4 * Copyright IBM, Corp. 2008
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
29 #include "hw/pci/msi.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/address-spaces.h"
35 #include "qemu/event_notifier.h"
38 /* This check must be after config-host.h is included */
40 #include <sys/eventfd.h>
43 #ifdef CONFIG_VALGRIND_H
44 #include <valgrind/memcheck.h>
47 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
48 #define PAGE_SIZE TARGET_PAGE_SIZE
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56 #define DPRINTF(fmt, ...) \
60 #define KVM_MSI_HASHTAB_SIZE 256
62 typedef struct KVMSlot
65 ram_addr_t memory_size;
71 typedef struct kvm_dirty_log KVMDirtyLog;
79 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
80 bool coalesced_flush_in_progress;
81 int broken_set_mem_region;
84 int robust_singlestep;
86 #ifdef KVM_CAP_SET_GUEST_DEBUG
87 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
93 /* The man page (and posix) say ioctl numbers are signed int, but
94 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
95 * unsigned, and treating them as signed here can break things */
96 unsigned irq_set_ioctl;
97 #ifdef KVM_CAP_IRQ_ROUTING
98 struct kvm_irq_routing *irq_routes;
99 int nr_allocated_irq_routes;
100 uint32_t *used_gsi_bitmap;
101 unsigned int gsi_count;
102 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
108 bool kvm_kernel_irqchip;
109 bool kvm_async_interrupts_allowed;
110 bool kvm_halt_in_kernel_allowed;
111 bool kvm_irqfds_allowed;
112 bool kvm_msi_via_irqfd_allowed;
113 bool kvm_gsi_routing_allowed;
115 bool kvm_readonly_mem_allowed;
117 static const KVMCapabilityInfo kvm_required_capabilites[] = {
118 KVM_CAP_INFO(USER_MEMORY),
119 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
123 static KVMSlot *kvm_alloc_slot(KVMState *s)
127 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
128 if (s->slots[i].memory_size == 0) {
133 fprintf(stderr, "%s: no free slot available\n", __func__);
137 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
143 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
144 KVMSlot *mem = &s->slots[i];
146 if (start_addr == mem->start_addr &&
147 end_addr == mem->start_addr + mem->memory_size) {
156 * Find overlapping slot with lowest start address
158 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
162 KVMSlot *found = NULL;
165 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
166 KVMSlot *mem = &s->slots[i];
168 if (mem->memory_size == 0 ||
169 (found && found->start_addr < mem->start_addr)) {
173 if (end_addr > mem->start_addr &&
174 start_addr < mem->start_addr + mem->memory_size) {
182 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
187 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
188 KVMSlot *mem = &s->slots[i];
190 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
191 *phys_addr = mem->start_addr + (ram - mem->ram);
199 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
201 struct kvm_userspace_memory_region mem;
203 mem.slot = slot->slot;
204 mem.guest_phys_addr = slot->start_addr;
205 mem.userspace_addr = (unsigned long)slot->ram;
206 mem.flags = slot->flags;
207 if (s->migration_log) {
208 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
211 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
212 /* Set the slot size to 0 before setting the slot to the desired
213 * value. This is needed based on KVM commit 75d61fbc. */
215 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
217 mem.memory_size = slot->memory_size;
218 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
221 static void kvm_reset_vcpu(void *opaque)
223 CPUState *cpu = opaque;
225 kvm_arch_reset_vcpu(cpu);
228 int kvm_init_vcpu(CPUState *cpu)
230 KVMState *s = kvm_state;
234 DPRINTF("kvm_init_vcpu\n");
236 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
238 DPRINTF("kvm_create_vcpu failed\n");
244 cpu->kvm_vcpu_dirty = true;
246 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
249 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
253 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
255 if (cpu->kvm_run == MAP_FAILED) {
257 DPRINTF("mmap'ing vcpu state failed\n");
261 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
262 s->coalesced_mmio_ring =
263 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
266 ret = kvm_arch_init_vcpu(cpu);
268 qemu_register_reset(kvm_reset_vcpu, cpu);
269 kvm_arch_reset_vcpu(cpu);
276 * dirty pages logging control
279 static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
282 flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
283 if (readonly && kvm_readonly_mem_allowed) {
284 flags |= KVM_MEM_READONLY;
289 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
291 KVMState *s = kvm_state;
292 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
295 old_flags = mem->flags;
297 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
300 /* If nothing changed effectively, no need to issue ioctl */
301 if (s->migration_log) {
302 flags |= KVM_MEM_LOG_DIRTY_PAGES;
305 if (flags == old_flags) {
309 return kvm_set_user_memory_region(s, mem);
312 static int kvm_dirty_pages_log_change(hwaddr phys_addr,
313 ram_addr_t size, bool log_dirty)
315 KVMState *s = kvm_state;
316 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
319 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
320 TARGET_FMT_plx "\n", __func__, phys_addr,
321 (hwaddr)(phys_addr + size - 1));
324 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
327 static void kvm_log_start(MemoryListener *listener,
328 MemoryRegionSection *section)
332 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
333 int128_get64(section->size), true);
339 static void kvm_log_stop(MemoryListener *listener,
340 MemoryRegionSection *section)
344 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
345 int128_get64(section->size), false);
351 static int kvm_set_migration_log(int enable)
353 KVMState *s = kvm_state;
357 s->migration_log = enable;
359 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
362 if (!mem->memory_size) {
365 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
368 err = kvm_set_user_memory_region(s, mem);
376 /* get kvm's dirty pages bitmap and update qemu's */
377 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
378 unsigned long *bitmap)
381 unsigned long page_number, c;
383 unsigned int pages = int128_get64(section->size) / getpagesize();
384 unsigned int len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
385 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
388 * bitmap-traveling is faster than memory-traveling (for addr...)
389 * especially when most of the memory is not dirty.
391 for (i = 0; i < len; i++) {
392 if (bitmap[i] != 0) {
393 c = leul_to_cpu(bitmap[i]);
397 page_number = (i * HOST_LONG_BITS + j) * hpratio;
398 addr1 = page_number * TARGET_PAGE_SIZE;
399 addr = section->offset_within_region + addr1;
400 memory_region_set_dirty(section->mr, addr,
401 TARGET_PAGE_SIZE * hpratio);
408 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
411 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
412 * This function updates qemu's dirty bitmap using
413 * memory_region_set_dirty(). This means all bits are set
416 * @start_add: start of logged region.
417 * @end_addr: end of logged region.
419 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
421 KVMState *s = kvm_state;
422 unsigned long size, allocated_size = 0;
426 hwaddr start_addr = section->offset_within_address_space;
427 hwaddr end_addr = start_addr + int128_get64(section->size);
429 d.dirty_bitmap = NULL;
430 while (start_addr < end_addr) {
431 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
436 /* XXX bad kernel interface alert
437 * For dirty bitmap, kernel allocates array of size aligned to
438 * bits-per-long. But for case when the kernel is 64bits and
439 * the userspace is 32bits, userspace can't align to the same
440 * bits-per-long, since sizeof(long) is different between kernel
441 * and user space. This way, userspace will provide buffer which
442 * may be 4 bytes less than the kernel will use, resulting in
443 * userspace memory corruption (which is not detectable by valgrind
444 * too, in most cases).
445 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
446 * a hope that sizeof(long) wont become >8 any time soon.
448 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
449 /*HOST_LONG_BITS*/ 64) / 8;
450 if (!d.dirty_bitmap) {
451 d.dirty_bitmap = g_malloc(size);
452 } else if (size > allocated_size) {
453 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
455 allocated_size = size;
456 memset(d.dirty_bitmap, 0, allocated_size);
460 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
461 DPRINTF("ioctl failed %d\n", errno);
466 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
467 start_addr = mem->start_addr + mem->memory_size;
469 g_free(d.dirty_bitmap);
474 static void kvm_coalesce_mmio_region(MemoryListener *listener,
475 MemoryRegionSection *secion,
476 hwaddr start, hwaddr size)
478 KVMState *s = kvm_state;
480 if (s->coalesced_mmio) {
481 struct kvm_coalesced_mmio_zone zone;
487 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
491 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
492 MemoryRegionSection *secion,
493 hwaddr start, hwaddr size)
495 KVMState *s = kvm_state;
497 if (s->coalesced_mmio) {
498 struct kvm_coalesced_mmio_zone zone;
504 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
508 int kvm_check_extension(KVMState *s, unsigned int extension)
512 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
520 static int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val,
521 bool assign, uint32_t size, bool datamatch)
524 struct kvm_ioeventfd iofd;
526 iofd.datamatch = datamatch ? val : 0;
532 if (!kvm_enabled()) {
537 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
540 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
543 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
552 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
553 bool assign, uint32_t size, bool datamatch)
555 struct kvm_ioeventfd kick = {
556 .datamatch = datamatch ? val : 0,
558 .flags = KVM_IOEVENTFD_FLAG_PIO,
563 if (!kvm_enabled()) {
567 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
570 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
572 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
580 static int kvm_check_many_ioeventfds(void)
582 /* Userspace can use ioeventfd for io notification. This requires a host
583 * that supports eventfd(2) and an I/O thread; since eventfd does not
584 * support SIGIO it cannot interrupt the vcpu.
586 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
587 * can avoid creating too many ioeventfds.
589 #if defined(CONFIG_EVENTFD)
592 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
593 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
594 if (ioeventfds[i] < 0) {
597 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
599 close(ioeventfds[i]);
604 /* Decide whether many devices are supported or not */
605 ret = i == ARRAY_SIZE(ioeventfds);
608 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
609 close(ioeventfds[i]);
617 static const KVMCapabilityInfo *
618 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
621 if (!kvm_check_extension(s, list->value)) {
629 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
631 KVMState *s = kvm_state;
634 MemoryRegion *mr = section->mr;
635 bool log_dirty = memory_region_is_logging(mr);
636 bool writeable = !mr->readonly && !mr->rom_device;
637 bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
638 hwaddr start_addr = section->offset_within_address_space;
639 ram_addr_t size = int128_get64(section->size);
643 /* kvm works in page size chunks, but the function may be called
644 with sub-page size and unaligned start address. */
645 delta = TARGET_PAGE_ALIGN(size) - size;
651 size &= TARGET_PAGE_MASK;
652 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
656 if (!memory_region_is_ram(mr)) {
657 if (writeable || !kvm_readonly_mem_allowed) {
659 } else if (!mr->romd_mode) {
660 /* If the memory device is not in romd_mode, then we actually want
661 * to remove the kvm memory slot so all accesses will trap. */
666 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
669 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
674 if (add && start_addr >= mem->start_addr &&
675 (start_addr + size <= mem->start_addr + mem->memory_size) &&
676 (ram - start_addr == mem->ram - mem->start_addr)) {
677 /* The new slot fits into the existing one and comes with
678 * identical parameters - update flags and done. */
679 kvm_slot_dirty_pages_log_change(mem, log_dirty);
685 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
686 kvm_physical_sync_dirty_bitmap(section);
689 /* unregister the overlapping slot */
690 mem->memory_size = 0;
691 err = kvm_set_user_memory_region(s, mem);
693 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
694 __func__, strerror(-err));
698 /* Workaround for older KVM versions: we can't join slots, even not by
699 * unregistering the previous ones and then registering the larger
700 * slot. We have to maintain the existing fragmentation. Sigh.
702 * This workaround assumes that the new slot starts at the same
703 * address as the first existing one. If not or if some overlapping
704 * slot comes around later, we will fail (not seen in practice so far)
705 * - and actually require a recent KVM version. */
706 if (s->broken_set_mem_region &&
707 old.start_addr == start_addr && old.memory_size < size && add) {
708 mem = kvm_alloc_slot(s);
709 mem->memory_size = old.memory_size;
710 mem->start_addr = old.start_addr;
712 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
714 err = kvm_set_user_memory_region(s, mem);
716 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
721 start_addr += old.memory_size;
722 ram += old.memory_size;
723 size -= old.memory_size;
727 /* register prefix slot */
728 if (old.start_addr < start_addr) {
729 mem = kvm_alloc_slot(s);
730 mem->memory_size = start_addr - old.start_addr;
731 mem->start_addr = old.start_addr;
733 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
735 err = kvm_set_user_memory_region(s, mem);
737 fprintf(stderr, "%s: error registering prefix slot: %s\n",
738 __func__, strerror(-err));
740 fprintf(stderr, "%s: This is probably because your kernel's " \
741 "PAGE_SIZE is too big. Please try to use 4k " \
742 "PAGE_SIZE!\n", __func__);
748 /* register suffix slot */
749 if (old.start_addr + old.memory_size > start_addr + size) {
750 ram_addr_t size_delta;
752 mem = kvm_alloc_slot(s);
753 mem->start_addr = start_addr + size;
754 size_delta = mem->start_addr - old.start_addr;
755 mem->memory_size = old.memory_size - size_delta;
756 mem->ram = old.ram + size_delta;
757 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
759 err = kvm_set_user_memory_region(s, mem);
761 fprintf(stderr, "%s: error registering suffix slot: %s\n",
762 __func__, strerror(-err));
768 /* in case the KVM bug workaround already "consumed" the new slot */
775 mem = kvm_alloc_slot(s);
776 mem->memory_size = size;
777 mem->start_addr = start_addr;
779 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
781 err = kvm_set_user_memory_region(s, mem);
783 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
789 static void kvm_region_add(MemoryListener *listener,
790 MemoryRegionSection *section)
792 kvm_set_phys_mem(section, true);
795 static void kvm_region_del(MemoryListener *listener,
796 MemoryRegionSection *section)
798 kvm_set_phys_mem(section, false);
801 static void kvm_log_sync(MemoryListener *listener,
802 MemoryRegionSection *section)
806 r = kvm_physical_sync_dirty_bitmap(section);
812 static void kvm_log_global_start(struct MemoryListener *listener)
816 r = kvm_set_migration_log(1);
820 static void kvm_log_global_stop(struct MemoryListener *listener)
824 r = kvm_set_migration_log(0);
828 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
829 MemoryRegionSection *section,
830 bool match_data, uint64_t data,
833 int fd = event_notifier_get_fd(e);
836 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
837 data, true, int128_get64(section->size),
840 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
841 __func__, strerror(-r));
846 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
847 MemoryRegionSection *section,
848 bool match_data, uint64_t data,
851 int fd = event_notifier_get_fd(e);
854 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
855 data, false, int128_get64(section->size),
862 static void kvm_io_ioeventfd_add(MemoryListener *listener,
863 MemoryRegionSection *section,
864 bool match_data, uint64_t data,
867 int fd = event_notifier_get_fd(e);
870 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
871 data, true, int128_get64(section->size),
874 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
875 __func__, strerror(-r));
880 static void kvm_io_ioeventfd_del(MemoryListener *listener,
881 MemoryRegionSection *section,
882 bool match_data, uint64_t data,
886 int fd = event_notifier_get_fd(e);
889 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
890 data, false, int128_get64(section->size),
897 static MemoryListener kvm_memory_listener = {
898 .region_add = kvm_region_add,
899 .region_del = kvm_region_del,
900 .log_start = kvm_log_start,
901 .log_stop = kvm_log_stop,
902 .log_sync = kvm_log_sync,
903 .log_global_start = kvm_log_global_start,
904 .log_global_stop = kvm_log_global_stop,
905 .eventfd_add = kvm_mem_ioeventfd_add,
906 .eventfd_del = kvm_mem_ioeventfd_del,
907 .coalesced_mmio_add = kvm_coalesce_mmio_region,
908 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
912 static MemoryListener kvm_io_listener = {
913 .eventfd_add = kvm_io_ioeventfd_add,
914 .eventfd_del = kvm_io_ioeventfd_del,
918 static void kvm_handle_interrupt(CPUState *cpu, int mask)
920 cpu->interrupt_request |= mask;
922 if (!qemu_cpu_is_self(cpu)) {
927 int kvm_set_irq(KVMState *s, int irq, int level)
929 struct kvm_irq_level event;
932 assert(kvm_async_interrupts_enabled());
936 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
938 perror("kvm_set_irq");
942 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
945 #ifdef KVM_CAP_IRQ_ROUTING
946 typedef struct KVMMSIRoute {
947 struct kvm_irq_routing_entry kroute;
948 QTAILQ_ENTRY(KVMMSIRoute) entry;
951 static void set_gsi(KVMState *s, unsigned int gsi)
953 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
956 static void clear_gsi(KVMState *s, unsigned int gsi)
958 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
961 void kvm_init_irq_routing(KVMState *s)
965 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
967 unsigned int gsi_bits, i;
969 /* Round up so we can search ints using ffs */
970 gsi_bits = ALIGN(gsi_count, 32);
971 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
972 s->gsi_count = gsi_count;
974 /* Mark any over-allocated bits as already in use */
975 for (i = gsi_count; i < gsi_bits; i++) {
980 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
981 s->nr_allocated_irq_routes = 0;
983 if (!s->direct_msi) {
984 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
985 QTAILQ_INIT(&s->msi_hashtab[i]);
989 kvm_arch_init_irq_routing(s);
992 void kvm_irqchip_commit_routes(KVMState *s)
996 s->irq_routes->flags = 0;
997 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1001 static void kvm_add_routing_entry(KVMState *s,
1002 struct kvm_irq_routing_entry *entry)
1004 struct kvm_irq_routing_entry *new;
1007 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1008 n = s->nr_allocated_irq_routes * 2;
1012 size = sizeof(struct kvm_irq_routing);
1013 size += n * sizeof(*new);
1014 s->irq_routes = g_realloc(s->irq_routes, size);
1015 s->nr_allocated_irq_routes = n;
1017 n = s->irq_routes->nr++;
1018 new = &s->irq_routes->entries[n];
1022 set_gsi(s, entry->gsi);
1025 static int kvm_update_routing_entry(KVMState *s,
1026 struct kvm_irq_routing_entry *new_entry)
1028 struct kvm_irq_routing_entry *entry;
1031 for (n = 0; n < s->irq_routes->nr; n++) {
1032 entry = &s->irq_routes->entries[n];
1033 if (entry->gsi != new_entry->gsi) {
1037 *entry = *new_entry;
1039 kvm_irqchip_commit_routes(s);
1047 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1049 struct kvm_irq_routing_entry e = {};
1051 assert(pin < s->gsi_count);
1054 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1056 e.u.irqchip.irqchip = irqchip;
1057 e.u.irqchip.pin = pin;
1058 kvm_add_routing_entry(s, &e);
1061 void kvm_irqchip_release_virq(KVMState *s, int virq)
1063 struct kvm_irq_routing_entry *e;
1066 for (i = 0; i < s->irq_routes->nr; i++) {
1067 e = &s->irq_routes->entries[i];
1068 if (e->gsi == virq) {
1069 s->irq_routes->nr--;
1070 *e = s->irq_routes->entries[s->irq_routes->nr];
1076 static unsigned int kvm_hash_msi(uint32_t data)
1078 /* This is optimized for IA32 MSI layout. However, no other arch shall
1079 * repeat the mistake of not providing a direct MSI injection API. */
1083 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1085 KVMMSIRoute *route, *next;
1088 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1089 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1090 kvm_irqchip_release_virq(s, route->kroute.gsi);
1091 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1097 static int kvm_irqchip_get_virq(KVMState *s)
1099 uint32_t *word = s->used_gsi_bitmap;
1100 int max_words = ALIGN(s->gsi_count, 32) / 32;
1105 /* Return the lowest unused GSI in the bitmap */
1106 for (i = 0; i < max_words; i++) {
1107 bit = ffs(~word[i]);
1112 return bit - 1 + i * 32;
1114 if (!s->direct_msi && retry) {
1116 kvm_flush_dynamic_msi_routes(s);
1123 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1125 unsigned int hash = kvm_hash_msi(msg.data);
1128 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1129 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1130 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1131 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1138 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1143 if (s->direct_msi) {
1144 msi.address_lo = (uint32_t)msg.address;
1145 msi.address_hi = msg.address >> 32;
1146 msi.data = le32_to_cpu(msg.data);
1148 memset(msi.pad, 0, sizeof(msi.pad));
1150 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1153 route = kvm_lookup_msi_route(s, msg);
1157 virq = kvm_irqchip_get_virq(s);
1162 route = g_malloc0(sizeof(KVMMSIRoute));
1163 route->kroute.gsi = virq;
1164 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1165 route->kroute.flags = 0;
1166 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1167 route->kroute.u.msi.address_hi = msg.address >> 32;
1168 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1170 kvm_add_routing_entry(s, &route->kroute);
1171 kvm_irqchip_commit_routes(s);
1173 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1177 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1179 return kvm_set_irq(s, route->kroute.gsi, 1);
1182 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1184 struct kvm_irq_routing_entry kroute = {};
1187 if (!kvm_gsi_routing_enabled()) {
1191 virq = kvm_irqchip_get_virq(s);
1197 kroute.type = KVM_IRQ_ROUTING_MSI;
1199 kroute.u.msi.address_lo = (uint32_t)msg.address;
1200 kroute.u.msi.address_hi = msg.address >> 32;
1201 kroute.u.msi.data = le32_to_cpu(msg.data);
1203 kvm_add_routing_entry(s, &kroute);
1204 kvm_irqchip_commit_routes(s);
1209 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1211 struct kvm_irq_routing_entry kroute = {};
1213 if (!kvm_irqchip_in_kernel()) {
1218 kroute.type = KVM_IRQ_ROUTING_MSI;
1220 kroute.u.msi.address_lo = (uint32_t)msg.address;
1221 kroute.u.msi.address_hi = msg.address >> 32;
1222 kroute.u.msi.data = le32_to_cpu(msg.data);
1224 return kvm_update_routing_entry(s, &kroute);
1227 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1229 struct kvm_irqfd irqfd = {
1232 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1235 if (!kvm_irqfds_enabled()) {
1239 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1242 #else /* !KVM_CAP_IRQ_ROUTING */
1244 void kvm_init_irq_routing(KVMState *s)
1248 void kvm_irqchip_release_virq(KVMState *s, int virq)
1252 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1257 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1262 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1267 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1271 #endif /* !KVM_CAP_IRQ_ROUTING */
1273 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1275 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true);
1278 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1280 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false);
1283 static int kvm_irqchip_create(KVMState *s)
1285 QemuOptsList *list = qemu_find_opts("machine");
1288 if (QTAILQ_EMPTY(&list->head) ||
1289 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
1290 "kernel_irqchip", true) ||
1291 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1295 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1297 fprintf(stderr, "Create kernel irqchip failed\n");
1301 kvm_kernel_irqchip = true;
1302 /* If we have an in-kernel IRQ chip then we must have asynchronous
1303 * interrupt delivery (though the reverse is not necessarily true)
1305 kvm_async_interrupts_allowed = true;
1306 kvm_halt_in_kernel_allowed = true;
1308 kvm_init_irq_routing(s);
1313 static int kvm_max_vcpus(KVMState *s)
1317 /* Find number of supported CPUs using the recommended
1318 * procedure from the kernel API documentation to cope with
1319 * older kernels that may be missing capabilities.
1321 ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1325 ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1335 static const char upgrade_note[] =
1336 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1337 "(see http://sourceforge.net/projects/kvm).\n";
1339 const KVMCapabilityInfo *missing_cap;
1344 s = g_malloc0(sizeof(KVMState));
1347 * On systems where the kernel can support different base page
1348 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1349 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1350 * page size for the system though.
1352 assert(TARGET_PAGE_SIZE <= getpagesize());
1354 #ifdef KVM_CAP_SET_GUEST_DEBUG
1355 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1357 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1358 s->slots[i].slot = i;
1361 s->fd = qemu_open("/dev/kvm", O_RDWR);
1363 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1368 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1369 if (ret < KVM_API_VERSION) {
1373 fprintf(stderr, "kvm version too old\n");
1377 if (ret > KVM_API_VERSION) {
1379 fprintf(stderr, "kvm version not supported\n");
1383 max_vcpus = kvm_max_vcpus(s);
1384 if (smp_cpus > max_vcpus) {
1386 fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
1387 "supported by KVM (%d)\n", smp_cpus, max_vcpus);
1391 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1394 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1395 "your host kernel command line\n");
1401 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1404 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1408 fprintf(stderr, "kvm does not support %s\n%s",
1409 missing_cap->name, upgrade_note);
1413 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1415 s->broken_set_mem_region = 1;
1416 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1418 s->broken_set_mem_region = 0;
1421 #ifdef KVM_CAP_VCPU_EVENTS
1422 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1425 s->robust_singlestep =
1426 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1428 #ifdef KVM_CAP_DEBUGREGS
1429 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1432 #ifdef KVM_CAP_XSAVE
1433 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1437 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1440 #ifdef KVM_CAP_PIT_STATE2
1441 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1444 #ifdef KVM_CAP_IRQ_ROUTING
1445 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1448 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1450 s->irq_set_ioctl = KVM_IRQ_LINE;
1451 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1452 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1455 #ifdef KVM_CAP_READONLY_MEM
1456 kvm_readonly_mem_allowed =
1457 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1460 ret = kvm_arch_init(s);
1465 ret = kvm_irqchip_create(s);
1471 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1472 memory_listener_register(&kvm_io_listener, &address_space_io);
1474 s->many_ioeventfds = kvm_check_many_ioeventfds();
1476 cpu_interrupt_handler = kvm_handle_interrupt;
1492 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1496 uint8_t *ptr = data;
1498 for (i = 0; i < count; i++) {
1499 if (direction == KVM_EXIT_IO_IN) {
1502 stb_p(ptr, cpu_inb(port));
1505 stw_p(ptr, cpu_inw(port));
1508 stl_p(ptr, cpu_inl(port));
1514 cpu_outb(port, ldub_p(ptr));
1517 cpu_outw(port, lduw_p(ptr));
1520 cpu_outl(port, ldl_p(ptr));
1529 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1531 fprintf(stderr, "KVM internal error.");
1532 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1535 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1536 for (i = 0; i < run->internal.ndata; ++i) {
1537 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1538 i, (uint64_t)run->internal.data[i]);
1541 fprintf(stderr, "\n");
1543 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1544 fprintf(stderr, "emulation failure\n");
1545 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1546 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1547 return EXCP_INTERRUPT;
1550 /* FIXME: Should trigger a qmp message to let management know
1551 * something went wrong.
1556 void kvm_flush_coalesced_mmio_buffer(void)
1558 KVMState *s = kvm_state;
1560 if (s->coalesced_flush_in_progress) {
1564 s->coalesced_flush_in_progress = true;
1566 if (s->coalesced_mmio_ring) {
1567 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1568 while (ring->first != ring->last) {
1569 struct kvm_coalesced_mmio *ent;
1571 ent = &ring->coalesced_mmio[ring->first];
1573 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1575 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1579 s->coalesced_flush_in_progress = false;
1582 static void do_kvm_cpu_synchronize_state(void *arg)
1584 CPUState *cpu = arg;
1586 if (!cpu->kvm_vcpu_dirty) {
1587 kvm_arch_get_registers(cpu);
1588 cpu->kvm_vcpu_dirty = true;
1592 void kvm_cpu_synchronize_state(CPUState *cpu)
1594 if (!cpu->kvm_vcpu_dirty) {
1595 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1599 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1601 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1602 cpu->kvm_vcpu_dirty = false;
1605 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1607 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1608 cpu->kvm_vcpu_dirty = false;
1611 int kvm_cpu_exec(CPUState *cpu)
1613 struct kvm_run *run = cpu->kvm_run;
1616 DPRINTF("kvm_cpu_exec()\n");
1618 if (kvm_arch_process_async_events(cpu)) {
1619 cpu->exit_request = 0;
1624 if (cpu->kvm_vcpu_dirty) {
1625 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1626 cpu->kvm_vcpu_dirty = false;
1629 kvm_arch_pre_run(cpu, run);
1630 if (cpu->exit_request) {
1631 DPRINTF("interrupt exit requested\n");
1633 * KVM requires us to reenter the kernel after IO exits to complete
1634 * instruction emulation. This self-signal will ensure that we
1637 qemu_cpu_kick_self();
1639 qemu_mutex_unlock_iothread();
1641 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1643 qemu_mutex_lock_iothread();
1644 kvm_arch_post_run(cpu, run);
1647 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1648 DPRINTF("io window exit\n");
1649 ret = EXCP_INTERRUPT;
1652 fprintf(stderr, "error: kvm run failed %s\n",
1653 strerror(-run_ret));
1657 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1658 switch (run->exit_reason) {
1660 DPRINTF("handle_io\n");
1661 kvm_handle_io(run->io.port,
1662 (uint8_t *)run + run->io.data_offset,
1669 DPRINTF("handle_mmio\n");
1670 cpu_physical_memory_rw(run->mmio.phys_addr,
1673 run->mmio.is_write);
1676 case KVM_EXIT_IRQ_WINDOW_OPEN:
1677 DPRINTF("irq_window_open\n");
1678 ret = EXCP_INTERRUPT;
1680 case KVM_EXIT_SHUTDOWN:
1681 DPRINTF("shutdown\n");
1682 qemu_system_reset_request();
1683 ret = EXCP_INTERRUPT;
1685 case KVM_EXIT_UNKNOWN:
1686 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1687 (uint64_t)run->hw.hardware_exit_reason);
1690 case KVM_EXIT_INTERNAL_ERROR:
1691 ret = kvm_handle_internal_error(cpu, run);
1694 DPRINTF("kvm_arch_handle_exit\n");
1695 ret = kvm_arch_handle_exit(cpu, run);
1701 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1702 vm_stop(RUN_STATE_INTERNAL_ERROR);
1705 cpu->exit_request = 0;
1709 int kvm_ioctl(KVMState *s, int type, ...)
1716 arg = va_arg(ap, void *);
1719 trace_kvm_ioctl(type, arg);
1720 ret = ioctl(s->fd, type, arg);
1727 int kvm_vm_ioctl(KVMState *s, int type, ...)
1734 arg = va_arg(ap, void *);
1737 trace_kvm_vm_ioctl(type, arg);
1738 ret = ioctl(s->vmfd, type, arg);
1745 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1752 arg = va_arg(ap, void *);
1755 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1756 ret = ioctl(cpu->kvm_fd, type, arg);
1763 int kvm_has_sync_mmu(void)
1765 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1768 int kvm_has_vcpu_events(void)
1770 return kvm_state->vcpu_events;
1773 int kvm_has_robust_singlestep(void)
1775 return kvm_state->robust_singlestep;
1778 int kvm_has_debugregs(void)
1780 return kvm_state->debugregs;
1783 int kvm_has_xsave(void)
1785 return kvm_state->xsave;
1788 int kvm_has_xcrs(void)
1790 return kvm_state->xcrs;
1793 int kvm_has_pit_state2(void)
1795 return kvm_state->pit_state2;
1798 int kvm_has_many_ioeventfds(void)
1800 if (!kvm_enabled()) {
1803 return kvm_state->many_ioeventfds;
1806 int kvm_has_gsi_routing(void)
1808 #ifdef KVM_CAP_IRQ_ROUTING
1809 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1815 int kvm_has_intx_set_mask(void)
1817 return kvm_state->intx_set_mask;
1820 void *kvm_ram_alloc(ram_addr_t size)
1825 mem = kvm_arch_ram_alloc(size);
1830 return qemu_anon_ram_alloc(size);
1833 void kvm_setup_guest_memory(void *start, size_t size)
1835 #ifdef CONFIG_VALGRIND_H
1836 VALGRIND_MAKE_MEM_DEFINED(start, size);
1838 if (!kvm_has_sync_mmu()) {
1839 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1842 perror("qemu_madvise");
1844 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1850 #ifdef KVM_CAP_SET_GUEST_DEBUG
1851 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
1854 struct kvm_sw_breakpoint *bp;
1856 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
1864 int kvm_sw_breakpoints_active(CPUState *cpu)
1866 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
1869 struct kvm_set_guest_debug_data {
1870 struct kvm_guest_debug dbg;
1875 static void kvm_invoke_set_guest_debug(void *data)
1877 struct kvm_set_guest_debug_data *dbg_data = data;
1879 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
1883 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1885 CPUState *cpu = ENV_GET_CPU(env);
1886 struct kvm_set_guest_debug_data data;
1888 data.dbg.control = reinject_trap;
1890 if (env->singlestep_enabled) {
1891 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1893 kvm_arch_update_guest_debug(cpu, &data.dbg);
1896 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
1900 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1901 target_ulong len, int type)
1903 CPUState *current_cpu = ENV_GET_CPU(current_env);
1904 struct kvm_sw_breakpoint *bp;
1908 if (type == GDB_BREAKPOINT_SW) {
1909 bp = kvm_find_sw_breakpoint(current_cpu, addr);
1915 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1922 err = kvm_arch_insert_sw_breakpoint(current_cpu, bp);
1928 QTAILQ_INSERT_HEAD(¤t_cpu->kvm_state->kvm_sw_breakpoints,
1931 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1937 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1938 err = kvm_update_guest_debug(env, 0);
1946 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1947 target_ulong len, int type)
1949 CPUState *current_cpu = ENV_GET_CPU(current_env);
1950 struct kvm_sw_breakpoint *bp;
1954 if (type == GDB_BREAKPOINT_SW) {
1955 bp = kvm_find_sw_breakpoint(current_cpu, addr);
1960 if (bp->use_count > 1) {
1965 err = kvm_arch_remove_sw_breakpoint(current_cpu, bp);
1970 QTAILQ_REMOVE(¤t_cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1973 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1979 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1980 err = kvm_update_guest_debug(env, 0);
1988 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1990 CPUState *current_cpu = ENV_GET_CPU(current_env);
1991 struct kvm_sw_breakpoint *bp, *next;
1992 KVMState *s = current_cpu->kvm_state;
1996 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1997 if (kvm_arch_remove_sw_breakpoint(current_cpu, bp) != 0) {
1998 /* Try harder to find a CPU that currently sees the breakpoint. */
1999 for (env = first_cpu; env != NULL; env = env->next_cpu) {
2000 cpu = ENV_GET_CPU(env);
2001 if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
2006 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2009 kvm_arch_remove_all_hw_breakpoints();
2011 for (env = first_cpu; env != NULL; env = env->next_cpu) {
2012 kvm_update_guest_debug(env, 0);
2016 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2018 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
2023 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
2024 target_ulong len, int type)
2029 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
2030 target_ulong len, int type)
2035 void kvm_remove_all_breakpoints(CPUArchState *current_env)
2038 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2040 int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2042 struct kvm_signal_mask *sigmask;
2046 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2049 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2052 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2053 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2058 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2060 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2063 int kvm_on_sigbus(int code, void *addr)
2065 return kvm_arch_on_sigbus(code, addr);