2 * QEMU MC146818 RTC emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu-timer.h"
29 #include "hpet_emul.h"
34 #define RTC_SECONDS_ALARM 1
36 #define RTC_MINUTES_ALARM 3
38 #define RTC_HOURS_ALARM 5
39 #define RTC_ALARM_DONT_CARE 0xC0
41 #define RTC_DAY_OF_WEEK 6
42 #define RTC_DAY_OF_MONTH 7
51 #define REG_A_UIP 0x80
53 #define REG_B_SET 0x80
54 #define REG_B_PIE 0x40
55 #define REG_B_AIE 0x20
56 #define REG_B_UIE 0x10
57 #define REG_B_SQWE 0x08
61 uint8_t cmos_data[128];
69 QEMUTimer *periodic_timer;
70 int64_t next_periodic_time;
72 int64_t next_second_time;
74 uint32_t irq_coalesced;
77 QEMUTimer *second_timer;
78 QEMUTimer *second_timer2;
81 static void rtc_irq_raise(qemu_irq irq) {
82 /* When HPET is operating in legacy mode, RTC interrupts are disabled
83 * We block qemu_irq_raise, but not qemu_irq_lower, in case legacy
84 * mode is established while interrupt is raised. We want it to
85 * be lowered in any case
87 #if defined TARGET_I386 || defined TARGET_X86_64
88 if (!hpet_in_legacy_mode())
93 static void rtc_set_time(RTCState *s);
94 static void rtc_copy_date(RTCState *s);
96 static void rtc_timer_update(RTCState *s, int64_t current_time)
98 int period_code, period;
99 int64_t cur_clock, next_irq_clock;
102 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
103 #if defined TARGET_I386 || defined TARGET_X86_64
104 /* disable periodic timer if hpet is in legacy mode, since interrupts are
107 enable_pie = hpet_in_legacy_mode();
112 && (((s->cmos_data[RTC_REG_B] & REG_B_PIE) && enable_pie)
113 || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
114 if (period_code <= 2)
116 /* period in 32 Khz cycles */
117 period = 1 << (period_code - 1);
119 if(period != s->period)
120 s->irq_coalesced = (s->irq_coalesced * s->period) / period;
123 /* compute 32 khz clock */
124 cur_clock = muldiv64(current_time, 32768, ticks_per_sec);
125 next_irq_clock = (cur_clock & ~(period - 1)) + period;
126 s->next_periodic_time = muldiv64(next_irq_clock, ticks_per_sec, 32768) + 1;
127 qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
130 s->irq_coalesced = 0;
132 qemu_del_timer(s->periodic_timer);
136 static void rtc_periodic_timer(void *opaque)
138 RTCState *s = opaque;
140 rtc_timer_update(s, s->next_periodic_time);
142 if ((s->cmos_data[RTC_REG_C] & 0xc0) && rtc_td_hack) {
147 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
148 s->cmos_data[RTC_REG_C] |= 0xc0;
149 rtc_irq_raise(s->irq);
151 if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
152 /* Not square wave at all but we don't want 2048Hz interrupts!
153 Must be seen as a pulse. */
154 qemu_irq_raise(s->sqw_irq);
158 static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
160 RTCState *s = opaque;
162 if ((addr & 1) == 0) {
163 s->cmos_index = data & 0x7f;
166 printf("cmos: write index=0x%02x val=0x%02x\n",
167 s->cmos_index, data);
169 switch(s->cmos_index) {
170 case RTC_SECONDS_ALARM:
171 case RTC_MINUTES_ALARM:
172 case RTC_HOURS_ALARM:
173 /* XXX: not supported */
174 s->cmos_data[s->cmos_index] = data;
179 case RTC_DAY_OF_WEEK:
180 case RTC_DAY_OF_MONTH:
183 s->cmos_data[s->cmos_index] = data;
184 /* if in set mode, do not update the time */
185 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
190 /* UIP bit is read only */
191 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
192 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
193 rtc_timer_update(s, qemu_get_clock(vm_clock));
196 if (data & REG_B_SET) {
197 /* set mode: reset UIP mode */
198 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
201 /* if disabling set mode, update the time */
202 if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
206 s->cmos_data[RTC_REG_B] = data;
207 rtc_timer_update(s, qemu_get_clock(vm_clock));
211 /* cannot write to them */
214 s->cmos_data[s->cmos_index] = data;
220 static inline int to_bcd(RTCState *s, int a)
222 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
225 return ((a / 10) << 4) | (a % 10);
229 static inline int from_bcd(RTCState *s, int a)
231 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
234 return ((a >> 4) * 10) + (a & 0x0f);
238 static void rtc_set_time(RTCState *s)
240 struct tm *tm = &s->current_tm;
242 tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]);
243 tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]);
244 tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
245 if (!(s->cmos_data[RTC_REG_B] & 0x02) &&
246 (s->cmos_data[RTC_HOURS] & 0x80)) {
249 tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
250 tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
251 tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
252 tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900;
255 static void rtc_copy_date(RTCState *s)
257 const struct tm *tm = &s->current_tm;
260 s->cmos_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec);
261 s->cmos_data[RTC_MINUTES] = to_bcd(s, tm->tm_min);
262 if (s->cmos_data[RTC_REG_B] & 0x02) {
264 s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour);
267 s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12);
268 if (tm->tm_hour >= 12)
269 s->cmos_data[RTC_HOURS] |= 0x80;
271 s->cmos_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday + 1);
272 s->cmos_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday);
273 s->cmos_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1);
274 year = (tm->tm_year - s->base_year) % 100;
277 s->cmos_data[RTC_YEAR] = to_bcd(s, year);
280 /* month is between 0 and 11. */
281 static int get_days_in_month(int month, int year)
283 static const int days_tab[12] = {
284 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
287 if ((unsigned )month >= 12)
291 if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
297 /* update 'tm' to the next second */
298 static void rtc_next_second(struct tm *tm)
303 if ((unsigned)tm->tm_sec >= 60) {
306 if ((unsigned)tm->tm_min >= 60) {
309 if ((unsigned)tm->tm_hour >= 24) {
313 if ((unsigned)tm->tm_wday >= 7)
315 days_in_month = get_days_in_month(tm->tm_mon,
318 if (tm->tm_mday < 1) {
320 } else if (tm->tm_mday > days_in_month) {
323 if (tm->tm_mon >= 12) {
334 static void rtc_update_second(void *opaque)
336 RTCState *s = opaque;
339 /* if the oscillator is not in normal operation, we do not update */
340 if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
341 s->next_second_time += ticks_per_sec;
342 qemu_mod_timer(s->second_timer, s->next_second_time);
344 rtc_next_second(&s->current_tm);
346 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
347 /* update in progress bit */
348 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
350 /* should be 244 us = 8 / 32768 seconds, but currently the
351 timers do not have the necessary resolution. */
352 delay = (ticks_per_sec * 1) / 100;
355 qemu_mod_timer(s->second_timer2,
356 s->next_second_time + delay);
360 static void rtc_update_second2(void *opaque)
362 RTCState *s = opaque;
364 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
369 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
370 if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
371 s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) &&
372 ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
373 s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) &&
374 ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
375 s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) {
377 s->cmos_data[RTC_REG_C] |= 0xa0;
378 rtc_irq_raise(s->irq);
382 /* update ended interrupt */
383 if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
384 s->cmos_data[RTC_REG_C] |= 0x90;
385 rtc_irq_raise(s->irq);
388 /* clear update in progress bit */
389 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
391 s->next_second_time += ticks_per_sec;
392 qemu_mod_timer(s->second_timer, s->next_second_time);
395 static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
397 RTCState *s = opaque;
399 if ((addr & 1) == 0) {
402 switch(s->cmos_index) {
406 case RTC_DAY_OF_WEEK:
407 case RTC_DAY_OF_MONTH:
410 ret = s->cmos_data[s->cmos_index];
413 ret = s->cmos_data[s->cmos_index];
416 ret = s->cmos_data[s->cmos_index];
417 qemu_irq_lower(s->irq);
419 if(s->irq_coalesced) {
420 apic_reset_irq_delivered();
421 qemu_irq_raise(s->irq);
422 if (apic_get_irq_delivered())
427 s->cmos_data[RTC_REG_C] = 0x00;
430 ret = s->cmos_data[s->cmos_index];
434 printf("cmos: read index=0x%02x val=0x%02x\n",
441 void rtc_set_memory(RTCState *s, int addr, int val)
443 if (addr >= 0 && addr <= 127)
444 s->cmos_data[addr] = val;
447 void rtc_set_date(RTCState *s, const struct tm *tm)
453 /* PC cmos mappings */
454 #define REG_IBM_CENTURY_BYTE 0x32
455 #define REG_IBM_PS2_CENTURY_BYTE 0x37
457 static void rtc_set_date_from_host(RTCState *s)
462 /* set the CMOS date */
463 qemu_get_timedate(&tm, 0);
464 rtc_set_date(s, &tm);
466 val = to_bcd(s, (tm.tm_year / 100) + 19);
467 rtc_set_memory(s, REG_IBM_CENTURY_BYTE, val);
468 rtc_set_memory(s, REG_IBM_PS2_CENTURY_BYTE, val);
471 static void rtc_save(QEMUFile *f, void *opaque)
473 RTCState *s = opaque;
475 qemu_put_buffer(f, s->cmos_data, 128);
476 qemu_put_8s(f, &s->cmos_index);
478 qemu_put_be32(f, s->current_tm.tm_sec);
479 qemu_put_be32(f, s->current_tm.tm_min);
480 qemu_put_be32(f, s->current_tm.tm_hour);
481 qemu_put_be32(f, s->current_tm.tm_wday);
482 qemu_put_be32(f, s->current_tm.tm_mday);
483 qemu_put_be32(f, s->current_tm.tm_mon);
484 qemu_put_be32(f, s->current_tm.tm_year);
486 qemu_put_timer(f, s->periodic_timer);
487 qemu_put_be64(f, s->next_periodic_time);
489 qemu_put_be64(f, s->next_second_time);
490 qemu_put_timer(f, s->second_timer);
491 qemu_put_timer(f, s->second_timer2);
494 static int rtc_load(QEMUFile *f, void *opaque, int version_id)
496 RTCState *s = opaque;
501 qemu_get_buffer(f, s->cmos_data, 128);
502 qemu_get_8s(f, &s->cmos_index);
504 s->current_tm.tm_sec=qemu_get_be32(f);
505 s->current_tm.tm_min=qemu_get_be32(f);
506 s->current_tm.tm_hour=qemu_get_be32(f);
507 s->current_tm.tm_wday=qemu_get_be32(f);
508 s->current_tm.tm_mday=qemu_get_be32(f);
509 s->current_tm.tm_mon=qemu_get_be32(f);
510 s->current_tm.tm_year=qemu_get_be32(f);
512 qemu_get_timer(f, s->periodic_timer);
513 s->next_periodic_time=qemu_get_be64(f);
515 s->next_second_time=qemu_get_be64(f);
516 qemu_get_timer(f, s->second_timer);
517 qemu_get_timer(f, s->second_timer2);
522 static void rtc_save_td(QEMUFile *f, void *opaque)
524 RTCState *s = opaque;
526 qemu_put_be32(f, s->irq_coalesced);
527 qemu_put_be32(f, s->period);
530 static int rtc_load_td(QEMUFile *f, void *opaque, int version_id)
532 RTCState *s = opaque;
537 s->irq_coalesced = qemu_get_be32(f);
538 s->period = qemu_get_be32(f);
543 RTCState *rtc_init_sqw(int base, qemu_irq irq, qemu_irq sqw_irq, int base_year)
547 s = qemu_mallocz(sizeof(RTCState));
550 s->sqw_irq = sqw_irq;
551 s->cmos_data[RTC_REG_A] = 0x26;
552 s->cmos_data[RTC_REG_B] = 0x02;
553 s->cmos_data[RTC_REG_C] = 0x00;
554 s->cmos_data[RTC_REG_D] = 0x80;
556 s->base_year = base_year;
557 rtc_set_date_from_host(s);
559 s->periodic_timer = qemu_new_timer(vm_clock,
560 rtc_periodic_timer, s);
561 s->second_timer = qemu_new_timer(vm_clock,
562 rtc_update_second, s);
563 s->second_timer2 = qemu_new_timer(vm_clock,
564 rtc_update_second2, s);
566 s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
567 qemu_mod_timer(s->second_timer2, s->next_second_time);
569 register_ioport_write(base, 2, 1, cmos_ioport_write, s);
570 register_ioport_read(base, 2, 1, cmos_ioport_read, s);
572 register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
575 register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s);
580 RTCState *rtc_init(int base, qemu_irq irq, int base_year)
582 return rtc_init_sqw(base, irq, NULL, base_year);
585 /* Memory mapped interface */
586 static uint32_t cmos_mm_readb (void *opaque, target_phys_addr_t addr)
588 RTCState *s = opaque;
590 return cmos_ioport_read(s, addr >> s->it_shift) & 0xFF;
593 static void cmos_mm_writeb (void *opaque,
594 target_phys_addr_t addr, uint32_t value)
596 RTCState *s = opaque;
598 cmos_ioport_write(s, addr >> s->it_shift, value & 0xFF);
601 static uint32_t cmos_mm_readw (void *opaque, target_phys_addr_t addr)
603 RTCState *s = opaque;
606 val = cmos_ioport_read(s, addr >> s->it_shift) & 0xFFFF;
607 #ifdef TARGET_WORDS_BIGENDIAN
613 static void cmos_mm_writew (void *opaque,
614 target_phys_addr_t addr, uint32_t value)
616 RTCState *s = opaque;
617 #ifdef TARGET_WORDS_BIGENDIAN
618 value = bswap16(value);
620 cmos_ioport_write(s, addr >> s->it_shift, value & 0xFFFF);
623 static uint32_t cmos_mm_readl (void *opaque, target_phys_addr_t addr)
625 RTCState *s = opaque;
628 val = cmos_ioport_read(s, addr >> s->it_shift);
629 #ifdef TARGET_WORDS_BIGENDIAN
635 static void cmos_mm_writel (void *opaque,
636 target_phys_addr_t addr, uint32_t value)
638 RTCState *s = opaque;
639 #ifdef TARGET_WORDS_BIGENDIAN
640 value = bswap32(value);
642 cmos_ioport_write(s, addr >> s->it_shift, value);
645 static CPUReadMemoryFunc *rtc_mm_read[] = {
651 static CPUWriteMemoryFunc *rtc_mm_write[] = {
657 RTCState *rtc_mm_init(target_phys_addr_t base, int it_shift, qemu_irq irq,
663 s = qemu_mallocz(sizeof(RTCState));
666 s->cmos_data[RTC_REG_A] = 0x26;
667 s->cmos_data[RTC_REG_B] = 0x02;
668 s->cmos_data[RTC_REG_C] = 0x00;
669 s->cmos_data[RTC_REG_D] = 0x80;
671 s->base_year = base_year;
672 rtc_set_date_from_host(s);
674 s->periodic_timer = qemu_new_timer(vm_clock,
675 rtc_periodic_timer, s);
676 s->second_timer = qemu_new_timer(vm_clock,
677 rtc_update_second, s);
678 s->second_timer2 = qemu_new_timer(vm_clock,
679 rtc_update_second2, s);
681 s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
682 qemu_mod_timer(s->second_timer2, s->next_second_time);
684 io_memory = cpu_register_io_memory(0, rtc_mm_read, rtc_mm_write, s);
685 cpu_register_physical_memory(base, 2 << it_shift, io_memory);
687 register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
690 register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s);