use_compression(RAMState *rs)
2477 if (!migrate_use_compression()) {
2482 * If xbzrle is on, stop using the data compression after first
2483 * round of migration even if compression is enabled. In theory,
2484 * xbzrle can do better than compression.
2486 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2494 * try to compress the page before posting it out, return true if the page
2495 * has been properly handled by compression, otherwise needs other
2496 * paths to handle it
2498 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2500 if (!save_page_use_compression(rs)) {
2505 * When starting the process of a new block, the first page of
2506 * the block should be sent out before other pages in the same
2507 * block, and all the pages in last block should have been sent
2508 * out, keeping this order is important, because the 'cont' flag
2509 * is used to avoid resending the block name.
2511 * We post the fist page as normal page as compression will take
2512 * much CPU resource.
2514 if (block != rs->last_sent_block) {
2515 flush_compressed_data(rs);
2519 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2523 compression_counters.busy++;
2528 * ram_save_target_page: save one target page
2530 * Returns the number of pages written
2532 * @rs: current RAM state
2533 * @pss: data about the page we want to send
2534 * @last_stage: if we are at the completion stage
2536 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
2539 RAMBlock *block = pss->block;
2540 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2543 if (control_save_page(rs, block, offset, &res)) {
2547 if (save_compress_page(rs, block, offset)) {
2551 res = save_zero_page(rs, block, offset);
2553 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2554 * page would be stale
2556 if (!save_page_use_compression(rs)) {
2557 XBZRLE_cache_lock();
2558 xbzrle_cache_zero_page(rs, block->offset + offset);
2559 XBZRLE_cache_unlock();
2561 ram_release_pages(block->idstr, offset, res);
2566 * do not use multifd for compression as the first page in the new
2567 * block should be posted out before sending the compressed page
2569 if (!save_page_use_compression(rs) && migrate_use_multifd()) {
2570 return ram_save_multifd_page(rs, block, offset);
2573 return ram_save_page(rs, pss, last_stage);
2577 * ram_save_host_page: save a whole host page
2579 * Starting at *offset send pages up to the end of the current host
2580 * page. It's valid for the initial offset to point into the middle of
2581 * a host page in which case the remainder of the hostpage is sent.
2582 * Only dirty target pages are sent. Note that the host page size may
2583 * be a huge page for this block.
2584 * The saving stops at the boundary of the used_length of the block
2585 * if the RAMBlock isn't a multiple of the host page size.
2587 * Returns the number of pages written or negative on error
2589 * @rs: current RAM state
2590 * @ms: current migration state
2591 * @pss: data about the page we want to send
2592 * @last_stage: if we are at the completion stage
2594 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
2597 int tmppages, pages = 0;
2598 size_t pagesize_bits =
2599 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2601 if (ramblock_is_ignored(pss->block)) {
2602 error_report("block %s should not be migrated !", pss->block->idstr);
2607 /* Check the pages is dirty and if it is send it */
2608 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2613 tmppages = ram_save_target_page(rs, pss, last_stage);
2619 if (pss->block->unsentmap) {
2620 clear_bit(pss->page, pss->block->unsentmap);
2624 } while ((pss->page & (pagesize_bits - 1)) &&
2625 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
2627 /* The offset we leave with is the last one we looked at */
2633 * ram_find_and_save_block: finds a dirty page and sends it to f
2635 * Called within an RCU critical section.
2637 * Returns the number of pages written where zero means no dirty pages,
2638 * or negative on error
2640 * @rs: current RAM state
2641 * @last_stage: if we are at the completion stage
2643 * On systems where host-page-size > target-page-size it will send all the
2644 * pages in a host page that are dirty.
2647 static int ram_find_and_save_block(RAMState *rs, bool last_stage)
2649 PageSearchStatus pss;
2653 /* No dirty page as there is zero RAM */
2654 if (!ram_bytes_total()) {
2658 pss.block = rs->last_seen_block;
2659 pss.page = rs->last_page;
2660 pss.complete_round = false;
2663 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2668 found = get_queued_page(rs, &pss);
2671 /* priority queue empty, so just search for something dirty */
2672 found = find_dirty_block(rs, &pss, &again);
2676 pages = ram_save_host_page(rs, &pss, last_stage);
2678 } while (!pages && again);
2680 rs->last_seen_block = pss.block;
2681 rs->last_page = pss.page;
2686 void acct_update_position(QEMUFile *f, size_t size, bool zero)
2688 uint64_t pages = size / TARGET_PAGE_SIZE;
2691 ram_counters.duplicate += pages;
2693 ram_counters.normal += pages;
2694 ram_counters.transferred += size;
2695 qemu_update_position(f, size);
2699 static uint64_t ram_bytes_total_common(bool count_ignored)
2705 if (count_ignored) {
2706 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2707 total += block->used_length;
2710 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2711 total += block->used_length;
2718 uint64_t ram_bytes_total(void)
2720 return ram_bytes_total_common(false);
2723 static void xbzrle_load_setup(void)
2725 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2728 static void xbzrle_load_cleanup(void)
2730 g_free(XBZRLE.decoded_buf);
2731 XBZRLE.decoded_buf = NULL;
2734 static void ram_state_cleanup(RAMState **rsp)
2737 migration_page_queue_free(*rsp);
2738 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2739 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2745 static void xbzrle_cleanup(void)
2747 XBZRLE_cache_lock();
2749 cache_fini(XBZRLE.cache);
2750 g_free(XBZRLE.encoded_buf);
2751 g_free(XBZRLE.current_buf);
2752 g_free(XBZRLE.zero_target_page);
2753 XBZRLE.cache = NULL;
2754 XBZRLE.encoded_buf = NULL;
2755 XBZRLE.current_buf = NULL;
2756 XBZRLE.zero_target_page = NULL;
2758 XBZRLE_cache_unlock();
2761 static void ram_save_cleanup(void *opaque)
2763 RAMState **rsp = opaque;
2766 /* caller have hold iothread lock or is in a bh, so there is
2767 * no writing race against the migration bitmap
2769 memory_global_dirty_log_stop();
2771 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2772 g_free(block->clear_bmap);
2773 block->clear_bmap = NULL;
2774 g_free(block->bmap);
2776 g_free(block->unsentmap);
2777 block->unsentmap = NULL;
2781 compress_threads_save_cleanup();
2782 ram_state_cleanup(rsp);
2785 static void ram_state_reset(RAMState *rs)
2787 rs->last_seen_block = NULL;
2788 rs->last_sent_block = NULL;
2790 rs->last_version = ram_list.version;
2791 rs->ram_bulk_stage = true;
2792 rs->fpo_enabled = false;
2795 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2798 * 'expected' is the value you expect the bitmap mostly to be full
2799 * of; it won't bother printing lines that are all this value.
2800 * If 'todump' is null the migration bitmap is dumped.
2802 void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2803 unsigned long pages)
2806 int64_t linelen = 128;
2809 for (cur = 0; cur < pages; cur += linelen) {
2813 * Last line; catch the case where the line length
2814 * is longer than remaining ram
2816 if (cur + linelen > pages) {
2817 linelen = pages - cur;
2819 for (curb = 0; curb < linelen; curb++) {
2820 bool thisbit = test_bit(cur + curb, todump);
2821 linebuf[curb] = thisbit ? '1' : '.';
2822 found = found || (thisbit != expected);
2825 linebuf[curb] = '\0';
2826 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2831 /* **** functions for postcopy ***** */
2833 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2835 struct RAMBlock *block;
2837 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2838 unsigned long *bitmap = block->bmap;
2839 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2840 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2842 while (run_start < range) {
2843 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2844 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
2845 (run_end - run_start) << TARGET_PAGE_BITS);
2846 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2852 * postcopy_send_discard_bm_ram: discard a RAMBlock
2854 * Returns zero on success
2856 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2857 * Note: At this point the 'unsentmap' is the processed bitmap combined
2858 * with the dirtymap; so a '1' means it's either dirty or unsent.
2860 * @ms: current migration state
2861 * @block: RAMBlock to discard
2863 static int postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2865 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2866 unsigned long current;
2867 unsigned long *unsentmap = block->unsentmap;
2869 for (current = 0; current < end; ) {
2870 unsigned long one = find_next_bit(unsentmap, end, current);
2871 unsigned long zero, discard_length;
2877 zero = find_next_zero_bit(unsentmap, end, one + 1);
2880 discard_length = end - one;
2882 discard_length = zero - one;
2884 postcopy_discard_send_range(ms, one, discard_length);
2885 current = one + discard_length;
2892 * postcopy_each_ram_send_discard: discard all RAMBlocks
2894 * Returns 0 for success or negative for error
2896 * Utility for the outgoing postcopy code.
2897 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2898 * passing it bitmap indexes and name.
2899 * (qemu_ram_foreach_block ends up passing unscaled lengths
2900 * which would mean postcopy code would have to deal with target page)
2902 * @ms: current migration state
2904 static int postcopy_each_ram_send_discard(MigrationState *ms)
2906 struct RAMBlock *block;
2909 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2910 postcopy_discard_send_init(ms, block->idstr);
2913 * Postcopy sends chunks of bitmap over the wire, but it
2914 * just needs indexes at this point, avoids it having
2915 * target page specific code.
2917 ret = postcopy_send_discard_bm_ram(ms, block);
2918 postcopy_discard_send_finish(ms);
2928 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
2930 * Helper for postcopy_chunk_hostpages; it's called twice to
2931 * canonicalize the two bitmaps, that are similar, but one is
2934 * Postcopy requires that all target pages in a hostpage are dirty or
2935 * clean, not a mix. This function canonicalizes the bitmaps.
2937 * @ms: current migration state
2938 * @unsent_pass: if true we need to canonicalize partially unsent host pages
2939 * otherwise we need to canonicalize partially dirty host pages
2940 * @block: block that contains the page we want to canonicalize
2942 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
2945 RAMState *rs = ram_state;
2946 unsigned long *bitmap = block->bmap;
2947 unsigned long *unsentmap = block->unsentmap;
2948 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2949 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2950 unsigned long run_start;
2952 if (block->page_size == TARGET_PAGE_SIZE) {
2953 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2958 /* Find a sent page */
2959 run_start = find_next_zero_bit(unsentmap, pages, 0);
2961 /* Find a dirty page */
2962 run_start = find_next_bit(bitmap, pages, 0);
2965 while (run_start < pages) {
2968 * If the start of this run of pages is in the middle of a host
2969 * page, then we need to fixup this host page.
2971 if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2972 /* Find the end of this run */
2974 run_start = find_next_bit(unsentmap, pages, run_start + 1);
2976 run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2979 * If the end isn't at the start of a host page, then the
2980 * run doesn't finish at the end of a host page
2981 * and we need to discard.
2985 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2987 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2989 run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2991 /* Tell the destination to discard this page */
2992 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
2993 /* For the unsent_pass we:
2994 * discard partially sent pages
2995 * For the !unsent_pass (dirty) we:
2996 * discard partially dirty pages that were sent
2997 * (any partially sent pages were already discarded
2998 * by the previous unsent_pass)
3000 postcopy_discard_send_range(ms, fixup_start_addr, host_ratio);
3003 /* Clean up the bitmap */
3004 for (page = fixup_start_addr;
3005 page < fixup_start_addr + host_ratio; page++) {
3006 /* All pages in this host page are now not sent */
3007 set_bit(page, unsentmap);
3010 * Remark them as dirty, updating the count for any pages
3011 * that weren't previously dirty.
3013 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
3018 /* Find the next sent page for the next iteration */
3019 run_start = find_next_zero_bit(unsentmap, pages, run_start);
3021 /* Find the next dirty page for the next iteration */
3022 run_start = find_next_bit(bitmap, pages, run_start);
3028 * postcopy_chunk_hostpages: discard any partially sent host page
3030 * Utility for the outgoing postcopy code.
3032 * Discard any partially sent host-page size chunks, mark any partially
3033 * dirty host-page size chunks as all dirty. In this case the host-page
3034 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
3036 * Returns zero on success
3038 * @ms: current migration state
3039 * @block: block we want to work with
3041 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
3043 postcopy_discard_send_init(ms, block->idstr);
3045 /* First pass: Discard all partially sent host pages */
3046 postcopy_chunk_hostpages_pass(ms, true, block);
3048 * Second pass: Ensure that all partially dirty host pages are made
3051 postcopy_chunk_hostpages_pass(ms, false, block);
3053 postcopy_discard_send_finish(ms);
3058 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
3060 * Returns zero on success
3062 * Transmit the set of pages to be discarded after precopy to the target
3063 * these are pages that:
3064 * a) Have been previously transmitted but are now dirty again
3065 * b) Pages that have never been transmitted, this ensures that
3066 * any pages on the destination that have been mapped by background
3067 * tasks get discarded (transparent huge pages is the specific concern)
3068 * Hopefully this is pretty sparse
3070 * @ms: current migration state
3072 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
3074 RAMState *rs = ram_state;
3080 /* This should be our last sync, the src is now paused */
3081 migration_bitmap_sync(rs);
3083 /* Easiest way to make sure we don't resume in the middle of a host-page */
3084 rs->last_seen_block = NULL;
3085 rs->last_sent_block = NULL;
3088 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3089 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
3090 unsigned long *bitmap = block->bmap;
3091 unsigned long *unsentmap = block->unsentmap;
3094 /* We don't have a safe way to resize the sentmap, so
3095 * if the bitmap was resized it will be NULL at this
3098 error_report("migration ram resized during precopy phase");
3102 /* Deal with TPS != HPS and huge pages */
3103 ret = postcopy_chunk_hostpages(ms, block);
3110 * Update the unsentmap to be unsentmap = unsentmap | dirty
3112 bitmap_or(unsentmap, unsentmap, bitmap, pages);
3113 #ifdef DEBUG_POSTCOPY
3114 ram_debug_dump_bitmap(unsentmap, true, pages);
3117 trace_ram_postcopy_send_discard_bitmap();
3119 ret = postcopy_each_ram_send_discard(ms);
3126 * ram_discard_range: discard dirtied pages at the beginning of postcopy
3128 * Returns zero on success
3130 * @rbname: name of the RAMBlock of the request. NULL means the
3131 * same that last one.
3132 * @start: RAMBlock starting page
3133 * @length: RAMBlock size
3135 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
3139 trace_ram_discard_range(rbname, start, length);
3142 RAMBlock *rb = qemu_ram_block_by_name(rbname);
3145 error_report("ram_discard_range: Failed to find block '%s'", rbname);
3150 * On source VM, we don't need to update the received bitmap since
3151 * we don't even have one.
3153 if (rb->receivedmap) {
3154 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
3155 length >> qemu_target_page_bits());
3158 ret = ram_block_discard_range(rb, start, length);
3167 * For every allocation, we will try not to crash the VM if the
3168 * allocation failed.
3170 static int xbzrle_init(void)
3172 Error *local_err = NULL;
3174 if (!migrate_use_xbzrle()) {
3178 XBZRLE_cache_lock();
3180 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
3181 if (!XBZRLE.zero_target_page) {
3182 error_report("%s: Error allocating zero page", __func__);
3186 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
3187 TARGET_PAGE_SIZE, &local_err);
3188 if (!XBZRLE.cache) {
3189 error_report_err(local_err);
3190 goto free_zero_page;
3193 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
3194 if (!XBZRLE.encoded_buf) {
3195 error_report("%s: Error allocating encoded_buf", __func__);
3199 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
3200 if (!XBZRLE.current_buf) {
3201 error_report("%s: Error allocating current_buf", __func__);
3202 goto free_encoded_buf;
3205 /* We are all good */
3206 XBZRLE_cache_unlock();
3210 g_free(XBZRLE.encoded_buf);
3211 XBZRLE.encoded_buf = NULL;
3213 cache_fini(XBZRLE.cache);
3214 XBZRLE.cache = NULL;
3216 g_free(XBZRLE.zero_target_page);
3217 XBZRLE.zero_target_page = NULL;
3219 XBZRLE_cache_unlock();
3223 static int ram_state_init(RAMState **rsp)
3225 *rsp = g_try_new0(RAMState, 1);
3228 error_report("%s: Init ramstate fail", __func__);
3232 qemu_mutex_init(&(*rsp)->bitmap_mutex);
3233 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
3234 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
3237 * Count the total number of pages used by ram blocks not including any
3238 * gaps due to alignment or unplugs.
3239 * This must match with the initial values of dirty bitmap.
3241 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
3242 ram_state_reset(*rsp);
3247 static void ram_list_init_bitmaps(void)
3249 MigrationState *ms = migrate_get_current();
3251 unsigned long pages;
3254 /* Skip setting bitmap if there is no RAM */
3255 if (ram_bytes_total()) {
3256 shift = ms->clear_bitmap_shift;
3257 if (shift > CLEAR_BITMAP_SHIFT_MAX) {
3258 error_report("clear_bitmap_shift (%u) too big, using "
3259 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
3260 shift = CLEAR_BITMAP_SHIFT_MAX;
3261 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
3262 error_report("clear_bitmap_shift (%u) too small, using "
3263 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
3264 shift = CLEAR_BITMAP_SHIFT_MIN;
3267 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3268 pages = block->max_length >> TARGET_PAGE_BITS;
3270 * The initial dirty bitmap for migration must be set with all
3271 * ones to make sure we'll migrate every guest RAM page to
3273 * Here we set RAMBlock.bmap all to 1 because when rebegin a
3274 * new migration after a failed migration, ram_list.
3275 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
3278 block->bmap = bitmap_new(pages);
3279 bitmap_set(block->bmap, 0, pages);
3280 block->clear_bmap_shift = shift;
3281 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
3282 if (migrate_postcopy_ram()) {
3283 block->unsentmap = bitmap_new(pages);
3284 bitmap_set(block->unsentmap, 0, pages);
3290 static void ram_init_bitmaps(RAMState *rs)
3292 /* For memory_global_dirty_log_start below. */
3293 qemu_mutex_lock_iothread();
3294 qemu_mutex_lock_ramlist();
3297 ram_list_init_bitmaps();
3298 memory_global_dirty_log_start();
3299 migration_bitmap_sync_precopy(rs);
3302 qemu_mutex_unlock_ramlist();
3303 qemu_mutex_unlock_iothread();
3306 static int ram_init_all(RAMState **rsp)
3308 if (ram_state_init(rsp)) {
3312 if (xbzrle_init()) {
3313 ram_state_cleanup(rsp);
3317 ram_init_bitmaps(*rsp);
3322 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3328 * Postcopy is not using xbzrle/compression, so no need for that.
3329 * Also, since source are already halted, we don't need to care
3330 * about dirty page logging as well.
3333 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3334 pages += bitmap_count_one(block->bmap,
3335 block->used_length >> TARGET_PAGE_BITS);
3338 /* This may not be aligned with current bitmaps. Recalculate. */
3339 rs->migration_dirty_pages = pages;
3341 rs->last_seen_block = NULL;
3342 rs->last_sent_block = NULL;
3344 rs->last_version = ram_list.version;
3346 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3347 * matter what we have sent.
3349 rs->ram_bulk_stage = false;
3351 /* Update RAMState cache of output QEMUFile */
3354 trace_ram_state_resume_prepare(pages);
3358 * This function clears bits of the free pages reported by the caller from the
3359 * migration dirty bitmap. @addr is the host address corresponding to the
3360 * start of the continuous guest free pages, and @len is the total bytes of
3363 void qemu_guest_free_page_hint(void *addr, size_t len)
3367 size_t used_len, start, npages;
3368 MigrationState *s = migrate_get_current();
3370 /* This function is currently expected to be used during live migration */
3371 if (!migration_is_setup_or_active(s->state)) {
3375 for (; len > 0; len -= used_len, addr += used_len) {
3376 block = qemu_ram_block_from_host(addr, false, &offset);
3377 if (unlikely(!block || offset >= block->used_length)) {
3379 * The implementation might not support RAMBlock resize during
3380 * live migration, but it could happen in theory with future
3381 * updates. So we add a check here to capture that case.
3383 error_report_once("%s unexpected error", __func__);
3387 if (len <= block->used_length - offset) {
3390 used_len = block->used_length - offset;
3393 start = offset >> TARGET_PAGE_BITS;
3394 npages = used_len >> TARGET_PAGE_BITS;
3396 qemu_mutex_lock(&ram_state->bitmap_mutex);
3397 ram_state->migration_dirty_pages -=
3398 bitmap_count_one_with_offset(block->bmap, start, npages);
3399 bitmap_clear(block->bmap, start, npages);
3400 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3405 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3406 * long-running RCU critical section. When rcu-reclaims in the code
3407 * start to become numerous it will be necessary to reduce the
3408 * granularity of these critical sections.
3412 * ram_save_setup: Setup RAM for migration
3414 * Returns zero to indicate success and negative for error
3416 * @f: QEMUFile where to send the data
3417 * @opaque: RAMState pointer
3419 static int ram_save_setup(QEMUFile *f, void *opaque)
3421 RAMState **rsp = opaque;
3424 if (compress_threads_save_setup()) {
3428 /* migration has already setup the bitmap, reuse it. */
3429 if (!migration_in_colo_state()) {
3430 if (ram_init_all(rsp) != 0) {
3431 compress_threads_save_cleanup();
3439 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
3441 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3442 qemu_put_byte(f, strlen(block->idstr));
3443 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3444 qemu_put_be64(f, block->used_length);
3445 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
3446 qemu_put_be64(f, block->page_size);
3448 if (migrate_ignore_shared()) {
3449 qemu_put_be64(f, block->mr->addr);
3455 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3456 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3458 multifd_send_sync_main(*rsp);
3459 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3466 * ram_save_iterate: iterative stage for migration
3468 * Returns zero to indicate success and negative for error
3470 * @f: QEMUFile where to send the data
3471 * @opaque: RAMState pointer
3473 static int ram_save_iterate(QEMUFile *f, void *opaque)
3475 RAMState **temp = opaque;
3476 RAMState *rs = *temp;
3482 if (blk_mig_bulk_active()) {
3483 /* Avoid transferring ram during bulk phase of block migration as
3484 * the bulk phase will usually take a long time and transferring
3485 * ram updates during that time is pointless. */
3490 if (ram_list.version != rs->last_version) {
3491 ram_state_reset(rs);
3494 /* Read version before ram_list.blocks */
3497 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3499 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3501 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3502 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
3505 if (qemu_file_get_error(f)) {
3509 pages = ram_find_and_save_block(rs, false);
3510 /* no more pages to sent */
3517 qemu_file_set_error(f, pages);
3521 rs->target_page_count += pages;
3523 /* we want to check in the 1st loop, just in case it was the 1st time
3524 and we had to sync the dirty bitmap.
3525 qemu_clock_get_ns() is a bit expensive, so we only check each some
3528 if ((i & 63) == 0) {
3529 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
3530 if (t1 > MAX_WAIT) {
3531 trace_ram_save_iterate_big_wait(t1, i);
3540 * Must occur before EOS (or any QEMUFile operation)
3541 * because of RDMA protocol.
3543 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3546 multifd_send_sync_main(rs);
3547 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3549 ram_counters.transferred += 8;
3551 ret = qemu_file_get_error(f);
3560 * ram_save_complete: function called to send the remaining amount of ram
3562 * Returns zero to indicate success or negative on error
3564 * Called with iothread lock
3566 * @f: QEMUFile where to send the data
3567 * @opaque: RAMState pointer
3569 static int ram_save_complete(QEMUFile *f, void *opaque)
3571 RAMState **temp = opaque;
3572 RAMState *rs = *temp;
3577 if (!migration_in_postcopy()) {
3578 migration_bitmap_sync_precopy(rs);
3581 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3583 /* try transferring iterative blocks of memory */
3585 /* flush all remaining blocks regardless of rate limiting */
3589 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
3590 /* no more blocks to sent */
3600 flush_compressed_data(rs);
3601 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3605 multifd_send_sync_main(rs);
3606 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3612 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
3613 uint64_t *res_precopy_only,
3614 uint64_t *res_compatible,
3615 uint64_t *res_postcopy_only)
3617 RAMState **temp = opaque;
3618 RAMState *rs = *temp;
3619 uint64_t remaining_size;
3621 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3623 if (!migration_in_postcopy() &&
3624 remaining_size < max_size) {
3625 qemu_mutex_lock_iothread();
3627 migration_bitmap_sync_precopy(rs);
3629 qemu_mutex_unlock_iothread();
3630 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3633 if (migrate_postcopy_ram()) {
3634 /* We can do postcopy, and all the data is postcopiable */
3635 *res_compatible += remaining_size;
3637 *res_precopy_only += remaining_size;
3641 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3643 unsigned int xh_len;
3645 uint8_t *loaded_data;
3647 /* extract RLE header */
3648 xh_flags = qemu_get_byte(f);
3649 xh_len = qemu_get_be16(f);
3651 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3652 error_report("Failed to load XBZRLE page - wrong compression!");
3656 if (xh_len > TARGET_PAGE_SIZE) {
3657 error_report("Failed to load XBZRLE page - len overflow!");
3660 loaded_data = XBZRLE.decoded_buf;
3661 /* load data and decode */
3662 /* it can change loaded_data to point to an internal buffer */
3663 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3666 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3667 TARGET_PAGE_SIZE) == -1) {
3668 error_report("Failed to load XBZRLE page - decode error!");
3676 * ram_block_from_stream: read a RAMBlock id from the migration stream
3678 * Must be called from within a rcu critical section.
3680 * Returns a pointer from within the RCU-protected ram_list.
3682 * @f: QEMUFile where to read the data from
3683 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3685 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
3687 static RAMBlock *block = NULL;
3691 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3693 error_report("Ack, bad migration stream!");
3699 len = qemu_get_byte(f);
3700 qemu_get_buffer(f, (uint8_t *)id, len);
3703 block = qemu_ram_block_by_name(id);
3705 error_report("Can't find block %s", id);
3709 if (ramblock_is_ignored(block)) {
3710 error_report("block %s should not be migrated !", id);
3717 static inline void *host_from_ram_block_offset(RAMBlock *block,
3720 if (!offset_in_ramblock(block, offset)) {
3724 return block->host + offset;
3727 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3730 if (!offset_in_ramblock(block, offset)) {
3733 if (!block->colo_cache) {
3734 error_report("%s: colo_cache is NULL in block :%s",
3735 __func__, block->idstr);
3740 * During colo checkpoint, we need bitmap of these migrated pages.
3741 * It help us to decide which pages in ram cache should be flushed
3742 * into VM's RAM later.
3744 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3745 ram_state->migration_dirty_pages++;
3747 return block->colo_cache + offset;
3751 * ram_handle_compressed: handle the zero page case
3753 * If a page (or a whole RDMA chunk) has been
3754 * determined to be zero, then zap it.
3756 * @host: host address for the zero page
3757 * @ch: what the page is filled from. We only support zero
3758 * @size: size of the zero page
3760 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3762 if (ch != 0 || !is_zero_range(host, size)) {
3763 memset(host, ch, size);
3767 /* return the size after decompression, or negative value on error */
3769 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3770 const uint8_t *source, size_t source_len)
3774 err = inflateReset(stream);
3779 stream->avail_in = source_len;
3780 stream->next_in = (uint8_t *)source;
3781 stream->avail_out = dest_len;
3782 stream->next_out = dest;
3784 err = inflate(stream, Z_NO_FLUSH);
3785 if (err != Z_STREAM_END) {
3789 return stream->total_out;
3792 static void *do_data_decompress(void *opaque)
3794 DecompressParam *param = opaque;
3795 unsigned long pagesize;
3799 qemu_mutex_lock(¶m->mutex);
3800 while (!param->quit) {
3805 qemu_mutex_unlock(¶m->mutex);
3807 pagesize = TARGET_PAGE_SIZE;
3809 ret = qemu_uncompress_data(¶m->stream, des, pagesize,
3810 param->compbuf, len);
3811 if (ret < 0 && migrate_get_current()->decompress_error_check) {
3812 error_report("decompress data failed");
3813 qemu_file_set_error(decomp_file, ret);
3816 qemu_mutex_lock(&decomp_done_lock);
3818 qemu_cond_signal(&decomp_done_cond);
3819 qemu_mutex_unlock(&decomp_done_lock);
3821 qemu_mutex_lock(¶m->mutex);
3823 qemu_cond_wait(¶m->cond, ¶m->mutex);
3826 qemu_mutex_unlock(¶m->mutex);
3831 static int wait_for_decompress_done(void)
3833 int idx, thread_count;
3835 if (!migrate_use_compression()) {
3839 thread_count = migrate_decompress_threads();
3840 qemu_mutex_lock(&decomp_done_lock);
3841 for (idx = 0; idx < thread_count; idx++) {
3842 while (!decomp_param[idx].done) {
3843 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3846 qemu_mutex_unlock(&decomp_done_lock);
3847 return qemu_file_get_error(decomp_file);
3850 static void compress_threads_load_cleanup(void)
3852 int i, thread_count;
3854 if (!migrate_use_compression()) {
3857 thread_count = migrate_decompress_threads();
3858 for (i = 0; i < thread_count; i++) {
3860 * we use it as a indicator which shows if the thread is
3861 * properly init'd or not
3863 if (!decomp_param[i].compbuf) {
3867 qemu_mutex_lock(&decomp_param[i].mutex);
3868 decomp_param[i].quit = true;
3869 qemu_cond_signal(&decomp_param[i].cond);
3870 qemu_mutex_unlock(&decomp_param[i].mutex);
3872 for (i = 0; i < thread_count; i++) {
3873 if (!decomp_param[i].compbuf) {
3877 qemu_thread_join(decompress_threads + i);
3878 qemu_mutex_destroy(&decomp_param[i].mutex);
3879 qemu_cond_destroy(&decomp_param[i].cond);
3880 inflateEnd(&decomp_param[i].stream);
3881 g_free(decomp_param[i].compbuf);
3882 decomp_param[i].compbuf = NULL;
3884 g_free(decompress_threads);
3885 g_free(decomp_param);
3886 decompress_threads = NULL;
3887 decomp_param = NULL;
3891 static int compress_threads_load_setup(QEMUFile *f)
3893 int i, thread_count;
3895 if (!migrate_use_compression()) {
3899 thread_count = migrate_decompress_threads();
3900 decompress_threads = g_new0(QemuThread, thread_count);
3901 decomp_param = g_new0(DecompressParam, thread_count);
3902 qemu_mutex_init(&decomp_done_lock);
3903 qemu_cond_init(&decomp_done_cond);
3905 for (i = 0; i < thread_count; i++) {
3906 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3910 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3911 qemu_mutex_init(&decomp_param[i].mutex);
3912 qemu_cond_init(&decomp_param[i].cond);
3913 decomp_param[i].done = true;
3914 decomp_param[i].quit = false;
3915 qemu_thread_create(decompress_threads + i, "decompress",
3916 do_data_decompress, decomp_param + i,
3917 QEMU_THREAD_JOINABLE);
3921 compress_threads_load_cleanup();
3925 static void decompress_data_with_multi_threads(QEMUFile *f,
3926 void *host, int len)
3928 int idx, thread_count;
3930 thread_count = migrate_decompress_threads();
3931 qemu_mutex_lock(&decomp_done_lock);
3933 for (idx = 0; idx < thread_count; idx++) {
3934 if (decomp_param[idx].done) {
3935 decomp_param[idx].done = false;
3936 qemu_mutex_lock(&decomp_param[idx].mutex);
3937 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
3938 decomp_param[idx].des = host;
3939 decomp_param[idx].len = len;
3940 qemu_cond_signal(&decomp_param[idx].cond);
3941 qemu_mutex_unlock(&decomp_param[idx].mutex);
3945 if (idx < thread_count) {
3948 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3951 qemu_mutex_unlock(&decomp_done_lock);
3955 * colo cache: this is for secondary VM, we cache the whole
3956 * memory of the secondary VM, it is need to hold the global lock
3957 * to call this helper.
3959 int colo_init_ram_cache(void)
3964 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3965 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3968 if (!block->colo_cache) {
3969 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3970 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3971 block->used_length);
3974 memcpy(block->colo_cache, block->host, block->used_length);
3978 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3979 * with to decide which page in cache should be flushed into SVM's RAM. Here
3980 * we use the same name 'ram_bitmap' as for migration.
3982 if (ram_bytes_total()) {
3985 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3986 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3988 block->bmap = bitmap_new(pages);
3989 bitmap_set(block->bmap, 0, pages);
3992 ram_state = g_new0(RAMState, 1);
3993 ram_state->migration_dirty_pages = 0;
3994 qemu_mutex_init(&ram_state->bitmap_mutex);
3995 memory_global_dirty_log_start();
4001 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4002 if (block->colo_cache) {
4003 qemu_anon_ram_free(block->colo_cache, block->used_length);
4004 block->colo_cache = NULL;
4012 /* It is need to hold the global lock to call this helper */
4013 void colo_release_ram_cache(void)
4017 memory_global_dirty_log_stop();
4018 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4019 g_free(block->bmap);
4025 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4026 if (block->colo_cache) {
4027 qemu_anon_ram_free(block->colo_cache, block->used_length);
4028 block->colo_cache = NULL;
4033 qemu_mutex_destroy(&ram_state->bitmap_mutex);
4039 * ram_load_setup: Setup RAM for migration incoming side
4041 * Returns zero to indicate success and negative for error
4043 * @f: QEMUFile where to receive the data
4044 * @opaque: RAMState pointer
4046 static int ram_load_setup(QEMUFile *f, void *opaque)
4048 if (compress_threads_load_setup(f)) {
4052 xbzrle_load_setup();
4053 ramblock_recv_map_init();
4058 static int ram_load_cleanup(void *opaque)
4062 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4063 if (ramblock_is_pmem(rb)) {
4064 pmem_persist(rb->host, rb->used_length);
4068 xbzrle_load_cleanup();
4069 compress_threads_load_cleanup();
4071 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4072 g_free(rb->receivedmap);
4073 rb->receivedmap = NULL;
4080 * ram_postcopy_incoming_init: allocate postcopy data structures
4082 * Returns 0 for success and negative if there was one error
4084 * @mis: current migration incoming state
4086 * Allocate data structures etc needed by incoming migration with
4087 * postcopy-ram. postcopy-ram's similarly names
4088 * postcopy_ram_incoming_init does the work.
4090 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
4092 return postcopy_ram_incoming_init(mis);
4096 * ram_load_postcopy: load a page in postcopy case
4098 * Returns 0 for success or -errno in case of error
4100 * Called in postcopy mode by ram_load().
4101 * rcu_read_lock is taken prior to this being called.
4103 * @f: QEMUFile where to send the data
4105 static int ram_load_postcopy(QEMUFile *f)
4107 int flags = 0, ret = 0;
4108 bool place_needed = false;
4109 bool matches_target_page_size = false;
4110 MigrationIncomingState *mis = migration_incoming_get_current();
4111 /* Temporary page that is later 'placed' */
4112 void *postcopy_host_page = postcopy_get_tmp_page(mis);
4113 void *last_host = NULL;
4114 bool all_zero = false;
4116 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4119 void *page_buffer = NULL;
4120 void *place_source = NULL;
4121 RAMBlock *block = NULL;
4124 addr = qemu_get_be64(f);
4127 * If qemu file error, we should stop here, and then "addr"
4130 ret = qemu_file_get_error(f);
4135 flags = addr & ~TARGET_PAGE_MASK;
4136 addr &= TARGET_PAGE_MASK;
4138 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
4139 place_needed = false;
4140 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
4141 block = ram_block_from_stream(f, flags);
4143 host = host_from_ram_block_offset(block, addr);
4145 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4149 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
4151 * Postcopy requires that we place whole host pages atomically;
4152 * these may be huge pages for RAMBlocks that are backed by
4154 * To make it atomic, the data is read into a temporary page
4155 * that's moved into place later.
4156 * The migration protocol uses, possibly smaller, target-pages
4157 * however the source ensures it always sends all the components
4158 * of a host page in order.
4160 page_buffer = postcopy_host_page +
4161 ((uintptr_t)host & (block->page_size - 1));
4162 /* If all TP are zero then we can optimise the place */
4163 if (!((uintptr_t)host & (block->page_size - 1))) {
4166 /* not the 1st TP within the HP */
4167 if (host != (last_host + TARGET_PAGE_SIZE)) {
4168 error_report("Non-sequential target page %p/%p",
4177 * If it's the last part of a host page then we place the host
4180 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
4181 (block->page_size - 1)) == 0;
4182 place_source = postcopy_host_page;
4186 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4187 case RAM_SAVE_FLAG_ZERO:
4188 ch = qemu_get_byte(f);
4189 memset(page_buffer, ch, TARGET_PAGE_SIZE);
4195 case RAM_SAVE_FLAG_PAGE:
4197 if (!matches_target_page_size) {
4198 /* For huge pages, we always use temporary buffer */
4199 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
4202 * For small pages that matches target page size, we
4203 * avoid the qemu_file copy. Instead we directly use
4204 * the buffer of QEMUFile to place the page. Note: we
4205 * cannot do any QEMUFile operation before using that
4206 * buffer to make sure the buffer is valid when
4209 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
4213 case RAM_SAVE_FLAG_EOS:
4215 multifd_recv_sync_main();
4218 error_report("Unknown combination of migration flags: %#x"
4219 " (postcopy mode)", flags);
4224 /* Detect for any possible file errors */
4225 if (!ret && qemu_file_get_error(f)) {
4226 ret = qemu_file_get_error(f);
4229 if (!ret && place_needed) {
4230 /* This gets called at the last target page in the host page */
4231 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
4234 ret = postcopy_place_page_zero(mis, place_dest,
4237 ret = postcopy_place_page(mis, place_dest,
4238 place_source, block);
4246 static bool postcopy_is_advised(void)
4248 PostcopyState ps = postcopy_state_get();
4249 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
4252 static bool postcopy_is_running(void)
4254 PostcopyState ps = postcopy_state_get();
4255 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
4259 * Flush content of RAM cache into SVM's memory.
4260 * Only flush the pages that be dirtied by PVM or SVM or both.
4262 static void colo_flush_ram_cache(void)
4264 RAMBlock *block = NULL;
4267 unsigned long offset = 0;
4269 memory_global_dirty_log_sync();
4271 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4272 ramblock_sync_dirty_bitmap(ram_state, block);
4276 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
4278 block = QLIST_FIRST_RCU(&ram_list.blocks);
4281 offset = migration_bitmap_find_dirty(ram_state, block, offset);
4283 if (offset << TARGET_PAGE_BITS >= block->used_length) {
4285 block = QLIST_NEXT_RCU(block, next);
4287 migration_bitmap_clear_dirty(ram_state, block, offset);
4288 dst_host = block->host + (offset << TARGET_PAGE_BITS);
4289 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS);
4290 memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
4295 trace_colo_flush_ram_cache_end();
4299 * ram_load_precopy: load pages in precopy case
4301 * Returns 0 for success or -errno in case of error
4303 * Called in precopy mode by ram_load().
4304 * rcu_read_lock is taken prior to this being called.
4306 * @f: QEMUFile where to send the data
4308 static int ram_load_precopy(QEMUFile *f)
4310 int flags = 0, ret = 0, invalid_flags = 0, len = 0;
4311 /* ADVISE is earlier, it shows the source has the postcopy capability on */
4312 bool postcopy_advised = postcopy_is_advised();
4313 if (!migrate_use_compression()) {
4314 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4317 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4318 ram_addr_t addr, total_ram_bytes;
4322 addr = qemu_get_be64(f);
4323 flags = addr & ~TARGET_PAGE_MASK;
4324 addr &= TARGET_PAGE_MASK;
4326 if (flags & invalid_flags) {
4327 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4328 error_report("Received an unexpected compressed page");
4335 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4336 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4337 RAMBlock *block = ram_block_from_stream(f, flags);
4340 * After going into COLO, we should load the Page into colo_cache.
4342 if (migration_incoming_in_colo_state()) {
4343 host = colo_cache_from_block_offset(block, addr);
4345 host = host_from_ram_block_offset(block, addr);
4348 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4353 if (!migration_incoming_in_colo_state()) {
4354 ramblock_recv_bitmap_set(block, host);
4357 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4360 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4361 case RAM_SAVE_FLAG_MEM_SIZE:
4362 /* Synchronize RAM block list */
4363 total_ram_bytes = addr;
4364 while (!ret && total_ram_bytes) {
4369 len = qemu_get_byte(f);
4370 qemu_get_buffer(f, (uint8_t *)id, len);
4372 length = qemu_get_be64(f);
4374 block = qemu_ram_block_by_name(id);
4375 if (block && !qemu_ram_is_migratable(block)) {
4376 error_report("block %s should not be migrated !", id);
4379 if (length != block->used_length) {
4380 Error *local_err = NULL;
4382 ret = qemu_ram_resize(block, length,
4385 error_report_err(local_err);
4388 /* For postcopy we need to check hugepage sizes match */
4389 if (postcopy_advised &&
4390 block->page_size != qemu_host_page_size) {
4391 uint64_t remote_page_size = qemu_get_be64(f);
4392 if (remote_page_size != block->page_size) {
4393 error_report("Mismatched RAM page size %s "
4394 "(local) %zd != %" PRId64,
4395 id, block->page_size,
4400 if (migrate_ignore_shared()) {
4401 hwaddr addr = qemu_get_be64(f);
4402 if (ramblock_is_ignored(block) &&
4403 block->mr->addr != addr) {
4404 error_report("Mismatched GPAs for block %s "
4405 "%" PRId64 "!= %" PRId64,
4407 (uint64_t)block->mr->addr);
4411 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4414 error_report("Unknown ramblock \"%s\", cannot "
4415 "accept migration", id);
4419 total_ram_bytes -= length;
4423 case RAM_SAVE_FLAG_ZERO:
4424 ch = qemu_get_byte(f);
4425 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4428 case RAM_SAVE_FLAG_PAGE:
4429 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4432 case RAM_SAVE_FLAG_COMPRESS_PAGE:
4433 len = qemu_get_be32(f);
4434 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4435 error_report("Invalid compressed data length: %d", len);
4439 decompress_data_with_multi_threads(f, host, len);
4442 case RAM_SAVE_FLAG_XBZRLE:
4443 if (load_xbzrle(f, addr, host) < 0) {
4444 error_report("Failed to decompress XBZRLE page at "
4445 RAM_ADDR_FMT, addr);
4450 case RAM_SAVE_FLAG_EOS:
4452 multifd_recv_sync_main();
4455 if (flags & RAM_SAVE_FLAG_HOOK) {
4456 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
4458 error_report("Unknown combination of migration flags: %#x",
4464 ret = qemu_file_get_error(f);
4471 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4474 static uint64_t seq_iter;
4476 * If system is running in postcopy mode, page inserts to host memory must
4479 bool postcopy_running = postcopy_is_running();
4483 if (version_id != 4) {
4488 * This RCU critical section can be very long running.
4489 * When RCU reclaims in the code start to become numerous,
4490 * it will be necessary to reduce the granularity of this
4495 if (postcopy_running) {
4496 ret = ram_load_postcopy(f);
4498 ret = ram_load_precopy(f);
4501 ret |= wait_for_decompress_done();
4503 trace_ram_load_complete(ret, seq_iter);
4505 if (!ret && migration_incoming_in_colo_state()) {
4506 colo_flush_ram_cache();
4511 static bool ram_has_postcopy(void *opaque)
4514 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4515 if (ramblock_is_pmem(rb)) {
4516 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4517 "is not supported now!", rb->idstr, rb->host);
4522 return migrate_postcopy_ram();
4525 /* Sync all the dirty bitmap with destination VM. */
4526 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4529 QEMUFile *file = s->to_dst_file;
4530 int ramblock_count = 0;
4532 trace_ram_dirty_bitmap_sync_start();
4534 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4535 qemu_savevm_send_recv_bitmap(file, block->idstr);
4536 trace_ram_dirty_bitmap_request(block->idstr);
4540 trace_ram_dirty_bitmap_sync_wait();
4542 /* Wait until all the ramblocks' dirty bitmap synced */
4543 while (ramblock_count--) {
4544 qemu_sem_wait(&s->rp_state.rp_sem);
4547 trace_ram_dirty_bitmap_sync_complete();
4552 static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4554 qemu_sem_post(&s->rp_state.rp_sem);
4558 * Read the received bitmap, revert it as the initial dirty bitmap.
4559 * This is only used when the postcopy migration is paused but wants
4560 * to resume from a middle point.
4562 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4565 QEMUFile *file = s->rp_state.from_dst_file;
4566 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
4567 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4568 uint64_t size, end_mark;
4570 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4572 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4573 error_report("%s: incorrect state %s", __func__,
4574 MigrationStatus_str(s->state));
4579 * Note: see comments in ramblock_recv_bitmap_send() on why we
4580 * need the endianess convertion, and the paddings.
4582 local_size = ROUND_UP(local_size, 8);
4585 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4587 size = qemu_get_be64(file);
4589 /* The size of the bitmap should match with our ramblock */
4590 if (size != local_size) {
4591 error_report("%s: ramblock '%s' bitmap size mismatch "
4592 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4593 block->idstr, size, local_size);
4598 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4599 end_mark = qemu_get_be64(file);
4601 ret = qemu_file_get_error(file);
4602 if (ret || size != local_size) {
4603 error_report("%s: read bitmap failed for ramblock '%s': %d"
4604 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4605 __func__, block->idstr, ret, local_size, size);
4610 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4611 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4612 __func__, block->idstr, end_mark);
4618 * Endianess convertion. We are during postcopy (though paused).
4619 * The dirty bitmap won't change. We can directly modify it.
4621 bitmap_from_le(block->bmap, le_bitmap, nbits);
4624 * What we received is "received bitmap". Revert it as the initial
4625 * dirty bitmap for this ramblock.
4627 bitmap_complement(block->bmap, block->bmap, nbits);
4629 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4632 * We succeeded to sync bitmap for current ramblock. If this is
4633 * the last one to sync, we need to notify the main send thread.
4635 ram_dirty_bitmap_reload_notify(s);
4643 static int ram_resume_prepare(MigrationState *s, void *opaque)
4645 RAMState *rs = *(RAMState **)opaque;
4648 ret = ram_dirty_bitmap_sync_all(s, rs);
4653 ram_state_resume_prepare(rs, s->to_dst_file);
4658 static SaveVMHandlers savevm_ram_handlers = {
4659 .save_setup = ram_save_setup,
4660 .save_live_iterate = ram_save_iterate,
4661 .save_live_complete_postcopy = ram_save_complete,
4662 .save_live_complete_precopy = ram_save_complete,
4663 .has_postcopy = ram_has_postcopy,
4664 .save_live_pending = ram_save_pending,
4665 .load_state = ram_load,
4666 .save_cleanup = ram_save_cleanup,
4667 .load_setup = ram_load_setup,
4668 .load_cleanup = ram_load_cleanup,
4669 .resume_prepare = ram_resume_prepare,
4672 void ram_mig_init(void)
4674 qemu_mutex_init(&XBZRLE.lock);
4675 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);