4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #ifdef CONFIG_USER_ONLY
32 #include "qemu-common.h"
33 #include "qemu-char.h"
38 #include "qemu_socket.h"
40 /* XXX: these constants may be independent of the host ones even for Unix */
60 typedef struct GDBState {
61 CPUState *env; /* current CPU */
62 enum RSState state; /* parsing state */
66 uint8_t last_packet[4100];
69 #ifdef CONFIG_USER_ONLY
77 /* By default use no IRQs and no timers while single stepping so as to
78 * make single stepping like an ICE HW step.
80 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
82 #ifdef CONFIG_USER_ONLY
83 /* XXX: This is not thread safe. Do we care? */
84 static int gdbserver_fd = -1;
86 /* XXX: remove this hack. */
87 static GDBState gdbserver_state;
89 static int get_char(GDBState *s)
95 ret = recv(s->fd, &ch, 1, 0);
97 if (errno == ECONNRESET)
99 if (errno != EINTR && errno != EAGAIN)
101 } else if (ret == 0) {
113 /* GDB stub state for use by semihosting syscalls. */
114 static GDBState *gdb_syscall_state;
115 static gdb_syscall_complete_cb gdb_current_syscall_cb;
123 /* If gdb is connected when the first semihosting syscall occurs then use
124 remote gdb syscalls. Otherwise use native file IO. */
125 int use_gdb_syscalls(void)
127 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
128 gdb_syscall_mode = (gdb_syscall_state ? GDB_SYS_ENABLED
131 return gdb_syscall_mode == GDB_SYS_ENABLED;
134 /* Resume execution. */
135 static inline void gdb_continue(GDBState *s)
137 #ifdef CONFIG_USER_ONLY
138 s->running_state = 1;
144 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
146 #ifdef CONFIG_USER_ONLY
150 ret = send(s->fd, buf, len, 0);
152 if (errno != EINTR && errno != EAGAIN)
160 qemu_chr_write(s->chr, buf, len);
164 static inline int fromhex(int v)
166 if (v >= '0' && v <= '9')
168 else if (v >= 'A' && v <= 'F')
170 else if (v >= 'a' && v <= 'f')
176 static inline int tohex(int v)
184 static void memtohex(char *buf, const uint8_t *mem, int len)
189 for(i = 0; i < len; i++) {
191 *q++ = tohex(c >> 4);
192 *q++ = tohex(c & 0xf);
197 static void hextomem(uint8_t *mem, const char *buf, int len)
201 for(i = 0; i < len; i++) {
202 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
207 /* return -1 if error, 0 if OK */
208 static int put_packet(GDBState *s, char *buf)
214 printf("reply='%s'\n", buf);
224 for(i = 0; i < len; i++) {
228 *(p++) = tohex((csum >> 4) & 0xf);
229 *(p++) = tohex((csum) & 0xf);
231 s->last_packet_len = p - s->last_packet;
232 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
234 #ifdef CONFIG_USER_ONLY
247 #if defined(TARGET_I386)
250 static const uint8_t gdb_x86_64_regs[16] = {
251 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
252 8, 9, 10, 11, 12, 13, 14, 15,
256 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
258 int i, fpus, nb_regs;
263 if (env->hflags & HF_CS64_MASK) {
265 for(i = 0; i < 16; i++) {
266 *(uint64_t *)p = tswap64(env->regs[gdb_x86_64_regs[i]]);
269 *(uint64_t *)p = tswap64(env->eip);
275 for(i = 0; i < 8; i++) {
276 *(uint32_t *)p = tswap32(env->regs[i]);
279 *(uint32_t *)p = tswap32(env->eip);
283 *(uint32_t *)p = tswap32(env->eflags);
285 *(uint32_t *)p = tswap32(env->segs[R_CS].selector);
287 *(uint32_t *)p = tswap32(env->segs[R_SS].selector);
289 *(uint32_t *)p = tswap32(env->segs[R_DS].selector);
291 *(uint32_t *)p = tswap32(env->segs[R_ES].selector);
293 *(uint32_t *)p = tswap32(env->segs[R_FS].selector);
295 *(uint32_t *)p = tswap32(env->segs[R_GS].selector);
297 for(i = 0; i < 8; i++) {
298 /* XXX: convert floats */
299 #ifdef USE_X86LDOUBLE
300 memcpy(p, &env->fpregs[i], 10);
306 *(uint32_t *)p = tswap32(env->fpuc); /* fctrl */
308 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
309 *(uint32_t *)p = tswap32(fpus); /* fstat */
311 *(uint32_t *)p = 0; /* ftag */
313 *(uint32_t *)p = 0; /* fiseg */
315 *(uint32_t *)p = 0; /* fioff */
317 *(uint32_t *)p = 0; /* foseg */
319 *(uint32_t *)p = 0; /* fooff */
321 *(uint32_t *)p = 0; /* fop */
323 for(i = 0; i < nb_regs; i++) {
324 *(uint64_t *)p = tswap64(env->xmm_regs[i].XMM_Q(0));
326 *(uint64_t *)p = tswap64(env->xmm_regs[i].XMM_Q(1));
329 *(uint32_t *)p = tswap32(env->mxcsr);
334 static inline void cpu_gdb_load_seg(CPUState *env, const uint8_t **pp,
340 sel = tswap32(*(uint32_t *)p);
342 if (sel != env->segs[sreg].selector) {
343 #if defined(CONFIG_USER_ONLY)
344 cpu_x86_load_seg(env, sreg, sel);
346 /* XXX: do it with a debug function which does not raise an
353 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
355 const uint8_t *p = mem_buf;
360 if (env->hflags & HF_CS64_MASK) {
362 for(i = 0; i < 16; i++) {
363 env->regs[gdb_x86_64_regs[i]] = tswap64(*(uint64_t *)p);
366 env->eip = tswap64(*(uint64_t *)p);
372 for(i = 0; i < 8; i++) {
373 env->regs[i] = tswap32(*(uint32_t *)p);
376 env->eip = tswap32(*(uint32_t *)p);
379 env->eflags = tswap32(*(uint32_t *)p);
381 cpu_gdb_load_seg(env, &p, R_CS);
382 cpu_gdb_load_seg(env, &p, R_SS);
383 cpu_gdb_load_seg(env, &p, R_DS);
384 cpu_gdb_load_seg(env, &p, R_ES);
385 cpu_gdb_load_seg(env, &p, R_FS);
386 cpu_gdb_load_seg(env, &p, R_GS);
389 for(i = 0; i < 8; i++) {
390 /* XXX: convert floats */
391 #ifdef USE_X86LDOUBLE
392 memcpy(&env->fpregs[i], p, 10);
396 env->fpuc = tswap32(*(uint32_t *)p); /* fctrl */
398 fpus = tswap32(*(uint32_t *)p);
400 env->fpstt = (fpus >> 11) & 7;
401 env->fpus = fpus & ~0x3800;
404 if (size >= ((p - mem_buf) + 16 * nb_regs + 4)) {
406 for(i = 0; i < nb_regs; i++) {
407 env->xmm_regs[i].XMM_Q(0) = tswap64(*(uint64_t *)p);
409 env->xmm_regs[i].XMM_Q(1) = tswap64(*(uint64_t *)p);
412 env->mxcsr = tswap32(*(uint32_t *)p);
417 #elif defined (TARGET_PPC)
418 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
420 uint32_t *registers = (uint32_t *)mem_buf, tmp;
424 for(i = 0; i < 32; i++) {
425 registers[i] = tswapl(env->gpr[i]);
428 for (i = 0; i < 32; i++) {
429 registers[(i * 2) + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
430 registers[(i * 2) + 33] = tswapl(*((uint32_t *)&env->fpr[i] + 1));
432 /* nip, msr, ccr, lnk, ctr, xer, mq */
433 registers[96] = tswapl(env->nip);
434 registers[97] = tswapl(env->msr);
436 for (i = 0; i < 8; i++)
437 tmp |= env->crf[i] << (32 - ((i + 1) * 4));
438 registers[98] = tswapl(tmp);
439 registers[99] = tswapl(env->lr);
440 registers[100] = tswapl(env->ctr);
441 registers[101] = tswapl(ppc_load_xer(env));
447 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
449 uint32_t *registers = (uint32_t *)mem_buf;
453 for (i = 0; i < 32; i++) {
454 env->gpr[i] = tswapl(registers[i]);
457 for (i = 0; i < 32; i++) {
458 *((uint32_t *)&env->fpr[i]) = tswapl(registers[(i * 2) + 32]);
459 *((uint32_t *)&env->fpr[i] + 1) = tswapl(registers[(i * 2) + 33]);
461 /* nip, msr, ccr, lnk, ctr, xer, mq */
462 env->nip = tswapl(registers[96]);
463 ppc_store_msr(env, tswapl(registers[97]));
464 registers[98] = tswapl(registers[98]);
465 for (i = 0; i < 8; i++)
466 env->crf[i] = (registers[98] >> (32 - ((i + 1) * 4))) & 0xF;
467 env->lr = tswapl(registers[99]);
468 env->ctr = tswapl(registers[100]);
469 ppc_store_xer(env, tswapl(registers[101]));
471 #elif defined (TARGET_SPARC)
472 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
474 target_ulong *registers = (target_ulong *)mem_buf;
478 for(i = 0; i < 8; i++) {
479 registers[i] = tswapl(env->gregs[i]);
481 /* fill in register window */
482 for(i = 0; i < 24; i++) {
483 registers[i + 8] = tswapl(env->regwptr[i]);
485 #ifndef TARGET_SPARC64
487 for (i = 0; i < 32; i++) {
488 registers[i + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
490 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
491 registers[64] = tswapl(env->y);
496 registers[65] = tswapl(tmp);
498 registers[66] = tswapl(env->wim);
499 registers[67] = tswapl(env->tbr);
500 registers[68] = tswapl(env->pc);
501 registers[69] = tswapl(env->npc);
502 registers[70] = tswapl(env->fsr);
503 registers[71] = 0; /* csr */
505 return 73 * sizeof(target_ulong);
508 for (i = 0; i < 64; i += 2) {
511 tmp = ((uint64_t)*(uint32_t *)&env->fpr[i]) << 32;
512 tmp |= *(uint32_t *)&env->fpr[i + 1];
513 registers[i / 2 + 32] = tswap64(tmp);
515 registers[64] = tswapl(env->pc);
516 registers[65] = tswapl(env->npc);
517 registers[66] = tswapl(((uint64_t)GET_CCR(env) << 32) |
518 ((env->asi & 0xff) << 24) |
519 ((env->pstate & 0xfff) << 8) |
521 registers[67] = tswapl(env->fsr);
522 registers[68] = tswapl(env->fprs);
523 registers[69] = tswapl(env->y);
524 return 70 * sizeof(target_ulong);
528 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
530 target_ulong *registers = (target_ulong *)mem_buf;
534 for(i = 0; i < 7; i++) {
535 env->gregs[i] = tswapl(registers[i]);
537 /* fill in register window */
538 for(i = 0; i < 24; i++) {
539 env->regwptr[i] = tswapl(registers[i + 8]);
541 #ifndef TARGET_SPARC64
543 for (i = 0; i < 32; i++) {
544 *((uint32_t *)&env->fpr[i]) = tswapl(registers[i + 32]);
546 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
547 env->y = tswapl(registers[64]);
548 PUT_PSR(env, tswapl(registers[65]));
549 env->wim = tswapl(registers[66]);
550 env->tbr = tswapl(registers[67]);
551 env->pc = tswapl(registers[68]);
552 env->npc = tswapl(registers[69]);
553 env->fsr = tswapl(registers[70]);
555 for (i = 0; i < 64; i += 2) {
558 tmp = tswap64(registers[i / 2 + 32]);
559 *((uint32_t *)&env->fpr[i]) = tmp >> 32;
560 *((uint32_t *)&env->fpr[i + 1]) = tmp & 0xffffffff;
562 env->pc = tswapl(registers[64]);
563 env->npc = tswapl(registers[65]);
565 uint64_t tmp = tswapl(registers[66]);
567 PUT_CCR(env, tmp >> 32);
568 env->asi = (tmp >> 24) & 0xff;
569 env->pstate = (tmp >> 8) & 0xfff;
570 PUT_CWP64(env, tmp & 0xff);
572 env->fsr = tswapl(registers[67]);
573 env->fprs = tswapl(registers[68]);
574 env->y = tswapl(registers[69]);
577 #elif defined (TARGET_ARM)
578 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
584 /* 16 core integer registers (4 bytes each). */
585 for (i = 0; i < 16; i++)
587 *(uint32_t *)ptr = tswapl(env->regs[i]);
590 /* 8 FPA registers (12 bytes each), FPS (4 bytes).
591 Not yet implemented. */
592 memset (ptr, 0, 8 * 12 + 4);
594 /* CPSR (4 bytes). */
595 *(uint32_t *)ptr = tswapl (cpsr_read(env));
598 return ptr - mem_buf;
601 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
607 /* Core integer registers. */
608 for (i = 0; i < 16; i++)
610 env->regs[i] = tswapl(*(uint32_t *)ptr);
613 /* Ignore FPA regs and scr. */
615 cpsr_write (env, tswapl(*(uint32_t *)ptr), 0xffffffff);
617 #elif defined (TARGET_M68K)
618 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
626 for (i = 0; i < 8; i++) {
627 *(uint32_t *)ptr = tswapl(env->dregs[i]);
631 for (i = 0; i < 8; i++) {
632 *(uint32_t *)ptr = tswapl(env->aregs[i]);
635 *(uint32_t *)ptr = tswapl(env->sr);
637 *(uint32_t *)ptr = tswapl(env->pc);
639 /* F0-F7. The 68881/68040 have 12-bit extended precision registers.
640 ColdFire has 8-bit double precision registers. */
641 for (i = 0; i < 8; i++) {
643 *(uint32_t *)ptr = tswap32(u.l.upper);
644 *(uint32_t *)ptr = tswap32(u.l.lower);
646 /* FP control regs (not implemented). */
647 memset (ptr, 0, 3 * 4);
650 return ptr - mem_buf;
653 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
661 for (i = 0; i < 8; i++) {
662 env->dregs[i] = tswapl(*(uint32_t *)ptr);
666 for (i = 0; i < 8; i++) {
667 env->aregs[i] = tswapl(*(uint32_t *)ptr);
670 env->sr = tswapl(*(uint32_t *)ptr);
672 env->pc = tswapl(*(uint32_t *)ptr);
674 /* F0-F7. The 68881/68040 have 12-bit extended precision registers.
675 ColdFire has 8-bit double precision registers. */
676 for (i = 0; i < 8; i++) {
677 u.l.upper = tswap32(*(uint32_t *)ptr);
678 u.l.lower = tswap32(*(uint32_t *)ptr);
681 /* FP control regs (not implemented). */
684 #elif defined (TARGET_MIPS)
685 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
691 for (i = 0; i < 32; i++)
693 *(target_ulong *)ptr = tswapl(env->gpr[env->current_tc][i]);
694 ptr += sizeof(target_ulong);
697 *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_Status);
698 ptr += sizeof(target_ulong);
700 *(target_ulong *)ptr = tswapl(env->LO[env->current_tc][0]);
701 ptr += sizeof(target_ulong);
703 *(target_ulong *)ptr = tswapl(env->HI[env->current_tc][0]);
704 ptr += sizeof(target_ulong);
706 *(target_ulong *)ptr = tswapl(env->CP0_BadVAddr);
707 ptr += sizeof(target_ulong);
709 *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_Cause);
710 ptr += sizeof(target_ulong);
712 *(target_ulong *)ptr = tswapl(env->PC[env->current_tc]);
713 ptr += sizeof(target_ulong);
715 if (env->CP0_Config1 & (1 << CP0C1_FP))
717 for (i = 0; i < 32; i++)
719 if (env->CP0_Status & (1 << CP0St_FR))
720 *(target_ulong *)ptr = tswapl(env->fpu->fpr[i].d);
722 *(target_ulong *)ptr = tswap32(env->fpu->fpr[i].w[FP_ENDIAN_IDX]);
723 ptr += sizeof(target_ulong);
726 *(target_ulong *)ptr = (int32_t)tswap32(env->fpu->fcr31);
727 ptr += sizeof(target_ulong);
729 *(target_ulong *)ptr = (int32_t)tswap32(env->fpu->fcr0);
730 ptr += sizeof(target_ulong);
733 /* "fp", pseudo frame pointer. Not yet implemented in gdb. */
734 *(target_ulong *)ptr = 0;
735 ptr += sizeof(target_ulong);
737 /* Registers for embedded use, we just pad them. */
738 for (i = 0; i < 16; i++)
740 *(target_ulong *)ptr = 0;
741 ptr += sizeof(target_ulong);
745 *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_PRid);
746 ptr += sizeof(target_ulong);
748 return ptr - mem_buf;
751 /* convert MIPS rounding mode in FCR31 to IEEE library */
752 static unsigned int ieee_rm[] =
754 float_round_nearest_even,
759 #define RESTORE_ROUNDING_MODE \
760 set_float_rounding_mode(ieee_rm[env->fpu->fcr31 & 3], &env->fpu->fp_status)
762 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
768 for (i = 0; i < 32; i++)
770 env->gpr[env->current_tc][i] = tswapl(*(target_ulong *)ptr);
771 ptr += sizeof(target_ulong);
774 env->CP0_Status = tswapl(*(target_ulong *)ptr);
775 ptr += sizeof(target_ulong);
777 env->LO[env->current_tc][0] = tswapl(*(target_ulong *)ptr);
778 ptr += sizeof(target_ulong);
780 env->HI[env->current_tc][0] = tswapl(*(target_ulong *)ptr);
781 ptr += sizeof(target_ulong);
783 env->CP0_BadVAddr = tswapl(*(target_ulong *)ptr);
784 ptr += sizeof(target_ulong);
786 env->CP0_Cause = tswapl(*(target_ulong *)ptr);
787 ptr += sizeof(target_ulong);
789 env->PC[env->current_tc] = tswapl(*(target_ulong *)ptr);
790 ptr += sizeof(target_ulong);
792 if (env->CP0_Config1 & (1 << CP0C1_FP))
794 for (i = 0; i < 32; i++)
796 if (env->CP0_Status & (1 << CP0St_FR))
797 env->fpu->fpr[i].d = tswapl(*(target_ulong *)ptr);
799 env->fpu->fpr[i].w[FP_ENDIAN_IDX] = tswapl(*(target_ulong *)ptr);
800 ptr += sizeof(target_ulong);
803 env->fpu->fcr31 = tswapl(*(target_ulong *)ptr) & 0xFF83FFFF;
804 ptr += sizeof(target_ulong);
806 /* The remaining registers are assumed to be read-only. */
808 /* set rounding mode */
809 RESTORE_ROUNDING_MODE;
811 #ifndef CONFIG_SOFTFLOAT
812 /* no floating point exception for native float */
813 SET_FP_ENABLE(env->fcr31, 0);
817 #elif defined (TARGET_SH4)
819 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
821 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
823 uint32_t *ptr = (uint32_t *)mem_buf;
826 #define SAVE(x) *ptr++=tswapl(x)
827 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
828 for (i = 0; i < 8; i++) SAVE(env->gregs[i + 16]);
830 for (i = 0; i < 8; i++) SAVE(env->gregs[i]);
832 for (i = 8; i < 16; i++) SAVE(env->gregs[i]);
842 for (i = 0; i < 16; i++)
843 SAVE(env->fregs[i + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
846 for (i = 0; i < 8; i++) SAVE(env->gregs[i]);
847 for (i = 0; i < 8; i++) SAVE(env->gregs[i + 16]);
848 return ((uint8_t *)ptr - mem_buf);
851 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
853 uint32_t *ptr = (uint32_t *)mem_buf;
856 #define LOAD(x) (x)=*ptr++;
857 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
858 for (i = 0; i < 8; i++) LOAD(env->gregs[i + 16]);
860 for (i = 0; i < 8; i++) LOAD(env->gregs[i]);
862 for (i = 8; i < 16; i++) LOAD(env->gregs[i]);
872 for (i = 0; i < 16; i++)
873 LOAD(env->fregs[i + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
876 for (i = 0; i < 8; i++) LOAD(env->gregs[i]);
877 for (i = 0; i < 8; i++) LOAD(env->gregs[i + 16]);
879 #elif defined (TARGET_CRIS)
881 static int cris_save_32 (unsigned char *d, uint32_t value)
884 *d++ = (value >>= 8);
885 *d++ = (value >>= 8);
886 *d++ = (value >>= 8);
889 static int cris_save_16 (unsigned char *d, uint32_t value)
892 *d++ = (value >>= 8);
895 static int cris_save_8 (unsigned char *d, uint32_t value)
901 /* FIXME: this will bug on archs not supporting unaligned word accesses. */
902 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
904 uint8_t *ptr = mem_buf;
908 for (i = 0; i < 16; i++)
909 ptr += cris_save_32 (ptr, env->regs[i]);
911 srs = env->pregs[PR_SRS];
913 ptr += cris_save_8 (ptr, env->pregs[0]);
914 ptr += cris_save_8 (ptr, env->pregs[1]);
915 ptr += cris_save_32 (ptr, env->pregs[2]);
916 ptr += cris_save_8 (ptr, srs);
917 ptr += cris_save_16 (ptr, env->pregs[4]);
919 for (i = 5; i < 16; i++)
920 ptr += cris_save_32 (ptr, env->pregs[i]);
922 ptr += cris_save_32 (ptr, env->pc);
924 for (i = 0; i < 16; i++)
925 ptr += cris_save_32 (ptr, env->sregs[srs][i]);
927 return ((uint8_t *)ptr - mem_buf);
930 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
932 uint32_t *ptr = (uint32_t *)mem_buf;
935 #define LOAD(x) (x)=*ptr++;
936 for (i = 0; i < 16; i++) LOAD(env->regs[i]);
940 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
945 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
951 static int gdb_handle_packet(GDBState *s, CPUState *env, const char *line_buf)
954 int ch, reg_size, type;
956 uint8_t mem_buf[4096];
958 target_ulong addr, len;
961 printf("command='%s'\n", line_buf);
967 /* TODO: Make this return the correct value for user-mode. */
968 snprintf(buf, sizeof(buf), "S%02x", SIGTRAP);
970 /* Remove all the breakpoints when this query is issued,
971 * because gdb is doing and initial connect and the state
972 * should be cleaned up.
974 cpu_breakpoint_remove_all(env);
975 cpu_watchpoint_remove_all(env);
979 addr = strtoull(p, (char **)&p, 16);
980 #if defined(TARGET_I386)
982 #elif defined (TARGET_PPC)
984 #elif defined (TARGET_SPARC)
987 #elif defined (TARGET_ARM)
988 env->regs[15] = addr;
989 #elif defined (TARGET_SH4)
991 #elif defined (TARGET_MIPS)
992 env->PC[env->current_tc] = addr;
993 #elif defined (TARGET_CRIS)
1000 s->signal = strtoul(p, (char **)&p, 16);
1004 /* Kill the target */
1005 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1009 cpu_breakpoint_remove_all(env);
1010 cpu_watchpoint_remove_all(env);
1012 put_packet(s, "OK");
1016 addr = strtoull(p, (char **)&p, 16);
1017 #if defined(TARGET_I386)
1019 #elif defined (TARGET_PPC)
1021 #elif defined (TARGET_SPARC)
1023 env->npc = addr + 4;
1024 #elif defined (TARGET_ARM)
1025 env->regs[15] = addr;
1026 #elif defined (TARGET_SH4)
1028 #elif defined (TARGET_MIPS)
1029 env->PC[env->current_tc] = addr;
1030 #elif defined (TARGET_CRIS)
1034 cpu_single_step(env, sstep_flags);
1042 ret = strtoull(p, (char **)&p, 16);
1045 err = strtoull(p, (char **)&p, 16);
1052 if (gdb_current_syscall_cb)
1053 gdb_current_syscall_cb(s->env, ret, err);
1055 put_packet(s, "T02");
1062 reg_size = cpu_gdb_read_registers(env, mem_buf);
1063 memtohex(buf, mem_buf, reg_size);
1067 registers = (void *)mem_buf;
1068 len = strlen(p) / 2;
1069 hextomem((uint8_t *)registers, p, len);
1070 cpu_gdb_write_registers(env, mem_buf, len);
1071 put_packet(s, "OK");
1074 addr = strtoull(p, (char **)&p, 16);
1077 len = strtoull(p, NULL, 16);
1078 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 0) != 0) {
1079 put_packet (s, "E14");
1081 memtohex(buf, mem_buf, len);
1086 addr = strtoull(p, (char **)&p, 16);
1089 len = strtoull(p, (char **)&p, 16);
1092 hextomem(mem_buf, p, len);
1093 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 1) != 0)
1094 put_packet(s, "E14");
1096 put_packet(s, "OK");
1099 type = strtoul(p, (char **)&p, 16);
1102 addr = strtoull(p, (char **)&p, 16);
1105 len = strtoull(p, (char **)&p, 16);
1106 if (type == 0 || type == 1) {
1107 if (cpu_breakpoint_insert(env, addr) < 0)
1108 goto breakpoint_error;
1109 put_packet(s, "OK");
1110 #ifndef CONFIG_USER_ONLY
1111 } else if (type == 2) {
1112 if (cpu_watchpoint_insert(env, addr) < 0)
1113 goto breakpoint_error;
1114 put_packet(s, "OK");
1118 put_packet(s, "E22");
1122 type = strtoul(p, (char **)&p, 16);
1125 addr = strtoull(p, (char **)&p, 16);
1128 len = strtoull(p, (char **)&p, 16);
1129 if (type == 0 || type == 1) {
1130 cpu_breakpoint_remove(env, addr);
1131 put_packet(s, "OK");
1132 #ifndef CONFIG_USER_ONLY
1133 } else if (type == 2) {
1134 cpu_watchpoint_remove(env, addr);
1135 put_packet(s, "OK");
1138 goto breakpoint_error;
1143 /* parse any 'q' packets here */
1144 if (!strcmp(p,"qemu.sstepbits")) {
1145 /* Query Breakpoint bit definitions */
1146 sprintf(buf,"ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1152 } else if (strncmp(p,"qemu.sstep",10) == 0) {
1153 /* Display or change the sstep_flags */
1156 /* Display current setting */
1157 sprintf(buf,"0x%x", sstep_flags);
1162 type = strtoul(p, (char **)&p, 16);
1164 put_packet(s, "OK");
1167 #ifdef CONFIG_LINUX_USER
1168 else if (strncmp(p, "Offsets", 7) == 0) {
1169 TaskState *ts = env->opaque;
1172 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1173 ";Bss=" TARGET_ABI_FMT_lx,
1174 ts->info->code_offset,
1175 ts->info->data_offset,
1176 ts->info->data_offset);
1183 /* put empty packet */
1191 extern void tb_flush(CPUState *env);
1193 #ifndef CONFIG_USER_ONLY
1194 static void gdb_vm_stopped(void *opaque, int reason)
1196 GDBState *s = opaque;
1200 if (s->state == RS_SYSCALL)
1203 /* disable single step if it was enable */
1204 cpu_single_step(s->env, 0);
1206 if (reason == EXCP_DEBUG) {
1207 if (s->env->watchpoint_hit) {
1208 snprintf(buf, sizeof(buf), "T%02xwatch:" TARGET_FMT_lx ";",
1210 s->env->watchpoint[s->env->watchpoint_hit - 1].vaddr);
1212 s->env->watchpoint_hit = 0;
1217 } else if (reason == EXCP_INTERRUPT) {
1222 snprintf(buf, sizeof(buf), "S%02x", ret);
1227 /* Send a gdb syscall request.
1228 This accepts limited printf-style format specifiers, specifically:
1229 %x - target_ulong argument printed in hex.
1230 %lx - 64-bit argument printed in hex.
1231 %s - string pointer (target_ulong) and length (int) pair. */
1232 void gdb_do_syscall(gdb_syscall_complete_cb cb, char *fmt, ...)
1241 s = gdb_syscall_state;
1244 gdb_current_syscall_cb = cb;
1245 s->state = RS_SYSCALL;
1246 #ifndef CONFIG_USER_ONLY
1247 vm_stop(EXCP_DEBUG);
1258 addr = va_arg(va, target_ulong);
1259 p += sprintf(p, TARGET_FMT_lx, addr);
1262 if (*(fmt++) != 'x')
1264 i64 = va_arg(va, uint64_t);
1265 p += sprintf(p, "%" PRIx64, i64);
1268 addr = va_arg(va, target_ulong);
1269 p += sprintf(p, TARGET_FMT_lx "/%x", addr, va_arg(va, int));
1273 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
1284 #ifdef CONFIG_USER_ONLY
1285 gdb_handlesig(s->env, 0);
1287 cpu_interrupt(s->env, CPU_INTERRUPT_EXIT);
1291 static void gdb_read_byte(GDBState *s, int ch)
1293 CPUState *env = s->env;
1297 #ifndef CONFIG_USER_ONLY
1298 if (s->last_packet_len) {
1299 /* Waiting for a response to the last packet. If we see the start
1300 of a new command then abandon the previous response. */
1303 printf("Got NACK, retransmitting\n");
1305 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
1309 printf("Got ACK\n");
1311 printf("Got '%c' when expecting ACK/NACK\n", ch);
1313 if (ch == '+' || ch == '$')
1314 s->last_packet_len = 0;
1319 /* when the CPU is running, we cannot do anything except stop
1320 it when receiving a char */
1321 vm_stop(EXCP_INTERRUPT);
1328 s->line_buf_index = 0;
1329 s->state = RS_GETLINE;
1334 s->state = RS_CHKSUM1;
1335 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
1338 s->line_buf[s->line_buf_index++] = ch;
1342 s->line_buf[s->line_buf_index] = '\0';
1343 s->line_csum = fromhex(ch) << 4;
1344 s->state = RS_CHKSUM2;
1347 s->line_csum |= fromhex(ch);
1349 for(i = 0; i < s->line_buf_index; i++) {
1350 csum += s->line_buf[i];
1352 if (s->line_csum != (csum & 0xff)) {
1354 put_buffer(s, &reply, 1);
1358 put_buffer(s, &reply, 1);
1359 s->state = gdb_handle_packet(s, env, s->line_buf);
1368 #ifdef CONFIG_USER_ONLY
1370 gdb_handlesig (CPUState *env, int sig)
1376 s = &gdbserver_state;
1377 if (gdbserver_fd < 0 || s->fd < 0)
1380 /* disable single step if it was enabled */
1381 cpu_single_step(env, 0);
1386 snprintf(buf, sizeof(buf), "S%02x", sig);
1389 /* put_packet() might have detected that the peer terminated the
1396 s->running_state = 0;
1397 while (s->running_state == 0) {
1398 n = read (s->fd, buf, 256);
1403 for (i = 0; i < n; i++)
1404 gdb_read_byte (s, buf[i]);
1406 else if (n == 0 || errno != EAGAIN)
1408 /* XXX: Connection closed. Should probably wait for annother
1409 connection before continuing. */
1418 /* Tell the remote gdb that the process has exited. */
1419 void gdb_exit(CPUState *env, int code)
1424 s = &gdbserver_state;
1425 if (gdbserver_fd < 0 || s->fd < 0)
1428 snprintf(buf, sizeof(buf), "W%02x", code);
1433 static void gdb_accept(void *opaque)
1436 struct sockaddr_in sockaddr;
1441 len = sizeof(sockaddr);
1442 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
1443 if (fd < 0 && errno != EINTR) {
1446 } else if (fd >= 0) {
1451 /* set short latency */
1453 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
1455 s = &gdbserver_state;
1456 memset (s, 0, sizeof (GDBState));
1457 s->env = first_cpu; /* XXX: allow to change CPU */
1460 gdb_syscall_state = s;
1462 fcntl(fd, F_SETFL, O_NONBLOCK);
1465 static int gdbserver_open(int port)
1467 struct sockaddr_in sockaddr;
1470 fd = socket(PF_INET, SOCK_STREAM, 0);
1476 /* allow fast reuse */
1478 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
1480 sockaddr.sin_family = AF_INET;
1481 sockaddr.sin_port = htons(port);
1482 sockaddr.sin_addr.s_addr = 0;
1483 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
1488 ret = listen(fd, 0);
1496 int gdbserver_start(int port)
1498 gdbserver_fd = gdbserver_open(port);
1499 if (gdbserver_fd < 0)
1501 /* accept connections */
1506 static int gdb_chr_can_receive(void *opaque)
1511 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
1513 GDBState *s = opaque;
1516 for (i = 0; i < size; i++) {
1517 gdb_read_byte(s, buf[i]);
1521 static void gdb_chr_event(void *opaque, int event)
1524 case CHR_EVENT_RESET:
1525 vm_stop(EXCP_INTERRUPT);
1526 gdb_syscall_state = opaque;
1533 int gdbserver_start(const char *port)
1536 char gdbstub_port_name[128];
1539 CharDriverState *chr;
1541 if (!port || !*port)
1544 port_num = strtol(port, &p, 10);
1546 /* A numeric value is interpreted as a port number. */
1547 snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
1548 "tcp::%d,nowait,nodelay,server", port_num);
1549 port = gdbstub_port_name;
1552 chr = qemu_chr_open(port);
1556 s = qemu_mallocz(sizeof(GDBState));
1560 s->env = first_cpu; /* XXX: allow to change CPU */
1562 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
1564 qemu_add_vm_stop_handler(gdb_vm_stopped, s);