2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
32 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
35 BDRVQcowState *s = bs->opaque;
36 int new_l1_size2, ret, i;
37 uint64_t *new_l1_table;
38 int64_t new_l1_table_offset, new_l1_size;
41 if (min_size <= s->l1_size)
45 new_l1_size = min_size;
47 /* Bump size up to reduce the number of times we have to grow */
48 new_l1_size = s->l1_size;
49 if (new_l1_size == 0) {
52 while (min_size > new_l1_size) {
53 new_l1_size = (new_l1_size * 3 + 1) / 2;
57 if (new_l1_size > INT_MAX) {
62 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
63 s->l1_size, new_l1_size);
66 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
67 new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
68 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
70 /* write new table (align to cluster) */
71 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
72 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
73 if (new_l1_table_offset < 0) {
75 return new_l1_table_offset;
78 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
83 /* the L1 position has not yet been updated, so these clusters must
84 * indeed be completely free */
85 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_DEFAULT,
86 new_l1_table_offset, new_l1_size2);
91 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
92 for(i = 0; i < s->l1_size; i++)
93 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
94 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
97 for(i = 0; i < s->l1_size; i++)
98 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
101 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
102 cpu_to_be32w((uint32_t*)data, new_l1_size);
103 cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset);
104 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
109 qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t),
110 QCOW2_DISCARD_OTHER);
111 s->l1_table_offset = new_l1_table_offset;
112 s->l1_table = new_l1_table;
113 s->l1_size = new_l1_size;
116 g_free(new_l1_table);
117 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
118 QCOW2_DISCARD_OTHER);
125 * Loads a L2 table into memory. If the table is in the cache, the cache
126 * is used; otherwise the L2 table is loaded from the image file.
128 * Returns a pointer to the L2 table on success, or NULL if the read from
129 * the image file failed.
132 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
135 BDRVQcowState *s = bs->opaque;
138 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
144 * Writes one sector of the L1 table to the disk (can't update single entries
145 * and we really don't want bdrv_pread to perform a read-modify-write)
147 #define L1_ENTRIES_PER_SECTOR (512 / 8)
148 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
150 BDRVQcowState *s = bs->opaque;
151 uint64_t buf[L1_ENTRIES_PER_SECTOR];
155 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
156 for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
157 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
160 ret = qcow2_pre_write_overlap_check(bs,
161 QCOW2_OL_DEFAULT & ~QCOW2_OL_ACTIVE_L1,
162 s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
167 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
168 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
180 * Allocate a new l2 entry in the file. If l1_index points to an already
181 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
182 * table) copy the contents of the old L2 table into the newly allocated one.
183 * Otherwise the new table is initialized with zeros.
187 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
189 BDRVQcowState *s = bs->opaque;
190 uint64_t old_l2_offset;
191 uint64_t *l2_table = NULL;
195 old_l2_offset = s->l1_table[l1_index];
197 trace_qcow2_l2_allocate(bs, l1_index);
199 /* allocate a new l2 entry */
201 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
207 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
212 /* allocate a new entry in the l2 cache */
214 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
215 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
222 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
223 /* if there was no old l2 table, clear the new table */
224 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
228 /* if there was an old l2 table, read it from the disk */
229 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
230 ret = qcow2_cache_get(bs, s->l2_table_cache,
231 old_l2_offset & L1E_OFFSET_MASK,
232 (void**) &old_table);
237 memcpy(l2_table, old_table, s->cluster_size);
239 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
245 /* write the l2 table to the file */
246 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
248 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
249 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
250 ret = qcow2_cache_flush(bs, s->l2_table_cache);
255 /* update the L1 entry */
256 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
257 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
258 ret = qcow2_write_l1_entry(bs, l1_index);
264 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
268 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
269 if (l2_table != NULL) {
270 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
272 s->l1_table[l1_index] = old_l2_offset;
277 * Checks how many clusters in a given L2 table are contiguous in the image
278 * file. As soon as one of the flags in the bitmask stop_flags changes compared
279 * to the first cluster, the search is stopped and the cluster is not counted
280 * as contiguous. (This allows it, for example, to stop at the first compressed
281 * cluster which may require a different handling)
283 static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
284 uint64_t *l2_table, uint64_t start, uint64_t stop_flags)
287 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW2_CLUSTER_COMPRESSED;
288 uint64_t first_entry = be64_to_cpu(l2_table[0]);
289 uint64_t offset = first_entry & mask;
294 assert(qcow2_get_cluster_type(first_entry) != QCOW2_CLUSTER_COMPRESSED);
296 for (i = start; i < start + nb_clusters; i++) {
297 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
298 if (offset + (uint64_t) i * cluster_size != l2_entry) {
306 static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
310 for (i = 0; i < nb_clusters; i++) {
311 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
313 if (type != QCOW2_CLUSTER_UNALLOCATED) {
321 /* The crypt function is compatible with the linux cryptoloop
322 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
324 void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
325 uint8_t *out_buf, const uint8_t *in_buf,
326 int nb_sectors, int enc,
335 for(i = 0; i < nb_sectors; i++) {
336 ivec.ll[0] = cpu_to_le64(sector_num);
338 AES_cbc_encrypt(in_buf, out_buf, 512, key,
346 static int coroutine_fn copy_sectors(BlockDriverState *bs,
348 uint64_t cluster_offset,
349 int n_start, int n_end)
351 BDRVQcowState *s = bs->opaque;
357 * If this is the last cluster and it is only partially used, we must only
358 * copy until the end of the image, or bdrv_check_request will fail for the
359 * bdrv_read/write calls below.
361 if (start_sect + n_end > bs->total_sectors) {
362 n_end = bs->total_sectors - start_sect;
370 iov.iov_len = n * BDRV_SECTOR_SIZE;
371 iov.iov_base = qemu_blockalign(bs, iov.iov_len);
373 qemu_iovec_init_external(&qiov, &iov, 1);
375 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
377 /* Call .bdrv_co_readv() directly instead of using the public block-layer
378 * interface. This avoids double I/O throttling and request tracking,
379 * which can lead to deadlock when block layer copy-on-read is enabled.
381 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
386 if (s->crypt_method) {
387 qcow2_encrypt_sectors(s, start_sect + n_start,
388 iov.iov_base, iov.iov_base, n, 1,
389 &s->aes_encrypt_key);
392 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_DEFAULT,
393 cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE);
398 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
399 ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
406 qemu_vfree(iov.iov_base);
414 * For a given offset of the disk image, find the cluster offset in
415 * qcow2 file. The offset is stored in *cluster_offset.
417 * on entry, *num is the number of contiguous sectors we'd like to
418 * access following offset.
420 * on exit, *num is the number of contiguous sectors we can read.
422 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
425 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
426 int *num, uint64_t *cluster_offset)
428 BDRVQcowState *s = bs->opaque;
429 unsigned int l2_index;
430 uint64_t l1_index, l2_offset, *l2_table;
432 unsigned int index_in_cluster, nb_clusters;
433 uint64_t nb_available, nb_needed;
436 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
437 nb_needed = *num + index_in_cluster;
439 l1_bits = s->l2_bits + s->cluster_bits;
441 /* compute how many bytes there are between the offset and
442 * the end of the l1 entry
445 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
447 /* compute the number of available sectors */
449 nb_available = (nb_available >> 9) + index_in_cluster;
451 if (nb_needed > nb_available) {
452 nb_needed = nb_available;
457 /* seek the the l2 offset in the l1 table */
459 l1_index = offset >> l1_bits;
460 if (l1_index >= s->l1_size) {
461 ret = QCOW2_CLUSTER_UNALLOCATED;
465 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
467 ret = QCOW2_CLUSTER_UNALLOCATED;
471 /* load the l2 table in memory */
473 ret = l2_load(bs, l2_offset, &l2_table);
478 /* find the cluster offset for the given disk offset */
480 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
481 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
482 nb_clusters = size_to_clusters(s, nb_needed << 9);
484 ret = qcow2_get_cluster_type(*cluster_offset);
486 case QCOW2_CLUSTER_COMPRESSED:
487 /* Compressed clusters can only be processed one by one */
489 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
491 case QCOW2_CLUSTER_ZERO:
492 if (s->qcow_version < 3) {
495 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
496 &l2_table[l2_index], 0,
497 QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO);
500 case QCOW2_CLUSTER_UNALLOCATED:
501 /* how many empty clusters ? */
502 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
505 case QCOW2_CLUSTER_NORMAL:
506 /* how many allocated clusters ? */
507 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
508 &l2_table[l2_index], 0,
509 QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO);
510 *cluster_offset &= L2E_OFFSET_MASK;
516 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
518 nb_available = (c * s->cluster_sectors);
521 if (nb_available > nb_needed)
522 nb_available = nb_needed;
524 *num = nb_available - index_in_cluster;
532 * for a given disk offset, load (and allocate if needed)
535 * the l2 table offset in the qcow2 file and the cluster index
536 * in the l2 table are given to the caller.
538 * Returns 0 on success, -errno in failure case
540 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
541 uint64_t **new_l2_table,
544 BDRVQcowState *s = bs->opaque;
545 unsigned int l2_index;
546 uint64_t l1_index, l2_offset;
547 uint64_t *l2_table = NULL;
550 /* seek the the l2 offset in the l1 table */
552 l1_index = offset >> (s->l2_bits + s->cluster_bits);
553 if (l1_index >= s->l1_size) {
554 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
560 assert(l1_index < s->l1_size);
561 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
563 /* seek the l2 table of the given l2 offset */
565 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
566 /* load the l2 table in memory */
567 ret = l2_load(bs, l2_offset, &l2_table);
572 /* First allocate a new L2 table (and do COW if needed) */
573 ret = l2_allocate(bs, l1_index, &l2_table);
578 /* Then decrease the refcount of the old table */
580 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
581 QCOW2_DISCARD_OTHER);
585 /* find the cluster offset for the given disk offset */
587 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
589 *new_l2_table = l2_table;
590 *new_l2_index = l2_index;
596 * alloc_compressed_cluster_offset
598 * For a given offset of the disk image, return cluster offset in
601 * If the offset is not found, allocate a new compressed cluster.
603 * Return the cluster offset if successful,
604 * Return 0, otherwise.
608 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
612 BDRVQcowState *s = bs->opaque;
615 int64_t cluster_offset;
618 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
623 /* Compression can't overwrite anything. Fail if the cluster was already
625 cluster_offset = be64_to_cpu(l2_table[l2_index]);
626 if (cluster_offset & L2E_OFFSET_MASK) {
627 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
631 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
632 if (cluster_offset < 0) {
633 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
637 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
638 (cluster_offset >> 9);
640 cluster_offset |= QCOW_OFLAG_COMPRESSED |
641 ((uint64_t)nb_csectors << s->csize_shift);
643 /* update L2 table */
645 /* compressed clusters never have the copied flag */
647 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
648 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
649 l2_table[l2_index] = cpu_to_be64(cluster_offset);
650 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
655 return cluster_offset;
658 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
660 BDRVQcowState *s = bs->opaque;
663 if (r->nb_sectors == 0) {
667 qemu_co_mutex_unlock(&s->lock);
668 ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset,
669 r->offset / BDRV_SECTOR_SIZE,
670 r->offset / BDRV_SECTOR_SIZE + r->nb_sectors);
671 qemu_co_mutex_lock(&s->lock);
678 * Before we update the L2 table to actually point to the new cluster, we
679 * need to be sure that the refcounts have been increased and COW was
682 qcow2_cache_depends_on_flush(s->l2_table_cache);
687 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
689 BDRVQcowState *s = bs->opaque;
690 int i, j = 0, l2_index, ret;
691 uint64_t *old_cluster, *l2_table;
692 uint64_t cluster_offset = m->alloc_offset;
694 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
695 assert(m->nb_clusters > 0);
697 old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
699 /* copy content of unmodified sectors */
700 ret = perform_cow(bs, m, &m->cow_start);
705 ret = perform_cow(bs, m, &m->cow_end);
710 /* Update L2 table. */
711 if (s->use_lazy_refcounts) {
712 qcow2_mark_dirty(bs);
714 if (qcow2_need_accurate_refcounts(s)) {
715 qcow2_cache_set_dependency(bs, s->l2_table_cache,
716 s->refcount_block_cache);
719 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
723 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
725 assert(l2_index + m->nb_clusters <= s->l2_size);
726 for (i = 0; i < m->nb_clusters; i++) {
727 /* if two concurrent writes happen to the same unallocated cluster
728 * each write allocates separate cluster and writes data concurrently.
729 * The first one to complete updates l2 table with pointer to its
730 * cluster the second one has to do RMW (which is done above by
731 * copy_sectors()), update l2 table with its cluster pointer and free
732 * old cluster. This is what this loop does */
733 if(l2_table[l2_index + i] != 0)
734 old_cluster[j++] = l2_table[l2_index + i];
736 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
737 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
741 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
747 * If this was a COW, we need to decrease the refcount of the old cluster.
748 * Also flush bs->file to get the right order for L2 and refcount update.
750 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
751 * clusters), the next write will reuse them anyway.
754 for (i = 0; i < j; i++) {
755 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
756 QCOW2_DISCARD_NEVER);
767 * Returns the number of contiguous clusters that can be used for an allocating
768 * write, but require COW to be performed (this includes yet unallocated space,
769 * which must copy from the backing file)
771 static int count_cow_clusters(BDRVQcowState *s, int nb_clusters,
772 uint64_t *l2_table, int l2_index)
776 for (i = 0; i < nb_clusters; i++) {
777 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
778 int cluster_type = qcow2_get_cluster_type(l2_entry);
780 switch(cluster_type) {
781 case QCOW2_CLUSTER_NORMAL:
782 if (l2_entry & QCOW_OFLAG_COPIED) {
786 case QCOW2_CLUSTER_UNALLOCATED:
787 case QCOW2_CLUSTER_COMPRESSED:
788 case QCOW2_CLUSTER_ZERO:
796 assert(i <= nb_clusters);
801 * Check if there already is an AIO write request in flight which allocates
802 * the same cluster. In this case we need to wait until the previous
803 * request has completed and updated the L2 table accordingly.
806 * 0 if there was no dependency. *cur_bytes indicates the number of
807 * bytes from guest_offset that can be read before the next
808 * dependency must be processed (or the request is complete)
810 * -EAGAIN if we had to wait for another request, previously gathered
811 * information on cluster allocation may be invalid now. The caller
812 * must start over anyway, so consider *cur_bytes undefined.
814 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
815 uint64_t *cur_bytes, QCowL2Meta **m)
817 BDRVQcowState *s = bs->opaque;
818 QCowL2Meta *old_alloc;
819 uint64_t bytes = *cur_bytes;
821 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
823 uint64_t start = guest_offset;
824 uint64_t end = start + bytes;
825 uint64_t old_start = l2meta_cow_start(old_alloc);
826 uint64_t old_end = l2meta_cow_end(old_alloc);
828 if (end <= old_start || start >= old_end) {
829 /* No intersection */
831 if (start < old_start) {
832 /* Stop at the start of a running allocation */
833 bytes = old_start - start;
838 /* Stop if already an l2meta exists. After yielding, it wouldn't
839 * be valid any more, so we'd have to clean up the old L2Metas
840 * and deal with requests depending on them before starting to
841 * gather new ones. Not worth the trouble. */
842 if (bytes == 0 && *m) {
848 /* Wait for the dependency to complete. We need to recheck
849 * the free/allocated clusters when we continue. */
850 qemu_co_mutex_unlock(&s->lock);
851 qemu_co_queue_wait(&old_alloc->dependent_requests);
852 qemu_co_mutex_lock(&s->lock);
858 /* Make sure that existing clusters and new allocations are only used up to
859 * the next dependency if we shortened the request above */
866 * Checks how many already allocated clusters that don't require a copy on
867 * write there are at the given guest_offset (up to *bytes). If
868 * *host_offset is not zero, only physically contiguous clusters beginning at
869 * this host offset are counted.
871 * Note that guest_offset may not be cluster aligned. In this case, the
872 * returned *host_offset points to exact byte referenced by guest_offset and
873 * therefore isn't cluster aligned as well.
876 * 0: if no allocated clusters are available at the given offset.
877 * *bytes is normally unchanged. It is set to 0 if the cluster
878 * is allocated and doesn't need COW, but doesn't have the right
881 * 1: if allocated clusters that don't require a COW are available at
882 * the requested offset. *bytes may have decreased and describes
883 * the length of the area that can be written to.
885 * -errno: in error cases
887 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
888 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
890 BDRVQcowState *s = bs->opaque;
892 uint64_t cluster_offset;
894 unsigned int nb_clusters;
895 unsigned int keep_clusters;
898 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
901 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset)
902 == offset_into_cluster(s, *host_offset));
905 * Calculate the number of clusters to look for. We stop at L2 table
906 * boundaries to keep things simple.
909 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
911 l2_index = offset_to_l2_index(s, guest_offset);
912 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
914 /* Find L2 entry for the first involved cluster */
915 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
920 cluster_offset = be64_to_cpu(l2_table[l2_index]);
922 /* Check how many clusters are already allocated and don't need COW */
923 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
924 && (cluster_offset & QCOW_OFLAG_COPIED))
926 /* If a specific host_offset is required, check it */
927 bool offset_matches =
928 (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
930 if (*host_offset != 0 && !offset_matches) {
936 /* We keep all QCOW_OFLAG_COPIED clusters */
938 count_contiguous_clusters(nb_clusters, s->cluster_size,
939 &l2_table[l2_index], 0,
940 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
941 assert(keep_clusters <= nb_clusters);
944 keep_clusters * s->cluster_size
945 - offset_into_cluster(s, guest_offset));
954 pret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
959 /* Only return a host offset if we actually made progress. Otherwise we
960 * would make requirements for handle_alloc() that it can't fulfill */
962 *host_offset = (cluster_offset & L2E_OFFSET_MASK)
963 + offset_into_cluster(s, guest_offset);
970 * Allocates new clusters for the given guest_offset.
972 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
973 * contain the number of clusters that have been allocated and are contiguous
976 * If *host_offset is non-zero, it specifies the offset in the image file at
977 * which the new clusters must start. *nb_clusters can be 0 on return in this
978 * case if the cluster at host_offset is already in use. If *host_offset is
979 * zero, the clusters can be allocated anywhere in the image file.
981 * *host_offset is updated to contain the offset into the image file at which
982 * the first allocated cluster starts.
984 * Return 0 on success and -errno in error cases. -EAGAIN means that the
985 * function has been waiting for another request and the allocation must be
986 * restarted, but the whole request should not be failed.
988 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
989 uint64_t *host_offset, unsigned int *nb_clusters)
991 BDRVQcowState *s = bs->opaque;
993 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
994 *host_offset, *nb_clusters);
996 /* Allocate new clusters */
997 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
998 if (*host_offset == 0) {
999 int64_t cluster_offset =
1000 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1001 if (cluster_offset < 0) {
1002 return cluster_offset;
1004 *host_offset = cluster_offset;
1007 int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1017 * Allocates new clusters for an area that either is yet unallocated or needs a
1018 * copy on write. If *host_offset is non-zero, clusters are only allocated if
1019 * the new allocation can match the specified host offset.
1021 * Note that guest_offset may not be cluster aligned. In this case, the
1022 * returned *host_offset points to exact byte referenced by guest_offset and
1023 * therefore isn't cluster aligned as well.
1026 * 0: if no clusters could be allocated. *bytes is set to 0,
1027 * *host_offset is left unchanged.
1029 * 1: if new clusters were allocated. *bytes may be decreased if the
1030 * new allocation doesn't cover all of the requested area.
1031 * *host_offset is updated to contain the host offset of the first
1032 * newly allocated cluster.
1034 * -errno: in error cases
1036 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1037 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1039 BDRVQcowState *s = bs->opaque;
1043 unsigned int nb_clusters;
1046 uint64_t alloc_cluster_offset;
1048 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1053 * Calculate the number of clusters to look for. We stop at L2 table
1054 * boundaries to keep things simple.
1057 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1059 l2_index = offset_to_l2_index(s, guest_offset);
1060 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1062 /* Find L2 entry for the first involved cluster */
1063 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1068 entry = be64_to_cpu(l2_table[l2_index]);
1070 /* For the moment, overwrite compressed clusters one by one */
1071 if (entry & QCOW_OFLAG_COMPRESSED) {
1074 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1077 /* This function is only called when there were no non-COW clusters, so if
1078 * we can't find any unallocated or COW clusters either, something is
1079 * wrong with our code. */
1080 assert(nb_clusters > 0);
1082 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1087 /* Allocate, if necessary at a given offset in the image file */
1088 alloc_cluster_offset = start_of_cluster(s, *host_offset);
1089 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1095 /* Can't extend contiguous allocation */
1096 if (nb_clusters == 0) {
1102 * Save info needed for meta data update.
1104 * requested_sectors: Number of sectors from the start of the first
1105 * newly allocated cluster to the end of the (possibly shortened
1106 * before) write request.
1108 * avail_sectors: Number of sectors from the start of the first
1109 * newly allocated to the end of the last newly allocated cluster.
1111 * nb_sectors: The number of sectors from the start of the first
1112 * newly allocated cluster to the end of the area that the write
1113 * request actually writes to (excluding COW at the end)
1115 int requested_sectors =
1116 (*bytes + offset_into_cluster(s, guest_offset))
1117 >> BDRV_SECTOR_BITS;
1118 int avail_sectors = nb_clusters
1119 << (s->cluster_bits - BDRV_SECTOR_BITS);
1120 int alloc_n_start = offset_into_cluster(s, guest_offset)
1121 >> BDRV_SECTOR_BITS;
1122 int nb_sectors = MIN(requested_sectors, avail_sectors);
1123 QCowL2Meta *old_m = *m;
1125 *m = g_malloc0(sizeof(**m));
1127 **m = (QCowL2Meta) {
1130 .alloc_offset = alloc_cluster_offset,
1131 .offset = start_of_cluster(s, guest_offset),
1132 .nb_clusters = nb_clusters,
1133 .nb_available = nb_sectors,
1137 .nb_sectors = alloc_n_start,
1140 .offset = nb_sectors * BDRV_SECTOR_SIZE,
1141 .nb_sectors = avail_sectors - nb_sectors,
1144 qemu_co_queue_init(&(*m)->dependent_requests);
1145 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1147 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1148 *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE)
1149 - offset_into_cluster(s, guest_offset));
1150 assert(*bytes != 0);
1155 if (*m && (*m)->nb_clusters > 0) {
1156 QLIST_REMOVE(*m, next_in_flight);
1162 * alloc_cluster_offset
1164 * For a given offset on the virtual disk, find the cluster offset in qcow2
1165 * file. If the offset is not found, allocate a new cluster.
1167 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1168 * other fields in m are meaningless.
1170 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1171 * contiguous clusters that have been allocated. In this case, the other
1172 * fields of m are valid and contain information about the first allocated
1175 * If the request conflicts with another write request in flight, the coroutine
1176 * is queued and will be reentered when the dependency has completed.
1178 * Return 0 on success and -errno in error cases
1180 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1181 int n_start, int n_end, int *num, uint64_t *host_offset, QCowL2Meta **m)
1183 BDRVQcowState *s = bs->opaque;
1184 uint64_t start, remaining;
1185 uint64_t cluster_offset;
1189 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset,
1192 assert(n_start * BDRV_SECTOR_SIZE == offset_into_cluster(s, offset));
1193 offset = start_of_cluster(s, offset);
1196 start = offset + (n_start << BDRV_SECTOR_BITS);
1197 remaining = (n_end - n_start) << BDRV_SECTOR_BITS;
1205 if (!*host_offset) {
1206 *host_offset = start_of_cluster(s, cluster_offset);
1209 assert(remaining >= cur_bytes);
1212 remaining -= cur_bytes;
1213 cluster_offset += cur_bytes;
1215 if (remaining == 0) {
1219 cur_bytes = remaining;
1222 * Now start gathering as many contiguous clusters as possible:
1224 * 1. Check for overlaps with in-flight allocations
1226 * a) Overlap not in the first cluster -> shorten this request and
1227 * let the caller handle the rest in its next loop iteration.
1229 * b) Real overlaps of two requests. Yield and restart the search
1230 * for contiguous clusters (the situation could have changed
1231 * while we were sleeping)
1233 * c) TODO: Request starts in the same cluster as the in-flight
1234 * allocation ends. Shorten the COW of the in-fight allocation,
1235 * set cluster_offset to write to the same cluster and set up
1236 * the right synchronisation between the in-flight request and
1239 ret = handle_dependencies(bs, start, &cur_bytes, m);
1240 if (ret == -EAGAIN) {
1241 /* Currently handle_dependencies() doesn't yield if we already had
1242 * an allocation. If it did, we would have to clean up the L2Meta
1243 * structs before starting over. */
1246 } else if (ret < 0) {
1248 } else if (cur_bytes == 0) {
1251 /* handle_dependencies() may have decreased cur_bytes (shortened
1252 * the allocations below) so that the next dependency is processed
1253 * correctly during the next loop iteration. */
1257 * 2. Count contiguous COPIED clusters.
1259 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1264 } else if (cur_bytes == 0) {
1269 * 3. If the request still hasn't completed, allocate new clusters,
1270 * considering any cluster_offset of steps 1c or 2.
1272 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1278 assert(cur_bytes == 0);
1283 *num = (n_end - n_start) - (remaining >> BDRV_SECTOR_BITS);
1285 assert(*host_offset != 0);
1290 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1291 const uint8_t *buf, int buf_size)
1293 z_stream strm1, *strm = &strm1;
1296 memset(strm, 0, sizeof(*strm));
1298 strm->next_in = (uint8_t *)buf;
1299 strm->avail_in = buf_size;
1300 strm->next_out = out_buf;
1301 strm->avail_out = out_buf_size;
1303 ret = inflateInit2(strm, -12);
1306 ret = inflate(strm, Z_FINISH);
1307 out_len = strm->next_out - out_buf;
1308 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1309 out_len != out_buf_size) {
1317 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1319 BDRVQcowState *s = bs->opaque;
1320 int ret, csize, nb_csectors, sector_offset;
1323 coffset = cluster_offset & s->cluster_offset_mask;
1324 if (s->cluster_cache_offset != coffset) {
1325 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1326 sector_offset = coffset & 511;
1327 csize = nb_csectors * 512 - sector_offset;
1328 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1329 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
1333 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1334 s->cluster_data + sector_offset, csize) < 0) {
1337 s->cluster_cache_offset = coffset;
1343 * This discards as many clusters of nb_clusters as possible at once (i.e.
1344 * all clusters in the same L2 table) and returns the number of discarded
1347 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1348 unsigned int nb_clusters, enum qcow2_discard_type type)
1350 BDRVQcowState *s = bs->opaque;
1356 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1361 /* Limit nb_clusters to one L2 table */
1362 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1364 for (i = 0; i < nb_clusters; i++) {
1365 uint64_t old_offset;
1367 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1368 if ((old_offset & L2E_OFFSET_MASK) == 0) {
1372 /* First remove L2 entries */
1373 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1374 l2_table[l2_index + i] = cpu_to_be64(0);
1376 /* Then decrease the refcount */
1377 qcow2_free_any_clusters(bs, old_offset, 1, type);
1380 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1388 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1389 int nb_sectors, enum qcow2_discard_type type)
1391 BDRVQcowState *s = bs->opaque;
1392 uint64_t end_offset;
1393 unsigned int nb_clusters;
1396 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1398 /* Round start up and end down */
1399 offset = align_offset(offset, s->cluster_size);
1400 end_offset &= ~(s->cluster_size - 1);
1402 if (offset > end_offset) {
1406 nb_clusters = size_to_clusters(s, end_offset - offset);
1408 s->cache_discards = true;
1410 /* Each L2 table is handled by its own loop iteration */
1411 while (nb_clusters > 0) {
1412 ret = discard_single_l2(bs, offset, nb_clusters, type);
1418 offset += (ret * s->cluster_size);
1423 s->cache_discards = false;
1424 qcow2_process_discards(bs, ret);
1430 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1431 * all clusters in the same L2 table) and returns the number of zeroed
1434 static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1435 unsigned int nb_clusters)
1437 BDRVQcowState *s = bs->opaque;
1443 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1448 /* Limit nb_clusters to one L2 table */
1449 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1451 for (i = 0; i < nb_clusters; i++) {
1452 uint64_t old_offset;
1454 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1456 /* Update L2 entries */
1457 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1458 if (old_offset & QCOW_OFLAG_COMPRESSED) {
1459 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1460 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1462 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1466 ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
1474 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1476 BDRVQcowState *s = bs->opaque;
1477 unsigned int nb_clusters;
1480 /* The zero flag is only supported by version 3 and newer */
1481 if (s->qcow_version < 3) {
1485 /* Each L2 table is handled by its own loop iteration */
1486 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1488 s->cache_discards = true;
1490 while (nb_clusters > 0) {
1491 ret = zero_single_l2(bs, offset, nb_clusters);
1497 offset += (ret * s->cluster_size);
1502 s->cache_discards = false;
1503 qcow2_process_discards(bs, ret);
1509 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1510 * non-backed non-pre-allocated zero clusters).
1512 * expanded_clusters is a bitmap where every bit corresponds to one cluster in
1513 * the image file; a bit gets set if the corresponding cluster has been used for
1514 * zero expansion (i.e., has been filled with zeroes and is referenced from an
1515 * L2 table). nb_clusters contains the total cluster count of the image file,
1516 * i.e., the number of bits in expanded_clusters.
1518 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1519 int l1_size, uint8_t **expanded_clusters,
1520 uint64_t *nb_clusters)
1522 BDRVQcowState *s = bs->opaque;
1523 bool is_active_l1 = (l1_table == s->l1_table);
1524 uint64_t *l2_table = NULL;
1528 if (!is_active_l1) {
1529 /* inactive L2 tables require a buffer to be stored in when loading
1531 l2_table = qemu_blockalign(bs, s->cluster_size);
1534 for (i = 0; i < l1_size; i++) {
1535 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1536 bool l2_dirty = false;
1544 /* get active L2 tables from cache */
1545 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1546 (void **)&l2_table);
1548 /* load inactive L2 tables from disk */
1549 ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1550 (void *)l2_table, s->cluster_sectors);
1556 for (j = 0; j < s->l2_size; j++) {
1557 uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1558 int64_t offset = l2_entry & L2E_OFFSET_MASK, cluster_index;
1559 int cluster_type = qcow2_get_cluster_type(l2_entry);
1560 bool preallocated = offset != 0;
1562 if (cluster_type == QCOW2_CLUSTER_NORMAL) {
1563 cluster_index = offset >> s->cluster_bits;
1564 assert((cluster_index >= 0) && (cluster_index < *nb_clusters));
1565 if ((*expanded_clusters)[cluster_index / 8] &
1566 (1 << (cluster_index % 8))) {
1567 /* Probably a shared L2 table; this cluster was a zero
1568 * cluster which has been expanded, its refcount
1569 * therefore most likely requires an update. */
1570 ret = qcow2_update_cluster_refcount(bs, cluster_index, 1,
1571 QCOW2_DISCARD_NEVER);
1575 /* Since we just increased the refcount, the COPIED flag may
1576 * no longer be set. */
1577 l2_table[j] = cpu_to_be64(l2_entry & ~QCOW_OFLAG_COPIED);
1582 else if (qcow2_get_cluster_type(l2_entry) != QCOW2_CLUSTER_ZERO) {
1586 if (!preallocated) {
1587 if (!bs->backing_hd) {
1588 /* not backed; therefore we can simply deallocate the
1595 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1602 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_DEFAULT,
1603 offset, s->cluster_size);
1605 if (!preallocated) {
1606 qcow2_free_clusters(bs, offset, s->cluster_size,
1607 QCOW2_DISCARD_ALWAYS);
1612 ret = bdrv_write_zeroes(bs->file, offset / BDRV_SECTOR_SIZE,
1613 s->cluster_sectors);
1615 if (!preallocated) {
1616 qcow2_free_clusters(bs, offset, s->cluster_size,
1617 QCOW2_DISCARD_ALWAYS);
1622 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1625 cluster_index = offset >> s->cluster_bits;
1627 if (cluster_index >= *nb_clusters) {
1628 uint64_t old_bitmap_size = (*nb_clusters + 7) / 8;
1629 uint64_t new_bitmap_size;
1630 /* The offset may lie beyond the old end of the underlying image
1631 * file for growable files only */
1632 assert(bs->file->growable);
1633 *nb_clusters = size_to_clusters(s, bs->file->total_sectors *
1635 new_bitmap_size = (*nb_clusters + 7) / 8;
1636 *expanded_clusters = g_realloc(*expanded_clusters,
1638 /* clear the newly allocated space */
1639 memset(&(*expanded_clusters)[old_bitmap_size], 0,
1640 new_bitmap_size - old_bitmap_size);
1643 assert((cluster_index >= 0) && (cluster_index < *nb_clusters));
1644 (*expanded_clusters)[cluster_index / 8] |= 1 << (cluster_index % 8);
1649 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
1650 qcow2_cache_depends_on_flush(s->l2_table_cache);
1652 ret = qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
1659 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_DEFAULT &
1660 ~(QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2), l2_offset,
1666 ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1667 (void *)l2_table, s->cluster_sectors);
1679 if (!is_active_l1) {
1680 qemu_vfree(l2_table);
1683 qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
1685 ret = qcow2_cache_put(bs, s->l2_table_cache,
1686 (void **)&l2_table);
1694 * For backed images, expands all zero clusters on the image. For non-backed
1695 * images, deallocates all non-pre-allocated zero clusters (and claims the
1696 * allocation for pre-allocated ones). This is important for downgrading to a
1697 * qcow2 version which doesn't yet support metadata zero clusters.
1699 int qcow2_expand_zero_clusters(BlockDriverState *bs)
1701 BDRVQcowState *s = bs->opaque;
1702 uint64_t *l1_table = NULL;
1703 uint64_t nb_clusters;
1704 uint8_t *expanded_clusters;
1708 nb_clusters = size_to_clusters(s, bs->file->total_sectors *
1710 expanded_clusters = g_malloc0((nb_clusters + 7) / 8);
1712 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
1713 &expanded_clusters, &nb_clusters);
1718 /* Inactive L1 tables may point to active L2 tables - therefore it is
1719 * necessary to flush the L2 table cache before trying to access the L2
1720 * tables pointed to by inactive L1 entries (else we might try to expand
1721 * zero clusters that have already been expanded); furthermore, it is also
1722 * necessary to empty the L2 table cache, since it may contain tables which
1723 * are now going to be modified directly on disk, bypassing the cache.
1724 * qcow2_cache_empty() does both for us. */
1725 ret = qcow2_cache_empty(bs, s->l2_table_cache);
1730 for (i = 0; i < s->nb_snapshots; i++) {
1731 int l1_sectors = (s->snapshots[i].l1_size * sizeof(uint64_t) +
1732 BDRV_SECTOR_SIZE - 1) / BDRV_SECTOR_SIZE;
1734 l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
1736 ret = bdrv_read(bs->file, s->snapshots[i].l1_table_offset /
1737 BDRV_SECTOR_SIZE, (void *)l1_table, l1_sectors);
1742 for (j = 0; j < s->snapshots[i].l1_size; j++) {
1743 be64_to_cpus(&l1_table[j]);
1746 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
1747 &expanded_clusters, &nb_clusters);
1756 g_free(expanded_clusters);