2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
38 #include "hw/fw-path-provider.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "mmu-hash64.h"
50 #include "mmu-book3s-v3.h"
51 #include "cpu-models.h"
54 #include "hw/boards.h"
55 #include "hw/ppc/ppc.h"
56 #include "hw/loader.h"
58 #include "hw/ppc/fdt.h"
59 #include "hw/ppc/spapr.h"
60 #include "hw/ppc/spapr_vio.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/pci-host/spapr.h"
63 #include "hw/pci/msi.h"
65 #include "hw/pci/pci.h"
66 #include "hw/scsi/scsi.h"
67 #include "hw/virtio/virtio-scsi.h"
68 #include "hw/virtio/vhost-scsi-common.h"
70 #include "exec/address-spaces.h"
71 #include "exec/ram_addr.h"
73 #include "qemu/config-file.h"
74 #include "qemu/error-report.h"
77 #include "hw/intc/intc.h"
79 #include "qemu/cutils.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
85 /* SLOF memory layout:
87 * SLOF raw image loaded at 0, copies its romfs right below the flat
88 * device-tree, then position SLOF itself 31M below that
90 * So we set FW_OVERHEAD to 40MB which should account for all of that
93 * We load our kernel at 4M, leaving space for SLOF initial image
95 #define FDT_MAX_SIZE 0x100000
96 #define RTAS_MAX_SIZE 0x10000
97 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
98 #define FW_MAX_SIZE 0x400000
99 #define FW_FILE_NAME "slof.bin"
100 #define FW_OVERHEAD 0x2800000
101 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
103 #define MIN_RMA_SLOF 128UL
105 #define PHANDLE_INTC 0x00001111
107 /* These two functions implement the VCPU id numbering: one to compute them
108 * all and one to identify thread 0 of a VCORE. Any change to the first one
109 * is likely to have an impact on the second one, so let's keep them close.
111 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
113 MachineState *ms = MACHINE(spapr);
114 unsigned int smp_threads = ms->smp.threads;
118 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
120 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
124 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
127 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
129 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
130 * and newer QEMUs don't even have them. In both cases, we don't want
131 * to send anything on the wire.
136 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
137 .name = "icp/server",
139 .minimum_version_id = 1,
140 .needed = pre_2_10_vmstate_dummy_icp_needed,
141 .fields = (VMStateField[]) {
142 VMSTATE_UNUSED(4), /* uint32_t xirr */
143 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
144 VMSTATE_UNUSED(1), /* uint8_t mfrr */
145 VMSTATE_END_OF_LIST()
149 static void pre_2_10_vmstate_register_dummy_icp(int i)
151 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
152 (void *)(uintptr_t) i);
155 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
157 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
158 (void *)(uintptr_t) i);
161 int spapr_max_server_number(SpaprMachineState *spapr)
163 MachineState *ms = MACHINE(spapr);
166 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
169 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
173 uint32_t servers_prop[smt_threads];
174 uint32_t gservers_prop[smt_threads * 2];
175 int index = spapr_get_vcpu_id(cpu);
177 if (cpu->compat_pvr) {
178 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
184 /* Build interrupt servers and gservers properties */
185 for (i = 0; i < smt_threads; i++) {
186 servers_prop[i] = cpu_to_be32(index + i);
187 /* Hack, direct the group queues back to cpu 0 */
188 gservers_prop[i*2] = cpu_to_be32(index + i);
189 gservers_prop[i*2 + 1] = 0;
191 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
192 servers_prop, sizeof(servers_prop));
196 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
197 gservers_prop, sizeof(gservers_prop));
202 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
204 int index = spapr_get_vcpu_id(cpu);
205 uint32_t associativity[] = {cpu_to_be32(0x5),
209 cpu_to_be32(cpu->node_id),
212 /* Advertise NUMA via ibm,associativity */
213 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
214 sizeof(associativity));
217 /* Populate the "ibm,pa-features" property */
218 static void spapr_populate_pa_features(SpaprMachineState *spapr,
220 void *fdt, int offset,
223 uint8_t pa_features_206[] = { 6, 0,
224 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
225 uint8_t pa_features_207[] = { 24, 0,
226 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
227 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
228 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
230 uint8_t pa_features_300[] = { 66, 0,
231 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
232 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
233 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
235 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
237 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
238 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
239 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
240 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
242 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
243 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
244 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
245 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
246 /* 42: PM, 44: PC RA, 46: SC vec'd */
247 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
248 /* 48: SIMD, 50: QP BFP, 52: String */
249 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
250 /* 54: DecFP, 56: DecI, 58: SHA */
251 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
252 /* 60: NM atomic, 62: RNG */
253 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
255 uint8_t *pa_features = NULL;
258 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
259 pa_features = pa_features_206;
260 pa_size = sizeof(pa_features_206);
262 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
263 pa_features = pa_features_207;
264 pa_size = sizeof(pa_features_207);
266 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
267 pa_features = pa_features_300;
268 pa_size = sizeof(pa_features_300);
274 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
276 * Note: we keep CI large pages off by default because a 64K capable
277 * guest provisioned with large pages might otherwise try to map a qemu
278 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
279 * even if that qemu runs on a 4k host.
280 * We dd this bit back here if we are confident this is not an issue
282 pa_features[3] |= 0x20;
284 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
285 pa_features[24] |= 0x80; /* Transactional memory support */
287 if (legacy_guest && pa_size > 40) {
288 /* Workaround for broken kernels that attempt (guest) radix
289 * mode when they can't handle it, if they see the radix bit set
290 * in pa-features. So hide it from them. */
291 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
294 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
297 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr)
299 MachineState *ms = MACHINE(spapr);
300 int ret = 0, offset, cpus_offset;
303 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
306 PowerPCCPU *cpu = POWERPC_CPU(cs);
307 DeviceClass *dc = DEVICE_GET_CLASS(cs);
308 int index = spapr_get_vcpu_id(cpu);
309 int compat_smt = MIN(ms->smp.threads, ppc_compat_max_vthreads(cpu));
311 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
315 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
317 cpus_offset = fdt_path_offset(fdt, "/cpus");
318 if (cpus_offset < 0) {
319 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
320 if (cpus_offset < 0) {
324 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
326 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
332 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
333 pft_size_prop, sizeof(pft_size_prop));
338 if (nb_numa_nodes > 1) {
339 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
345 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
350 spapr_populate_pa_features(spapr, cpu, fdt, offset,
351 spapr->cas_legacy_guest_workaround);
356 static hwaddr spapr_node0_size(MachineState *machine)
360 for (i = 0; i < nb_numa_nodes; ++i) {
361 if (numa_info[i].node_mem) {
362 return MIN(pow2floor(numa_info[i].node_mem),
367 return machine->ram_size;
370 static void add_str(GString *s, const gchar *s1)
372 g_string_append_len(s, s1, strlen(s1) + 1);
375 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
378 uint32_t associativity[] = {
379 cpu_to_be32(0x4), /* length */
380 cpu_to_be32(0x0), cpu_to_be32(0x0),
381 cpu_to_be32(0x0), cpu_to_be32(nodeid)
384 uint64_t mem_reg_property[2];
387 mem_reg_property[0] = cpu_to_be64(start);
388 mem_reg_property[1] = cpu_to_be64(size);
390 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
391 off = fdt_add_subnode(fdt, 0, mem_name);
393 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
394 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
395 sizeof(mem_reg_property))));
396 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
397 sizeof(associativity))));
401 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
403 MachineState *machine = MACHINE(spapr);
404 hwaddr mem_start, node_size;
405 int i, nb_nodes = nb_numa_nodes;
406 NodeInfo *nodes = numa_info;
409 /* No NUMA nodes, assume there is just one node with whole RAM */
410 if (!nb_numa_nodes) {
412 ramnode.node_mem = machine->ram_size;
416 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
417 if (!nodes[i].node_mem) {
420 if (mem_start >= machine->ram_size) {
423 node_size = nodes[i].node_mem;
424 if (node_size > machine->ram_size - mem_start) {
425 node_size = machine->ram_size - mem_start;
429 /* spapr_machine_init() checks for rma_size <= node0_size
431 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
432 mem_start += spapr->rma_size;
433 node_size -= spapr->rma_size;
435 for ( ; node_size; ) {
436 hwaddr sizetmp = pow2floor(node_size);
438 /* mem_start != 0 here */
439 if (ctzl(mem_start) < ctzl(sizetmp)) {
440 sizetmp = 1ULL << ctzl(mem_start);
443 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
444 node_size -= sizetmp;
445 mem_start += sizetmp;
452 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
453 SpaprMachineState *spapr)
455 MachineState *ms = MACHINE(spapr);
456 PowerPCCPU *cpu = POWERPC_CPU(cs);
457 CPUPPCState *env = &cpu->env;
458 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
459 int index = spapr_get_vcpu_id(cpu);
460 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
461 0xffffffff, 0xffffffff};
462 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
463 : SPAPR_TIMEBASE_FREQ;
464 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
465 uint32_t page_sizes_prop[64];
466 size_t page_sizes_prop_size;
467 unsigned int smp_threads = ms->smp.threads;
468 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
469 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
470 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
473 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
476 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
478 drc_index = spapr_drc_index(drc);
479 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
482 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
483 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
485 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
486 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
487 env->dcache_line_size)));
488 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
489 env->dcache_line_size)));
490 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
491 env->icache_line_size)));
492 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
493 env->icache_line_size)));
495 if (pcc->l1_dcache_size) {
496 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
497 pcc->l1_dcache_size)));
499 warn_report("Unknown L1 dcache size for cpu");
501 if (pcc->l1_icache_size) {
502 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
503 pcc->l1_icache_size)));
505 warn_report("Unknown L1 icache size for cpu");
508 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
509 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
510 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
511 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
512 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
513 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
515 if (env->spr_cb[SPR_PURR].oea_read) {
516 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
518 if (env->spr_cb[SPR_SPURR].oea_read) {
519 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
522 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
523 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
524 segs, sizeof(segs))));
527 /* Advertise VSX (vector extensions) if available
528 * 1 == VMX / Altivec available
531 * Only CPUs for which we create core types in spapr_cpu_core.c
532 * are possible, and all of those have VMX */
533 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
534 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
536 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
539 /* Advertise DFP (Decimal Floating Point) if available
540 * 0 / no property == no DFP
541 * 1 == DFP available */
542 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
543 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
546 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
547 sizeof(page_sizes_prop));
548 if (page_sizes_prop_size) {
549 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
550 page_sizes_prop, page_sizes_prop_size)));
553 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
555 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
556 cs->cpu_index / vcpus_per_socket)));
558 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
559 pft_size_prop, sizeof(pft_size_prop))));
561 if (nb_numa_nodes > 1) {
562 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
565 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
567 if (pcc->radix_page_info) {
568 for (i = 0; i < pcc->radix_page_info->count; i++) {
569 radix_AP_encodings[i] =
570 cpu_to_be32(pcc->radix_page_info->entries[i]);
572 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
574 pcc->radix_page_info->count *
575 sizeof(radix_AP_encodings[0]))));
579 * We set this property to let the guest know that it can use the large
580 * decrementer and its width in bits.
582 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
583 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
584 pcc->lrg_decr_bits)));
587 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
596 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
598 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
599 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
602 * We walk the CPUs in reverse order to ensure that CPU DT nodes
603 * created by fdt_add_subnode() end up in the right order in FDT
604 * for the guest kernel the enumerate the CPUs correctly.
606 * The CPU list cannot be traversed in reverse order, so we need
612 rev = g_renew(CPUState *, rev, n_cpus + 1);
616 for (i = n_cpus - 1; i >= 0; i--) {
617 CPUState *cs = rev[i];
618 PowerPCCPU *cpu = POWERPC_CPU(cs);
619 int index = spapr_get_vcpu_id(cpu);
620 DeviceClass *dc = DEVICE_GET_CLASS(cs);
623 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
627 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
628 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
631 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
637 static int spapr_rng_populate_dt(void *fdt)
642 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
646 ret = fdt_setprop_string(fdt, node, "device_type",
647 "ibm,platform-facilities");
648 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
649 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
651 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
655 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
660 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
662 MemoryDeviceInfoList *info;
664 for (info = list; info; info = info->next) {
665 MemoryDeviceInfo *value = info->value;
667 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
668 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
670 if (addr >= pcdimm_info->addr &&
671 addr < (pcdimm_info->addr + pcdimm_info->size)) {
672 return pcdimm_info->node;
680 struct sPAPRDrconfCellV2 {
688 typedef struct DrconfCellQueue {
689 struct sPAPRDrconfCellV2 cell;
690 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
693 static DrconfCellQueue *
694 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
695 uint32_t drc_index, uint32_t aa_index,
698 DrconfCellQueue *elem;
700 elem = g_malloc0(sizeof(*elem));
701 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
702 elem->cell.base_addr = cpu_to_be64(base_addr);
703 elem->cell.drc_index = cpu_to_be32(drc_index);
704 elem->cell.aa_index = cpu_to_be32(aa_index);
705 elem->cell.flags = cpu_to_be32(flags);
710 /* ibm,dynamic-memory-v2 */
711 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
712 int offset, MemoryDeviceInfoList *dimms)
714 MachineState *machine = MACHINE(spapr);
715 uint8_t *int_buf, *cur_index;
717 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
718 uint64_t addr, cur_addr, size;
719 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
720 uint64_t mem_end = machine->device_memory->base +
721 memory_region_size(&machine->device_memory->mr);
722 uint32_t node, buf_len, nr_entries = 0;
724 DrconfCellQueue *elem, *next;
725 MemoryDeviceInfoList *info;
726 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
727 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
729 /* Entry to cover RAM and the gap area */
730 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
731 SPAPR_LMB_FLAGS_RESERVED |
732 SPAPR_LMB_FLAGS_DRC_INVALID);
733 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
736 cur_addr = machine->device_memory->base;
737 for (info = dimms; info; info = info->next) {
738 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
744 /* Entry for hot-pluggable area */
745 if (cur_addr < addr) {
746 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
748 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
749 cur_addr, spapr_drc_index(drc), -1, 0);
750 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
755 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
757 elem = spapr_get_drconf_cell(size / lmb_size, addr,
758 spapr_drc_index(drc), node,
759 SPAPR_LMB_FLAGS_ASSIGNED);
760 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
762 cur_addr = addr + size;
765 /* Entry for remaining hotpluggable area */
766 if (cur_addr < mem_end) {
767 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
769 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
770 cur_addr, spapr_drc_index(drc), -1, 0);
771 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
775 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
776 int_buf = cur_index = g_malloc0(buf_len);
777 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
778 cur_index += sizeof(nr_entries);
780 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
781 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
782 cur_index += sizeof(elem->cell);
783 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
787 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
795 /* ibm,dynamic-memory */
796 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
797 int offset, MemoryDeviceInfoList *dimms)
799 MachineState *machine = MACHINE(spapr);
801 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
802 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
803 uint32_t nr_lmbs = (machine->device_memory->base +
804 memory_region_size(&machine->device_memory->mr)) /
806 uint32_t *int_buf, *cur_index, buf_len;
809 * Allocate enough buffer size to fit in ibm,dynamic-memory
811 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
812 cur_index = int_buf = g_malloc0(buf_len);
813 int_buf[0] = cpu_to_be32(nr_lmbs);
815 for (i = 0; i < nr_lmbs; i++) {
816 uint64_t addr = i * lmb_size;
817 uint32_t *dynamic_memory = cur_index;
819 if (i >= device_lmb_start) {
822 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
825 dynamic_memory[0] = cpu_to_be32(addr >> 32);
826 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
827 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
828 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
829 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
830 if (memory_region_present(get_system_memory(), addr)) {
831 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
833 dynamic_memory[5] = cpu_to_be32(0);
837 * LMB information for RMA, boot time RAM and gap b/n RAM and
838 * device memory region -- all these are marked as reserved
839 * and as having no valid DRC.
841 dynamic_memory[0] = cpu_to_be32(addr >> 32);
842 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
843 dynamic_memory[2] = cpu_to_be32(0);
844 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
845 dynamic_memory[4] = cpu_to_be32(-1);
846 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
847 SPAPR_LMB_FLAGS_DRC_INVALID);
850 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
852 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
861 * Adds ibm,dynamic-reconfiguration-memory node.
862 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
863 * of this device tree node.
865 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
867 MachineState *machine = MACHINE(spapr);
869 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
870 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
871 uint32_t *int_buf, *cur_index, buf_len;
872 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
873 MemoryDeviceInfoList *dimms = NULL;
876 * Don't create the node if there is no device memory
878 if (machine->ram_size == machine->maxram_size) {
882 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
884 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
885 sizeof(prop_lmb_size));
890 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
895 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
900 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
901 dimms = qmp_memory_device_list();
902 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
903 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
905 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
907 qapi_free_MemoryDeviceInfoList(dimms);
913 /* ibm,associativity-lookup-arrays */
914 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
915 cur_index = int_buf = g_malloc0(buf_len);
916 int_buf[0] = cpu_to_be32(nr_nodes);
917 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
919 for (i = 0; i < nr_nodes; i++) {
920 uint32_t associativity[] = {
926 memcpy(cur_index, associativity, sizeof(associativity));
929 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
930 (cur_index - int_buf) * sizeof(uint32_t));
936 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
937 SpaprOptionVector *ov5_updates)
939 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
942 /* Generate ibm,dynamic-reconfiguration-memory node if required */
943 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
944 g_assert(smc->dr_lmb_enabled);
945 ret = spapr_populate_drconf_memory(spapr, fdt);
951 offset = fdt_path_offset(fdt, "/chosen");
953 offset = fdt_add_subnode(fdt, 0, "chosen");
958 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
959 "ibm,architecture-vec-5");
965 static bool spapr_hotplugged_dev_before_cas(void)
967 Object *drc_container, *obj;
968 ObjectProperty *prop;
969 ObjectPropertyIterator iter;
971 drc_container = container_get(object_get_root(), "/dr-connector");
972 object_property_iter_init(&iter, drc_container);
973 while ((prop = object_property_iter_next(&iter))) {
974 if (!strstart(prop->type, "link<", NULL)) {
977 obj = object_property_get_link(drc_container, prop->name, NULL);
978 if (spapr_drc_needed(obj)) {
985 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
986 target_ulong addr, target_ulong size,
987 SpaprOptionVector *ov5_updates)
989 void *fdt, *fdt_skel;
990 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
992 if (spapr_hotplugged_dev_before_cas()) {
996 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
997 error_report("SLOF provided an unexpected CAS buffer size "
998 TARGET_FMT_lu " (min: %zu, max: %u)",
999 size, sizeof(hdr), FW_MAX_SIZE);
1003 size -= sizeof(hdr);
1005 /* Create skeleton */
1006 fdt_skel = g_malloc0(size);
1007 _FDT((fdt_create(fdt_skel, size)));
1008 _FDT((fdt_finish_reservemap(fdt_skel)));
1009 _FDT((fdt_begin_node(fdt_skel, "")));
1010 _FDT((fdt_end_node(fdt_skel)));
1011 _FDT((fdt_finish(fdt_skel)));
1012 fdt = g_malloc0(size);
1013 _FDT((fdt_open_into(fdt_skel, fdt, size)));
1016 /* Fixup cpu nodes */
1017 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1019 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1023 /* Pack resulting tree */
1024 _FDT((fdt_pack(fdt)));
1026 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1027 trace_spapr_cas_failed(size);
1031 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1032 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1033 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1039 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
1041 MachineState *ms = MACHINE(spapr);
1043 GString *hypertas = g_string_sized_new(256);
1044 GString *qemu_hypertas = g_string_sized_new(256);
1045 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1046 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1047 memory_region_size(&MACHINE(spapr)->device_memory->mr);
1048 uint32_t lrdr_capacity[] = {
1049 cpu_to_be32(max_device_addr >> 32),
1050 cpu_to_be32(max_device_addr & 0xffffffff),
1051 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1052 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
1054 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
1055 uint32_t maxdomains[] = {
1060 cpu_to_be32(spapr->gpu_numa_id),
1063 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1066 add_str(hypertas, "hcall-pft");
1067 add_str(hypertas, "hcall-term");
1068 add_str(hypertas, "hcall-dabr");
1069 add_str(hypertas, "hcall-interrupt");
1070 add_str(hypertas, "hcall-tce");
1071 add_str(hypertas, "hcall-vio");
1072 add_str(hypertas, "hcall-splpar");
1073 add_str(hypertas, "hcall-join");
1074 add_str(hypertas, "hcall-bulk");
1075 add_str(hypertas, "hcall-set-mode");
1076 add_str(hypertas, "hcall-sprg0");
1077 add_str(hypertas, "hcall-copy");
1078 add_str(hypertas, "hcall-debug");
1079 add_str(hypertas, "hcall-vphn");
1080 add_str(qemu_hypertas, "hcall-memop1");
1082 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1083 add_str(hypertas, "hcall-multi-tce");
1086 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1087 add_str(hypertas, "hcall-hpt-resize");
1090 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1091 hypertas->str, hypertas->len));
1092 g_string_free(hypertas, TRUE);
1093 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1094 qemu_hypertas->str, qemu_hypertas->len));
1095 g_string_free(qemu_hypertas, TRUE);
1097 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1098 refpoints, sizeof(refpoints)));
1100 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1101 maxdomains, sizeof(maxdomains)));
1103 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1104 RTAS_ERROR_LOG_MAX));
1105 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1106 RTAS_EVENT_SCAN_RATE));
1108 g_assert(msi_nonbroken);
1109 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1112 * According to PAPR, rtas ibm,os-term does not guarantee a return
1113 * back to the guest cpu.
1115 * While an additional ibm,extended-os-term property indicates
1116 * that rtas call return will always occur. Set this property.
1118 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1120 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1121 lrdr_capacity, sizeof(lrdr_capacity)));
1123 spapr_dt_rtas_tokens(fdt, rtas);
1127 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1128 * and the XIVE features that the guest may request and thus the valid
1129 * values for bytes 23..26 of option vector 5:
1131 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1134 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1137 23, spapr->irq->ov5, /* Xive mode. */
1138 24, 0x00, /* Hash/Radix, filled in below. */
1139 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1140 26, 0x40, /* Radix options: GTSE == yes. */
1143 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1144 first_ppc_cpu->compat_pvr)) {
1146 * If we're in a pre POWER9 compat mode then the guest should
1147 * do hash and use the legacy interrupt mode
1149 val[1] = 0x00; /* XICS */
1150 val[3] = 0x00; /* Hash */
1151 } else if (kvm_enabled()) {
1152 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1153 val[3] = 0x80; /* OV5_MMU_BOTH */
1154 } else if (kvmppc_has_cap_mmu_radix()) {
1155 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1157 val[3] = 0x00; /* Hash */
1160 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1163 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1167 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1169 MachineState *machine = MACHINE(spapr);
1171 const char *boot_device = machine->boot_order;
1172 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1174 char *bootlist = get_boot_devices_list(&cb);
1176 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1178 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1179 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1180 spapr->initrd_base));
1181 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1182 spapr->initrd_base + spapr->initrd_size));
1184 if (spapr->kernel_size) {
1185 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1186 cpu_to_be64(spapr->kernel_size) };
1188 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1189 &kprop, sizeof(kprop)));
1190 if (spapr->kernel_le) {
1191 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1195 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1197 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1198 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1199 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1201 if (cb && bootlist) {
1204 for (i = 0; i < cb; i++) {
1205 if (bootlist[i] == '\n') {
1209 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1212 if (boot_device && strlen(boot_device)) {
1213 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1216 if (!spapr->has_graphics && stdout_path) {
1218 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1219 * kernel. New platforms should only use the "stdout-path" property. Set
1220 * the new property and continue using older property to remain
1221 * compatible with the existing firmware.
1223 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1224 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1227 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1229 g_free(stdout_path);
1233 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1235 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1236 * KVM to work under pHyp with some guest co-operation */
1238 uint8_t hypercall[16];
1240 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1241 /* indicate KVM hypercall interface */
1242 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1243 if (kvmppc_has_cap_fixup_hcalls()) {
1245 * Older KVM versions with older guest kernels were broken
1246 * with the magic page, don't allow the guest to map it.
1248 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1249 sizeof(hypercall))) {
1250 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1251 hypercall, sizeof(hypercall)));
1256 static void *spapr_build_fdt(SpaprMachineState *spapr)
1258 MachineState *machine = MACHINE(spapr);
1259 MachineClass *mc = MACHINE_GET_CLASS(machine);
1260 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1266 fdt = g_malloc0(FDT_MAX_SIZE);
1267 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1270 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1271 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1272 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1274 /* Guest UUID & Name*/
1275 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1276 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1277 if (qemu_uuid_set) {
1278 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1282 if (qemu_get_vm_name()) {
1283 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1284 qemu_get_vm_name()));
1287 /* Host Model & Serial Number */
1288 if (spapr->host_model) {
1289 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1290 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1291 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1295 if (spapr->host_serial) {
1296 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1297 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1298 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1302 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1303 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1305 /* /interrupt controller */
1306 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1309 ret = spapr_populate_memory(spapr, fdt);
1311 error_report("couldn't setup memory nodes in fdt");
1316 spapr_dt_vdevice(spapr->vio_bus, fdt);
1318 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1319 ret = spapr_rng_populate_dt(fdt);
1321 error_report("could not set up rng device in the fdt");
1326 QLIST_FOREACH(phb, &spapr->phbs, list) {
1327 ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL);
1329 error_report("couldn't setup PCI devices in fdt");
1335 spapr_populate_cpus_dt_node(fdt, spapr);
1337 if (smc->dr_lmb_enabled) {
1338 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1341 if (mc->has_hotpluggable_cpus) {
1342 int offset = fdt_path_offset(fdt, "/cpus");
1343 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1345 error_report("Couldn't set up CPU DR device tree properties");
1350 /* /event-sources */
1351 spapr_dt_events(spapr, fdt);
1354 spapr_dt_rtas(spapr, fdt);
1357 spapr_dt_chosen(spapr, fdt);
1360 if (kvm_enabled()) {
1361 spapr_dt_hypervisor(spapr, fdt);
1364 /* Build memory reserve map */
1365 if (spapr->kernel_size) {
1366 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1368 if (spapr->initrd_size) {
1369 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1372 /* ibm,client-architecture-support updates */
1373 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1375 error_report("couldn't setup CAS properties fdt");
1379 if (smc->dr_phb_enabled) {
1380 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1382 error_report("Couldn't set up PHB DR device tree properties");
1390 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1392 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1395 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1398 CPUPPCState *env = &cpu->env;
1400 /* The TCG path should also be holding the BQL at this point */
1401 g_assert(qemu_mutex_iothread_locked());
1404 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1405 env->gpr[3] = H_PRIVILEGE;
1407 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1411 struct LPCRSyncState {
1416 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1418 struct LPCRSyncState *s = arg.host_ptr;
1419 PowerPCCPU *cpu = POWERPC_CPU(cs);
1420 CPUPPCState *env = &cpu->env;
1423 cpu_synchronize_state(cs);
1424 lpcr = env->spr[SPR_LPCR];
1427 ppc_store_lpcr(cpu, lpcr);
1430 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1433 struct LPCRSyncState s = {
1438 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1442 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1444 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1446 /* Copy PATE1:GR into PATE0:HR */
1447 entry->dw0 = spapr->patb_entry & PATE0_HR;
1448 entry->dw1 = spapr->patb_entry;
1451 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1452 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1453 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1454 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1455 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1458 * Get the fd to access the kernel htab, re-opening it if necessary
1460 static int get_htab_fd(SpaprMachineState *spapr)
1462 Error *local_err = NULL;
1464 if (spapr->htab_fd >= 0) {
1465 return spapr->htab_fd;
1468 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1469 if (spapr->htab_fd < 0) {
1470 error_report_err(local_err);
1473 return spapr->htab_fd;
1476 void close_htab_fd(SpaprMachineState *spapr)
1478 if (spapr->htab_fd >= 0) {
1479 close(spapr->htab_fd);
1481 spapr->htab_fd = -1;
1484 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1486 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1488 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1491 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1493 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1495 assert(kvm_enabled());
1501 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1504 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1507 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1508 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1512 * HTAB is controlled by KVM. Fetch into temporary buffer
1514 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1515 kvmppc_read_hptes(hptes, ptex, n);
1520 * HTAB is controlled by QEMU. Just point to the internally
1523 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1526 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1527 const ppc_hash_pte64_t *hptes,
1530 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1533 g_free((void *)hptes);
1536 /* Nothing to do for qemu managed HPT */
1539 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1540 uint64_t pte0, uint64_t pte1)
1542 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1543 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1546 kvmppc_write_hpte(ptex, pte0, pte1);
1548 if (pte0 & HPTE64_V_VALID) {
1549 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1551 * When setting valid, we write PTE1 first. This ensures
1552 * proper synchronization with the reading code in
1553 * ppc_hash64_pteg_search()
1556 stq_p(spapr->htab + offset, pte0);
1558 stq_p(spapr->htab + offset, pte0);
1560 * When clearing it we set PTE0 first. This ensures proper
1561 * synchronization with the reading code in
1562 * ppc_hash64_pteg_search()
1565 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1570 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1573 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1574 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1577 /* There should always be a hash table when this is called */
1578 error_report("spapr_hpte_set_c called with no hash table !");
1582 /* The HW performs a non-atomic byte update */
1583 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1586 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1589 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1590 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1593 /* There should always be a hash table when this is called */
1594 error_report("spapr_hpte_set_r called with no hash table !");
1598 /* The HW performs a non-atomic byte update */
1599 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1602 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1606 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1607 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1608 * that's much more than is needed for Linux guests */
1609 shift = ctz64(pow2ceil(ramsize)) - 7;
1610 shift = MAX(shift, 18); /* Minimum architected size */
1611 shift = MIN(shift, 46); /* Maximum architected size */
1615 void spapr_free_hpt(SpaprMachineState *spapr)
1617 g_free(spapr->htab);
1619 spapr->htab_shift = 0;
1620 close_htab_fd(spapr);
1623 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1628 /* Clean up any HPT info from a previous boot */
1629 spapr_free_hpt(spapr);
1631 rc = kvmppc_reset_htab(shift);
1633 /* kernel-side HPT needed, but couldn't allocate one */
1634 error_setg_errno(errp, errno,
1635 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1637 /* This is almost certainly fatal, but if the caller really
1638 * wants to carry on with shift == 0, it's welcome to try */
1639 } else if (rc > 0) {
1640 /* kernel-side HPT allocated */
1643 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1647 spapr->htab_shift = shift;
1650 /* kernel-side HPT not needed, allocate in userspace instead */
1651 size_t size = 1ULL << shift;
1654 spapr->htab = qemu_memalign(size, size);
1656 error_setg_errno(errp, errno,
1657 "Could not allocate HPT of order %d", shift);
1661 memset(spapr->htab, 0, size);
1662 spapr->htab_shift = shift;
1664 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1665 DIRTY_HPTE(HPTE(spapr->htab, i));
1668 /* We're setting up a hash table, so that means we're not radix */
1669 spapr->patb_entry = 0;
1670 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1673 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1677 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1678 || (spapr->cas_reboot
1679 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1680 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1682 uint64_t current_ram_size;
1684 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1685 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1687 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1689 if (spapr->vrma_adjust) {
1690 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1695 static int spapr_reset_drcs(Object *child, void *opaque)
1698 (SpaprDrc *) object_dynamic_cast(child,
1699 TYPE_SPAPR_DR_CONNECTOR);
1702 spapr_drc_reset(drc);
1708 static void spapr_machine_reset(MachineState *machine)
1710 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1711 PowerPCCPU *first_ppc_cpu;
1712 uint32_t rtas_limit;
1713 hwaddr rtas_addr, fdt_addr;
1717 spapr_caps_apply(spapr);
1719 first_ppc_cpu = POWERPC_CPU(first_cpu);
1720 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1721 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1722 spapr->max_compat_pvr)) {
1724 * If using KVM with radix mode available, VCPUs can be started
1725 * without a HPT because KVM will start them in radix mode.
1726 * Set the GR bit in PATE so that we know there is no HPT.
1728 spapr->patb_entry = PATE1_GR;
1729 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1731 spapr_setup_hpt_and_vrma(spapr);
1735 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
1736 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
1737 * called from vPHB reset handler so we initialize the counter here.
1738 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
1739 * must be equally distant from any other node.
1740 * The final value of spapr->gpu_numa_id is going to be written to
1741 * max-associativity-domains in spapr_build_fdt().
1743 spapr->gpu_numa_id = MAX(1, nb_numa_nodes);
1744 qemu_devices_reset();
1747 * If this reset wasn't generated by CAS, we should reset our
1748 * negotiated options and start from scratch
1750 if (!spapr->cas_reboot) {
1751 spapr_ovec_cleanup(spapr->ov5_cas);
1752 spapr->ov5_cas = spapr_ovec_new();
1754 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1757 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1758 spapr_irq_msi_reset(spapr);
1762 * This is fixing some of the default configuration of the XIVE
1763 * devices. To be called after the reset of the machine devices.
1765 spapr_irq_reset(spapr, &error_fatal);
1768 * There is no CAS under qtest. Simulate one to please the code that
1769 * depends on spapr->ov5_cas. This is especially needed to test device
1770 * unplug, so we do that before resetting the DRCs.
1772 if (qtest_enabled()) {
1773 spapr_ovec_cleanup(spapr->ov5_cas);
1774 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1777 /* DRC reset may cause a device to be unplugged. This will cause troubles
1778 * if this device is used by another device (eg, a running vhost backend
1779 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1780 * situations, we reset DRCs after all devices have been reset.
1782 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1784 spapr_clear_pending_events(spapr);
1787 * We place the device tree and RTAS just below either the top of the RMA,
1788 * or just below 2GB, whichever is lower, so that it can be
1789 * processed with 32-bit real mode code if necessary
1791 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1792 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1793 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1795 fdt = spapr_build_fdt(spapr);
1797 spapr_load_rtas(spapr, fdt, rtas_addr);
1801 /* Should only fail if we've built a corrupted tree */
1804 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1805 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1806 fdt_totalsize(fdt), FDT_MAX_SIZE);
1811 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1812 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1813 g_free(spapr->fdt_blob);
1814 spapr->fdt_size = fdt_totalsize(fdt);
1815 spapr->fdt_initial_size = spapr->fdt_size;
1816 spapr->fdt_blob = fdt;
1818 /* Set up the entry state */
1819 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1820 first_ppc_cpu->env.gpr[5] = 0;
1822 spapr->cas_reboot = false;
1825 static void spapr_create_nvram(SpaprMachineState *spapr)
1827 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1828 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1831 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1835 qdev_init_nofail(dev);
1837 spapr->nvram = (struct SpaprNvram *)dev;
1840 static void spapr_rtc_create(SpaprMachineState *spapr)
1842 object_initialize_child(OBJECT(spapr), "rtc",
1843 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1844 &error_fatal, NULL);
1845 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1847 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1848 "date", &error_fatal);
1851 /* Returns whether we want to use VGA or not */
1852 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1854 switch (vga_interface_type) {
1862 return pci_vga_init(pci_bus) != NULL;
1865 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1870 static int spapr_pre_load(void *opaque)
1874 rc = spapr_caps_pre_load(opaque);
1882 static int spapr_post_load(void *opaque, int version_id)
1884 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1887 err = spapr_caps_post_migration(spapr);
1893 * In earlier versions, there was no separate qdev for the PAPR
1894 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1895 * So when migrating from those versions, poke the incoming offset
1896 * value into the RTC device
1898 if (version_id < 3) {
1899 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1905 if (kvm_enabled() && spapr->patb_entry) {
1906 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1907 bool radix = !!(spapr->patb_entry & PATE1_GR);
1908 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1911 * Update LPCR:HR and UPRT as they may not be set properly in
1914 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1915 LPCR_HR | LPCR_UPRT);
1917 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1919 error_report("Process table config unsupported by the host");
1924 err = spapr_irq_post_load(spapr, version_id);
1932 static int spapr_pre_save(void *opaque)
1936 rc = spapr_caps_pre_save(opaque);
1944 static bool version_before_3(void *opaque, int version_id)
1946 return version_id < 3;
1949 static bool spapr_pending_events_needed(void *opaque)
1951 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1952 return !QTAILQ_EMPTY(&spapr->pending_events);
1955 static const VMStateDescription vmstate_spapr_event_entry = {
1956 .name = "spapr_event_log_entry",
1958 .minimum_version_id = 1,
1959 .fields = (VMStateField[]) {
1960 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1961 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1962 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1963 NULL, extended_length),
1964 VMSTATE_END_OF_LIST()
1968 static const VMStateDescription vmstate_spapr_pending_events = {
1969 .name = "spapr_pending_events",
1971 .minimum_version_id = 1,
1972 .needed = spapr_pending_events_needed,
1973 .fields = (VMStateField[]) {
1974 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1975 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1976 VMSTATE_END_OF_LIST()
1980 static bool spapr_ov5_cas_needed(void *opaque)
1982 SpaprMachineState *spapr = opaque;
1983 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1984 SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1985 SpaprOptionVector *ov5_removed = spapr_ovec_new();
1988 /* Prior to the introduction of SpaprOptionVector, we had two option
1989 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1990 * Both of these options encode machine topology into the device-tree
1991 * in such a way that the now-booted OS should still be able to interact
1992 * appropriately with QEMU regardless of what options were actually
1993 * negotiatied on the source side.
1995 * As such, we can avoid migrating the CAS-negotiated options if these
1996 * are the only options available on the current machine/platform.
1997 * Since these are the only options available for pseries-2.7 and
1998 * earlier, this allows us to maintain old->new/new->old migration
2001 * For QEMU 2.8+, there are additional CAS-negotiatable options available
2002 * via default pseries-2.8 machines and explicit command-line parameters.
2003 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
2004 * of the actual CAS-negotiated values to continue working properly. For
2005 * example, availability of memory unplug depends on knowing whether
2006 * OV5_HP_EVT was negotiated via CAS.
2008 * Thus, for any cases where the set of available CAS-negotiatable
2009 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
2010 * include the CAS-negotiated options in the migration stream, unless
2011 * if they affect boot time behaviour only.
2013 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
2014 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
2015 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
2017 /* spapr_ovec_diff returns true if bits were removed. we avoid using
2018 * the mask itself since in the future it's possible "legacy" bits may be
2019 * removed via machine options, which could generate a false positive
2020 * that breaks migration.
2022 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
2023 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
2025 spapr_ovec_cleanup(ov5_mask);
2026 spapr_ovec_cleanup(ov5_legacy);
2027 spapr_ovec_cleanup(ov5_removed);
2032 static const VMStateDescription vmstate_spapr_ov5_cas = {
2033 .name = "spapr_option_vector_ov5_cas",
2035 .minimum_version_id = 1,
2036 .needed = spapr_ov5_cas_needed,
2037 .fields = (VMStateField[]) {
2038 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2039 vmstate_spapr_ovec, SpaprOptionVector),
2040 VMSTATE_END_OF_LIST()
2044 static bool spapr_patb_entry_needed(void *opaque)
2046 SpaprMachineState *spapr = opaque;
2048 return !!spapr->patb_entry;
2051 static const VMStateDescription vmstate_spapr_patb_entry = {
2052 .name = "spapr_patb_entry",
2054 .minimum_version_id = 1,
2055 .needed = spapr_patb_entry_needed,
2056 .fields = (VMStateField[]) {
2057 VMSTATE_UINT64(patb_entry, SpaprMachineState),
2058 VMSTATE_END_OF_LIST()
2062 static bool spapr_irq_map_needed(void *opaque)
2064 SpaprMachineState *spapr = opaque;
2066 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2069 static const VMStateDescription vmstate_spapr_irq_map = {
2070 .name = "spapr_irq_map",
2072 .minimum_version_id = 1,
2073 .needed = spapr_irq_map_needed,
2074 .fields = (VMStateField[]) {
2075 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2076 VMSTATE_END_OF_LIST()
2080 static bool spapr_dtb_needed(void *opaque)
2082 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2084 return smc->update_dt_enabled;
2087 static int spapr_dtb_pre_load(void *opaque)
2089 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2091 g_free(spapr->fdt_blob);
2092 spapr->fdt_blob = NULL;
2093 spapr->fdt_size = 0;
2098 static const VMStateDescription vmstate_spapr_dtb = {
2099 .name = "spapr_dtb",
2101 .minimum_version_id = 1,
2102 .needed = spapr_dtb_needed,
2103 .pre_load = spapr_dtb_pre_load,
2104 .fields = (VMStateField[]) {
2105 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2106 VMSTATE_UINT32(fdt_size, SpaprMachineState),
2107 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2109 VMSTATE_END_OF_LIST()
2113 static const VMStateDescription vmstate_spapr = {
2116 .minimum_version_id = 1,
2117 .pre_load = spapr_pre_load,
2118 .post_load = spapr_post_load,
2119 .pre_save = spapr_pre_save,
2120 .fields = (VMStateField[]) {
2121 /* used to be @next_irq */
2122 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2125 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2127 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2128 VMSTATE_END_OF_LIST()
2130 .subsections = (const VMStateDescription*[]) {
2131 &vmstate_spapr_ov5_cas,
2132 &vmstate_spapr_patb_entry,
2133 &vmstate_spapr_pending_events,
2134 &vmstate_spapr_cap_htm,
2135 &vmstate_spapr_cap_vsx,
2136 &vmstate_spapr_cap_dfp,
2137 &vmstate_spapr_cap_cfpc,
2138 &vmstate_spapr_cap_sbbc,
2139 &vmstate_spapr_cap_ibs,
2140 &vmstate_spapr_cap_hpt_maxpagesize,
2141 &vmstate_spapr_irq_map,
2142 &vmstate_spapr_cap_nested_kvm_hv,
2144 &vmstate_spapr_cap_large_decr,
2145 &vmstate_spapr_cap_ccf_assist,
2150 static int htab_save_setup(QEMUFile *f, void *opaque)
2152 SpaprMachineState *spapr = opaque;
2154 /* "Iteration" header */
2155 if (!spapr->htab_shift) {
2156 qemu_put_be32(f, -1);
2158 qemu_put_be32(f, spapr->htab_shift);
2162 spapr->htab_save_index = 0;
2163 spapr->htab_first_pass = true;
2165 if (spapr->htab_shift) {
2166 assert(kvm_enabled());
2174 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2175 int chunkstart, int n_valid, int n_invalid)
2177 qemu_put_be32(f, chunkstart);
2178 qemu_put_be16(f, n_valid);
2179 qemu_put_be16(f, n_invalid);
2180 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2181 HASH_PTE_SIZE_64 * n_valid);
2184 static void htab_save_end_marker(QEMUFile *f)
2186 qemu_put_be32(f, 0);
2187 qemu_put_be16(f, 0);
2188 qemu_put_be16(f, 0);
2191 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2194 bool has_timeout = max_ns != -1;
2195 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2196 int index = spapr->htab_save_index;
2197 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2199 assert(spapr->htab_first_pass);
2204 /* Consume invalid HPTEs */
2205 while ((index < htabslots)
2206 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2207 CLEAN_HPTE(HPTE(spapr->htab, index));
2211 /* Consume valid HPTEs */
2213 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2214 && HPTE_VALID(HPTE(spapr->htab, index))) {
2215 CLEAN_HPTE(HPTE(spapr->htab, index));
2219 if (index > chunkstart) {
2220 int n_valid = index - chunkstart;
2222 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2225 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2229 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2231 if (index >= htabslots) {
2232 assert(index == htabslots);
2234 spapr->htab_first_pass = false;
2236 spapr->htab_save_index = index;
2239 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2242 bool final = max_ns < 0;
2243 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2244 int examined = 0, sent = 0;
2245 int index = spapr->htab_save_index;
2246 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2248 assert(!spapr->htab_first_pass);
2251 int chunkstart, invalidstart;
2253 /* Consume non-dirty HPTEs */
2254 while ((index < htabslots)
2255 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2261 /* Consume valid dirty HPTEs */
2262 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2263 && HPTE_DIRTY(HPTE(spapr->htab, index))
2264 && HPTE_VALID(HPTE(spapr->htab, index))) {
2265 CLEAN_HPTE(HPTE(spapr->htab, index));
2270 invalidstart = index;
2271 /* Consume invalid dirty HPTEs */
2272 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2273 && HPTE_DIRTY(HPTE(spapr->htab, index))
2274 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2275 CLEAN_HPTE(HPTE(spapr->htab, index));
2280 if (index > chunkstart) {
2281 int n_valid = invalidstart - chunkstart;
2282 int n_invalid = index - invalidstart;
2284 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2285 sent += index - chunkstart;
2287 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2292 if (examined >= htabslots) {
2296 if (index >= htabslots) {
2297 assert(index == htabslots);
2300 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2302 if (index >= htabslots) {
2303 assert(index == htabslots);
2307 spapr->htab_save_index = index;
2309 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2312 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2313 #define MAX_KVM_BUF_SIZE 2048
2315 static int htab_save_iterate(QEMUFile *f, void *opaque)
2317 SpaprMachineState *spapr = opaque;
2321 /* Iteration header */
2322 if (!spapr->htab_shift) {
2323 qemu_put_be32(f, -1);
2326 qemu_put_be32(f, 0);
2330 assert(kvm_enabled());
2332 fd = get_htab_fd(spapr);
2337 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2341 } else if (spapr->htab_first_pass) {
2342 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2344 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2347 htab_save_end_marker(f);
2352 static int htab_save_complete(QEMUFile *f, void *opaque)
2354 SpaprMachineState *spapr = opaque;
2357 /* Iteration header */
2358 if (!spapr->htab_shift) {
2359 qemu_put_be32(f, -1);
2362 qemu_put_be32(f, 0);
2368 assert(kvm_enabled());
2370 fd = get_htab_fd(spapr);
2375 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2380 if (spapr->htab_first_pass) {
2381 htab_save_first_pass(f, spapr, -1);
2383 htab_save_later_pass(f, spapr, -1);
2387 htab_save_end_marker(f);
2392 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2394 SpaprMachineState *spapr = opaque;
2395 uint32_t section_hdr;
2397 Error *local_err = NULL;
2399 if (version_id < 1 || version_id > 1) {
2400 error_report("htab_load() bad version");
2404 section_hdr = qemu_get_be32(f);
2406 if (section_hdr == -1) {
2407 spapr_free_hpt(spapr);
2412 /* First section gives the htab size */
2413 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2415 error_report_err(local_err);
2422 assert(kvm_enabled());
2424 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2426 error_report_err(local_err);
2433 uint16_t n_valid, n_invalid;
2435 index = qemu_get_be32(f);
2436 n_valid = qemu_get_be16(f);
2437 n_invalid = qemu_get_be16(f);
2439 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2444 if ((index + n_valid + n_invalid) >
2445 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2446 /* Bad index in stream */
2448 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2449 index, n_valid, n_invalid, spapr->htab_shift);
2455 qemu_get_buffer(f, HPTE(spapr->htab, index),
2456 HASH_PTE_SIZE_64 * n_valid);
2459 memset(HPTE(spapr->htab, index + n_valid), 0,
2460 HASH_PTE_SIZE_64 * n_invalid);
2467 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2482 static void htab_save_cleanup(void *opaque)
2484 SpaprMachineState *spapr = opaque;
2486 close_htab_fd(spapr);
2489 static SaveVMHandlers savevm_htab_handlers = {
2490 .save_setup = htab_save_setup,
2491 .save_live_iterate = htab_save_iterate,
2492 .save_live_complete_precopy = htab_save_complete,
2493 .save_cleanup = htab_save_cleanup,
2494 .load_state = htab_load,
2497 static void spapr_boot_set(void *opaque, const char *boot_device,
2500 MachineState *machine = MACHINE(opaque);
2501 machine->boot_order = g_strdup(boot_device);
2504 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2506 MachineState *machine = MACHINE(spapr);
2507 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2508 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2511 for (i = 0; i < nr_lmbs; i++) {
2514 addr = i * lmb_size + machine->device_memory->base;
2515 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2521 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2522 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2523 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2525 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2529 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2530 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2531 " is not aligned to %" PRIu64 " MiB",
2533 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2537 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2538 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2539 " is not aligned to %" PRIu64 " MiB",
2541 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2545 for (i = 0; i < nb_numa_nodes; i++) {
2546 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2548 "Node %d memory size 0x%" PRIx64
2549 " is not aligned to %" PRIu64 " MiB",
2550 i, numa_info[i].node_mem,
2551 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2557 /* find cpu slot in machine->possible_cpus by core_id */
2558 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2560 int index = id / ms->smp.threads;
2562 if (index >= ms->possible_cpus->len) {
2568 return &ms->possible_cpus->cpus[index];
2571 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2573 MachineState *ms = MACHINE(spapr);
2574 Error *local_err = NULL;
2575 bool vsmt_user = !!spapr->vsmt;
2576 int kvm_smt = kvmppc_smt_threads();
2578 unsigned int smp_threads = ms->smp.threads;
2580 if (!kvm_enabled() && (smp_threads > 1)) {
2581 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2582 "on a pseries machine");
2585 if (!is_power_of_2(smp_threads)) {
2586 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2587 "machine because it must be a power of 2", smp_threads);
2591 /* Detemine the VSMT mode to use: */
2593 if (spapr->vsmt < smp_threads) {
2594 error_setg(&local_err, "Cannot support VSMT mode %d"
2595 " because it must be >= threads/core (%d)",
2596 spapr->vsmt, smp_threads);
2599 /* In this case, spapr->vsmt has been set by the command line */
2602 * Default VSMT value is tricky, because we need it to be as
2603 * consistent as possible (for migration), but this requires
2604 * changing it for at least some existing cases. We pick 8 as
2605 * the value that we'd get with KVM on POWER8, the
2606 * overwhelmingly common case in production systems.
2608 spapr->vsmt = MAX(8, smp_threads);
2611 /* KVM: If necessary, set the SMT mode: */
2612 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2613 ret = kvmppc_set_smt_threads(spapr->vsmt);
2615 /* Looks like KVM isn't able to change VSMT mode */
2616 error_setg(&local_err,
2617 "Failed to set KVM's VSMT mode to %d (errno %d)",
2619 /* We can live with that if the default one is big enough
2620 * for the number of threads, and a submultiple of the one
2621 * we want. In this case we'll waste some vcpu ids, but
2622 * behaviour will be correct */
2623 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2624 warn_report_err(local_err);
2629 error_append_hint(&local_err,
2630 "On PPC, a VM with %d threads/core"
2631 " on a host with %d threads/core"
2632 " requires the use of VSMT mode %d.\n",
2633 smp_threads, kvm_smt, spapr->vsmt);
2635 kvmppc_hint_smt_possible(&local_err);
2640 /* else TCG: nothing to do currently */
2642 error_propagate(errp, local_err);
2645 static void spapr_init_cpus(SpaprMachineState *spapr)
2647 MachineState *machine = MACHINE(spapr);
2648 MachineClass *mc = MACHINE_GET_CLASS(machine);
2649 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2650 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2651 const CPUArchIdList *possible_cpus;
2652 unsigned int smp_cpus = machine->smp.cpus;
2653 unsigned int smp_threads = machine->smp.threads;
2654 unsigned int max_cpus = machine->smp.max_cpus;
2655 int boot_cores_nr = smp_cpus / smp_threads;
2658 possible_cpus = mc->possible_cpu_arch_ids(machine);
2659 if (mc->has_hotpluggable_cpus) {
2660 if (smp_cpus % smp_threads) {
2661 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2662 smp_cpus, smp_threads);
2665 if (max_cpus % smp_threads) {
2666 error_report("max_cpus (%u) must be multiple of threads (%u)",
2667 max_cpus, smp_threads);
2671 if (max_cpus != smp_cpus) {
2672 error_report("This machine version does not support CPU hotplug");
2675 boot_cores_nr = possible_cpus->len;
2678 if (smc->pre_2_10_has_unused_icps) {
2681 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2682 /* Dummy entries get deregistered when real ICPState objects
2683 * are registered during CPU core hotplug.
2685 pre_2_10_vmstate_register_dummy_icp(i);
2689 for (i = 0; i < possible_cpus->len; i++) {
2690 int core_id = i * smp_threads;
2692 if (mc->has_hotpluggable_cpus) {
2693 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2694 spapr_vcpu_id(spapr, core_id));
2697 if (i < boot_cores_nr) {
2698 Object *core = object_new(type);
2699 int nr_threads = smp_threads;
2701 /* Handle the partially filled core for older machine types */
2702 if ((i + 1) * smp_threads >= smp_cpus) {
2703 nr_threads = smp_cpus - i * smp_threads;
2706 object_property_set_int(core, nr_threads, "nr-threads",
2708 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2710 object_property_set_bool(core, true, "realized", &error_fatal);
2717 static PCIHostState *spapr_create_default_phb(void)
2721 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2722 qdev_prop_set_uint32(dev, "index", 0);
2723 qdev_init_nofail(dev);
2725 return PCI_HOST_BRIDGE(dev);
2728 /* pSeries LPAR / sPAPR hardware init */
2729 static void spapr_machine_init(MachineState *machine)
2731 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2732 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2733 const char *kernel_filename = machine->kernel_filename;
2734 const char *initrd_filename = machine->initrd_filename;
2737 MemoryRegion *sysmem = get_system_memory();
2738 MemoryRegion *ram = g_new(MemoryRegion, 1);
2739 hwaddr node0_size = spapr_node0_size(machine);
2740 long load_limit, fw_size;
2742 Error *resize_hpt_err = NULL;
2744 msi_nonbroken = true;
2746 QLIST_INIT(&spapr->phbs);
2747 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2749 /* Determine capabilities to run with */
2750 spapr_caps_init(spapr);
2752 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2753 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2755 * If the user explicitly requested a mode we should either
2756 * supply it, or fail completely (which we do below). But if
2757 * it's not set explicitly, we reset our mode to something
2760 if (resize_hpt_err) {
2761 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2762 error_free(resize_hpt_err);
2763 resize_hpt_err = NULL;
2765 spapr->resize_hpt = smc->resize_hpt_default;
2769 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2771 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2773 * User requested HPT resize, but this host can't supply it. Bail out
2775 error_report_err(resize_hpt_err);
2779 spapr->rma_size = node0_size;
2781 /* With KVM, we don't actually know whether KVM supports an
2782 * unbounded RMA (PR KVM) or is limited by the hash table size
2783 * (HV KVM using VRMA), so we always assume the latter
2785 * In that case, we also limit the initial allocations for RTAS
2786 * etc... to 256M since we have no way to know what the VRMA size
2787 * is going to be as it depends on the size of the hash table
2788 * which isn't determined yet.
2790 if (kvm_enabled()) {
2791 spapr->vrma_adjust = 1;
2792 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2795 /* Actually we don't support unbounded RMA anymore since we added
2796 * proper emulation of HV mode. The max we can get is 16G which
2797 * also happens to be what we configure for PAPR mode so make sure
2798 * we don't do anything bigger than that
2800 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2802 if (spapr->rma_size > node0_size) {
2803 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2808 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2809 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2812 * VSMT must be set in order to be able to compute VCPU ids, ie to
2813 * call spapr_max_server_number() or spapr_vcpu_id().
2815 spapr_set_vsmt_mode(spapr, &error_fatal);
2817 /* Set up Interrupt Controller before we create the VCPUs */
2818 spapr_irq_init(spapr, &error_fatal);
2820 /* Set up containers for ibm,client-architecture-support negotiated options
2822 spapr->ov5 = spapr_ovec_new();
2823 spapr->ov5_cas = spapr_ovec_new();
2825 if (smc->dr_lmb_enabled) {
2826 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2827 spapr_validate_node_memory(machine, &error_fatal);
2830 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2832 /* advertise support for dedicated HP event source to guests */
2833 if (spapr->use_hotplug_event_source) {
2834 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2837 /* advertise support for HPT resizing */
2838 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2839 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2842 /* advertise support for ibm,dyamic-memory-v2 */
2843 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2845 /* advertise XIVE on POWER9 machines */
2846 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2847 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2851 spapr_init_cpus(spapr);
2853 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2854 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2855 spapr->max_compat_pvr)) {
2856 /* KVM and TCG always allow GTSE with radix... */
2857 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2859 /* ... but not with hash (currently). */
2861 if (kvm_enabled()) {
2862 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2863 kvmppc_enable_logical_ci_hcalls();
2864 kvmppc_enable_set_mode_hcall();
2866 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2867 kvmppc_enable_clear_ref_mod_hcalls();
2869 /* Enable H_PAGE_INIT */
2870 kvmppc_enable_h_page_init();
2874 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2876 memory_region_add_subregion(sysmem, 0, ram);
2878 /* always allocate the device memory information */
2879 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2881 /* initialize hotplug memory address space */
2882 if (machine->ram_size < machine->maxram_size) {
2883 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2885 * Limit the number of hotpluggable memory slots to half the number
2886 * slots that KVM supports, leaving the other half for PCI and other
2887 * devices. However ensure that number of slots doesn't drop below 32.
2889 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2890 SPAPR_MAX_RAM_SLOTS;
2892 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2893 max_memslots = SPAPR_MAX_RAM_SLOTS;
2895 if (machine->ram_slots > max_memslots) {
2896 error_report("Specified number of memory slots %"
2897 PRIu64" exceeds max supported %d",
2898 machine->ram_slots, max_memslots);
2902 machine->device_memory->base = ROUND_UP(machine->ram_size,
2903 SPAPR_DEVICE_MEM_ALIGN);
2904 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2905 "device-memory", device_mem_size);
2906 memory_region_add_subregion(sysmem, machine->device_memory->base,
2907 &machine->device_memory->mr);
2910 if (smc->dr_lmb_enabled) {
2911 spapr_create_lmb_dr_connectors(spapr);
2914 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2916 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2919 spapr->rtas_size = get_image_size(filename);
2920 if (spapr->rtas_size < 0) {
2921 error_report("Could not get size of LPAR rtas '%s'", filename);
2924 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2925 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2926 error_report("Could not load LPAR rtas '%s'", filename);
2929 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2930 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2931 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2936 /* Set up RTAS event infrastructure */
2937 spapr_events_init(spapr);
2939 /* Set up the RTC RTAS interfaces */
2940 spapr_rtc_create(spapr);
2942 /* Set up VIO bus */
2943 spapr->vio_bus = spapr_vio_bus_init();
2945 for (i = 0; i < serial_max_hds(); i++) {
2947 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2951 /* We always have at least the nvram device on VIO */
2952 spapr_create_nvram(spapr);
2955 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2956 * connectors (described in root DT node's "ibm,drc-types" property)
2957 * are pre-initialized here. additional child connectors (such as
2958 * connectors for a PHBs PCI slots) are added as needed during their
2959 * parent's realization.
2961 if (smc->dr_phb_enabled) {
2962 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2963 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2968 spapr_pci_rtas_init();
2970 phb = spapr_create_default_phb();
2972 for (i = 0; i < nb_nics; i++) {
2973 NICInfo *nd = &nd_table[i];
2976 nd->model = g_strdup("spapr-vlan");
2979 if (g_str_equal(nd->model, "spapr-vlan") ||
2980 g_str_equal(nd->model, "ibmveth")) {
2981 spapr_vlan_create(spapr->vio_bus, nd);
2983 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2987 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2988 spapr_vscsi_create(spapr->vio_bus);
2992 if (spapr_vga_init(phb->bus, &error_fatal)) {
2993 spapr->has_graphics = true;
2994 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2998 if (smc->use_ohci_by_default) {
2999 pci_create_simple(phb->bus, -1, "pci-ohci");
3001 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
3004 if (spapr->has_graphics) {
3005 USBBus *usb_bus = usb_bus_find(-1);
3007 usb_create_simple(usb_bus, "usb-kbd");
3008 usb_create_simple(usb_bus, "usb-mouse");
3012 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
3014 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
3019 if (kernel_filename) {
3020 uint64_t lowaddr = 0;
3022 spapr->kernel_size = load_elf(kernel_filename, NULL,
3023 translate_kernel_address, NULL,
3024 NULL, &lowaddr, NULL, 1,
3025 PPC_ELF_MACHINE, 0, 0);
3026 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3027 spapr->kernel_size = load_elf(kernel_filename, NULL,
3028 translate_kernel_address, NULL, NULL,
3029 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
3031 spapr->kernel_le = spapr->kernel_size > 0;
3033 if (spapr->kernel_size < 0) {
3034 error_report("error loading %s: %s", kernel_filename,
3035 load_elf_strerror(spapr->kernel_size));
3040 if (initrd_filename) {
3041 /* Try to locate the initrd in the gap between the kernel
3042 * and the firmware. Add a bit of space just in case
3044 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
3045 + 0x1ffff) & ~0xffff;
3046 spapr->initrd_size = load_image_targphys(initrd_filename,
3049 - spapr->initrd_base);
3050 if (spapr->initrd_size < 0) {
3051 error_report("could not load initial ram disk '%s'",
3058 if (bios_name == NULL) {
3059 bios_name = FW_FILE_NAME;
3061 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3063 error_report("Could not find LPAR firmware '%s'", bios_name);
3066 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3068 error_report("Could not load LPAR firmware '%s'", filename);
3073 /* FIXME: Should register things through the MachineState's qdev
3074 * interface, this is a legacy from the sPAPREnvironment structure
3075 * which predated MachineState but had a similar function */
3076 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3077 register_savevm_live(NULL, "spapr/htab", -1, 1,
3078 &savevm_htab_handlers, spapr);
3080 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3083 qemu_register_boot_set(spapr_boot_set, spapr);
3085 if (kvm_enabled()) {
3086 /* to stop and start vmclock */
3087 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3090 kvmppc_spapr_enable_inkernel_multitce();
3094 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3100 if (!strcmp(vm_type, "HV")) {
3104 if (!strcmp(vm_type, "PR")) {
3108 error_report("Unknown kvm-type specified '%s'", vm_type);
3113 * Implementation of an interface to adjust firmware path
3114 * for the bootindex property handling.
3116 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3119 #define CAST(type, obj, name) \
3120 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3121 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3122 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3123 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3126 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3127 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3128 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3132 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3133 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3134 * 0x8000 | (target << 8) | (bus << 5) | lun
3135 * (see the "Logical unit addressing format" table in SAM5)
3137 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3138 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3139 (uint64_t)id << 48);
3140 } else if (virtio) {
3142 * We use SRP luns of the form 01000000 | (target << 8) | lun
3143 * in the top 32 bits of the 64-bit LUN
3144 * Note: the quote above is from SLOF and it is wrong,
3145 * the actual binding is:
3146 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3148 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3149 if (d->lun >= 256) {
3150 /* Use the LUN "flat space addressing method" */
3153 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3154 (uint64_t)id << 32);
3157 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3158 * in the top 32 bits of the 64-bit LUN
3160 unsigned usb_port = atoi(usb->port->path);
3161 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3162 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3163 (uint64_t)id << 32);
3168 * SLOF probes the USB devices, and if it recognizes that the device is a
3169 * storage device, it changes its name to "storage" instead of "usb-host",
3170 * and additionally adds a child node for the SCSI LUN, so the correct
3171 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3173 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3174 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3175 if (usb_host_dev_is_scsi_storage(usbdev)) {
3176 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3181 /* Replace "pci" with "pci@800000020000000" */
3182 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3186 /* Same logic as virtio above */
3187 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3188 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3191 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3192 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3193 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3194 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3200 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3202 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3204 return g_strdup(spapr->kvm_type);
3207 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3209 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3211 g_free(spapr->kvm_type);
3212 spapr->kvm_type = g_strdup(value);
3215 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3217 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3219 return spapr->use_hotplug_event_source;
3222 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3225 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3227 spapr->use_hotplug_event_source = value;
3230 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3235 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3237 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3239 switch (spapr->resize_hpt) {
3240 case SPAPR_RESIZE_HPT_DEFAULT:
3241 return g_strdup("default");
3242 case SPAPR_RESIZE_HPT_DISABLED:
3243 return g_strdup("disabled");
3244 case SPAPR_RESIZE_HPT_ENABLED:
3245 return g_strdup("enabled");
3246 case SPAPR_RESIZE_HPT_REQUIRED:
3247 return g_strdup("required");
3249 g_assert_not_reached();
3252 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3254 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3256 if (strcmp(value, "default") == 0) {
3257 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3258 } else if (strcmp(value, "disabled") == 0) {
3259 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3260 } else if (strcmp(value, "enabled") == 0) {
3261 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3262 } else if (strcmp(value, "required") == 0) {
3263 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3265 error_setg(errp, "Bad value for \"resize-hpt\" property");
3269 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3270 void *opaque, Error **errp)
3272 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3275 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3276 void *opaque, Error **errp)
3278 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3281 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3283 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3285 if (spapr->irq == &spapr_irq_xics_legacy) {
3286 return g_strdup("legacy");
3287 } else if (spapr->irq == &spapr_irq_xics) {
3288 return g_strdup("xics");
3289 } else if (spapr->irq == &spapr_irq_xive) {
3290 return g_strdup("xive");
3291 } else if (spapr->irq == &spapr_irq_dual) {
3292 return g_strdup("dual");
3294 g_assert_not_reached();
3297 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3299 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3301 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3302 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3306 /* The legacy IRQ backend can not be set */
3307 if (strcmp(value, "xics") == 0) {
3308 spapr->irq = &spapr_irq_xics;
3309 } else if (strcmp(value, "xive") == 0) {
3310 spapr->irq = &spapr_irq_xive;
3311 } else if (strcmp(value, "dual") == 0) {
3312 spapr->irq = &spapr_irq_dual;
3314 error_setg(errp, "Bad value for \"ic-mode\" property");
3318 static char *spapr_get_host_model(Object *obj, Error **errp)
3320 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3322 return g_strdup(spapr->host_model);
3325 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3327 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3329 g_free(spapr->host_model);
3330 spapr->host_model = g_strdup(value);
3333 static char *spapr_get_host_serial(Object *obj, Error **errp)
3335 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3337 return g_strdup(spapr->host_serial);
3340 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3342 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3344 g_free(spapr->host_serial);
3345 spapr->host_serial = g_strdup(value);
3348 static void spapr_instance_init(Object *obj)
3350 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3351 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3353 spapr->htab_fd = -1;
3354 spapr->use_hotplug_event_source = true;
3355 object_property_add_str(obj, "kvm-type",
3356 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3357 object_property_set_description(obj, "kvm-type",
3358 "Specifies the KVM virtualization mode (HV, PR)",
3360 object_property_add_bool(obj, "modern-hotplug-events",
3361 spapr_get_modern_hotplug_events,
3362 spapr_set_modern_hotplug_events,
3364 object_property_set_description(obj, "modern-hotplug-events",
3365 "Use dedicated hotplug event mechanism in"
3366 " place of standard EPOW events when possible"
3367 " (required for memory hot-unplug support)",
3369 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3370 "Maximum permitted CPU compatibility mode",
3373 object_property_add_str(obj, "resize-hpt",
3374 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3375 object_property_set_description(obj, "resize-hpt",
3376 "Resizing of the Hash Page Table (enabled, disabled, required)",
3378 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3379 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3380 object_property_set_description(obj, "vsmt",
3381 "Virtual SMT: KVM behaves as if this were"
3382 " the host's SMT mode", &error_abort);
3383 object_property_add_bool(obj, "vfio-no-msix-emulation",
3384 spapr_get_msix_emulation, NULL, NULL);
3386 /* The machine class defines the default interrupt controller mode */
3387 spapr->irq = smc->irq;
3388 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3389 spapr_set_ic_mode, NULL);
3390 object_property_set_description(obj, "ic-mode",
3391 "Specifies the interrupt controller mode (xics, xive, dual)",
3394 object_property_add_str(obj, "host-model",
3395 spapr_get_host_model, spapr_set_host_model,
3397 object_property_set_description(obj, "host-model",
3398 "Host model to advertise in guest device tree", &error_abort);
3399 object_property_add_str(obj, "host-serial",
3400 spapr_get_host_serial, spapr_set_host_serial,
3402 object_property_set_description(obj, "host-serial",
3403 "Host serial number to advertise in guest device tree", &error_abort);
3406 static void spapr_machine_finalizefn(Object *obj)
3408 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3410 g_free(spapr->kvm_type);
3413 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3415 cpu_synchronize_state(cs);
3416 ppc_cpu_do_system_reset(cs);
3419 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3424 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3428 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3429 void *fdt, int *fdt_start_offset, Error **errp)
3434 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3435 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3437 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3438 SPAPR_MEMORY_BLOCK_SIZE);
3442 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3443 bool dedicated_hp_event_source, Error **errp)
3446 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3448 uint64_t addr = addr_start;
3449 bool hotplugged = spapr_drc_hotplugged(dev);
3450 Error *local_err = NULL;
3452 for (i = 0; i < nr_lmbs; i++) {
3453 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3454 addr / SPAPR_MEMORY_BLOCK_SIZE);
3457 spapr_drc_attach(drc, dev, &local_err);
3459 while (addr > addr_start) {
3460 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3461 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3462 addr / SPAPR_MEMORY_BLOCK_SIZE);
3463 spapr_drc_detach(drc);
3465 error_propagate(errp, local_err);
3469 spapr_drc_reset(drc);
3471 addr += SPAPR_MEMORY_BLOCK_SIZE;
3473 /* send hotplug notification to the
3474 * guest only in case of hotplugged memory
3477 if (dedicated_hp_event_source) {
3478 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3479 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3480 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3482 spapr_drc_index(drc));
3484 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3490 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3493 Error *local_err = NULL;
3494 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3495 PCDIMMDevice *dimm = PC_DIMM(dev);
3496 uint64_t size, addr;
3498 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3500 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3505 addr = object_property_get_uint(OBJECT(dimm),
3506 PC_DIMM_ADDR_PROP, &local_err);
3511 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3520 pc_dimm_unplug(dimm, MACHINE(ms));
3522 error_propagate(errp, local_err);
3525 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3528 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3529 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3530 PCDIMMDevice *dimm = PC_DIMM(dev);
3531 Error *local_err = NULL;
3536 if (!smc->dr_lmb_enabled) {
3537 error_setg(errp, "Memory hotplug not supported for this machine");
3541 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3543 error_propagate(errp, local_err);
3547 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3548 error_setg(errp, "Hotplugged memory size must be a multiple of "
3549 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3553 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3555 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3556 spapr_check_pagesize(spapr, pagesize, &local_err);
3558 error_propagate(errp, local_err);
3562 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3565 struct SpaprDimmState {
3568 QTAILQ_ENTRY(SpaprDimmState) next;
3571 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3574 SpaprDimmState *dimm_state = NULL;
3576 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3577 if (dimm_state->dimm == dimm) {
3584 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3588 SpaprDimmState *ds = NULL;
3591 * If this request is for a DIMM whose removal had failed earlier
3592 * (due to guest's refusal to remove the LMBs), we would have this
3593 * dimm already in the pending_dimm_unplugs list. In that
3594 * case don't add again.
3596 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3598 ds = g_malloc0(sizeof(SpaprDimmState));
3599 ds->nr_lmbs = nr_lmbs;
3601 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3606 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3607 SpaprDimmState *dimm_state)
3609 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3613 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3617 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3619 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3620 uint32_t avail_lmbs = 0;
3621 uint64_t addr_start, addr;
3624 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3628 for (i = 0; i < nr_lmbs; i++) {
3629 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3630 addr / SPAPR_MEMORY_BLOCK_SIZE);
3635 addr += SPAPR_MEMORY_BLOCK_SIZE;
3638 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3641 /* Callback to be called during DRC release. */
3642 void spapr_lmb_release(DeviceState *dev)
3644 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3645 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3646 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3648 /* This information will get lost if a migration occurs
3649 * during the unplug process. In this case recover it. */
3651 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3653 /* The DRC being examined by the caller at least must be counted */
3654 g_assert(ds->nr_lmbs);
3657 if (--ds->nr_lmbs) {
3662 * Now that all the LMBs have been removed by the guest, call the
3663 * unplug handler chain. This can never fail.
3665 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3666 object_unparent(OBJECT(dev));
3669 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3671 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3672 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3674 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3675 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3676 spapr_pending_dimm_unplugs_remove(spapr, ds);
3679 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3680 DeviceState *dev, Error **errp)
3682 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3683 Error *local_err = NULL;
3684 PCDIMMDevice *dimm = PC_DIMM(dev);
3686 uint64_t size, addr_start, addr;
3690 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3691 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3693 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3700 * An existing pending dimm state for this DIMM means that there is an
3701 * unplug operation in progress, waiting for the spapr_lmb_release
3702 * callback to complete the job (BQL can't cover that far). In this case,
3703 * bail out to avoid detaching DRCs that were already released.
3705 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3706 error_setg(&local_err,
3707 "Memory unplug already in progress for device %s",
3712 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3715 for (i = 0; i < nr_lmbs; i++) {
3716 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3717 addr / SPAPR_MEMORY_BLOCK_SIZE);
3720 spapr_drc_detach(drc);
3721 addr += SPAPR_MEMORY_BLOCK_SIZE;
3724 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3725 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3726 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3727 nr_lmbs, spapr_drc_index(drc));
3729 error_propagate(errp, local_err);
3732 /* Callback to be called during DRC release. */
3733 void spapr_core_release(DeviceState *dev)
3735 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3737 /* Call the unplug handler chain. This can never fail. */
3738 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3739 object_unparent(OBJECT(dev));
3742 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3744 MachineState *ms = MACHINE(hotplug_dev);
3745 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3746 CPUCore *cc = CPU_CORE(dev);
3747 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3749 if (smc->pre_2_10_has_unused_icps) {
3750 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3753 for (i = 0; i < cc->nr_threads; i++) {
3754 CPUState *cs = CPU(sc->threads[i]);
3756 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3761 core_slot->cpu = NULL;
3762 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3766 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3769 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3772 CPUCore *cc = CPU_CORE(dev);
3774 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3775 error_setg(errp, "Unable to find CPU core with core-id: %d",
3780 error_setg(errp, "Boot CPU core may not be unplugged");
3784 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3785 spapr_vcpu_id(spapr, cc->core_id));
3788 spapr_drc_detach(drc);
3790 spapr_hotplug_req_remove_by_index(drc);
3793 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3794 void *fdt, int *fdt_start_offset, Error **errp)
3796 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3797 CPUState *cs = CPU(core->threads[0]);
3798 PowerPCCPU *cpu = POWERPC_CPU(cs);
3799 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3800 int id = spapr_get_vcpu_id(cpu);
3804 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3805 offset = fdt_add_subnode(fdt, 0, nodename);
3808 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3810 *fdt_start_offset = offset;
3814 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3817 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3818 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3819 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3820 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3821 CPUCore *cc = CPU_CORE(dev);
3824 Error *local_err = NULL;
3825 CPUArchId *core_slot;
3827 bool hotplugged = spapr_drc_hotplugged(dev);
3829 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3831 error_setg(errp, "Unable to find CPU core with core-id: %d",
3835 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3836 spapr_vcpu_id(spapr, cc->core_id));
3838 g_assert(drc || !mc->has_hotpluggable_cpus);
3841 spapr_drc_attach(drc, dev, &local_err);
3843 error_propagate(errp, local_err);
3849 * Send hotplug notification interrupt to the guest only
3850 * in case of hotplugged CPUs.
3852 spapr_hotplug_req_add_by_index(drc);
3854 spapr_drc_reset(drc);
3858 core_slot->cpu = OBJECT(dev);
3860 if (smc->pre_2_10_has_unused_icps) {
3863 for (i = 0; i < cc->nr_threads; i++) {
3864 cs = CPU(core->threads[i]);
3865 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3870 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3873 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3874 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3875 Error *local_err = NULL;
3876 CPUCore *cc = CPU_CORE(dev);
3877 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3878 const char *type = object_get_typename(OBJECT(dev));
3879 CPUArchId *core_slot;
3881 unsigned int smp_threads = machine->smp.threads;
3883 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3884 error_setg(&local_err, "CPU hotplug not supported for this machine");
3888 if (strcmp(base_core_type, type)) {
3889 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3893 if (cc->core_id % smp_threads) {
3894 error_setg(&local_err, "invalid core id %d", cc->core_id);
3899 * In general we should have homogeneous threads-per-core, but old
3900 * (pre hotplug support) machine types allow the last core to have
3901 * reduced threads as a compatibility hack for when we allowed
3902 * total vcpus not a multiple of threads-per-core.
3904 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3905 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3906 cc->nr_threads, smp_threads);
3910 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3912 error_setg(&local_err, "core id %d out of range", cc->core_id);
3916 if (core_slot->cpu) {
3917 error_setg(&local_err, "core %d already populated", cc->core_id);
3921 numa_cpu_pre_plug(core_slot, dev, &local_err);
3924 error_propagate(errp, local_err);
3927 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3928 void *fdt, int *fdt_start_offset, Error **errp)
3930 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3933 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3934 if (intc_phandle <= 0) {
3938 if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3939 fdt_start_offset)) {
3940 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3944 /* generally SLOF creates these, for hotplug it's up to QEMU */
3945 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3950 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3953 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3954 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3955 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3956 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3958 if (dev->hotplugged && !smc->dr_phb_enabled) {
3959 error_setg(errp, "PHB hotplug not supported for this machine");
3963 if (sphb->index == (uint32_t)-1) {
3964 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3969 * This will check that sphb->index doesn't exceed the maximum number of
3970 * PHBs for the current machine type.
3972 smc->phb_placement(spapr, sphb->index,
3973 &sphb->buid, &sphb->io_win_addr,
3974 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3975 windows_supported, sphb->dma_liobn,
3976 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3980 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3983 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3984 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3985 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3987 bool hotplugged = spapr_drc_hotplugged(dev);
3988 Error *local_err = NULL;
3990 if (!smc->dr_phb_enabled) {
3994 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3995 /* hotplug hooks should check it's enabled before getting this far */
3998 spapr_drc_attach(drc, DEVICE(dev), &local_err);
4000 error_propagate(errp, local_err);
4005 spapr_hotplug_req_add_by_index(drc);
4007 spapr_drc_reset(drc);
4011 void spapr_phb_release(DeviceState *dev)
4013 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4015 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4016 object_unparent(OBJECT(dev));
4019 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4021 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4024 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4025 DeviceState *dev, Error **errp)
4027 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4030 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4033 if (!spapr_drc_unplug_requested(drc)) {
4034 spapr_drc_detach(drc);
4035 spapr_hotplug_req_remove_by_index(drc);
4039 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4040 DeviceState *dev, Error **errp)
4042 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4043 spapr_memory_plug(hotplug_dev, dev, errp);
4044 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4045 spapr_core_plug(hotplug_dev, dev, errp);
4046 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4047 spapr_phb_plug(hotplug_dev, dev, errp);
4051 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4052 DeviceState *dev, Error **errp)
4054 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4055 spapr_memory_unplug(hotplug_dev, dev);
4056 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4057 spapr_core_unplug(hotplug_dev, dev);
4058 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4059 spapr_phb_unplug(hotplug_dev, dev);
4063 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4064 DeviceState *dev, Error **errp)
4066 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4067 MachineClass *mc = MACHINE_GET_CLASS(sms);
4068 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4070 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4071 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4072 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4074 /* NOTE: this means there is a window after guest reset, prior to
4075 * CAS negotiation, where unplug requests will fail due to the
4076 * capability not being detected yet. This is a bit different than
4077 * the case with PCI unplug, where the events will be queued and
4078 * eventually handled by the guest after boot
4080 error_setg(errp, "Memory hot unplug not supported for this guest");
4082 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4083 if (!mc->has_hotpluggable_cpus) {
4084 error_setg(errp, "CPU hot unplug not supported on this machine");
4087 spapr_core_unplug_request(hotplug_dev, dev, errp);
4088 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4089 if (!smc->dr_phb_enabled) {
4090 error_setg(errp, "PHB hot unplug not supported on this machine");
4093 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4097 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4098 DeviceState *dev, Error **errp)
4100 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4101 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4102 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4103 spapr_core_pre_plug(hotplug_dev, dev, errp);
4104 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4105 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4109 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4112 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4113 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4114 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4115 return HOTPLUG_HANDLER(machine);
4117 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4118 PCIDevice *pcidev = PCI_DEVICE(dev);
4119 PCIBus *root = pci_device_root_bus(pcidev);
4120 SpaprPhbState *phb =
4121 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4122 TYPE_SPAPR_PCI_HOST_BRIDGE);
4125 return HOTPLUG_HANDLER(phb);
4131 static CpuInstanceProperties
4132 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4134 CPUArchId *core_slot;
4135 MachineClass *mc = MACHINE_GET_CLASS(machine);
4137 /* make sure possible_cpu are intialized */
4138 mc->possible_cpu_arch_ids(machine);
4139 /* get CPU core slot containing thread that matches cpu_index */
4140 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4142 return core_slot->props;
4145 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4147 return idx / ms->smp.cores % nb_numa_nodes;
4150 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4153 unsigned int smp_threads = machine->smp.threads;
4154 unsigned int smp_cpus = machine->smp.cpus;
4155 const char *core_type;
4156 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4157 MachineClass *mc = MACHINE_GET_CLASS(machine);
4159 if (!mc->has_hotpluggable_cpus) {
4160 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4162 if (machine->possible_cpus) {
4163 assert(machine->possible_cpus->len == spapr_max_cores);
4164 return machine->possible_cpus;
4167 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4169 error_report("Unable to find sPAPR CPU Core definition");
4173 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4174 sizeof(CPUArchId) * spapr_max_cores);
4175 machine->possible_cpus->len = spapr_max_cores;
4176 for (i = 0; i < machine->possible_cpus->len; i++) {
4177 int core_id = i * smp_threads;
4179 machine->possible_cpus->cpus[i].type = core_type;
4180 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4181 machine->possible_cpus->cpus[i].arch_id = core_id;
4182 machine->possible_cpus->cpus[i].props.has_core_id = true;
4183 machine->possible_cpus->cpus[i].props.core_id = core_id;
4185 return machine->possible_cpus;
4188 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4189 uint64_t *buid, hwaddr *pio,
4190 hwaddr *mmio32, hwaddr *mmio64,
4191 unsigned n_dma, uint32_t *liobns,
4192 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4195 * New-style PHB window placement.
4197 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4198 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4201 * Some guest kernels can't work with MMIO windows above 1<<46
4202 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4204 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4205 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4206 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4207 * 1TiB 64-bit MMIO windows for each PHB.
4209 const uint64_t base_buid = 0x800000020000000ULL;
4212 /* Sanity check natural alignments */
4213 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4214 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4215 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4216 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4217 /* Sanity check bounds */
4218 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4219 SPAPR_PCI_MEM32_WIN_SIZE);
4220 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4221 SPAPR_PCI_MEM64_WIN_SIZE);
4223 if (index >= SPAPR_MAX_PHBS) {
4224 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4225 SPAPR_MAX_PHBS - 1);
4229 *buid = base_buid + index;
4230 for (i = 0; i < n_dma; ++i) {
4231 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4234 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4235 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4236 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4238 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4239 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4242 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4244 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4246 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4249 static void spapr_ics_resend(XICSFabric *dev)
4251 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4253 ics_resend(spapr->ics);
4256 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4258 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4260 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4263 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4266 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4268 spapr->irq->print_info(spapr, mon);
4271 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4273 return cpu->vcpu_id;
4276 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4278 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4279 MachineState *ms = MACHINE(spapr);
4282 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4284 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4285 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4286 error_append_hint(errp, "Adjust the number of cpus to %d "
4287 "or try to raise the number of threads per core\n",
4288 vcpu_id * ms->smp.threads / spapr->vsmt);
4292 cpu->vcpu_id = vcpu_id;
4295 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4300 PowerPCCPU *cpu = POWERPC_CPU(cs);
4302 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4310 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4312 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4314 /* These are only called by TCG, KVM maintains dispatch state */
4316 spapr_cpu->prod = false;
4317 if (spapr_cpu->vpa_addr) {
4318 CPUState *cs = CPU(cpu);
4321 dispatch = ldl_be_phys(cs->as,
4322 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4324 if ((dispatch & 1) != 0) {
4325 qemu_log_mask(LOG_GUEST_ERROR,
4326 "VPA: incorrect dispatch counter value for "
4327 "dispatched partition %u, correcting.\n", dispatch);
4331 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4335 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4337 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4339 if (spapr_cpu->vpa_addr) {
4340 CPUState *cs = CPU(cpu);
4343 dispatch = ldl_be_phys(cs->as,
4344 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4346 if ((dispatch & 1) != 1) {
4347 qemu_log_mask(LOG_GUEST_ERROR,
4348 "VPA: incorrect dispatch counter value for "
4349 "preempted partition %u, correcting.\n", dispatch);
4353 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4357 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4359 MachineClass *mc = MACHINE_CLASS(oc);
4360 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4361 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4362 NMIClass *nc = NMI_CLASS(oc);
4363 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4364 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4365 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4366 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4368 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4369 mc->ignore_boot_device_suffixes = true;
4372 * We set up the default / latest behaviour here. The class_init
4373 * functions for the specific versioned machine types can override
4374 * these details for backwards compatibility
4376 mc->init = spapr_machine_init;
4377 mc->reset = spapr_machine_reset;
4378 mc->block_default_type = IF_SCSI;
4379 mc->max_cpus = 1024;
4380 mc->no_parallel = 1;
4381 mc->default_boot_order = "";
4382 mc->default_ram_size = 512 * MiB;
4383 mc->default_display = "std";
4384 mc->kvm_type = spapr_kvm_type;
4385 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4386 mc->pci_allow_0_address = true;
4387 assert(!mc->get_hotplug_handler);
4388 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4389 hc->pre_plug = spapr_machine_device_pre_plug;
4390 hc->plug = spapr_machine_device_plug;
4391 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4392 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4393 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4394 hc->unplug_request = spapr_machine_device_unplug_request;
4395 hc->unplug = spapr_machine_device_unplug;
4397 smc->dr_lmb_enabled = true;
4398 smc->update_dt_enabled = true;
4399 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4400 mc->has_hotpluggable_cpus = true;
4401 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4402 fwc->get_dev_path = spapr_get_fw_dev_path;
4403 nc->nmi_monitor_handler = spapr_nmi;
4404 smc->phb_placement = spapr_phb_placement;
4405 vhc->hypercall = emulate_spapr_hypercall;
4406 vhc->hpt_mask = spapr_hpt_mask;
4407 vhc->map_hptes = spapr_map_hptes;
4408 vhc->unmap_hptes = spapr_unmap_hptes;
4409 vhc->hpte_set_c = spapr_hpte_set_c;
4410 vhc->hpte_set_r = spapr_hpte_set_r;
4411 vhc->get_pate = spapr_get_pate;
4412 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4413 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4414 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4415 xic->ics_get = spapr_ics_get;
4416 xic->ics_resend = spapr_ics_resend;
4417 xic->icp_get = spapr_icp_get;
4418 ispc->print_info = spapr_pic_print_info;
4419 /* Force NUMA node memory size to be a multiple of
4420 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4421 * in which LMBs are represented and hot-added
4423 mc->numa_mem_align_shift = 28;
4424 mc->numa_mem_supported = true;
4426 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4427 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4428 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4429 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4430 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4431 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4432 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4433 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4434 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4435 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4436 spapr_caps_add_properties(smc, &error_abort);
4437 smc->irq = &spapr_irq_dual;
4438 smc->dr_phb_enabled = true;
4441 static const TypeInfo spapr_machine_info = {
4442 .name = TYPE_SPAPR_MACHINE,
4443 .parent = TYPE_MACHINE,
4445 .instance_size = sizeof(SpaprMachineState),
4446 .instance_init = spapr_instance_init,
4447 .instance_finalize = spapr_machine_finalizefn,
4448 .class_size = sizeof(SpaprMachineClass),
4449 .class_init = spapr_machine_class_init,
4450 .interfaces = (InterfaceInfo[]) {
4451 { TYPE_FW_PATH_PROVIDER },
4453 { TYPE_HOTPLUG_HANDLER },
4454 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4455 { TYPE_XICS_FABRIC },
4456 { TYPE_INTERRUPT_STATS_PROVIDER },
4461 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4462 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4465 MachineClass *mc = MACHINE_CLASS(oc); \
4466 spapr_machine_##suffix##_class_options(mc); \
4468 mc->alias = "pseries"; \
4469 mc->is_default = 1; \
4472 static const TypeInfo spapr_machine_##suffix##_info = { \
4473 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4474 .parent = TYPE_SPAPR_MACHINE, \
4475 .class_init = spapr_machine_##suffix##_class_init, \
4477 static void spapr_machine_register_##suffix(void) \
4479 type_register(&spapr_machine_##suffix##_info); \
4481 type_init(spapr_machine_register_##suffix)
4486 static void spapr_machine_4_2_class_options(MachineClass *mc)
4488 /* Defaults for the latest behaviour inherited from the base class */
4491 DEFINE_SPAPR_MACHINE(4_2, "4.2", true);
4496 static void spapr_machine_4_1_class_options(MachineClass *mc)
4498 static GlobalProperty compat[] = {
4499 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4500 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4503 spapr_machine_4_2_class_options(mc);
4504 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4505 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4508 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4513 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4514 uint64_t *buid, hwaddr *pio,
4515 hwaddr *mmio32, hwaddr *mmio64,
4516 unsigned n_dma, uint32_t *liobns,
4517 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4519 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4520 nv2gpa, nv2atsd, errp);
4525 static void spapr_machine_4_0_class_options(MachineClass *mc)
4527 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4529 spapr_machine_4_1_class_options(mc);
4530 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4531 smc->phb_placement = phb_placement_4_0;
4532 smc->irq = &spapr_irq_xics;
4533 smc->pre_4_1_migration = true;
4536 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4541 static void spapr_machine_3_1_class_options(MachineClass *mc)
4543 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4545 spapr_machine_4_0_class_options(mc);
4546 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4548 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4549 smc->update_dt_enabled = false;
4550 smc->dr_phb_enabled = false;
4551 smc->broken_host_serial_model = true;
4552 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4553 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4554 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4555 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4558 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4564 static void spapr_machine_3_0_class_options(MachineClass *mc)
4566 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4568 spapr_machine_3_1_class_options(mc);
4569 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4571 smc->legacy_irq_allocation = true;
4572 smc->irq = &spapr_irq_xics_legacy;
4575 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4580 static void spapr_machine_2_12_class_options(MachineClass *mc)
4582 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4583 static GlobalProperty compat[] = {
4584 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4585 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4588 spapr_machine_3_0_class_options(mc);
4589 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4590 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4592 /* We depend on kvm_enabled() to choose a default value for the
4593 * hpt-max-page-size capability. Of course we can't do it here
4594 * because this is too early and the HW accelerator isn't initialzed
4595 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4597 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4600 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4602 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4604 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4606 spapr_machine_2_12_class_options(mc);
4607 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4608 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4609 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4612 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4618 static void spapr_machine_2_11_class_options(MachineClass *mc)
4620 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4622 spapr_machine_2_12_class_options(mc);
4623 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4624 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4627 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4633 static void spapr_machine_2_10_class_options(MachineClass *mc)
4635 spapr_machine_2_11_class_options(mc);
4636 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4639 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4645 static void spapr_machine_2_9_class_options(MachineClass *mc)
4647 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4648 static GlobalProperty compat[] = {
4649 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4652 spapr_machine_2_10_class_options(mc);
4653 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4654 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4655 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4656 smc->pre_2_10_has_unused_icps = true;
4657 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4660 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4666 static void spapr_machine_2_8_class_options(MachineClass *mc)
4668 static GlobalProperty compat[] = {
4669 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4672 spapr_machine_2_9_class_options(mc);
4673 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4674 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4675 mc->numa_mem_align_shift = 23;
4678 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4684 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4685 uint64_t *buid, hwaddr *pio,
4686 hwaddr *mmio32, hwaddr *mmio64,
4687 unsigned n_dma, uint32_t *liobns,
4688 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4690 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4691 const uint64_t base_buid = 0x800000020000000ULL;
4692 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4693 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4694 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4695 const uint32_t max_index = 255;
4696 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4698 uint64_t ram_top = MACHINE(spapr)->ram_size;
4699 hwaddr phb0_base, phb_base;
4702 /* Do we have device memory? */
4703 if (MACHINE(spapr)->maxram_size > ram_top) {
4704 /* Can't just use maxram_size, because there may be an
4705 * alignment gap between normal and device memory regions
4707 ram_top = MACHINE(spapr)->device_memory->base +
4708 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4711 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4713 if (index > max_index) {
4714 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4719 *buid = base_buid + index;
4720 for (i = 0; i < n_dma; ++i) {
4721 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4724 phb_base = phb0_base + index * phb_spacing;
4725 *pio = phb_base + pio_offset;
4726 *mmio32 = phb_base + mmio_offset;
4728 * We don't set the 64-bit MMIO window, relying on the PHB's
4729 * fallback behaviour of automatically splitting a large "32-bit"
4730 * window into contiguous 32-bit and 64-bit windows
4737 static void spapr_machine_2_7_class_options(MachineClass *mc)
4739 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4740 static GlobalProperty compat[] = {
4741 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4742 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4743 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4744 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4747 spapr_machine_2_8_class_options(mc);
4748 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4749 mc->default_machine_opts = "modern-hotplug-events=off";
4750 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4751 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4752 smc->phb_placement = phb_placement_2_7;
4755 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4761 static void spapr_machine_2_6_class_options(MachineClass *mc)
4763 static GlobalProperty compat[] = {
4764 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4767 spapr_machine_2_7_class_options(mc);
4768 mc->has_hotpluggable_cpus = false;
4769 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4770 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4773 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4779 static void spapr_machine_2_5_class_options(MachineClass *mc)
4781 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4782 static GlobalProperty compat[] = {
4783 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4786 spapr_machine_2_6_class_options(mc);
4787 smc->use_ohci_by_default = true;
4788 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4789 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4792 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4798 static void spapr_machine_2_4_class_options(MachineClass *mc)
4800 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4802 spapr_machine_2_5_class_options(mc);
4803 smc->dr_lmb_enabled = false;
4804 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4807 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4813 static void spapr_machine_2_3_class_options(MachineClass *mc)
4815 static GlobalProperty compat[] = {
4816 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4818 spapr_machine_2_4_class_options(mc);
4819 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4820 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4822 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4828 static void spapr_machine_2_2_class_options(MachineClass *mc)
4830 static GlobalProperty compat[] = {
4831 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4834 spapr_machine_2_3_class_options(mc);
4835 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4836 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4837 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4839 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4845 static void spapr_machine_2_1_class_options(MachineClass *mc)
4847 spapr_machine_2_2_class_options(mc);
4848 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4850 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4852 static void spapr_machine_register_types(void)
4854 type_register_static(&spapr_machine_info);
4857 type_init(spapr_machine_register_types)