2 * device quirks for PCI devices
4 * Copyright Red Hat, Inc. 2012-2015
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
13 #include "qemu/osdep.h"
14 #include "qemu/error-report.h"
15 #include "qemu/range.h"
16 #include "qapi/error.h"
17 #include "qapi/visitor.h"
18 #include "hw/nvram/fw_cfg.h"
22 /* Use uin32_t for vendor & device so PCI_ANY_ID expands and cannot match hw */
23 static bool vfio_pci_is(VFIOPCIDevice *vdev, uint32_t vendor, uint32_t device)
25 return (vendor == PCI_ANY_ID || vendor == vdev->vendor_id) &&
26 (device == PCI_ANY_ID || device == vdev->device_id);
29 static bool vfio_is_vga(VFIOPCIDevice *vdev)
31 PCIDevice *pdev = &vdev->pdev;
32 uint16_t class = pci_get_word(pdev->config + PCI_CLASS_DEVICE);
34 return class == PCI_CLASS_DISPLAY_VGA;
38 * List of device ids/vendor ids for which to disable
39 * option rom loading. This avoids the guest hangs during rom
40 * execution as noticed with the BCM 57810 card for lack of a
41 * more better way to handle such issues.
42 * The user can still override by specifying a romfile or
44 * Please see https://bugs.launchpad.net/qemu/+bug/1284874
45 * for an analysis of the 57810 card hang. When adding
46 * a new vendor id/device id combination below, please also add
47 * your card/environment details and information that could
48 * help in debugging to the bug tracking this issue
54 { 0x14e4, 0x168e }, /* Broadcom BCM 57810 */
57 bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev)
61 for (i = 0 ; i < ARRAY_SIZE(romblacklist); i++) {
62 if (vfio_pci_is(vdev, romblacklist[i].vendor, romblacklist[i].device)) {
63 trace_vfio_quirk_rom_blacklisted(vdev->vbasedev.name,
64 romblacklist[i].vendor,
65 romblacklist[i].device);
73 * Device specific region quirks (mostly backdoors to PCI config space)
77 * The generic window quirks operate on an address and data register,
78 * vfio_generic_window_address_quirk handles the address register and
79 * vfio_generic_window_data_quirk handles the data register. These ops
80 * pass reads and writes through to hardware until a value matching the
81 * stored address match/mask is written. When this occurs, the data
82 * register access emulated PCI config space for the device rather than
83 * passing through accesses. This enables devices where PCI config space
84 * is accessible behind a window register to maintain the virtualization
85 * provided through vfio.
87 typedef struct VFIOConfigWindowMatch {
90 } VFIOConfigWindowMatch;
92 typedef struct VFIOConfigWindowQuirk {
93 struct VFIOPCIDevice *vdev;
97 uint32_t address_offset;
103 MemoryRegion *addr_mem;
104 MemoryRegion *data_mem;
107 VFIOConfigWindowMatch matches[];
108 } VFIOConfigWindowQuirk;
110 static uint64_t vfio_generic_window_quirk_address_read(void *opaque,
114 VFIOConfigWindowQuirk *window = opaque;
115 VFIOPCIDevice *vdev = window->vdev;
117 return vfio_region_read(&vdev->bars[window->bar].region,
118 addr + window->address_offset, size);
121 static void vfio_generic_window_quirk_address_write(void *opaque, hwaddr addr,
125 VFIOConfigWindowQuirk *window = opaque;
126 VFIOPCIDevice *vdev = window->vdev;
129 window->window_enabled = false;
131 vfio_region_write(&vdev->bars[window->bar].region,
132 addr + window->address_offset, data, size);
134 for (i = 0; i < window->nr_matches; i++) {
135 if ((data & ~window->matches[i].mask) == window->matches[i].match) {
136 window->window_enabled = true;
137 window->address_val = data & window->matches[i].mask;
138 trace_vfio_quirk_generic_window_address_write(vdev->vbasedev.name,
139 memory_region_name(window->addr_mem), data);
145 static const MemoryRegionOps vfio_generic_window_address_quirk = {
146 .read = vfio_generic_window_quirk_address_read,
147 .write = vfio_generic_window_quirk_address_write,
148 .endianness = DEVICE_LITTLE_ENDIAN,
151 static uint64_t vfio_generic_window_quirk_data_read(void *opaque,
152 hwaddr addr, unsigned size)
154 VFIOConfigWindowQuirk *window = opaque;
155 VFIOPCIDevice *vdev = window->vdev;
158 /* Always read data reg, discard if window enabled */
159 data = vfio_region_read(&vdev->bars[window->bar].region,
160 addr + window->data_offset, size);
162 if (window->window_enabled) {
163 data = vfio_pci_read_config(&vdev->pdev, window->address_val, size);
164 trace_vfio_quirk_generic_window_data_read(vdev->vbasedev.name,
165 memory_region_name(window->data_mem), data);
171 static void vfio_generic_window_quirk_data_write(void *opaque, hwaddr addr,
172 uint64_t data, unsigned size)
174 VFIOConfigWindowQuirk *window = opaque;
175 VFIOPCIDevice *vdev = window->vdev;
177 if (window->window_enabled) {
178 vfio_pci_write_config(&vdev->pdev, window->address_val, data, size);
179 trace_vfio_quirk_generic_window_data_write(vdev->vbasedev.name,
180 memory_region_name(window->data_mem), data);
184 vfio_region_write(&vdev->bars[window->bar].region,
185 addr + window->data_offset, data, size);
188 static const MemoryRegionOps vfio_generic_window_data_quirk = {
189 .read = vfio_generic_window_quirk_data_read,
190 .write = vfio_generic_window_quirk_data_write,
191 .endianness = DEVICE_LITTLE_ENDIAN,
195 * The generic mirror quirk handles devices which expose PCI config space
196 * through a region within a BAR. When enabled, reads and writes are
197 * redirected through to emulated PCI config space. XXX if PCI config space
198 * used memory regions, this could just be an alias.
200 typedef struct VFIOConfigMirrorQuirk {
201 struct VFIOPCIDevice *vdev;
205 } VFIOConfigMirrorQuirk;
207 static uint64_t vfio_generic_quirk_mirror_read(void *opaque,
208 hwaddr addr, unsigned size)
210 VFIOConfigMirrorQuirk *mirror = opaque;
211 VFIOPCIDevice *vdev = mirror->vdev;
214 /* Read and discard in case the hardware cares */
215 (void)vfio_region_read(&vdev->bars[mirror->bar].region,
216 addr + mirror->offset, size);
218 data = vfio_pci_read_config(&vdev->pdev, addr, size);
219 trace_vfio_quirk_generic_mirror_read(vdev->vbasedev.name,
220 memory_region_name(mirror->mem),
225 static void vfio_generic_quirk_mirror_write(void *opaque, hwaddr addr,
226 uint64_t data, unsigned size)
228 VFIOConfigMirrorQuirk *mirror = opaque;
229 VFIOPCIDevice *vdev = mirror->vdev;
231 vfio_pci_write_config(&vdev->pdev, addr, data, size);
232 trace_vfio_quirk_generic_mirror_write(vdev->vbasedev.name,
233 memory_region_name(mirror->mem),
237 static const MemoryRegionOps vfio_generic_mirror_quirk = {
238 .read = vfio_generic_quirk_mirror_read,
239 .write = vfio_generic_quirk_mirror_write,
240 .endianness = DEVICE_LITTLE_ENDIAN,
243 /* Is range1 fully contained within range2? */
244 static bool vfio_range_contained(uint64_t first1, uint64_t len1,
245 uint64_t first2, uint64_t len2) {
246 return (first1 >= first2 && first1 + len1 <= first2 + len2);
249 #define PCI_VENDOR_ID_ATI 0x1002
252 * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR
253 * through VGA register 0x3c3. On newer cards, the I/O port BAR is always
254 * BAR4 (older cards like the X550 used BAR1, but we don't care to support
255 * those). Note that on bare metal, a read of 0x3c3 doesn't always return the
256 * I/O port BAR address. Originally this was coded to return the virtual BAR
257 * address only if the physical register read returns the actual BAR address,
258 * but users have reported greater success if we return the virtual address
261 static uint64_t vfio_ati_3c3_quirk_read(void *opaque,
262 hwaddr addr, unsigned size)
264 VFIOPCIDevice *vdev = opaque;
265 uint64_t data = vfio_pci_read_config(&vdev->pdev,
266 PCI_BASE_ADDRESS_4 + 1, size);
268 trace_vfio_quirk_ati_3c3_read(vdev->vbasedev.name, data);
273 static const MemoryRegionOps vfio_ati_3c3_quirk = {
274 .read = vfio_ati_3c3_quirk_read,
275 .endianness = DEVICE_LITTLE_ENDIAN,
278 static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev)
283 * As long as the BAR is >= 256 bytes it will be aligned such that the
284 * lower byte is always zero. Filter out anything else, if it exists.
286 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
287 !vdev->bars[4].ioport || vdev->bars[4].region.size < 256) {
291 quirk = g_malloc0(sizeof(*quirk));
292 quirk->mem = g_new0(MemoryRegion, 1);
295 memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, vdev,
296 "vfio-ati-3c3-quirk", 1);
297 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
298 3 /* offset 3 bytes from 0x3c0 */, quirk->mem);
300 QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
303 trace_vfio_quirk_ati_3c3_probe(vdev->vbasedev.name);
307 * Newer ATI/AMD devices, including HD5450 and HD7850, have a mirror to PCI
308 * config space through MMIO BAR2 at offset 0x4000. Nothing seems to access
309 * the MMIO space directly, but a window to this space is provided through
310 * I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the
311 * data register. When the address is programmed to a range of 0x4000-0x4fff
312 * PCI configuration space is available. Experimentation seems to indicate
313 * that read-only may be provided by hardware.
315 static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice *vdev, int nr)
318 VFIOConfigWindowQuirk *window;
320 /* This windows doesn't seem to be used except by legacy VGA code */
321 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
322 !vdev->vga || nr != 4) {
326 quirk = g_malloc0(sizeof(*quirk));
327 quirk->mem = g_new0(MemoryRegion, 2);
329 window = quirk->data = g_malloc0(sizeof(*window) +
330 sizeof(VFIOConfigWindowMatch));
332 window->address_offset = 0;
333 window->data_offset = 4;
334 window->nr_matches = 1;
335 window->matches[0].match = 0x4000;
336 window->matches[0].mask = vdev->config_size - 1;
338 window->addr_mem = &quirk->mem[0];
339 window->data_mem = &quirk->mem[1];
341 memory_region_init_io(window->addr_mem, OBJECT(vdev),
342 &vfio_generic_window_address_quirk, window,
343 "vfio-ati-bar4-window-address-quirk", 4);
344 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
345 window->address_offset,
346 window->addr_mem, 1);
348 memory_region_init_io(window->data_mem, OBJECT(vdev),
349 &vfio_generic_window_data_quirk, window,
350 "vfio-ati-bar4-window-data-quirk", 4);
351 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
353 window->data_mem, 1);
355 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
357 trace_vfio_quirk_ati_bar4_probe(vdev->vbasedev.name);
361 * Trap the BAR2 MMIO mirror to config space as well.
363 static void vfio_probe_ati_bar2_quirk(VFIOPCIDevice *vdev, int nr)
366 VFIOConfigMirrorQuirk *mirror;
368 /* Only enable on newer devices where BAR2 is 64bit */
369 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
370 !vdev->vga || nr != 2 || !vdev->bars[2].mem64) {
374 quirk = g_malloc0(sizeof(*quirk));
375 mirror = quirk->data = g_malloc0(sizeof(*mirror));
376 mirror->mem = quirk->mem = g_new0(MemoryRegion, 1);
379 mirror->offset = 0x4000;
382 memory_region_init_io(mirror->mem, OBJECT(vdev),
383 &vfio_generic_mirror_quirk, mirror,
384 "vfio-ati-bar2-4000-quirk", PCI_CONFIG_SPACE_SIZE);
385 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
386 mirror->offset, mirror->mem, 1);
388 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
390 trace_vfio_quirk_ati_bar2_probe(vdev->vbasedev.name);
394 * Older ATI/AMD cards like the X550 have a similar window to that above.
395 * I/O port BAR1 provides a window to a mirror of PCI config space located
396 * in BAR2 at offset 0xf00. We don't care to support such older cards, but
397 * note it for future reference.
400 #define PCI_VENDOR_ID_NVIDIA 0x10de
403 * Nvidia has several different methods to get to config space, the
404 * nouveu project has several of these documented here:
405 * https://github.com/pathscale/envytools/tree/master/hwdocs
407 * The first quirk is actually not documented in envytools and is found
408 * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an
409 * NV46 chipset. The backdoor uses the legacy VGA I/O ports to access
410 * the mirror of PCI config space found at BAR0 offset 0x1800. The access
411 * sequence first writes 0x338 to I/O port 0x3d4. The target offset is
412 * then written to 0x3d0. Finally 0x538 is written for a read and 0x738
413 * is written for a write to 0x3d4. The BAR0 offset is then accessible
414 * through 0x3d0. This quirk doesn't seem to be necessary on newer cards
415 * that use the I/O port BAR5 window but it doesn't hurt to leave it.
417 typedef enum {NONE = 0, SELECT, WINDOW, READ, WRITE} VFIONvidia3d0State;
418 static const char *nv3d0_states[] = { "NONE", "SELECT",
419 "WINDOW", "READ", "WRITE" };
421 typedef struct VFIONvidia3d0Quirk {
423 VFIONvidia3d0State state;
425 } VFIONvidia3d0Quirk;
427 static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque,
428 hwaddr addr, unsigned size)
430 VFIONvidia3d0Quirk *quirk = opaque;
431 VFIOPCIDevice *vdev = quirk->vdev;
435 return vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
439 static void vfio_nvidia_3d4_quirk_write(void *opaque, hwaddr addr,
440 uint64_t data, unsigned size)
442 VFIONvidia3d0Quirk *quirk = opaque;
443 VFIOPCIDevice *vdev = quirk->vdev;
444 VFIONvidia3d0State old_state = quirk->state;
450 if (old_state == NONE) {
451 quirk->state = SELECT;
452 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
453 nv3d0_states[quirk->state]);
457 if (old_state == WINDOW) {
459 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
460 nv3d0_states[quirk->state]);
464 if (old_state == WINDOW) {
465 quirk->state = WRITE;
466 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
467 nv3d0_states[quirk->state]);
472 vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
473 addr + 0x14, data, size);
476 static const MemoryRegionOps vfio_nvidia_3d4_quirk = {
477 .read = vfio_nvidia_3d4_quirk_read,
478 .write = vfio_nvidia_3d4_quirk_write,
479 .endianness = DEVICE_LITTLE_ENDIAN,
482 static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque,
483 hwaddr addr, unsigned size)
485 VFIONvidia3d0Quirk *quirk = opaque;
486 VFIOPCIDevice *vdev = quirk->vdev;
487 VFIONvidia3d0State old_state = quirk->state;
488 uint64_t data = vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
493 if (old_state == READ &&
494 (quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
495 uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
497 data = vfio_pci_read_config(&vdev->pdev, offset, size);
498 trace_vfio_quirk_nvidia_3d0_read(vdev->vbasedev.name,
505 static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr,
506 uint64_t data, unsigned size)
508 VFIONvidia3d0Quirk *quirk = opaque;
509 VFIOPCIDevice *vdev = quirk->vdev;
510 VFIONvidia3d0State old_state = quirk->state;
514 if (old_state == SELECT) {
515 quirk->offset = (uint32_t)data;
516 quirk->state = WINDOW;
517 trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
518 nv3d0_states[quirk->state]);
519 } else if (old_state == WRITE) {
520 if ((quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
521 uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
523 vfio_pci_write_config(&vdev->pdev, offset, data, size);
524 trace_vfio_quirk_nvidia_3d0_write(vdev->vbasedev.name,
530 vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
531 addr + 0x10, data, size);
534 static const MemoryRegionOps vfio_nvidia_3d0_quirk = {
535 .read = vfio_nvidia_3d0_quirk_read,
536 .write = vfio_nvidia_3d0_quirk_write,
537 .endianness = DEVICE_LITTLE_ENDIAN,
540 static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev)
543 VFIONvidia3d0Quirk *data;
545 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
546 !vdev->bars[1].region.size) {
550 quirk = g_malloc0(sizeof(*quirk));
551 quirk->data = data = g_malloc0(sizeof(*data));
552 quirk->mem = g_new0(MemoryRegion, 2);
556 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_nvidia_3d4_quirk,
557 data, "vfio-nvidia-3d4-quirk", 2);
558 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
559 0x14 /* 0x3c0 + 0x14 */, &quirk->mem[0]);
561 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_nvidia_3d0_quirk,
562 data, "vfio-nvidia-3d0-quirk", 2);
563 memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
564 0x10 /* 0x3c0 + 0x10 */, &quirk->mem[1]);
566 QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
569 trace_vfio_quirk_nvidia_3d0_probe(vdev->vbasedev.name);
573 * The second quirk is documented in envytools. The I/O port BAR5 is just
574 * a set of address/data ports to the MMIO BARs. The BAR we care about is
575 * again BAR0. This backdoor is apparently a bit newer than the one above
576 * so we need to not only trap 256 bytes @0x1800, but all of PCI config
577 * space, including extended space is available at the 4k @0x88000.
579 typedef struct VFIONvidiaBAR5Quirk {
582 MemoryRegion *addr_mem;
583 MemoryRegion *data_mem;
585 VFIOConfigWindowQuirk window; /* last for match data */
586 } VFIONvidiaBAR5Quirk;
588 static void vfio_nvidia_bar5_enable(VFIONvidiaBAR5Quirk *bar5)
590 VFIOPCIDevice *vdev = bar5->window.vdev;
592 if (((bar5->master & bar5->enable) & 0x1) == bar5->enabled) {
596 bar5->enabled = !bar5->enabled;
597 trace_vfio_quirk_nvidia_bar5_state(vdev->vbasedev.name,
598 bar5->enabled ? "Enable" : "Disable");
599 memory_region_set_enabled(bar5->addr_mem, bar5->enabled);
600 memory_region_set_enabled(bar5->data_mem, bar5->enabled);
603 static uint64_t vfio_nvidia_bar5_quirk_master_read(void *opaque,
604 hwaddr addr, unsigned size)
606 VFIONvidiaBAR5Quirk *bar5 = opaque;
607 VFIOPCIDevice *vdev = bar5->window.vdev;
609 return vfio_region_read(&vdev->bars[5].region, addr, size);
612 static void vfio_nvidia_bar5_quirk_master_write(void *opaque, hwaddr addr,
613 uint64_t data, unsigned size)
615 VFIONvidiaBAR5Quirk *bar5 = opaque;
616 VFIOPCIDevice *vdev = bar5->window.vdev;
618 vfio_region_write(&vdev->bars[5].region, addr, data, size);
621 vfio_nvidia_bar5_enable(bar5);
624 static const MemoryRegionOps vfio_nvidia_bar5_quirk_master = {
625 .read = vfio_nvidia_bar5_quirk_master_read,
626 .write = vfio_nvidia_bar5_quirk_master_write,
627 .endianness = DEVICE_LITTLE_ENDIAN,
630 static uint64_t vfio_nvidia_bar5_quirk_enable_read(void *opaque,
631 hwaddr addr, unsigned size)
633 VFIONvidiaBAR5Quirk *bar5 = opaque;
634 VFIOPCIDevice *vdev = bar5->window.vdev;
636 return vfio_region_read(&vdev->bars[5].region, addr + 4, size);
639 static void vfio_nvidia_bar5_quirk_enable_write(void *opaque, hwaddr addr,
640 uint64_t data, unsigned size)
642 VFIONvidiaBAR5Quirk *bar5 = opaque;
643 VFIOPCIDevice *vdev = bar5->window.vdev;
645 vfio_region_write(&vdev->bars[5].region, addr + 4, data, size);
648 vfio_nvidia_bar5_enable(bar5);
651 static const MemoryRegionOps vfio_nvidia_bar5_quirk_enable = {
652 .read = vfio_nvidia_bar5_quirk_enable_read,
653 .write = vfio_nvidia_bar5_quirk_enable_write,
654 .endianness = DEVICE_LITTLE_ENDIAN,
657 static void vfio_probe_nvidia_bar5_quirk(VFIOPCIDevice *vdev, int nr)
660 VFIONvidiaBAR5Quirk *bar5;
661 VFIOConfigWindowQuirk *window;
663 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
664 !vdev->vga || nr != 5 || !vdev->bars[5].ioport) {
668 quirk = g_malloc0(sizeof(*quirk));
669 quirk->mem = g_new0(MemoryRegion, 4);
671 bar5 = quirk->data = g_malloc0(sizeof(*bar5) +
672 (sizeof(VFIOConfigWindowMatch) * 2));
673 window = &bar5->window;
676 window->address_offset = 0x8;
677 window->data_offset = 0xc;
678 window->nr_matches = 2;
679 window->matches[0].match = 0x1800;
680 window->matches[0].mask = PCI_CONFIG_SPACE_SIZE - 1;
681 window->matches[1].match = 0x88000;
682 window->matches[1].mask = vdev->config_size - 1;
684 window->addr_mem = bar5->addr_mem = &quirk->mem[0];
685 window->data_mem = bar5->data_mem = &quirk->mem[1];
687 memory_region_init_io(window->addr_mem, OBJECT(vdev),
688 &vfio_generic_window_address_quirk, window,
689 "vfio-nvidia-bar5-window-address-quirk", 4);
690 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
691 window->address_offset,
692 window->addr_mem, 1);
693 memory_region_set_enabled(window->addr_mem, false);
695 memory_region_init_io(window->data_mem, OBJECT(vdev),
696 &vfio_generic_window_data_quirk, window,
697 "vfio-nvidia-bar5-window-data-quirk", 4);
698 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
700 window->data_mem, 1);
701 memory_region_set_enabled(window->data_mem, false);
703 memory_region_init_io(&quirk->mem[2], OBJECT(vdev),
704 &vfio_nvidia_bar5_quirk_master, bar5,
705 "vfio-nvidia-bar5-master-quirk", 4);
706 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
707 0, &quirk->mem[2], 1);
709 memory_region_init_io(&quirk->mem[3], OBJECT(vdev),
710 &vfio_nvidia_bar5_quirk_enable, bar5,
711 "vfio-nvidia-bar5-enable-quirk", 4);
712 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
713 4, &quirk->mem[3], 1);
715 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
717 trace_vfio_quirk_nvidia_bar5_probe(vdev->vbasedev.name);
721 * Finally, BAR0 itself. We want to redirect any accesses to either
722 * 0x1800 or 0x88000 through the PCI config space access functions.
724 static void vfio_nvidia_quirk_mirror_write(void *opaque, hwaddr addr,
725 uint64_t data, unsigned size)
727 VFIOConfigMirrorQuirk *mirror = opaque;
728 VFIOPCIDevice *vdev = mirror->vdev;
729 PCIDevice *pdev = &vdev->pdev;
731 vfio_generic_quirk_mirror_write(opaque, addr, data, size);
734 * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the
735 * MSI capability ID register. Both the ID and next register are
736 * read-only, so we allow writes covering either of those to real hw.
738 if ((pdev->cap_present & QEMU_PCI_CAP_MSI) &&
739 vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) {
740 vfio_region_write(&vdev->bars[mirror->bar].region,
741 addr + mirror->offset, data, size);
742 trace_vfio_quirk_nvidia_bar0_msi_ack(vdev->vbasedev.name);
746 static const MemoryRegionOps vfio_nvidia_mirror_quirk = {
747 .read = vfio_generic_quirk_mirror_read,
748 .write = vfio_nvidia_quirk_mirror_write,
749 .endianness = DEVICE_LITTLE_ENDIAN,
752 static void vfio_probe_nvidia_bar0_quirk(VFIOPCIDevice *vdev, int nr)
755 VFIOConfigMirrorQuirk *mirror;
757 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
758 !vfio_is_vga(vdev) || nr != 0) {
762 quirk = g_malloc0(sizeof(*quirk));
763 mirror = quirk->data = g_malloc0(sizeof(*mirror));
764 mirror->mem = quirk->mem = g_new0(MemoryRegion, 1);
767 mirror->offset = 0x88000;
770 memory_region_init_io(mirror->mem, OBJECT(vdev),
771 &vfio_nvidia_mirror_quirk, mirror,
772 "vfio-nvidia-bar0-88000-mirror-quirk",
774 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
775 mirror->offset, mirror->mem, 1);
777 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
779 /* The 0x1800 offset mirror only seems to get used by legacy VGA */
781 quirk = g_malloc0(sizeof(*quirk));
782 mirror = quirk->data = g_malloc0(sizeof(*mirror));
783 mirror->mem = quirk->mem = g_new0(MemoryRegion, 1);
786 mirror->offset = 0x1800;
789 memory_region_init_io(mirror->mem, OBJECT(vdev),
790 &vfio_nvidia_mirror_quirk, mirror,
791 "vfio-nvidia-bar0-1800-mirror-quirk",
792 PCI_CONFIG_SPACE_SIZE);
793 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
794 mirror->offset, mirror->mem, 1);
796 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
799 trace_vfio_quirk_nvidia_bar0_probe(vdev->vbasedev.name);
803 * TODO - Some Nvidia devices provide config access to their companion HDA
804 * device and even to their parent bridge via these config space mirrors.
805 * Add quirks for those regions.
808 #define PCI_VENDOR_ID_REALTEK 0x10ec
811 * RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2
812 * offset 0x70 there is a dword data register, offset 0x74 is a dword address
813 * register. According to the Linux r8169 driver, the MSI-X table is addressed
814 * when the "type" portion of the address register is set to 0x1. This appears
815 * to be bits 16:30. Bit 31 is both a write indicator and some sort of
816 * "address latched" indicator. Bits 12:15 are a mask field, which we can
817 * ignore because the MSI-X table should always be accessed as a dword (full
818 * mask). Bits 0:11 is offset within the type.
822 * Read from MSI-X table offset 0
823 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr
824 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch
825 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data
827 * Write 0xfee00000 to MSI-X table offset 0
828 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data
829 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write
830 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete
832 typedef struct VFIOrtl8168Quirk {
839 static uint64_t vfio_rtl8168_quirk_address_read(void *opaque,
840 hwaddr addr, unsigned size)
842 VFIOrtl8168Quirk *rtl = opaque;
843 VFIOPCIDevice *vdev = rtl->vdev;
844 uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size);
847 data = rtl->addr ^ 0x80000000U; /* latch/complete */
848 trace_vfio_quirk_rtl8168_fake_latch(vdev->vbasedev.name, data);
854 static void vfio_rtl8168_quirk_address_write(void *opaque, hwaddr addr,
855 uint64_t data, unsigned size)
857 VFIOrtl8168Quirk *rtl = opaque;
858 VFIOPCIDevice *vdev = rtl->vdev;
860 rtl->enabled = false;
862 if ((data & 0x7fff0000) == 0x10000) { /* MSI-X table */
864 rtl->addr = (uint32_t)data;
866 if (data & 0x80000000U) { /* Do write */
867 if (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) {
868 hwaddr offset = data & 0xfff;
869 uint64_t val = rtl->data;
871 trace_vfio_quirk_rtl8168_msix_write(vdev->vbasedev.name,
872 (uint16_t)offset, val);
874 /* Write to the proper guest MSI-X table instead */
875 memory_region_dispatch_write(&vdev->pdev.msix_table_mmio,
877 MEMTXATTRS_UNSPECIFIED);
879 return; /* Do not write guest MSI-X data to hardware */
883 vfio_region_write(&vdev->bars[2].region, addr + 0x74, data, size);
886 static const MemoryRegionOps vfio_rtl_address_quirk = {
887 .read = vfio_rtl8168_quirk_address_read,
888 .write = vfio_rtl8168_quirk_address_write,
890 .min_access_size = 4,
891 .max_access_size = 4,
894 .endianness = DEVICE_LITTLE_ENDIAN,
897 static uint64_t vfio_rtl8168_quirk_data_read(void *opaque,
898 hwaddr addr, unsigned size)
900 VFIOrtl8168Quirk *rtl = opaque;
901 VFIOPCIDevice *vdev = rtl->vdev;
902 uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x70, size);
904 if (rtl->enabled && (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) {
905 hwaddr offset = rtl->addr & 0xfff;
906 memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, offset,
907 &data, size, MEMTXATTRS_UNSPECIFIED);
908 trace_vfio_quirk_rtl8168_msix_read(vdev->vbasedev.name, offset, data);
914 static void vfio_rtl8168_quirk_data_write(void *opaque, hwaddr addr,
915 uint64_t data, unsigned size)
917 VFIOrtl8168Quirk *rtl = opaque;
918 VFIOPCIDevice *vdev = rtl->vdev;
920 rtl->data = (uint32_t)data;
922 vfio_region_write(&vdev->bars[2].region, addr + 0x70, data, size);
925 static const MemoryRegionOps vfio_rtl_data_quirk = {
926 .read = vfio_rtl8168_quirk_data_read,
927 .write = vfio_rtl8168_quirk_data_write,
929 .min_access_size = 4,
930 .max_access_size = 4,
933 .endianness = DEVICE_LITTLE_ENDIAN,
936 static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice *vdev, int nr)
939 VFIOrtl8168Quirk *rtl;
941 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_REALTEK, 0x8168) || nr != 2) {
945 quirk = g_malloc0(sizeof(*quirk));
946 quirk->mem = g_new0(MemoryRegion, 2);
948 quirk->data = rtl = g_malloc0(sizeof(*rtl));
951 memory_region_init_io(&quirk->mem[0], OBJECT(vdev),
952 &vfio_rtl_address_quirk, rtl,
953 "vfio-rtl8168-window-address-quirk", 4);
954 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
955 0x74, &quirk->mem[0], 1);
957 memory_region_init_io(&quirk->mem[1], OBJECT(vdev),
958 &vfio_rtl_data_quirk, rtl,
959 "vfio-rtl8168-window-data-quirk", 4);
960 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
961 0x70, &quirk->mem[1], 1);
963 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
965 trace_vfio_quirk_rtl8168_probe(vdev->vbasedev.name);
971 * Obviously IGD is not a discrete device, this is evidenced not only by it
972 * being integrated into the CPU, but by the various chipset and BIOS
973 * dependencies that it brings along with it. Intel is trying to move away
974 * from this and Broadwell and newer devices can run in what Intel calls
975 * "Universal Pass-Through" mode, or UPT. Theoretically in UPT mode, nothing
976 * more is required beyond assigning the IGD device to a VM. There are
977 * however support limitations to this mode. It only supports IGD as a
978 * secondary graphics device in the VM and it doesn't officially support any
981 * The code here attempts to enable what we'll call legacy mode assignment,
982 * IGD retains most of the capabilities we expect for it to have on bare
983 * metal. To enable this mode, the IGD device must be assigned to the VM
984 * at PCI address 00:02.0, it must have a ROM, it very likely needs VGA
985 * support, we must have VM BIOS support for reserving and populating some
986 * of the required tables, and we need to tweak the chipset with revisions
987 * and IDs and an LPC/ISA bridge device. The intention is to make all of
988 * this happen automatically by installing the device at the correct VM PCI
989 * bus address. If any of the conditions are not met, we cross our fingers
990 * and hope the user knows better.
992 * NB - It is possible to enable physical outputs in UPT mode by supplying
993 * an OpRegion table. We don't do this by default because the guest driver
994 * behaves differently if an OpRegion is provided and no monitor is attached
995 * vs no OpRegion and a monitor being attached or not. Effectively, if a
996 * headless setup is desired, the OpRegion gets in the way of that.
1000 * This presumes the device is already known to be an Intel VGA device, so we
1001 * take liberties in which device ID bits match which generation. This should
1002 * not be taken as an indication that all the devices are supported, or even
1003 * supportable, some of them don't even support VT-d.
1004 * See linux:include/drm/i915_pciids.h for IDs.
1006 static int igd_gen(VFIOPCIDevice *vdev)
1008 if ((vdev->device_id & 0xfff) == 0xa84) {
1009 return 8; /* Broxton */
1012 switch (vdev->device_id & 0xff00) {
1013 /* Old, untested, unavailable, unknown */
1023 /* SandyBridge, IvyBridge, ValleyView, Haswell */
1031 /* BroadWell, CherryView, SkyLake, KabyLake */
1039 return 8; /* Assume newer is compatible */
1042 typedef struct VFIOIGDQuirk {
1043 struct VFIOPCIDevice *vdev;
1048 #define IGD_GMCH 0x50 /* Graphics Control Register */
1049 #define IGD_BDSM 0x5c /* Base Data of Stolen Memory */
1050 #define IGD_ASLS 0xfc /* ASL Storage Register */
1053 * The OpRegion includes the Video BIOS Table, which seems important for
1054 * telling the driver what sort of outputs it has. Without this, the device
1055 * may work in the guest, but we may not get output. This also requires BIOS
1056 * support to reserve and populate a section of guest memory sufficient for
1057 * the table and to write the base address of that memory to the ASLS register
1058 * of the IGD device.
1060 int vfio_pci_igd_opregion_init(VFIOPCIDevice *vdev,
1061 struct vfio_region_info *info, Error **errp)
1065 vdev->igd_opregion = g_malloc0(info->size);
1066 ret = pread(vdev->vbasedev.fd, vdev->igd_opregion,
1067 info->size, info->offset);
1068 if (ret != info->size) {
1069 error_setg(errp, "failed to read IGD OpRegion");
1070 g_free(vdev->igd_opregion);
1071 vdev->igd_opregion = NULL;
1076 * Provide fw_cfg with a copy of the OpRegion which the VM firmware is to
1077 * allocate 32bit reserved memory for, copy these contents into, and write
1078 * the reserved memory base address to the device ASLS register at 0xFC.
1079 * Alignment of this reserved region seems flexible, but using a 4k page
1080 * alignment seems to work well. This interface assumes a single IGD
1081 * device, which may be at VM address 00:02.0 in legacy mode or another
1082 * address in UPT mode.
1084 * NB, there may be future use cases discovered where the VM should have
1085 * direct interaction with the host OpRegion, in which case the write to
1086 * the ASLS register would trigger MemoryRegion setup to enable that.
1088 fw_cfg_add_file(fw_cfg_find(), "etc/igd-opregion",
1089 vdev->igd_opregion, info->size);
1091 trace_vfio_pci_igd_opregion_enabled(vdev->vbasedev.name);
1093 pci_set_long(vdev->pdev.config + IGD_ASLS, 0);
1094 pci_set_long(vdev->pdev.wmask + IGD_ASLS, ~0);
1095 pci_set_long(vdev->emulated_config_bits + IGD_ASLS, ~0);
1101 * The rather short list of registers that we copy from the host devices.
1102 * The LPC/ISA bridge values are definitely needed to support the vBIOS, the
1103 * host bridge values may or may not be needed depending on the guest OS.
1104 * Since we're only munging revision and subsystem values on the host bridge,
1105 * we don't require our own device. The LPC/ISA bridge needs to be our very
1113 static const IGDHostInfo igd_host_bridge_infos[] = {
1114 {PCI_REVISION_ID, 2},
1115 {PCI_SUBSYSTEM_VENDOR_ID, 2},
1116 {PCI_SUBSYSTEM_ID, 2},
1119 static const IGDHostInfo igd_lpc_bridge_infos[] = {
1122 {PCI_REVISION_ID, 2},
1123 {PCI_SUBSYSTEM_VENDOR_ID, 2},
1124 {PCI_SUBSYSTEM_ID, 2},
1127 static int vfio_pci_igd_copy(VFIOPCIDevice *vdev, PCIDevice *pdev,
1128 struct vfio_region_info *info,
1129 const IGDHostInfo *list, int len)
1133 for (i = 0; i < len; i++) {
1134 ret = pread(vdev->vbasedev.fd, pdev->config + list[i].offset,
1135 list[i].len, info->offset + list[i].offset);
1136 if (ret != list[i].len) {
1137 error_report("IGD copy failed: %m");
1146 * Stuff a few values into the host bridge.
1148 static int vfio_pci_igd_host_init(VFIOPCIDevice *vdev,
1149 struct vfio_region_info *info)
1152 PCIDevice *host_bridge;
1155 bus = pci_device_root_bus(&vdev->pdev);
1156 host_bridge = pci_find_device(bus, 0, PCI_DEVFN(0, 0));
1159 error_report("Can't find host bridge");
1163 ret = vfio_pci_igd_copy(vdev, host_bridge, info, igd_host_bridge_infos,
1164 ARRAY_SIZE(igd_host_bridge_infos));
1166 trace_vfio_pci_igd_host_bridge_enabled(vdev->vbasedev.name);
1173 * IGD LPC/ISA bridge support code. The vBIOS needs this, but we can't write
1174 * arbitrary values into just any bridge, so we must create our own. We try
1175 * to handle if the user has created it for us, which they might want to do
1176 * to enable multifunction so we don't occupy the whole PCI slot.
1178 static void vfio_pci_igd_lpc_bridge_realize(PCIDevice *pdev, Error **errp)
1180 if (pdev->devfn != PCI_DEVFN(0x1f, 0)) {
1181 error_setg(errp, "VFIO dummy ISA/LPC bridge must have address 1f.0");
1185 static void vfio_pci_igd_lpc_bridge_class_init(ObjectClass *klass, void *data)
1187 DeviceClass *dc = DEVICE_CLASS(klass);
1188 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1190 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1191 dc->desc = "VFIO dummy ISA/LPC bridge for IGD assignment";
1192 dc->hotpluggable = false;
1193 k->realize = vfio_pci_igd_lpc_bridge_realize;
1194 k->class_id = PCI_CLASS_BRIDGE_ISA;
1197 static TypeInfo vfio_pci_igd_lpc_bridge_info = {
1198 .name = "vfio-pci-igd-lpc-bridge",
1199 .parent = TYPE_PCI_DEVICE,
1200 .class_init = vfio_pci_igd_lpc_bridge_class_init,
1201 .interfaces = (InterfaceInfo[]) {
1202 { INTERFACE_CONVENTIONAL_PCI_DEVICE },
1207 static void vfio_pci_igd_register_types(void)
1209 type_register_static(&vfio_pci_igd_lpc_bridge_info);
1212 type_init(vfio_pci_igd_register_types)
1214 static int vfio_pci_igd_lpc_init(VFIOPCIDevice *vdev,
1215 struct vfio_region_info *info)
1217 PCIDevice *lpc_bridge;
1220 lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
1221 0, PCI_DEVFN(0x1f, 0));
1223 lpc_bridge = pci_create_simple(pci_device_root_bus(&vdev->pdev),
1224 PCI_DEVFN(0x1f, 0), "vfio-pci-igd-lpc-bridge");
1227 ret = vfio_pci_igd_copy(vdev, lpc_bridge, info, igd_lpc_bridge_infos,
1228 ARRAY_SIZE(igd_lpc_bridge_infos));
1230 trace_vfio_pci_igd_lpc_bridge_enabled(vdev->vbasedev.name);
1237 * IGD Gen8 and newer support up to 8MB for the GTT and use a 64bit PTE
1238 * entry, older IGDs use 2MB and 32bit. Each PTE maps a 4k page. Therefore
1239 * we either have 2M/4k * 4 = 2k or 8M/4k * 8 = 16k as the maximum iobar index
1240 * for programming the GTT.
1242 * See linux:include/drm/i915_drm.h for shift and mask values.
1244 static int vfio_igd_gtt_max(VFIOPCIDevice *vdev)
1246 uint32_t gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
1247 int ggms, gen = igd_gen(vdev);
1249 gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
1250 ggms = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
1255 ggms *= 1024 * 1024;
1257 return (ggms / (4 * 1024)) * (gen < 8 ? 4 : 8);
1261 * The IGD ROM will make use of stolen memory (GGMS) for support of VESA modes.
1262 * Somehow the host stolen memory range is used for this, but how the ROM gets
1263 * it is a mystery, perhaps it's hardcoded into the ROM. Thankfully though, it
1264 * reprograms the GTT through the IOBAR where we can trap it and transpose the
1265 * programming to the VM allocated buffer. That buffer gets reserved by the VM
1266 * firmware via the fw_cfg entry added below. Here we're just monitoring the
1267 * IOBAR address and data registers to detect a write sequence targeting the
1268 * GTTADR. This code is developed by observed behavior and doesn't have a
1269 * direct spec reference, unfortunately.
1271 static uint64_t vfio_igd_quirk_data_read(void *opaque,
1272 hwaddr addr, unsigned size)
1274 VFIOIGDQuirk *igd = opaque;
1275 VFIOPCIDevice *vdev = igd->vdev;
1279 return vfio_region_read(&vdev->bars[4].region, addr + 4, size);
1282 static void vfio_igd_quirk_data_write(void *opaque, hwaddr addr,
1283 uint64_t data, unsigned size)
1285 VFIOIGDQuirk *igd = opaque;
1286 VFIOPCIDevice *vdev = igd->vdev;
1287 uint64_t val = data;
1288 int gen = igd_gen(vdev);
1291 * Programming the GGMS starts at index 0x1 and uses every 4th index (ie.
1292 * 0x1, 0x5, 0x9, 0xd,...). For pre-Gen8 each 4-byte write is a whole PTE
1293 * entry, with 0th bit enable set. For Gen8 and up, PTEs are 64bit, so
1294 * entries 0x5 & 0xd are the high dword, in our case zero. Each PTE points
1295 * to a 4k page, which we translate to a page from the VM allocated region,
1296 * pointed to by the BDSM register. If this is not set, we fail.
1298 * We trap writes to the full configured GTT size, but we typically only
1299 * see the vBIOS writing up to (nearly) the 1MB barrier. In fact it often
1300 * seems to miss the last entry for an even 1MB GTT. Doing a gratuitous
1301 * write of that last entry does work, but is hopefully unnecessary since
1302 * we clear the previous GTT on initialization.
1304 if ((igd->index % 4 == 1) && igd->index < vfio_igd_gtt_max(vdev)) {
1305 if (gen < 8 || (igd->index % 8 == 1)) {
1308 base = pci_get_long(vdev->pdev.config + IGD_BDSM);
1310 hw_error("vfio-igd: Guest attempted to program IGD GTT before "
1311 "BIOS reserved stolen memory. Unsupported BIOS?");
1314 val = data - igd->bdsm + base;
1316 val = 0; /* upper 32bits of pte, we only enable below 4G PTEs */
1319 trace_vfio_pci_igd_bar4_write(vdev->vbasedev.name,
1320 igd->index, data, val);
1323 vfio_region_write(&vdev->bars[4].region, addr + 4, val, size);
1328 static const MemoryRegionOps vfio_igd_data_quirk = {
1329 .read = vfio_igd_quirk_data_read,
1330 .write = vfio_igd_quirk_data_write,
1331 .endianness = DEVICE_LITTLE_ENDIAN,
1334 static uint64_t vfio_igd_quirk_index_read(void *opaque,
1335 hwaddr addr, unsigned size)
1337 VFIOIGDQuirk *igd = opaque;
1338 VFIOPCIDevice *vdev = igd->vdev;
1342 return vfio_region_read(&vdev->bars[4].region, addr, size);
1345 static void vfio_igd_quirk_index_write(void *opaque, hwaddr addr,
1346 uint64_t data, unsigned size)
1348 VFIOIGDQuirk *igd = opaque;
1349 VFIOPCIDevice *vdev = igd->vdev;
1353 vfio_region_write(&vdev->bars[4].region, addr, data, size);
1356 static const MemoryRegionOps vfio_igd_index_quirk = {
1357 .read = vfio_igd_quirk_index_read,
1358 .write = vfio_igd_quirk_index_write,
1359 .endianness = DEVICE_LITTLE_ENDIAN,
1362 static void vfio_probe_igd_bar4_quirk(VFIOPCIDevice *vdev, int nr)
1364 struct vfio_region_info *rom = NULL, *opregion = NULL,
1365 *host = NULL, *lpc = NULL;
1368 PCIDevice *lpc_bridge;
1369 int i, ret, ggms_mb, gms_mb = 0, gen;
1370 uint64_t *bdsm_size;
1372 uint16_t cmd_orig, cmd;
1376 * This must be an Intel VGA device at address 00:02.0 for us to even
1377 * consider enabling legacy mode. The vBIOS has dependencies on the
1380 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, PCI_ANY_ID) ||
1381 !vfio_is_vga(vdev) || nr != 4 ||
1382 &vdev->pdev != pci_find_device(pci_device_root_bus(&vdev->pdev),
1383 0, PCI_DEVFN(0x2, 0))) {
1388 * We need to create an LPC/ISA bridge at PCI bus address 00:1f.0 that we
1389 * can stuff host values into, so if there's already one there and it's not
1390 * one we can hack on, legacy mode is no-go. Sorry Q35.
1392 lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
1393 0, PCI_DEVFN(0x1f, 0));
1394 if (lpc_bridge && !object_dynamic_cast(OBJECT(lpc_bridge),
1395 "vfio-pci-igd-lpc-bridge")) {
1396 error_report("IGD device %s cannot support legacy mode due to existing "
1397 "devices at address 1f.0", vdev->vbasedev.name);
1402 * IGD is not a standard, they like to change their specs often. We
1403 * only attempt to support back to SandBridge and we hope that newer
1404 * devices maintain compatibility with generation 8.
1406 gen = igd_gen(vdev);
1407 if (gen != 6 && gen != 8) {
1408 error_report("IGD device %s is unsupported in legacy mode, "
1409 "try SandyBridge or newer", vdev->vbasedev.name);
1414 * Most of what we're doing here is to enable the ROM to run, so if
1415 * there's no ROM, there's no point in setting up this quirk.
1416 * NB. We only seem to get BIOS ROMs, so a UEFI VM would need CSM support.
1418 ret = vfio_get_region_info(&vdev->vbasedev,
1419 VFIO_PCI_ROM_REGION_INDEX, &rom);
1420 if ((ret || !rom->size) && !vdev->pdev.romfile) {
1421 error_report("IGD device %s has no ROM, legacy mode disabled",
1422 vdev->vbasedev.name);
1427 * Ignore the hotplug corner case, mark the ROM failed, we can't
1428 * create the devices we need for legacy mode in the hotplug scenario.
1430 if (vdev->pdev.qdev.hotplugged) {
1431 error_report("IGD device %s hotplugged, ROM disabled, "
1432 "legacy mode disabled", vdev->vbasedev.name);
1433 vdev->rom_read_failed = true;
1438 * Check whether we have all the vfio device specific regions to
1439 * support legacy mode (added in Linux v4.6). If not, bail.
1441 ret = vfio_get_dev_region_info(&vdev->vbasedev,
1442 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1443 VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &opregion);
1445 error_report("IGD device %s does not support OpRegion access,"
1446 "legacy mode disabled", vdev->vbasedev.name);
1450 ret = vfio_get_dev_region_info(&vdev->vbasedev,
1451 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1452 VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG, &host);
1454 error_report("IGD device %s does not support host bridge access,"
1455 "legacy mode disabled", vdev->vbasedev.name);
1459 ret = vfio_get_dev_region_info(&vdev->vbasedev,
1460 VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1461 VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG, &lpc);
1463 error_report("IGD device %s does not support LPC bridge access,"
1464 "legacy mode disabled", vdev->vbasedev.name);
1468 gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, 4);
1471 * If IGD VGA Disable is clear (expected) and VGA is not already enabled,
1472 * try to enable it. Probably shouldn't be using legacy mode without VGA,
1473 * but also no point in us enabling VGA if disabled in hardware.
1475 if (!(gmch & 0x2) && !vdev->vga && vfio_populate_vga(vdev, &err)) {
1476 error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name);
1477 error_report("IGD device %s failed to enable VGA access, "
1478 "legacy mode disabled", vdev->vbasedev.name);
1482 /* Create our LPC/ISA bridge */
1483 ret = vfio_pci_igd_lpc_init(vdev, lpc);
1485 error_report("IGD device %s failed to create LPC bridge, "
1486 "legacy mode disabled", vdev->vbasedev.name);
1490 /* Stuff some host values into the VM PCI host bridge */
1491 ret = vfio_pci_igd_host_init(vdev, host);
1493 error_report("IGD device %s failed to modify host bridge, "
1494 "legacy mode disabled", vdev->vbasedev.name);
1498 /* Setup OpRegion access */
1499 ret = vfio_pci_igd_opregion_init(vdev, opregion, &err);
1501 error_append_hint(&err, "IGD legacy mode disabled\n");
1502 error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name);
1506 /* Setup our quirk to munge GTT addresses to the VM allocated buffer */
1507 quirk = g_malloc0(sizeof(*quirk));
1508 quirk->mem = g_new0(MemoryRegion, 2);
1510 igd = quirk->data = g_malloc0(sizeof(*igd));
1513 igd->bdsm = vfio_pci_read_config(&vdev->pdev, IGD_BDSM, 4);
1514 igd->bdsm &= ~((1 << 20) - 1); /* 1MB aligned */
1516 memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_igd_index_quirk,
1517 igd, "vfio-igd-index-quirk", 4);
1518 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1519 0, &quirk->mem[0], 1);
1521 memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_igd_data_quirk,
1522 igd, "vfio-igd-data-quirk", 4);
1523 memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1524 4, &quirk->mem[1], 1);
1526 QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1528 /* Determine the size of stolen memory needed for GTT */
1529 ggms_mb = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
1531 ggms_mb = 1 << ggms_mb;
1535 * Assume we have no GMS memory, but allow it to be overrided by device
1536 * option (experimental). The spec doesn't actually allow zero GMS when
1537 * when IVD (IGD VGA Disable) is clear, but the claim is that it's unused,
1538 * so let's not waste VM memory for it.
1540 gmch &= ~((gen < 8 ? 0x1f : 0xff) << (gen < 8 ? 3 : 8));
1542 if (vdev->igd_gms) {
1543 if (vdev->igd_gms <= 0x10) {
1544 gms_mb = vdev->igd_gms * 32;
1545 gmch |= vdev->igd_gms << (gen < 8 ? 3 : 8);
1547 error_report("Unsupported IGD GMS value 0x%x", vdev->igd_gms);
1553 * Request reserved memory for stolen memory via fw_cfg. VM firmware
1554 * must allocate a 1MB aligned reserved memory region below 4GB with
1555 * the requested size (in bytes) for use by the Intel PCI class VGA
1556 * device at VM address 00:02.0. The base address of this reserved
1557 * memory region must be written to the device BDSM regsiter at PCI
1558 * config offset 0x5C.
1560 bdsm_size = g_malloc(sizeof(*bdsm_size));
1561 *bdsm_size = cpu_to_le64((ggms_mb + gms_mb) * 1024 * 1024);
1562 fw_cfg_add_file(fw_cfg_find(), "etc/igd-bdsm-size",
1563 bdsm_size, sizeof(*bdsm_size));
1565 /* GMCH is read-only, emulated */
1566 pci_set_long(vdev->pdev.config + IGD_GMCH, gmch);
1567 pci_set_long(vdev->pdev.wmask + IGD_GMCH, 0);
1568 pci_set_long(vdev->emulated_config_bits + IGD_GMCH, ~0);
1570 /* BDSM is read-write, emulated. The BIOS needs to be able to write it */
1571 pci_set_long(vdev->pdev.config + IGD_BDSM, 0);
1572 pci_set_long(vdev->pdev.wmask + IGD_BDSM, ~0);
1573 pci_set_long(vdev->emulated_config_bits + IGD_BDSM, ~0);
1576 * This IOBAR gives us access to GTTADR, which allows us to write to
1577 * the GTT itself. So let's go ahead and write zero to all the GTT
1578 * entries to avoid spurious DMA faults. Be sure I/O access is enabled
1579 * before talking to the device.
1581 if (pread(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
1582 vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
1583 error_report("IGD device %s - failed to read PCI command register",
1584 vdev->vbasedev.name);
1587 cmd = cmd_orig | PCI_COMMAND_IO;
1589 if (pwrite(vdev->vbasedev.fd, &cmd, sizeof(cmd),
1590 vdev->config_offset + PCI_COMMAND) != sizeof(cmd)) {
1591 error_report("IGD device %s - failed to write PCI command register",
1592 vdev->vbasedev.name);
1595 for (i = 1; i < vfio_igd_gtt_max(vdev); i += 4) {
1596 vfio_region_write(&vdev->bars[4].region, 0, i, 4);
1597 vfio_region_write(&vdev->bars[4].region, 4, 0, 4);
1600 if (pwrite(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
1601 vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
1602 error_report("IGD device %s - failed to restore PCI command register",
1603 vdev->vbasedev.name);
1606 trace_vfio_pci_igd_bdsm_enabled(vdev->vbasedev.name, ggms_mb + gms_mb);
1616 * Common quirk probe entry points.
1618 void vfio_vga_quirk_setup(VFIOPCIDevice *vdev)
1620 vfio_vga_probe_ati_3c3_quirk(vdev);
1621 vfio_vga_probe_nvidia_3d0_quirk(vdev);
1624 void vfio_vga_quirk_exit(VFIOPCIDevice *vdev)
1629 for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1630 QLIST_FOREACH(quirk, &vdev->vga->region[i].quirks, next) {
1631 for (j = 0; j < quirk->nr_mem; j++) {
1632 memory_region_del_subregion(&vdev->vga->region[i].mem,
1639 void vfio_vga_quirk_finalize(VFIOPCIDevice *vdev)
1643 for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1644 while (!QLIST_EMPTY(&vdev->vga->region[i].quirks)) {
1645 VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga->region[i].quirks);
1646 QLIST_REMOVE(quirk, next);
1647 for (j = 0; j < quirk->nr_mem; j++) {
1648 object_unparent(OBJECT(&quirk->mem[j]));
1651 g_free(quirk->data);
1657 void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr)
1659 vfio_probe_ati_bar4_quirk(vdev, nr);
1660 vfio_probe_ati_bar2_quirk(vdev, nr);
1661 vfio_probe_nvidia_bar5_quirk(vdev, nr);
1662 vfio_probe_nvidia_bar0_quirk(vdev, nr);
1663 vfio_probe_rtl8168_bar2_quirk(vdev, nr);
1664 vfio_probe_igd_bar4_quirk(vdev, nr);
1667 void vfio_bar_quirk_exit(VFIOPCIDevice *vdev, int nr)
1669 VFIOBAR *bar = &vdev->bars[nr];
1673 QLIST_FOREACH(quirk, &bar->quirks, next) {
1674 for (i = 0; i < quirk->nr_mem; i++) {
1675 memory_region_del_subregion(bar->region.mem, &quirk->mem[i]);
1680 void vfio_bar_quirk_finalize(VFIOPCIDevice *vdev, int nr)
1682 VFIOBAR *bar = &vdev->bars[nr];
1685 while (!QLIST_EMPTY(&bar->quirks)) {
1686 VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks);
1687 QLIST_REMOVE(quirk, next);
1688 for (i = 0; i < quirk->nr_mem; i++) {
1689 object_unparent(OBJECT(&quirk->mem[i]));
1692 g_free(quirk->data);
1702 * AMD Radeon PCI config reset, based on Linux:
1703 * drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running()
1704 * drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset
1705 * drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc()
1706 * drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock()
1707 * IDs: include/drm/drm_pciids.h
1708 * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0
1710 * Bonaire and Hawaii GPUs do not respond to a bus reset. This is a bug in the
1711 * hardware that should be fixed on future ASICs. The symptom of this is that
1712 * once the accerlated driver loads, Windows guests will bsod on subsequent
1713 * attmpts to load the driver, such as after VM reset or shutdown/restart. To
1714 * work around this, we do an AMD specific PCI config reset, followed by an SMC
1715 * reset. The PCI config reset only works if SMC firmware is running, so we
1716 * have a dependency on the state of the device as to whether this reset will
1717 * be effective. There are still cases where we won't be able to kick the
1718 * device into working, but this greatly improves the usability overall. The
1719 * config reset magic is relatively common on AMD GPUs, but the setup and SMC
1720 * poking is largely ASIC specific.
1722 static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev)
1727 * Registers 200h and 204h are index and data registers for accessing
1728 * indirect configuration registers within the device.
1730 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
1731 clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1732 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4);
1733 pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1735 return (!(clk & 1) && (0x20100 <= pc_c));
1739 * The scope of a config reset is controlled by a mode bit in the misc register
1740 * and a fuse, exposed as a bit in another register. The fuse is the default
1741 * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the forumula
1742 * scope = !(misc ^ fuse), where the resulting scope is defined the same as
1743 * the fuse. A truth table therefore tells us that if misc == fuse, we need
1744 * to flip the value of the bit in the misc register.
1746 static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev)
1748 uint32_t misc, fuse;
1751 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4);
1752 fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1755 vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4);
1756 misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1760 vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4);
1761 vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */
1765 static int vfio_radeon_reset(VFIOPCIDevice *vdev)
1767 PCIDevice *pdev = &vdev->pdev;
1771 /* Defer to a kernel implemented reset */
1772 if (vdev->vbasedev.reset_works) {
1773 trace_vfio_quirk_ati_bonaire_reset_skipped(vdev->vbasedev.name);
1777 /* Enable only memory BAR access */
1778 vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2);
1780 /* Reset only works if SMC firmware is loaded and running */
1781 if (!vfio_radeon_smc_is_running(vdev)) {
1783 trace_vfio_quirk_ati_bonaire_reset_no_smc(vdev->vbasedev.name);
1787 /* Make sure only the GFX function is reset */
1788 vfio_radeon_set_gfx_only_reset(vdev);
1790 /* AMD PCI config reset */
1791 vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4);
1794 /* Read back the memory size to make sure we're out of reset */
1795 for (i = 0; i < 100000; i++) {
1796 if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) {
1802 trace_vfio_quirk_ati_bonaire_reset_timeout(vdev->vbasedev.name);
1806 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4);
1807 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1809 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
1811 /* Disable SMC clock */
1812 vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
1813 data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1815 vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
1817 trace_vfio_quirk_ati_bonaire_reset_done(vdev->vbasedev.name);
1820 /* Restore PCI command register */
1821 vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2);
1826 void vfio_setup_resetfn_quirk(VFIOPCIDevice *vdev)
1828 switch (vdev->vendor_id) {
1830 switch (vdev->device_id) {
1832 case 0x6649: /* Bonaire [FirePro W5100] */
1835 case 0x6658: /* Bonaire XTX [Radeon R7 260X] */
1836 case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */
1837 case 0x665d: /* Bonaire [Radeon R7 200 Series] */
1839 case 0x67A0: /* Hawaii XT GL [FirePro W9100] */
1840 case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */
1845 case 0x67B0: /* Hawaii XT [Radeon R9 290X] */
1846 case 0x67B1: /* Hawaii PRO [Radeon R9 290] */
1851 vdev->resetfn = vfio_radeon_reset;
1852 trace_vfio_quirk_ati_bonaire_reset(vdev->vbasedev.name);
1860 * The NVIDIA GPUDirect P2P Vendor capability allows the user to specify
1861 * devices as a member of a clique. Devices within the same clique ID
1862 * are capable of direct P2P. It's the user's responsibility that this
1863 * is correct. The spec says that this may reside at any unused config
1864 * offset, but reserves and recommends hypervisors place this at C8h.
1865 * The spec also states that the hypervisor should place this capability
1866 * at the end of the capability list, thus next is defined as 0h.
1868 * +----------------+----------------+----------------+----------------+
1869 * | sig 7:0 ('P') | vndr len (8h) | next (0h) | cap id (9h) |
1870 * +----------------+----------------+----------------+----------------+
1871 * | rsvd 15:7(0h),id 6:3,ver 2:0(0h)| sig 23:8 ('P2') |
1872 * +---------------------------------+---------------------------------+
1874 * https://lists.gnu.org/archive/html/qemu-devel/2017-08/pdfUda5iEpgOS.pdf
1876 static void get_nv_gpudirect_clique_id(Object *obj, Visitor *v,
1877 const char *name, void *opaque,
1880 DeviceState *dev = DEVICE(obj);
1881 Property *prop = opaque;
1882 uint8_t *ptr = qdev_get_prop_ptr(dev, prop);
1884 visit_type_uint8(v, name, ptr, errp);
1887 static void set_nv_gpudirect_clique_id(Object *obj, Visitor *v,
1888 const char *name, void *opaque,
1891 DeviceState *dev = DEVICE(obj);
1892 Property *prop = opaque;
1893 uint8_t value, *ptr = qdev_get_prop_ptr(dev, prop);
1894 Error *local_err = NULL;
1896 if (dev->realized) {
1897 qdev_prop_set_after_realize(dev, name, errp);
1901 visit_type_uint8(v, name, &value, &local_err);
1903 error_propagate(errp, local_err);
1908 error_setg(errp, "Property %s: valid range 0-15", name);
1915 const PropertyInfo qdev_prop_nv_gpudirect_clique = {
1917 .description = "NVIDIA GPUDirect Clique ID (0 - 15)",
1918 .get = get_nv_gpudirect_clique_id,
1919 .set = set_nv_gpudirect_clique_id,
1922 static int vfio_add_nv_gpudirect_cap(VFIOPCIDevice *vdev, Error **errp)
1924 PCIDevice *pdev = &vdev->pdev;
1925 int ret, pos = 0xC8;
1927 if (vdev->nv_gpudirect_clique == 0xFF) {
1931 if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID)) {
1932 error_setg(errp, "NVIDIA GPUDirect Clique ID: invalid device vendor");
1936 if (pci_get_byte(pdev->config + PCI_CLASS_DEVICE + 1) !=
1937 PCI_BASE_CLASS_DISPLAY) {
1938 error_setg(errp, "NVIDIA GPUDirect Clique ID: unsupported PCI class");
1942 ret = pci_add_capability(pdev, PCI_CAP_ID_VNDR, pos, 8, errp);
1944 error_prepend(errp, "Failed to add NVIDIA GPUDirect cap: ");
1948 memset(vdev->emulated_config_bits + pos, 0xFF, 8);
1949 pos += PCI_CAP_FLAGS;
1950 pci_set_byte(pdev->config + pos++, 8);
1951 pci_set_byte(pdev->config + pos++, 'P');
1952 pci_set_byte(pdev->config + pos++, '2');
1953 pci_set_byte(pdev->config + pos++, 'P');
1954 pci_set_byte(pdev->config + pos++, vdev->nv_gpudirect_clique << 3);
1955 pci_set_byte(pdev->config + pos, 0);
1960 int vfio_add_virt_caps(VFIOPCIDevice *vdev, Error **errp)
1964 ret = vfio_add_nv_gpudirect_cap(vdev, errp);