4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
27 #include "qemu-common.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
46 #include "exec/cpu-all.h"
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
51 #include "exec/memory-internal.h"
53 //#define DEBUG_UNASSIGNED
54 //#define DEBUG_SUBPAGE
56 #if !defined(CONFIG_USER_ONLY)
58 static int in_migration;
60 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62 static MemoryRegion *system_memory;
63 static MemoryRegion *system_io;
65 AddressSpace address_space_io;
66 AddressSpace address_space_memory;
67 DMAContext dma_context_memory;
69 MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
70 static MemoryRegion io_mem_subpage_ram;
74 CPUArchState *first_cpu;
75 /* current CPU in the current thread. It is only valid inside
77 DEFINE_TLS(CPUArchState *,cpu_single_env);
78 /* 0 = Do not count executed instructions.
79 1 = Precise instruction counting.
80 2 = Adaptive rate instruction counting. */
83 #if !defined(CONFIG_USER_ONLY)
85 static MemoryRegionSection *phys_sections;
86 static unsigned phys_sections_nb, phys_sections_nb_alloc;
87 static uint16_t phys_section_unassigned;
88 static uint16_t phys_section_notdirty;
89 static uint16_t phys_section_rom;
90 static uint16_t phys_section_watch;
92 /* Simple allocator for PhysPageEntry nodes */
93 static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
94 static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
96 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
98 static void io_mem_init(void);
99 static void memory_map_init(void);
100 static void *qemu_safe_ram_ptr(ram_addr_t addr);
102 static MemoryRegion io_mem_watch;
105 #if !defined(CONFIG_USER_ONLY)
107 static void phys_map_node_reserve(unsigned nodes)
109 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
110 typedef PhysPageEntry Node[L2_SIZE];
111 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
112 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
113 phys_map_nodes_nb + nodes);
114 phys_map_nodes = g_renew(Node, phys_map_nodes,
115 phys_map_nodes_nb_alloc);
119 static uint16_t phys_map_node_alloc(void)
124 ret = phys_map_nodes_nb++;
125 assert(ret != PHYS_MAP_NODE_NIL);
126 assert(ret != phys_map_nodes_nb_alloc);
127 for (i = 0; i < L2_SIZE; ++i) {
128 phys_map_nodes[ret][i].is_leaf = 0;
129 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
134 static void phys_map_nodes_reset(void)
136 phys_map_nodes_nb = 0;
140 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
141 hwaddr *nb, uint16_t leaf,
146 hwaddr step = (hwaddr)1 << (level * L2_BITS);
148 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
149 lp->ptr = phys_map_node_alloc();
150 p = phys_map_nodes[lp->ptr];
152 for (i = 0; i < L2_SIZE; i++) {
154 p[i].ptr = phys_section_unassigned;
158 p = phys_map_nodes[lp->ptr];
160 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
162 while (*nb && lp < &p[L2_SIZE]) {
163 if ((*index & (step - 1)) == 0 && *nb >= step) {
169 phys_page_set_level(lp, index, nb, leaf, level - 1);
175 static void phys_page_set(AddressSpaceDispatch *d,
176 hwaddr index, hwaddr nb,
179 /* Wildly overreserve - it doesn't matter much. */
180 phys_map_node_reserve(3 * P_L2_LEVELS);
182 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
185 MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr index)
187 PhysPageEntry lp = d->phys_map;
190 uint16_t s_index = phys_section_unassigned;
192 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
193 if (lp.ptr == PHYS_MAP_NODE_NIL) {
196 p = phys_map_nodes[lp.ptr];
197 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
202 return &phys_sections[s_index];
205 bool memory_region_is_unassigned(MemoryRegion *mr)
207 return mr != &io_mem_ram && mr != &io_mem_rom
208 && mr != &io_mem_notdirty && !mr->rom_device
209 && mr != &io_mem_watch;
213 void cpu_exec_init_all(void)
215 #if !defined(CONFIG_USER_ONLY)
221 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
223 static int cpu_common_post_load(void *opaque, int version_id)
225 CPUArchState *env = opaque;
227 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
228 version_id is increased. */
229 env->interrupt_request &= ~0x01;
235 static const VMStateDescription vmstate_cpu_common = {
236 .name = "cpu_common",
238 .minimum_version_id = 1,
239 .minimum_version_id_old = 1,
240 .post_load = cpu_common_post_load,
241 .fields = (VMStateField []) {
242 VMSTATE_UINT32(halted, CPUArchState),
243 VMSTATE_UINT32(interrupt_request, CPUArchState),
244 VMSTATE_END_OF_LIST()
249 CPUArchState *qemu_get_cpu(int cpu)
251 CPUArchState *env = first_cpu;
254 if (env->cpu_index == cpu)
262 void cpu_exec_init(CPUArchState *env)
264 #ifndef CONFIG_USER_ONLY
265 CPUState *cpu = ENV_GET_CPU(env);
270 #if defined(CONFIG_USER_ONLY)
273 env->next_cpu = NULL;
276 while (*penv != NULL) {
277 penv = &(*penv)->next_cpu;
280 env->cpu_index = cpu_index;
282 QTAILQ_INIT(&env->breakpoints);
283 QTAILQ_INIT(&env->watchpoints);
284 #ifndef CONFIG_USER_ONLY
285 cpu->thread_id = qemu_get_thread_id();
288 #if defined(CONFIG_USER_ONLY)
291 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
292 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
293 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
294 cpu_save, cpu_load, env);
298 #if defined(TARGET_HAS_ICE)
299 #if defined(CONFIG_USER_ONLY)
300 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
302 tb_invalidate_phys_page_range(pc, pc + 1, 0);
305 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
307 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
308 (pc & ~TARGET_PAGE_MASK));
311 #endif /* TARGET_HAS_ICE */
313 #if defined(CONFIG_USER_ONLY)
314 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
319 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
320 int flags, CPUWatchpoint **watchpoint)
325 /* Add a watchpoint. */
326 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
327 int flags, CPUWatchpoint **watchpoint)
329 target_ulong len_mask = ~(len - 1);
332 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
333 if ((len & (len - 1)) || (addr & ~len_mask) ||
334 len == 0 || len > TARGET_PAGE_SIZE) {
335 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
336 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
339 wp = g_malloc(sizeof(*wp));
342 wp->len_mask = len_mask;
345 /* keep all GDB-injected watchpoints in front */
347 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
349 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
351 tlb_flush_page(env, addr);
358 /* Remove a specific watchpoint. */
359 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
362 target_ulong len_mask = ~(len - 1);
365 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
366 if (addr == wp->vaddr && len_mask == wp->len_mask
367 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
368 cpu_watchpoint_remove_by_ref(env, wp);
375 /* Remove a specific watchpoint by reference. */
376 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
378 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
380 tlb_flush_page(env, watchpoint->vaddr);
385 /* Remove all matching watchpoints. */
386 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
388 CPUWatchpoint *wp, *next;
390 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
391 if (wp->flags & mask)
392 cpu_watchpoint_remove_by_ref(env, wp);
397 /* Add a breakpoint. */
398 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
399 CPUBreakpoint **breakpoint)
401 #if defined(TARGET_HAS_ICE)
404 bp = g_malloc(sizeof(*bp));
409 /* keep all GDB-injected breakpoints in front */
411 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
413 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
415 breakpoint_invalidate(env, pc);
425 /* Remove a specific breakpoint. */
426 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
428 #if defined(TARGET_HAS_ICE)
431 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
432 if (bp->pc == pc && bp->flags == flags) {
433 cpu_breakpoint_remove_by_ref(env, bp);
443 /* Remove a specific breakpoint by reference. */
444 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
446 #if defined(TARGET_HAS_ICE)
447 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
449 breakpoint_invalidate(env, breakpoint->pc);
455 /* Remove all matching breakpoints. */
456 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
458 #if defined(TARGET_HAS_ICE)
459 CPUBreakpoint *bp, *next;
461 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
462 if (bp->flags & mask)
463 cpu_breakpoint_remove_by_ref(env, bp);
468 /* enable or disable single step mode. EXCP_DEBUG is returned by the
469 CPU loop after each instruction */
470 void cpu_single_step(CPUArchState *env, int enabled)
472 #if defined(TARGET_HAS_ICE)
473 if (env->singlestep_enabled != enabled) {
474 env->singlestep_enabled = enabled;
476 kvm_update_guest_debug(env, 0);
478 /* must flush all the translated code to avoid inconsistencies */
479 /* XXX: only flush what is necessary */
486 void cpu_reset_interrupt(CPUArchState *env, int mask)
488 env->interrupt_request &= ~mask;
491 void cpu_exit(CPUArchState *env)
493 env->exit_request = 1;
497 void cpu_abort(CPUArchState *env, const char *fmt, ...)
504 fprintf(stderr, "qemu: fatal: ");
505 vfprintf(stderr, fmt, ap);
506 fprintf(stderr, "\n");
507 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
508 if (qemu_log_enabled()) {
509 qemu_log("qemu: fatal: ");
510 qemu_log_vprintf(fmt, ap2);
512 log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
518 #if defined(CONFIG_USER_ONLY)
520 struct sigaction act;
521 sigfillset(&act.sa_mask);
522 act.sa_handler = SIG_DFL;
523 sigaction(SIGABRT, &act, NULL);
529 CPUArchState *cpu_copy(CPUArchState *env)
531 CPUArchState *new_env = cpu_init(env->cpu_model_str);
532 CPUArchState *next_cpu = new_env->next_cpu;
533 int cpu_index = new_env->cpu_index;
534 #if defined(TARGET_HAS_ICE)
539 memcpy(new_env, env, sizeof(CPUArchState));
541 /* Preserve chaining and index. */
542 new_env->next_cpu = next_cpu;
543 new_env->cpu_index = cpu_index;
545 /* Clone all break/watchpoints.
546 Note: Once we support ptrace with hw-debug register access, make sure
547 BP_CPU break/watchpoints are handled correctly on clone. */
548 QTAILQ_INIT(&env->breakpoints);
549 QTAILQ_INIT(&env->watchpoints);
550 #if defined(TARGET_HAS_ICE)
551 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
552 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
554 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
555 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
563 #if !defined(CONFIG_USER_ONLY)
564 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
569 /* we modify the TLB cache so that the dirty bit will be set again
570 when accessing the range */
571 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
572 /* Check that we don't span multiple blocks - this breaks the
573 address comparisons below. */
574 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
575 != (end - 1) - start) {
578 cpu_tlb_reset_dirty_all(start1, length);
582 /* Note: start and end must be within the same ram block. */
583 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
588 start &= TARGET_PAGE_MASK;
589 end = TARGET_PAGE_ALIGN(end);
591 length = end - start;
594 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
597 tlb_reset_dirty_range_all(start, end, length);
601 static int cpu_physical_memory_set_dirty_tracking(int enable)
604 in_migration = enable;
608 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
609 MemoryRegionSection *section,
613 target_ulong *address)
618 if (memory_region_is_ram(section->mr)) {
620 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
621 + memory_region_section_addr(section, paddr);
622 if (!section->readonly) {
623 iotlb |= phys_section_notdirty;
625 iotlb |= phys_section_rom;
628 /* IO handlers are currently passed a physical address.
629 It would be nice to pass an offset from the base address
630 of that region. This would avoid having to special case RAM,
631 and avoid full address decoding in every device.
632 We can't use the high bits of pd for this because
633 IO_MEM_ROMD uses these as a ram address. */
634 iotlb = section - phys_sections;
635 iotlb += memory_region_section_addr(section, paddr);
638 /* Make accesses to pages with watchpoints go via the
639 watchpoint trap routines. */
640 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
641 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
642 /* Avoid trapping reads of pages with a write breakpoint. */
643 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
644 iotlb = phys_section_watch + paddr;
645 *address |= TLB_MMIO;
653 #endif /* defined(CONFIG_USER_ONLY) */
655 #if !defined(CONFIG_USER_ONLY)
657 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
658 typedef struct subpage_t {
661 uint16_t sub_section[TARGET_PAGE_SIZE];
664 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
666 static subpage_t *subpage_init(hwaddr base);
667 static void destroy_page_desc(uint16_t section_index)
669 MemoryRegionSection *section = &phys_sections[section_index];
670 MemoryRegion *mr = section->mr;
673 subpage_t *subpage = container_of(mr, subpage_t, iomem);
674 memory_region_destroy(&subpage->iomem);
679 static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
684 if (lp->ptr == PHYS_MAP_NODE_NIL) {
688 p = phys_map_nodes[lp->ptr];
689 for (i = 0; i < L2_SIZE; ++i) {
691 destroy_l2_mapping(&p[i], level - 1);
693 destroy_page_desc(p[i].ptr);
697 lp->ptr = PHYS_MAP_NODE_NIL;
700 static void destroy_all_mappings(AddressSpaceDispatch *d)
702 destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
703 phys_map_nodes_reset();
706 static uint16_t phys_section_add(MemoryRegionSection *section)
708 if (phys_sections_nb == phys_sections_nb_alloc) {
709 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
710 phys_sections = g_renew(MemoryRegionSection, phys_sections,
711 phys_sections_nb_alloc);
713 phys_sections[phys_sections_nb] = *section;
714 return phys_sections_nb++;
717 static void phys_sections_clear(void)
719 phys_sections_nb = 0;
722 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
725 hwaddr base = section->offset_within_address_space
727 MemoryRegionSection *existing = phys_page_find(d, base >> TARGET_PAGE_BITS);
728 MemoryRegionSection subsection = {
729 .offset_within_address_space = base,
730 .size = TARGET_PAGE_SIZE,
734 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
736 if (!(existing->mr->subpage)) {
737 subpage = subpage_init(base);
738 subsection.mr = &subpage->iomem;
739 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
740 phys_section_add(&subsection));
742 subpage = container_of(existing->mr, subpage_t, iomem);
744 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
745 end = start + section->size - 1;
746 subpage_register(subpage, start, end, phys_section_add(section));
750 static void register_multipage(AddressSpaceDispatch *d, MemoryRegionSection *section)
752 hwaddr start_addr = section->offset_within_address_space;
753 ram_addr_t size = section->size;
755 uint16_t section_index = phys_section_add(section);
760 phys_page_set(d, addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
764 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
766 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
767 MemoryRegionSection now = *section, remain = *section;
769 if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
770 || (now.size < TARGET_PAGE_SIZE)) {
771 now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
772 - now.offset_within_address_space,
774 register_subpage(d, &now);
775 remain.size -= now.size;
776 remain.offset_within_address_space += now.size;
777 remain.offset_within_region += now.size;
779 while (remain.size >= TARGET_PAGE_SIZE) {
781 if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
782 now.size = TARGET_PAGE_SIZE;
783 register_subpage(d, &now);
785 now.size &= TARGET_PAGE_MASK;
786 register_multipage(d, &now);
788 remain.size -= now.size;
789 remain.offset_within_address_space += now.size;
790 remain.offset_within_region += now.size;
794 register_subpage(d, &now);
798 void qemu_flush_coalesced_mmio_buffer(void)
801 kvm_flush_coalesced_mmio_buffer();
804 #if defined(__linux__) && !defined(TARGET_S390X)
808 #define HUGETLBFS_MAGIC 0x958458f6
810 static long gethugepagesize(const char *path)
816 ret = statfs(path, &fs);
817 } while (ret != 0 && errno == EINTR);
824 if (fs.f_type != HUGETLBFS_MAGIC)
825 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
830 static void *file_ram_alloc(RAMBlock *block,
840 unsigned long hpagesize;
842 hpagesize = gethugepagesize(path);
847 if (memory < hpagesize) {
851 if (kvm_enabled() && !kvm_has_sync_mmu()) {
852 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
856 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
860 fd = mkstemp(filename);
862 perror("unable to create backing store for hugepages");
869 memory = (memory+hpagesize-1) & ~(hpagesize-1);
872 * ftruncate is not supported by hugetlbfs in older
873 * hosts, so don't bother bailing out on errors.
874 * If anything goes wrong with it under other filesystems,
877 if (ftruncate(fd, memory))
881 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
882 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
883 * to sidestep this quirk.
885 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
886 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
888 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
890 if (area == MAP_FAILED) {
891 perror("file_ram_alloc: can't mmap RAM pages");
900 static ram_addr_t find_ram_offset(ram_addr_t size)
902 RAMBlock *block, *next_block;
903 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
905 if (QLIST_EMPTY(&ram_list.blocks))
908 QLIST_FOREACH(block, &ram_list.blocks, next) {
909 ram_addr_t end, next = RAM_ADDR_MAX;
911 end = block->offset + block->length;
913 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
914 if (next_block->offset >= end) {
915 next = MIN(next, next_block->offset);
918 if (next - end >= size && next - end < mingap) {
924 if (offset == RAM_ADDR_MAX) {
925 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
933 ram_addr_t last_ram_offset(void)
938 QLIST_FOREACH(block, &ram_list.blocks, next)
939 last = MAX(last, block->offset + block->length);
944 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
947 QemuOpts *machine_opts;
949 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
950 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
952 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
953 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
955 perror("qemu_madvise");
956 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
957 "but dump_guest_core=off specified\n");
962 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
964 RAMBlock *new_block, *block;
967 QLIST_FOREACH(block, &ram_list.blocks, next) {
968 if (block->offset == addr) {
974 assert(!new_block->idstr[0]);
977 char *id = qdev_get_dev_path(dev);
979 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
983 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
985 QLIST_FOREACH(block, &ram_list.blocks, next) {
986 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
987 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
994 static int memory_try_enable_merging(void *addr, size_t len)
998 opts = qemu_opts_find(qemu_find_opts("machine"), 0);
999 if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
1000 /* disabled by the user */
1004 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1007 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1010 RAMBlock *new_block;
1012 size = TARGET_PAGE_ALIGN(size);
1013 new_block = g_malloc0(sizeof(*new_block));
1016 new_block->offset = find_ram_offset(size);
1018 new_block->host = host;
1019 new_block->flags |= RAM_PREALLOC_MASK;
1022 #if defined (__linux__) && !defined(TARGET_S390X)
1023 new_block->host = file_ram_alloc(new_block, size, mem_path);
1024 if (!new_block->host) {
1025 new_block->host = qemu_vmalloc(size);
1026 memory_try_enable_merging(new_block->host, size);
1029 fprintf(stderr, "-mem-path option unsupported\n");
1033 if (xen_enabled()) {
1034 xen_ram_alloc(new_block->offset, size, mr);
1035 } else if (kvm_enabled()) {
1036 /* some s390/kvm configurations have special constraints */
1037 new_block->host = kvm_vmalloc(size);
1039 new_block->host = qemu_vmalloc(size);
1041 memory_try_enable_merging(new_block->host, size);
1044 new_block->length = size;
1046 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
1047 ram_list.mru_block = NULL;
1049 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1050 last_ram_offset() >> TARGET_PAGE_BITS);
1051 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1052 0, size >> TARGET_PAGE_BITS);
1053 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1055 qemu_ram_setup_dump(new_block->host, size);
1056 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1059 kvm_setup_guest_memory(new_block->host, size);
1061 return new_block->offset;
1064 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1066 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1069 void qemu_ram_free_from_ptr(ram_addr_t addr)
1073 QLIST_FOREACH(block, &ram_list.blocks, next) {
1074 if (addr == block->offset) {
1075 QLIST_REMOVE(block, next);
1076 ram_list.mru_block = NULL;
1083 void qemu_ram_free(ram_addr_t addr)
1087 QLIST_FOREACH(block, &ram_list.blocks, next) {
1088 if (addr == block->offset) {
1089 QLIST_REMOVE(block, next);
1090 ram_list.mru_block = NULL;
1091 if (block->flags & RAM_PREALLOC_MASK) {
1093 } else if (mem_path) {
1094 #if defined (__linux__) && !defined(TARGET_S390X)
1096 munmap(block->host, block->length);
1099 qemu_vfree(block->host);
1105 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1106 munmap(block->host, block->length);
1108 if (xen_enabled()) {
1109 xen_invalidate_map_cache_entry(block->host);
1111 qemu_vfree(block->host);
1123 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1130 QLIST_FOREACH(block, &ram_list.blocks, next) {
1131 offset = addr - block->offset;
1132 if (offset < block->length) {
1133 vaddr = block->host + offset;
1134 if (block->flags & RAM_PREALLOC_MASK) {
1138 munmap(vaddr, length);
1140 #if defined(__linux__) && !defined(TARGET_S390X)
1143 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1146 flags |= MAP_PRIVATE;
1148 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1149 flags, block->fd, offset);
1151 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1152 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1159 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1160 flags |= MAP_SHARED | MAP_ANONYMOUS;
1161 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1164 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1165 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1169 if (area != vaddr) {
1170 fprintf(stderr, "Could not remap addr: "
1171 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1175 memory_try_enable_merging(vaddr, length);
1176 qemu_ram_setup_dump(vaddr, length);
1182 #endif /* !_WIN32 */
1184 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1185 With the exception of the softmmu code in this file, this should
1186 only be used for local memory (e.g. video ram) that the device owns,
1187 and knows it isn't going to access beyond the end of the block.
1189 It should not be used for general purpose DMA.
1190 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1192 void *qemu_get_ram_ptr(ram_addr_t addr)
1196 block = ram_list.mru_block;
1197 if (block && addr - block->offset < block->length) {
1200 QLIST_FOREACH(block, &ram_list.blocks, next) {
1201 if (addr - block->offset < block->length) {
1206 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1210 ram_list.mru_block = block;
1211 if (xen_enabled()) {
1212 /* We need to check if the requested address is in the RAM
1213 * because we don't want to map the entire memory in QEMU.
1214 * In that case just map until the end of the page.
1216 if (block->offset == 0) {
1217 return xen_map_cache(addr, 0, 0);
1218 } else if (block->host == NULL) {
1220 xen_map_cache(block->offset, block->length, 1);
1223 return block->host + (addr - block->offset);
1226 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1227 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1229 * ??? Is this still necessary?
1231 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1235 QLIST_FOREACH(block, &ram_list.blocks, next) {
1236 if (addr - block->offset < block->length) {
1237 if (xen_enabled()) {
1238 /* We need to check if the requested address is in the RAM
1239 * because we don't want to map the entire memory in QEMU.
1240 * In that case just map until the end of the page.
1242 if (block->offset == 0) {
1243 return xen_map_cache(addr, 0, 0);
1244 } else if (block->host == NULL) {
1246 xen_map_cache(block->offset, block->length, 1);
1249 return block->host + (addr - block->offset);
1253 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1259 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1260 * but takes a size argument */
1261 static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
1266 if (xen_enabled()) {
1267 return xen_map_cache(addr, *size, 1);
1271 QLIST_FOREACH(block, &ram_list.blocks, next) {
1272 if (addr - block->offset < block->length) {
1273 if (addr - block->offset + *size > block->length)
1274 *size = block->length - addr + block->offset;
1275 return block->host + (addr - block->offset);
1279 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1284 void qemu_put_ram_ptr(void *addr)
1286 trace_qemu_put_ram_ptr(addr);
1289 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1292 uint8_t *host = ptr;
1294 if (xen_enabled()) {
1295 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1299 QLIST_FOREACH(block, &ram_list.blocks, next) {
1300 /* This case append when the block is not mapped. */
1301 if (block->host == NULL) {
1304 if (host - block->host < block->length) {
1305 *ram_addr = block->offset + (host - block->host);
1313 /* Some of the softmmu routines need to translate from a host pointer
1314 (typically a TLB entry) back to a ram offset. */
1315 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
1317 ram_addr_t ram_addr;
1319 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
1320 fprintf(stderr, "Bad ram pointer %p\n", ptr);
1326 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1329 #ifdef DEBUG_UNASSIGNED
1330 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1332 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
1333 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
1338 static void unassigned_mem_write(void *opaque, hwaddr addr,
1339 uint64_t val, unsigned size)
1341 #ifdef DEBUG_UNASSIGNED
1342 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1344 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
1345 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
1349 static const MemoryRegionOps unassigned_mem_ops = {
1350 .read = unassigned_mem_read,
1351 .write = unassigned_mem_write,
1352 .endianness = DEVICE_NATIVE_ENDIAN,
1355 static uint64_t error_mem_read(void *opaque, hwaddr addr,
1361 static void error_mem_write(void *opaque, hwaddr addr,
1362 uint64_t value, unsigned size)
1367 static const MemoryRegionOps error_mem_ops = {
1368 .read = error_mem_read,
1369 .write = error_mem_write,
1370 .endianness = DEVICE_NATIVE_ENDIAN,
1373 static const MemoryRegionOps rom_mem_ops = {
1374 .read = error_mem_read,
1375 .write = unassigned_mem_write,
1376 .endianness = DEVICE_NATIVE_ENDIAN,
1379 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1380 uint64_t val, unsigned size)
1383 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1384 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1385 #if !defined(CONFIG_USER_ONLY)
1386 tb_invalidate_phys_page_fast(ram_addr, size);
1387 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1392 stb_p(qemu_get_ram_ptr(ram_addr), val);
1395 stw_p(qemu_get_ram_ptr(ram_addr), val);
1398 stl_p(qemu_get_ram_ptr(ram_addr), val);
1403 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1404 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1405 /* we remove the notdirty callback only if the code has been
1407 if (dirty_flags == 0xff)
1408 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
1411 static const MemoryRegionOps notdirty_mem_ops = {
1412 .read = error_mem_read,
1413 .write = notdirty_mem_write,
1414 .endianness = DEVICE_NATIVE_ENDIAN,
1417 /* Generate a debug exception if a watchpoint has been hit. */
1418 static void check_watchpoint(int offset, int len_mask, int flags)
1420 CPUArchState *env = cpu_single_env;
1421 target_ulong pc, cs_base;
1426 if (env->watchpoint_hit) {
1427 /* We re-entered the check after replacing the TB. Now raise
1428 * the debug interrupt so that is will trigger after the
1429 * current instruction. */
1430 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
1433 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1434 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1435 if ((vaddr == (wp->vaddr & len_mask) ||
1436 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1437 wp->flags |= BP_WATCHPOINT_HIT;
1438 if (!env->watchpoint_hit) {
1439 env->watchpoint_hit = wp;
1440 tb_check_watchpoint(env);
1441 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1442 env->exception_index = EXCP_DEBUG;
1445 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1446 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1447 cpu_resume_from_signal(env, NULL);
1451 wp->flags &= ~BP_WATCHPOINT_HIT;
1456 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1457 so these check for a hit then pass through to the normal out-of-line
1459 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1462 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1464 case 1: return ldub_phys(addr);
1465 case 2: return lduw_phys(addr);
1466 case 4: return ldl_phys(addr);
1471 static void watch_mem_write(void *opaque, hwaddr addr,
1472 uint64_t val, unsigned size)
1474 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1477 stb_phys(addr, val);
1480 stw_phys(addr, val);
1483 stl_phys(addr, val);
1489 static const MemoryRegionOps watch_mem_ops = {
1490 .read = watch_mem_read,
1491 .write = watch_mem_write,
1492 .endianness = DEVICE_NATIVE_ENDIAN,
1495 static uint64_t subpage_read(void *opaque, hwaddr addr,
1498 subpage_t *mmio = opaque;
1499 unsigned int idx = SUBPAGE_IDX(addr);
1500 MemoryRegionSection *section;
1501 #if defined(DEBUG_SUBPAGE)
1502 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
1503 mmio, len, addr, idx);
1506 section = &phys_sections[mmio->sub_section[idx]];
1508 addr -= section->offset_within_address_space;
1509 addr += section->offset_within_region;
1510 return io_mem_read(section->mr, addr, len);
1513 static void subpage_write(void *opaque, hwaddr addr,
1514 uint64_t value, unsigned len)
1516 subpage_t *mmio = opaque;
1517 unsigned int idx = SUBPAGE_IDX(addr);
1518 MemoryRegionSection *section;
1519 #if defined(DEBUG_SUBPAGE)
1520 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1521 " idx %d value %"PRIx64"\n",
1522 __func__, mmio, len, addr, idx, value);
1525 section = &phys_sections[mmio->sub_section[idx]];
1527 addr -= section->offset_within_address_space;
1528 addr += section->offset_within_region;
1529 io_mem_write(section->mr, addr, value, len);
1532 static const MemoryRegionOps subpage_ops = {
1533 .read = subpage_read,
1534 .write = subpage_write,
1535 .endianness = DEVICE_NATIVE_ENDIAN,
1538 static uint64_t subpage_ram_read(void *opaque, hwaddr addr,
1541 ram_addr_t raddr = addr;
1542 void *ptr = qemu_get_ram_ptr(raddr);
1544 case 1: return ldub_p(ptr);
1545 case 2: return lduw_p(ptr);
1546 case 4: return ldl_p(ptr);
1551 static void subpage_ram_write(void *opaque, hwaddr addr,
1552 uint64_t value, unsigned size)
1554 ram_addr_t raddr = addr;
1555 void *ptr = qemu_get_ram_ptr(raddr);
1557 case 1: return stb_p(ptr, value);
1558 case 2: return stw_p(ptr, value);
1559 case 4: return stl_p(ptr, value);
1564 static const MemoryRegionOps subpage_ram_ops = {
1565 .read = subpage_ram_read,
1566 .write = subpage_ram_write,
1567 .endianness = DEVICE_NATIVE_ENDIAN,
1570 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1575 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1577 idx = SUBPAGE_IDX(start);
1578 eidx = SUBPAGE_IDX(end);
1579 #if defined(DEBUG_SUBPAGE)
1580 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1581 mmio, start, end, idx, eidx, memory);
1583 if (memory_region_is_ram(phys_sections[section].mr)) {
1584 MemoryRegionSection new_section = phys_sections[section];
1585 new_section.mr = &io_mem_subpage_ram;
1586 section = phys_section_add(&new_section);
1588 for (; idx <= eidx; idx++) {
1589 mmio->sub_section[idx] = section;
1595 static subpage_t *subpage_init(hwaddr base)
1599 mmio = g_malloc0(sizeof(subpage_t));
1602 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
1603 "subpage", TARGET_PAGE_SIZE);
1604 mmio->iomem.subpage = true;
1605 #if defined(DEBUG_SUBPAGE)
1606 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1607 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1609 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
1614 static uint16_t dummy_section(MemoryRegion *mr)
1616 MemoryRegionSection section = {
1618 .offset_within_address_space = 0,
1619 .offset_within_region = 0,
1623 return phys_section_add(§ion);
1626 MemoryRegion *iotlb_to_region(hwaddr index)
1628 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
1631 static void io_mem_init(void)
1633 memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
1634 memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
1635 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
1636 "unassigned", UINT64_MAX);
1637 memory_region_init_io(&io_mem_notdirty, ¬dirty_mem_ops, NULL,
1638 "notdirty", UINT64_MAX);
1639 memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
1640 "subpage-ram", UINT64_MAX);
1641 memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
1642 "watch", UINT64_MAX);
1645 static void mem_begin(MemoryListener *listener)
1647 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
1649 destroy_all_mappings(d);
1650 d->phys_map.ptr = PHYS_MAP_NODE_NIL;
1653 static void core_begin(MemoryListener *listener)
1655 phys_sections_clear();
1656 phys_section_unassigned = dummy_section(&io_mem_unassigned);
1657 phys_section_notdirty = dummy_section(&io_mem_notdirty);
1658 phys_section_rom = dummy_section(&io_mem_rom);
1659 phys_section_watch = dummy_section(&io_mem_watch);
1662 static void tcg_commit(MemoryListener *listener)
1666 /* since each CPU stores ram addresses in its TLB cache, we must
1667 reset the modified entries */
1669 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1674 static void core_log_global_start(MemoryListener *listener)
1676 cpu_physical_memory_set_dirty_tracking(1);
1679 static void core_log_global_stop(MemoryListener *listener)
1681 cpu_physical_memory_set_dirty_tracking(0);
1684 static void io_region_add(MemoryListener *listener,
1685 MemoryRegionSection *section)
1687 MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
1689 mrio->mr = section->mr;
1690 mrio->offset = section->offset_within_region;
1691 iorange_init(&mrio->iorange, &memory_region_iorange_ops,
1692 section->offset_within_address_space, section->size);
1693 ioport_register(&mrio->iorange);
1696 static void io_region_del(MemoryListener *listener,
1697 MemoryRegionSection *section)
1699 isa_unassign_ioport(section->offset_within_address_space, section->size);
1702 static MemoryListener core_memory_listener = {
1703 .begin = core_begin,
1704 .log_global_start = core_log_global_start,
1705 .log_global_stop = core_log_global_stop,
1709 static MemoryListener io_memory_listener = {
1710 .region_add = io_region_add,
1711 .region_del = io_region_del,
1715 static MemoryListener tcg_memory_listener = {
1716 .commit = tcg_commit,
1719 void address_space_init_dispatch(AddressSpace *as)
1721 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1723 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1724 d->listener = (MemoryListener) {
1726 .region_add = mem_add,
1727 .region_nop = mem_add,
1731 memory_listener_register(&d->listener, as);
1734 void address_space_destroy_dispatch(AddressSpace *as)
1736 AddressSpaceDispatch *d = as->dispatch;
1738 memory_listener_unregister(&d->listener);
1739 destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
1741 as->dispatch = NULL;
1744 static void memory_map_init(void)
1746 system_memory = g_malloc(sizeof(*system_memory));
1747 memory_region_init(system_memory, "system", INT64_MAX);
1748 address_space_init(&address_space_memory, system_memory);
1749 address_space_memory.name = "memory";
1751 system_io = g_malloc(sizeof(*system_io));
1752 memory_region_init(system_io, "io", 65536);
1753 address_space_init(&address_space_io, system_io);
1754 address_space_io.name = "I/O";
1756 memory_listener_register(&core_memory_listener, &address_space_memory);
1757 memory_listener_register(&io_memory_listener, &address_space_io);
1758 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1760 dma_context_init(&dma_context_memory, &address_space_memory,
1764 MemoryRegion *get_system_memory(void)
1766 return system_memory;
1769 MemoryRegion *get_system_io(void)
1774 #endif /* !defined(CONFIG_USER_ONLY) */
1776 /* physical memory access (slow version, mainly for debug) */
1777 #if defined(CONFIG_USER_ONLY)
1778 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
1779 uint8_t *buf, int len, int is_write)
1786 page = addr & TARGET_PAGE_MASK;
1787 l = (page + TARGET_PAGE_SIZE) - addr;
1790 flags = page_get_flags(page);
1791 if (!(flags & PAGE_VALID))
1794 if (!(flags & PAGE_WRITE))
1796 /* XXX: this code should not depend on lock_user */
1797 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1800 unlock_user(p, addr, l);
1802 if (!(flags & PAGE_READ))
1804 /* XXX: this code should not depend on lock_user */
1805 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1808 unlock_user(p, addr, 0);
1819 static void invalidate_and_set_dirty(hwaddr addr,
1822 if (!cpu_physical_memory_is_dirty(addr)) {
1823 /* invalidate code */
1824 tb_invalidate_phys_page_range(addr, addr + length, 0);
1826 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1828 xen_modified_memory(addr, length);
1831 void address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1832 int len, bool is_write)
1834 AddressSpaceDispatch *d = as->dispatch;
1839 MemoryRegionSection *section;
1842 page = addr & TARGET_PAGE_MASK;
1843 l = (page + TARGET_PAGE_SIZE) - addr;
1846 section = phys_page_find(d, page >> TARGET_PAGE_BITS);
1849 if (!memory_region_is_ram(section->mr)) {
1851 addr1 = memory_region_section_addr(section, addr);
1852 /* XXX: could force cpu_single_env to NULL to avoid
1854 if (l >= 4 && ((addr1 & 3) == 0)) {
1855 /* 32 bit write access */
1857 io_mem_write(section->mr, addr1, val, 4);
1859 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1860 /* 16 bit write access */
1862 io_mem_write(section->mr, addr1, val, 2);
1865 /* 8 bit write access */
1867 io_mem_write(section->mr, addr1, val, 1);
1870 } else if (!section->readonly) {
1872 addr1 = memory_region_get_ram_addr(section->mr)
1873 + memory_region_section_addr(section, addr);
1875 ptr = qemu_get_ram_ptr(addr1);
1876 memcpy(ptr, buf, l);
1877 invalidate_and_set_dirty(addr1, l);
1878 qemu_put_ram_ptr(ptr);
1881 if (!(memory_region_is_ram(section->mr) ||
1882 memory_region_is_romd(section->mr))) {
1885 addr1 = memory_region_section_addr(section, addr);
1886 if (l >= 4 && ((addr1 & 3) == 0)) {
1887 /* 32 bit read access */
1888 val = io_mem_read(section->mr, addr1, 4);
1891 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1892 /* 16 bit read access */
1893 val = io_mem_read(section->mr, addr1, 2);
1897 /* 8 bit read access */
1898 val = io_mem_read(section->mr, addr1, 1);
1904 ptr = qemu_get_ram_ptr(section->mr->ram_addr
1905 + memory_region_section_addr(section,
1907 memcpy(buf, ptr, l);
1908 qemu_put_ram_ptr(ptr);
1917 void address_space_write(AddressSpace *as, hwaddr addr,
1918 const uint8_t *buf, int len)
1920 address_space_rw(as, addr, (uint8_t *)buf, len, true);
1924 * address_space_read: read from an address space.
1926 * @as: #AddressSpace to be accessed
1927 * @addr: address within that address space
1928 * @buf: buffer with the data transferred
1930 void address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
1932 address_space_rw(as, addr, buf, len, false);
1936 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
1937 int len, int is_write)
1939 return address_space_rw(&address_space_memory, addr, buf, len, is_write);
1942 /* used for ROM loading : can write in RAM and ROM */
1943 void cpu_physical_memory_write_rom(hwaddr addr,
1944 const uint8_t *buf, int len)
1946 AddressSpaceDispatch *d = address_space_memory.dispatch;
1950 MemoryRegionSection *section;
1953 page = addr & TARGET_PAGE_MASK;
1954 l = (page + TARGET_PAGE_SIZE) - addr;
1957 section = phys_page_find(d, page >> TARGET_PAGE_BITS);
1959 if (!(memory_region_is_ram(section->mr) ||
1960 memory_region_is_romd(section->mr))) {
1963 unsigned long addr1;
1964 addr1 = memory_region_get_ram_addr(section->mr)
1965 + memory_region_section_addr(section, addr);
1967 ptr = qemu_get_ram_ptr(addr1);
1968 memcpy(ptr, buf, l);
1969 invalidate_and_set_dirty(addr1, l);
1970 qemu_put_ram_ptr(ptr);
1984 static BounceBuffer bounce;
1986 typedef struct MapClient {
1988 void (*callback)(void *opaque);
1989 QLIST_ENTRY(MapClient) link;
1992 static QLIST_HEAD(map_client_list, MapClient) map_client_list
1993 = QLIST_HEAD_INITIALIZER(map_client_list);
1995 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
1997 MapClient *client = g_malloc(sizeof(*client));
1999 client->opaque = opaque;
2000 client->callback = callback;
2001 QLIST_INSERT_HEAD(&map_client_list, client, link);
2005 static void cpu_unregister_map_client(void *_client)
2007 MapClient *client = (MapClient *)_client;
2009 QLIST_REMOVE(client, link);
2013 static void cpu_notify_map_clients(void)
2017 while (!QLIST_EMPTY(&map_client_list)) {
2018 client = QLIST_FIRST(&map_client_list);
2019 client->callback(client->opaque);
2020 cpu_unregister_map_client(client);
2024 /* Map a physical memory region into a host virtual address.
2025 * May map a subset of the requested range, given by and returned in *plen.
2026 * May return NULL if resources needed to perform the mapping are exhausted.
2027 * Use only for reads OR writes - not for read-modify-write operations.
2028 * Use cpu_register_map_client() to know when retrying the map operation is
2029 * likely to succeed.
2031 void *address_space_map(AddressSpace *as,
2036 AddressSpaceDispatch *d = as->dispatch;
2041 MemoryRegionSection *section;
2042 ram_addr_t raddr = RAM_ADDR_MAX;
2047 page = addr & TARGET_PAGE_MASK;
2048 l = (page + TARGET_PAGE_SIZE) - addr;
2051 section = phys_page_find(d, page >> TARGET_PAGE_BITS);
2053 if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
2054 if (todo || bounce.buffer) {
2057 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2061 address_space_read(as, addr, bounce.buffer, l);
2065 return bounce.buffer;
2068 raddr = memory_region_get_ram_addr(section->mr)
2069 + memory_region_section_addr(section, addr);
2077 ret = qemu_ram_ptr_length(raddr, &rlen);
2082 /* Unmaps a memory region previously mapped by address_space_map().
2083 * Will also mark the memory as dirty if is_write == 1. access_len gives
2084 * the amount of memory that was actually read or written by the caller.
2086 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2087 int is_write, hwaddr access_len)
2089 if (buffer != bounce.buffer) {
2091 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
2092 while (access_len) {
2094 l = TARGET_PAGE_SIZE;
2097 invalidate_and_set_dirty(addr1, l);
2102 if (xen_enabled()) {
2103 xen_invalidate_map_cache_entry(buffer);
2108 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2110 qemu_vfree(bounce.buffer);
2111 bounce.buffer = NULL;
2112 cpu_notify_map_clients();
2115 void *cpu_physical_memory_map(hwaddr addr,
2119 return address_space_map(&address_space_memory, addr, plen, is_write);
2122 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2123 int is_write, hwaddr access_len)
2125 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2128 /* warning: addr must be aligned */
2129 static inline uint32_t ldl_phys_internal(hwaddr addr,
2130 enum device_endian endian)
2134 MemoryRegionSection *section;
2136 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2138 if (!(memory_region_is_ram(section->mr) ||
2139 memory_region_is_romd(section->mr))) {
2141 addr = memory_region_section_addr(section, addr);
2142 val = io_mem_read(section->mr, addr, 4);
2143 #if defined(TARGET_WORDS_BIGENDIAN)
2144 if (endian == DEVICE_LITTLE_ENDIAN) {
2148 if (endian == DEVICE_BIG_ENDIAN) {
2154 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
2156 + memory_region_section_addr(section, addr));
2158 case DEVICE_LITTLE_ENDIAN:
2159 val = ldl_le_p(ptr);
2161 case DEVICE_BIG_ENDIAN:
2162 val = ldl_be_p(ptr);
2172 uint32_t ldl_phys(hwaddr addr)
2174 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2177 uint32_t ldl_le_phys(hwaddr addr)
2179 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2182 uint32_t ldl_be_phys(hwaddr addr)
2184 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2187 /* warning: addr must be aligned */
2188 static inline uint64_t ldq_phys_internal(hwaddr addr,
2189 enum device_endian endian)
2193 MemoryRegionSection *section;
2195 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2197 if (!(memory_region_is_ram(section->mr) ||
2198 memory_region_is_romd(section->mr))) {
2200 addr = memory_region_section_addr(section, addr);
2202 /* XXX This is broken when device endian != cpu endian.
2203 Fix and add "endian" variable check */
2204 #ifdef TARGET_WORDS_BIGENDIAN
2205 val = io_mem_read(section->mr, addr, 4) << 32;
2206 val |= io_mem_read(section->mr, addr + 4, 4);
2208 val = io_mem_read(section->mr, addr, 4);
2209 val |= io_mem_read(section->mr, addr + 4, 4) << 32;
2213 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
2215 + memory_region_section_addr(section, addr));
2217 case DEVICE_LITTLE_ENDIAN:
2218 val = ldq_le_p(ptr);
2220 case DEVICE_BIG_ENDIAN:
2221 val = ldq_be_p(ptr);
2231 uint64_t ldq_phys(hwaddr addr)
2233 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2236 uint64_t ldq_le_phys(hwaddr addr)
2238 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2241 uint64_t ldq_be_phys(hwaddr addr)
2243 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2247 uint32_t ldub_phys(hwaddr addr)
2250 cpu_physical_memory_read(addr, &val, 1);
2254 /* warning: addr must be aligned */
2255 static inline uint32_t lduw_phys_internal(hwaddr addr,
2256 enum device_endian endian)
2260 MemoryRegionSection *section;
2262 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2264 if (!(memory_region_is_ram(section->mr) ||
2265 memory_region_is_romd(section->mr))) {
2267 addr = memory_region_section_addr(section, addr);
2268 val = io_mem_read(section->mr, addr, 2);
2269 #if defined(TARGET_WORDS_BIGENDIAN)
2270 if (endian == DEVICE_LITTLE_ENDIAN) {
2274 if (endian == DEVICE_BIG_ENDIAN) {
2280 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
2282 + memory_region_section_addr(section, addr));
2284 case DEVICE_LITTLE_ENDIAN:
2285 val = lduw_le_p(ptr);
2287 case DEVICE_BIG_ENDIAN:
2288 val = lduw_be_p(ptr);
2298 uint32_t lduw_phys(hwaddr addr)
2300 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2303 uint32_t lduw_le_phys(hwaddr addr)
2305 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2308 uint32_t lduw_be_phys(hwaddr addr)
2310 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2313 /* warning: addr must be aligned. The ram page is not masked as dirty
2314 and the code inside is not invalidated. It is useful if the dirty
2315 bits are used to track modified PTEs */
2316 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2319 MemoryRegionSection *section;
2321 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2323 if (!memory_region_is_ram(section->mr) || section->readonly) {
2324 addr = memory_region_section_addr(section, addr);
2325 if (memory_region_is_ram(section->mr)) {
2326 section = &phys_sections[phys_section_rom];
2328 io_mem_write(section->mr, addr, val, 4);
2330 unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
2332 + memory_region_section_addr(section, addr);
2333 ptr = qemu_get_ram_ptr(addr1);
2336 if (unlikely(in_migration)) {
2337 if (!cpu_physical_memory_is_dirty(addr1)) {
2338 /* invalidate code */
2339 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2341 cpu_physical_memory_set_dirty_flags(
2342 addr1, (0xff & ~CODE_DIRTY_FLAG));
2348 void stq_phys_notdirty(hwaddr addr, uint64_t val)
2351 MemoryRegionSection *section;
2353 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2355 if (!memory_region_is_ram(section->mr) || section->readonly) {
2356 addr = memory_region_section_addr(section, addr);
2357 if (memory_region_is_ram(section->mr)) {
2358 section = &phys_sections[phys_section_rom];
2360 #ifdef TARGET_WORDS_BIGENDIAN
2361 io_mem_write(section->mr, addr, val >> 32, 4);
2362 io_mem_write(section->mr, addr + 4, (uint32_t)val, 4);
2364 io_mem_write(section->mr, addr, (uint32_t)val, 4);
2365 io_mem_write(section->mr, addr + 4, val >> 32, 4);
2368 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
2370 + memory_region_section_addr(section, addr));
2375 /* warning: addr must be aligned */
2376 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2377 enum device_endian endian)
2380 MemoryRegionSection *section;
2382 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2384 if (!memory_region_is_ram(section->mr) || section->readonly) {
2385 addr = memory_region_section_addr(section, addr);
2386 if (memory_region_is_ram(section->mr)) {
2387 section = &phys_sections[phys_section_rom];
2389 #if defined(TARGET_WORDS_BIGENDIAN)
2390 if (endian == DEVICE_LITTLE_ENDIAN) {
2394 if (endian == DEVICE_BIG_ENDIAN) {
2398 io_mem_write(section->mr, addr, val, 4);
2400 unsigned long addr1;
2401 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
2402 + memory_region_section_addr(section, addr);
2404 ptr = qemu_get_ram_ptr(addr1);
2406 case DEVICE_LITTLE_ENDIAN:
2409 case DEVICE_BIG_ENDIAN:
2416 invalidate_and_set_dirty(addr1, 4);
2420 void stl_phys(hwaddr addr, uint32_t val)
2422 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2425 void stl_le_phys(hwaddr addr, uint32_t val)
2427 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2430 void stl_be_phys(hwaddr addr, uint32_t val)
2432 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2436 void stb_phys(hwaddr addr, uint32_t val)
2439 cpu_physical_memory_write(addr, &v, 1);
2442 /* warning: addr must be aligned */
2443 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2444 enum device_endian endian)
2447 MemoryRegionSection *section;
2449 section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
2451 if (!memory_region_is_ram(section->mr) || section->readonly) {
2452 addr = memory_region_section_addr(section, addr);
2453 if (memory_region_is_ram(section->mr)) {
2454 section = &phys_sections[phys_section_rom];
2456 #if defined(TARGET_WORDS_BIGENDIAN)
2457 if (endian == DEVICE_LITTLE_ENDIAN) {
2461 if (endian == DEVICE_BIG_ENDIAN) {
2465 io_mem_write(section->mr, addr, val, 2);
2467 unsigned long addr1;
2468 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
2469 + memory_region_section_addr(section, addr);
2471 ptr = qemu_get_ram_ptr(addr1);
2473 case DEVICE_LITTLE_ENDIAN:
2476 case DEVICE_BIG_ENDIAN:
2483 invalidate_and_set_dirty(addr1, 2);
2487 void stw_phys(hwaddr addr, uint32_t val)
2489 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2492 void stw_le_phys(hwaddr addr, uint32_t val)
2494 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2497 void stw_be_phys(hwaddr addr, uint32_t val)
2499 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2503 void stq_phys(hwaddr addr, uint64_t val)
2506 cpu_physical_memory_write(addr, &val, 8);
2509 void stq_le_phys(hwaddr addr, uint64_t val)
2511 val = cpu_to_le64(val);
2512 cpu_physical_memory_write(addr, &val, 8);
2515 void stq_be_phys(hwaddr addr, uint64_t val)
2517 val = cpu_to_be64(val);
2518 cpu_physical_memory_write(addr, &val, 8);
2521 /* virtual memory access for debug (includes writing to ROM) */
2522 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
2523 uint8_t *buf, int len, int is_write)
2530 page = addr & TARGET_PAGE_MASK;
2531 phys_addr = cpu_get_phys_page_debug(env, page);
2532 /* if no physical page mapped, return an error */
2533 if (phys_addr == -1)
2535 l = (page + TARGET_PAGE_SIZE) - addr;
2538 phys_addr += (addr & ~TARGET_PAGE_MASK);
2540 cpu_physical_memory_write_rom(phys_addr, buf, l);
2542 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2551 #if !defined(CONFIG_USER_ONLY)
2554 * A helper function for the _utterly broken_ virtio device model to find out if
2555 * it's running on a big endian machine. Don't do this at home kids!
2557 bool virtio_is_big_endian(void);
2558 bool virtio_is_big_endian(void)
2560 #if defined(TARGET_WORDS_BIGENDIAN)
2569 #ifndef CONFIG_USER_ONLY
2570 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2572 MemoryRegionSection *section;
2574 section = phys_page_find(address_space_memory.dispatch,
2575 phys_addr >> TARGET_PAGE_BITS);
2577 return !(memory_region_is_ram(section->mr) ||
2578 memory_region_is_romd(section->mr));