2 * RISC-V CPU helpers for qemu.
5 * Copyright (c) 2017-2018 SiFive, Inc.
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "qemu/main-loop.h"
24 #include "exec/exec-all.h"
25 #include "tcg/tcg-op.h"
27 #include "semihosting/common-semi.h"
29 int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
31 #ifdef CONFIG_USER_ONLY
38 #ifndef CONFIG_USER_ONLY
39 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
43 target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
44 target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
45 target_ulong hs_mstatus_sie = get_field(env->mstatus_hs, MSTATUS_SIE);
47 target_ulong pending = env->mip & env->mie &
48 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
49 target_ulong vspending = (env->mip & env->mie &
50 (MIP_VSSIP | MIP_VSTIP | MIP_VSEIP));
52 target_ulong mie = env->priv < PRV_M ||
53 (env->priv == PRV_M && mstatus_mie);
54 target_ulong sie = env->priv < PRV_S ||
55 (env->priv == PRV_S && mstatus_sie);
56 target_ulong hs_sie = env->priv < PRV_S ||
57 (env->priv == PRV_S && hs_mstatus_sie);
59 if (riscv_cpu_virt_enabled(env)) {
60 target_ulong pending_hs_irq = pending & -hs_sie;
63 riscv_cpu_set_force_hs_excep(env, FORCE_HS_EXCEP);
64 return ctz64(pending_hs_irq);
70 irqs = (pending & ~env->mideleg & -mie) | (pending & env->mideleg & -sie);
73 return ctz64(irqs); /* since non-zero */
75 return RISCV_EXCP_NONE; /* indicates no pending interrupt */
80 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
82 #if !defined(CONFIG_USER_ONLY)
83 if (interrupt_request & CPU_INTERRUPT_HARD) {
84 RISCVCPU *cpu = RISCV_CPU(cs);
85 CPURISCVState *env = &cpu->env;
86 int interruptno = riscv_cpu_local_irq_pending(env);
87 if (interruptno >= 0) {
88 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
89 riscv_cpu_do_interrupt(cs);
97 #if !defined(CONFIG_USER_ONLY)
99 /* Return true is floating point support is currently enabled */
100 bool riscv_cpu_fp_enabled(CPURISCVState *env)
102 if (env->mstatus & MSTATUS_FS) {
103 if (riscv_cpu_virt_enabled(env) && !(env->mstatus_hs & MSTATUS_FS)) {
112 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
114 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | MSTATUS_FS |
115 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
117 bool current_virt = riscv_cpu_virt_enabled(env);
119 g_assert(riscv_has_ext(env, RVH));
122 /* Current V=1 and we are about to change to V=0 */
123 env->vsstatus = env->mstatus & mstatus_mask;
124 env->mstatus &= ~mstatus_mask;
125 env->mstatus |= env->mstatus_hs;
127 env->vstvec = env->stvec;
128 env->stvec = env->stvec_hs;
130 env->vsscratch = env->sscratch;
131 env->sscratch = env->sscratch_hs;
133 env->vsepc = env->sepc;
134 env->sepc = env->sepc_hs;
136 env->vscause = env->scause;
137 env->scause = env->scause_hs;
139 env->vstval = env->stval;
140 env->stval = env->stval_hs;
142 env->vsatp = env->satp;
143 env->satp = env->satp_hs;
145 /* Current V=0 and we are about to change to V=1 */
146 env->mstatus_hs = env->mstatus & mstatus_mask;
147 env->mstatus &= ~mstatus_mask;
148 env->mstatus |= env->vsstatus;
150 env->stvec_hs = env->stvec;
151 env->stvec = env->vstvec;
153 env->sscratch_hs = env->sscratch;
154 env->sscratch = env->vsscratch;
156 env->sepc_hs = env->sepc;
157 env->sepc = env->vsepc;
159 env->scause_hs = env->scause;
160 env->scause = env->vscause;
162 env->stval_hs = env->stval;
163 env->stval = env->vstval;
165 env->satp_hs = env->satp;
166 env->satp = env->vsatp;
170 bool riscv_cpu_virt_enabled(CPURISCVState *env)
172 if (!riscv_has_ext(env, RVH)) {
176 return get_field(env->virt, VIRT_ONOFF);
179 void riscv_cpu_set_virt_enabled(CPURISCVState *env, bool enable)
181 if (!riscv_has_ext(env, RVH)) {
185 /* Flush the TLB on all virt mode changes. */
186 if (get_field(env->virt, VIRT_ONOFF) != enable) {
187 tlb_flush(env_cpu(env));
190 env->virt = set_field(env->virt, VIRT_ONOFF, enable);
193 bool riscv_cpu_force_hs_excep_enabled(CPURISCVState *env)
195 if (!riscv_has_ext(env, RVH)) {
199 return get_field(env->virt, FORCE_HS_EXCEP);
202 void riscv_cpu_set_force_hs_excep(CPURISCVState *env, bool enable)
204 if (!riscv_has_ext(env, RVH)) {
208 env->virt = set_field(env->virt, FORCE_HS_EXCEP, enable);
211 bool riscv_cpu_two_stage_lookup(int mmu_idx)
213 return mmu_idx & TB_FLAGS_PRIV_HYP_ACCESS_MASK;
216 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
218 CPURISCVState *env = &cpu->env;
219 if (env->miclaim & interrupts) {
222 env->miclaim |= interrupts;
227 uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
229 CPURISCVState *env = &cpu->env;
230 CPUState *cs = CPU(cpu);
231 uint32_t old = env->mip;
234 if (!qemu_mutex_iothread_locked()) {
236 qemu_mutex_lock_iothread();
239 env->mip = (env->mip & ~mask) | (value & mask);
242 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
244 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
248 qemu_mutex_unlock_iothread();
254 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(uint32_t),
258 env->rdtime_fn_arg = arg;
261 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
263 if (newpriv > PRV_M) {
264 g_assert_not_reached();
266 if (newpriv == PRV_H) {
269 /* tlb_flush is unnecessary as mode is contained in mmu_idx */
273 * Clear the load reservation - otherwise a reservation placed in one
274 * context/process can be used by another, resulting in an SC succeeding
275 * incorrectly. Version 2.2 of the ISA specification explicitly requires
276 * this behaviour, while later revisions say that the kernel "should" use
277 * an SC instruction to force the yielding of a load reservation on a
278 * preemptive context switch. As a result, do both.
284 * get_physical_address_pmp - check PMP permission for this physical address
286 * Match the PMP region and check permission for this physical address and it's
287 * TLB page. Returns 0 if the permission checking was successful
289 * @env: CPURISCVState
290 * @prot: The returned protection attributes
291 * @tlb_size: TLB page size containing addr. It could be modified after PMP
292 * permission checking. NULL if not set TLB page for addr.
293 * @addr: The physical address to be checked permission
294 * @access_type: The type of MMU access
295 * @mode: Indicates current privilege level.
297 static int get_physical_address_pmp(CPURISCVState *env, int *prot,
298 target_ulong *tlb_size, hwaddr addr,
299 int size, MMUAccessType access_type,
303 target_ulong tlb_size_pmp = 0;
305 if (!riscv_feature(env, RISCV_FEATURE_PMP)) {
306 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
307 return TRANSLATE_SUCCESS;
310 if (!pmp_hart_has_privs(env, addr, size, 1 << access_type, &pmp_priv,
313 return TRANSLATE_PMP_FAIL;
316 *prot = pmp_priv_to_page_prot(pmp_priv);
317 if (tlb_size != NULL) {
318 if (pmp_is_range_in_tlb(env, addr & ~(*tlb_size - 1), &tlb_size_pmp)) {
319 *tlb_size = tlb_size_pmp;
323 return TRANSLATE_SUCCESS;
326 /* get_physical_address - get the physical address for this virtual address
328 * Do a page table walk to obtain the physical address corresponding to a
329 * virtual address. Returns 0 if the translation was successful
331 * Adapted from Spike's mmu_t::translate and mmu_t::walk
333 * @env: CPURISCVState
334 * @physical: This will be set to the calculated physical address
335 * @prot: The returned protection attributes
336 * @addr: The virtual address to be translated
337 * @fault_pte_addr: If not NULL, this will be set to fault pte address
338 * when a error occurs on pte address translation.
339 * This will already be shifted to match htval.
340 * @access_type: The type of MMU access
341 * @mmu_idx: Indicates current privilege level
342 * @first_stage: Are we in first stage translation?
343 * Second stage is used for hypervisor guest translation
344 * @two_stage: Are we going to perform two stage translation
345 * @is_debug: Is this access from a debugger or the monitor?
347 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
348 int *prot, target_ulong addr,
349 target_ulong *fault_pte_addr,
350 int access_type, int mmu_idx,
351 bool first_stage, bool two_stage,
354 /* NOTE: the env->pc value visible here will not be
355 * correct, but the value visible to the exception handler
356 * (riscv_cpu_do_interrupt) is correct */
358 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
359 int mode = mmu_idx & TB_FLAGS_PRIV_MMU_MASK;
360 bool use_background = false;
363 * Check if we should use the background registers for the two
364 * stage translation. We don't need to check if we actually need
365 * two stage translation as that happened before this function
366 * was called. Background registers will be used if the guest has
367 * forced a two stage translation to be on (in HS or M mode).
369 if (!riscv_cpu_virt_enabled(env) && two_stage) {
370 use_background = true;
373 /* MPRV does not affect the virtual-machine load/store
374 instructions, HLV, HLVX, and HSV. */
375 if (riscv_cpu_two_stage_lookup(mmu_idx)) {
376 mode = get_field(env->hstatus, HSTATUS_SPVP);
377 } else if (mode == PRV_M && access_type != MMU_INST_FETCH) {
378 if (get_field(env->mstatus, MSTATUS_MPRV)) {
379 mode = get_field(env->mstatus, MSTATUS_MPP);
383 if (first_stage == false) {
384 /* We are in stage 2 translation, this is similar to stage 1. */
385 /* Stage 2 is always taken as U-mode */
389 if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
391 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
392 return TRANSLATE_SUCCESS;
398 int levels, ptidxbits, ptesize, vm, sum, mxr, widened;
400 if (first_stage == true) {
401 mxr = get_field(env->mstatus, MSTATUS_MXR);
403 mxr = get_field(env->vsstatus, MSTATUS_MXR);
406 if (first_stage == true) {
407 if (use_background) {
408 base = (hwaddr)get_field(env->vsatp, SATP_PPN) << PGSHIFT;
409 vm = get_field(env->vsatp, SATP_MODE);
411 base = (hwaddr)get_field(env->satp, SATP_PPN) << PGSHIFT;
412 vm = get_field(env->satp, SATP_MODE);
416 base = (hwaddr)get_field(env->hgatp, HGATP_PPN) << PGSHIFT;
417 vm = get_field(env->hgatp, HGATP_MODE);
420 /* status.SUM will be ignored if execute on background */
421 sum = get_field(env->mstatus, MSTATUS_SUM) || use_background || is_debug;
424 levels = 2; ptidxbits = 10; ptesize = 4; break;
426 levels = 3; ptidxbits = 9; ptesize = 8; break;
428 levels = 4; ptidxbits = 9; ptesize = 8; break;
430 levels = 5; ptidxbits = 9; ptesize = 8; break;
433 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
434 return TRANSLATE_SUCCESS;
436 g_assert_not_reached();
439 CPUState *cs = env_cpu(env);
440 int va_bits = PGSHIFT + levels * ptidxbits + widened;
441 target_ulong mask, masked_msbs;
443 if (TARGET_LONG_BITS > (va_bits - 1)) {
444 mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
448 masked_msbs = (addr >> (va_bits - 1)) & mask;
450 if (masked_msbs != 0 && masked_msbs != mask) {
451 return TRANSLATE_FAIL;
454 int ptshift = (levels - 1) * ptidxbits;
457 #if !TCG_OVERSIZED_GUEST
460 for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
463 idx = (addr >> (PGSHIFT + ptshift)) &
464 ((1 << (ptidxbits + widened)) - 1);
466 idx = (addr >> (PGSHIFT + ptshift)) &
467 ((1 << ptidxbits) - 1);
470 /* check that physical address of PTE is legal */
473 if (two_stage && first_stage) {
477 /* Do the second stage translation on the base PTE address. */
478 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
479 base, NULL, MMU_DATA_LOAD,
480 mmu_idx, false, true,
483 if (vbase_ret != TRANSLATE_SUCCESS) {
484 if (fault_pte_addr) {
485 *fault_pte_addr = (base + idx * ptesize) >> 2;
487 return TRANSLATE_G_STAGE_FAIL;
490 pte_addr = vbase + idx * ptesize;
492 pte_addr = base + idx * ptesize;
496 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, NULL, pte_addr,
497 sizeof(target_ulong),
498 MMU_DATA_LOAD, PRV_S);
499 if (pmp_ret != TRANSLATE_SUCCESS) {
500 return TRANSLATE_PMP_FAIL;
504 if (riscv_cpu_is_32bit(env)) {
505 pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
507 pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
510 if (res != MEMTX_OK) {
511 return TRANSLATE_FAIL;
514 hwaddr ppn = pte >> PTE_PPN_SHIFT;
516 if (!(pte & PTE_V)) {
518 return TRANSLATE_FAIL;
519 } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
520 /* Inner PTE, continue walking */
521 base = ppn << PGSHIFT;
522 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
523 /* Reserved leaf PTE flags: PTE_W */
524 return TRANSLATE_FAIL;
525 } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
526 /* Reserved leaf PTE flags: PTE_W + PTE_X */
527 return TRANSLATE_FAIL;
528 } else if ((pte & PTE_U) && ((mode != PRV_U) &&
529 (!sum || access_type == MMU_INST_FETCH))) {
530 /* User PTE flags when not U mode and mstatus.SUM is not set,
531 or the access type is an instruction fetch */
532 return TRANSLATE_FAIL;
533 } else if (!(pte & PTE_U) && (mode != PRV_S)) {
534 /* Supervisor PTE flags when not S mode */
535 return TRANSLATE_FAIL;
536 } else if (ppn & ((1ULL << ptshift) - 1)) {
538 return TRANSLATE_FAIL;
539 } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
540 ((pte & PTE_X) && mxr))) {
541 /* Read access check failed */
542 return TRANSLATE_FAIL;
543 } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
544 /* Write access check failed */
545 return TRANSLATE_FAIL;
546 } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
547 /* Fetch access check failed */
548 return TRANSLATE_FAIL;
550 /* if necessary, set accessed and dirty bits. */
551 target_ulong updated_pte = pte | PTE_A |
552 (access_type == MMU_DATA_STORE ? PTE_D : 0);
554 /* Page table updates need to be atomic with MTTCG enabled */
555 if (updated_pte != pte) {
557 * - if accessed or dirty bits need updating, and the PTE is
558 * in RAM, then we do so atomically with a compare and swap.
559 * - if the PTE is in IO space or ROM, then it can't be updated
560 * and we return TRANSLATE_FAIL.
561 * - if the PTE changed by the time we went to update it, then
562 * it is no longer valid and we must re-walk the page table.
565 hwaddr l = sizeof(target_ulong), addr1;
566 mr = address_space_translate(cs->as, pte_addr,
567 &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
568 if (memory_region_is_ram(mr)) {
569 target_ulong *pte_pa =
570 qemu_map_ram_ptr(mr->ram_block, addr1);
571 #if TCG_OVERSIZED_GUEST
572 /* MTTCG is not enabled on oversized TCG guests so
573 * page table updates do not need to be atomic */
574 *pte_pa = pte = updated_pte;
576 target_ulong old_pte =
577 qatomic_cmpxchg(pte_pa, pte, updated_pte);
578 if (old_pte != pte) {
585 /* misconfigured PTE in ROM (AD bits are not preset) or
586 * PTE is in IO space and can't be updated atomically */
587 return TRANSLATE_FAIL;
591 /* for superpage mappings, make a fake leaf PTE for the TLB's
593 target_ulong vpn = addr >> PGSHIFT;
594 *physical = ((ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT) |
595 (addr & ~TARGET_PAGE_MASK);
597 /* set permissions on the TLB entry */
598 if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
604 /* add write permission on stores or if the page is already dirty,
605 so that we TLB miss on later writes to update the dirty bit */
607 (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
610 return TRANSLATE_SUCCESS;
613 return TRANSLATE_FAIL;
616 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
617 MMUAccessType access_type, bool pmp_violation,
618 bool first_stage, bool two_stage)
620 CPUState *cs = env_cpu(env);
621 int page_fault_exceptions;
623 page_fault_exceptions =
624 get_field(env->satp, SATP_MODE) != VM_1_10_MBARE &&
627 page_fault_exceptions =
628 get_field(env->hgatp, HGATP_MODE) != VM_1_10_MBARE &&
631 switch (access_type) {
633 if (riscv_cpu_virt_enabled(env) && !first_stage) {
634 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
636 cs->exception_index = page_fault_exceptions ?
637 RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
641 if (two_stage && !first_stage) {
642 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
644 cs->exception_index = page_fault_exceptions ?
645 RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
649 if (two_stage && !first_stage) {
650 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
652 cs->exception_index = page_fault_exceptions ?
653 RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
657 g_assert_not_reached();
659 env->badaddr = address;
660 env->two_stage_lookup = two_stage;
663 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
665 RISCVCPU *cpu = RISCV_CPU(cs);
666 CPURISCVState *env = &cpu->env;
669 int mmu_idx = cpu_mmu_index(&cpu->env, false);
671 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
672 true, riscv_cpu_virt_enabled(env), true)) {
676 if (riscv_cpu_virt_enabled(env)) {
677 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
678 0, mmu_idx, false, true, true)) {
683 return phys_addr & TARGET_PAGE_MASK;
686 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
687 vaddr addr, unsigned size,
688 MMUAccessType access_type,
689 int mmu_idx, MemTxAttrs attrs,
690 MemTxResult response, uintptr_t retaddr)
692 RISCVCPU *cpu = RISCV_CPU(cs);
693 CPURISCVState *env = &cpu->env;
695 if (access_type == MMU_DATA_STORE) {
696 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
698 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
702 env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
703 riscv_cpu_two_stage_lookup(mmu_idx);
704 riscv_raise_exception(&cpu->env, cs->exception_index, retaddr);
707 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
708 MMUAccessType access_type, int mmu_idx,
711 RISCVCPU *cpu = RISCV_CPU(cs);
712 CPURISCVState *env = &cpu->env;
713 switch (access_type) {
715 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
718 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
721 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
724 g_assert_not_reached();
727 env->two_stage_lookup = riscv_cpu_virt_enabled(env) ||
728 riscv_cpu_two_stage_lookup(mmu_idx);
729 riscv_raise_exception(env, cs->exception_index, retaddr);
731 #endif /* !CONFIG_USER_ONLY */
733 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
734 MMUAccessType access_type, int mmu_idx,
735 bool probe, uintptr_t retaddr)
737 RISCVCPU *cpu = RISCV_CPU(cs);
738 CPURISCVState *env = &cpu->env;
739 #ifndef CONFIG_USER_ONLY
742 int prot, prot2, prot_pmp;
743 bool pmp_violation = false;
744 bool first_stage_error = true;
745 bool two_stage_lookup = false;
746 int ret = TRANSLATE_FAIL;
748 /* default TLB page size */
749 target_ulong tlb_size = TARGET_PAGE_SIZE;
751 env->guest_phys_fault_addr = 0;
753 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
754 __func__, address, access_type, mmu_idx);
756 /* MPRV does not affect the virtual-machine load/store
757 instructions, HLV, HLVX, and HSV. */
758 if (riscv_cpu_two_stage_lookup(mmu_idx)) {
759 mode = get_field(env->hstatus, HSTATUS_SPVP);
760 } else if (mode == PRV_M && access_type != MMU_INST_FETCH &&
761 get_field(env->mstatus, MSTATUS_MPRV)) {
762 mode = get_field(env->mstatus, MSTATUS_MPP);
763 if (riscv_has_ext(env, RVH) && get_field(env->mstatus, MSTATUS_MPV)) {
764 two_stage_lookup = true;
768 if (riscv_cpu_virt_enabled(env) ||
769 ((riscv_cpu_two_stage_lookup(mmu_idx) || two_stage_lookup) &&
770 access_type != MMU_INST_FETCH)) {
771 /* Two stage lookup */
772 ret = get_physical_address(env, &pa, &prot, address,
773 &env->guest_phys_fault_addr, access_type,
774 mmu_idx, true, true, false);
777 * A G-stage exception may be triggered during two state lookup.
778 * And the env->guest_phys_fault_addr has already been set in
779 * get_physical_address().
781 if (ret == TRANSLATE_G_STAGE_FAIL) {
782 first_stage_error = false;
783 access_type = MMU_DATA_LOAD;
786 qemu_log_mask(CPU_LOG_MMU,
787 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
788 TARGET_FMT_plx " prot %d\n",
789 __func__, address, ret, pa, prot);
791 if (ret == TRANSLATE_SUCCESS) {
792 /* Second stage lookup */
795 ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
796 access_type, mmu_idx, false, true,
799 qemu_log_mask(CPU_LOG_MMU,
800 "%s 2nd-stage address=%" VADDR_PRIx " ret %d physical "
801 TARGET_FMT_plx " prot %d\n",
802 __func__, im_address, ret, pa, prot2);
806 if (ret == TRANSLATE_SUCCESS) {
807 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
808 size, access_type, mode);
810 qemu_log_mask(CPU_LOG_MMU,
811 "%s PMP address=" TARGET_FMT_plx " ret %d prot"
812 " %d tlb_size " TARGET_FMT_lu "\n",
813 __func__, pa, ret, prot_pmp, tlb_size);
818 if (ret != TRANSLATE_SUCCESS) {
820 * Guest physical address translation failed, this is a HS
823 first_stage_error = false;
824 env->guest_phys_fault_addr = (im_address |
826 (TARGET_PAGE_SIZE - 1))) >> 2;
830 /* Single stage lookup */
831 ret = get_physical_address(env, &pa, &prot, address, NULL,
832 access_type, mmu_idx, true, false, false);
834 qemu_log_mask(CPU_LOG_MMU,
835 "%s address=%" VADDR_PRIx " ret %d physical "
836 TARGET_FMT_plx " prot %d\n",
837 __func__, address, ret, pa, prot);
839 if (ret == TRANSLATE_SUCCESS) {
840 ret = get_physical_address_pmp(env, &prot_pmp, &tlb_size, pa,
841 size, access_type, mode);
843 qemu_log_mask(CPU_LOG_MMU,
844 "%s PMP address=" TARGET_FMT_plx " ret %d prot"
845 " %d tlb_size " TARGET_FMT_lu "\n",
846 __func__, pa, ret, prot_pmp, tlb_size);
852 if (ret == TRANSLATE_PMP_FAIL) {
853 pmp_violation = true;
856 if (ret == TRANSLATE_SUCCESS) {
857 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
858 prot, mmu_idx, tlb_size);
863 raise_mmu_exception(env, address, access_type, pmp_violation,
865 riscv_cpu_virt_enabled(env) ||
866 riscv_cpu_two_stage_lookup(mmu_idx));
867 riscv_raise_exception(env, cs->exception_index, retaddr);
873 switch (access_type) {
875 cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
878 cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
881 cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
884 g_assert_not_reached();
886 env->badaddr = address;
887 cpu_loop_exit_restore(cs, retaddr);
894 * Adapted from Spike's processor_t::take_trap.
897 void riscv_cpu_do_interrupt(CPUState *cs)
899 #if !defined(CONFIG_USER_ONLY)
901 RISCVCPU *cpu = RISCV_CPU(cs);
902 CPURISCVState *env = &cpu->env;
903 bool force_hs_execp = riscv_cpu_force_hs_excep_enabled(env);
906 /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
907 * so we mask off the MSB and separate into trap type and cause.
909 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
910 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
911 target_ulong deleg = async ? env->mideleg : env->medeleg;
912 bool write_tval = false;
913 target_ulong tval = 0;
914 target_ulong htval = 0;
915 target_ulong mtval2 = 0;
917 if (cause == RISCV_EXCP_SEMIHOST) {
918 if (env->priv >= PRV_S) {
919 env->gpr[xA0] = do_common_semihosting(cs);
923 cause = RISCV_EXCP_BREAKPOINT;
927 /* set tval to badaddr for traps with address information */
929 case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
930 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
931 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
932 force_hs_execp = true;
934 case RISCV_EXCP_INST_ADDR_MIS:
935 case RISCV_EXCP_INST_ACCESS_FAULT:
936 case RISCV_EXCP_LOAD_ADDR_MIS:
937 case RISCV_EXCP_STORE_AMO_ADDR_MIS:
938 case RISCV_EXCP_LOAD_ACCESS_FAULT:
939 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
940 case RISCV_EXCP_INST_PAGE_FAULT:
941 case RISCV_EXCP_LOAD_PAGE_FAULT:
942 case RISCV_EXCP_STORE_PAGE_FAULT:
949 /* ecall is dispatched as one cause so translate based on mode */
950 if (cause == RISCV_EXCP_U_ECALL) {
951 assert(env->priv <= 3);
953 if (env->priv == PRV_M) {
954 cause = RISCV_EXCP_M_ECALL;
955 } else if (env->priv == PRV_S && riscv_cpu_virt_enabled(env)) {
956 cause = RISCV_EXCP_VS_ECALL;
957 } else if (env->priv == PRV_S && !riscv_cpu_virt_enabled(env)) {
958 cause = RISCV_EXCP_S_ECALL;
959 } else if (env->priv == PRV_U) {
960 cause = RISCV_EXCP_U_ECALL;
965 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
966 riscv_cpu_get_trap_name(cause, async));
968 qemu_log_mask(CPU_LOG_INT,
969 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
970 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
971 __func__, env->mhartid, async, cause, env->pc, tval,
972 riscv_cpu_get_trap_name(cause, async));
974 if (env->priv <= PRV_S &&
975 cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
976 /* handle the trap in S-mode */
977 if (riscv_has_ext(env, RVH)) {
978 target_ulong hdeleg = async ? env->hideleg : env->hedeleg;
980 if (env->two_stage_lookup && write_tval) {
982 * If we are writing a guest virtual address to stval, set
983 * this to 1. If we are trapping to VS we will set this to 0
986 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 1);
988 /* For other HS-mode traps, we set this to 0. */
989 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0);
992 if (riscv_cpu_virt_enabled(env) && ((hdeleg >> cause) & 1) &&
994 /* Trap to VS mode */
996 * See if we need to adjust cause. Yes if its VS mode interrupt
997 * no if hypervisor has delegated one of hs mode's interrupt
999 if (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1000 cause == IRQ_VS_EXT) {
1003 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, 0);
1004 } else if (riscv_cpu_virt_enabled(env)) {
1005 /* Trap into HS mode, from virt */
1006 riscv_cpu_swap_hypervisor_regs(env);
1007 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1009 env->hstatus = set_field(env->hstatus, HSTATUS_SPV,
1010 riscv_cpu_virt_enabled(env));
1012 htval = env->guest_phys_fault_addr;
1014 riscv_cpu_set_virt_enabled(env, 0);
1015 riscv_cpu_set_force_hs_excep(env, 0);
1017 /* Trap into HS mode */
1018 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1019 htval = env->guest_phys_fault_addr;
1024 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
1025 s = set_field(s, MSTATUS_SPP, env->priv);
1026 s = set_field(s, MSTATUS_SIE, 0);
1028 env->scause = cause | ((target_ulong)async << (TARGET_LONG_BITS - 1));
1029 env->sepc = env->pc;
1032 env->pc = (env->stvec >> 2 << 2) +
1033 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
1034 riscv_cpu_set_mode(env, PRV_S);
1036 /* handle the trap in M-mode */
1037 if (riscv_has_ext(env, RVH)) {
1038 if (riscv_cpu_virt_enabled(env)) {
1039 riscv_cpu_swap_hypervisor_regs(env);
1041 env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
1042 riscv_cpu_virt_enabled(env));
1043 if (riscv_cpu_virt_enabled(env) && tval) {
1044 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
1047 mtval2 = env->guest_phys_fault_addr;
1049 /* Trapping to M mode, virt is disabled */
1050 riscv_cpu_set_virt_enabled(env, 0);
1051 riscv_cpu_set_force_hs_excep(env, 0);
1055 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
1056 s = set_field(s, MSTATUS_MPP, env->priv);
1057 s = set_field(s, MSTATUS_MIE, 0);
1059 env->mcause = cause | ~(((target_ulong)-1) >> async);
1060 env->mepc = env->pc;
1062 env->mtval2 = mtval2;
1063 env->pc = (env->mtvec >> 2 << 2) +
1064 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
1065 riscv_cpu_set_mode(env, PRV_M);
1068 /* NOTE: it is not necessary to yield load reservations here. It is only
1069 * necessary for an SC from "another hart" to cause a load reservation
1070 * to be yielded. Refer to the memory consistency model section of the
1071 * RISC-V ISA Specification.
1074 env->two_stage_lookup = false;
1076 cs->exception_index = RISCV_EXCP_NONE; /* mark handled to qemu */