]> Git Repo - qemu.git/blob - target-arm/cpu.c
Merge remote-tracking branch 'remotes/jasowang/tags/net-pull-request' into staging
[qemu.git] / target-arm / cpu.c
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20
21 #include "cpu.h"
22 #include "internals.h"
23 #include "qemu-common.h"
24 #include "hw/qdev-properties.h"
25 #if !defined(CONFIG_USER_ONLY)
26 #include "hw/loader.h"
27 #endif
28 #include "hw/arm/arm.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/kvm.h"
31 #include "kvm_arm.h"
32
33 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
34 {
35     ARMCPU *cpu = ARM_CPU(cs);
36
37     cpu->env.regs[15] = value;
38 }
39
40 static bool arm_cpu_has_work(CPUState *cs)
41 {
42     ARMCPU *cpu = ARM_CPU(cs);
43
44     return !cpu->powered_off
45         && cs->interrupt_request &
46         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
47          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
48          | CPU_INTERRUPT_EXITTB);
49 }
50
51 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
52 {
53     /* Reset a single ARMCPRegInfo register */
54     ARMCPRegInfo *ri = value;
55     ARMCPU *cpu = opaque;
56
57     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
58         return;
59     }
60
61     if (ri->resetfn) {
62         ri->resetfn(&cpu->env, ri);
63         return;
64     }
65
66     /* A zero offset is never possible as it would be regs[0]
67      * so we use it to indicate that reset is being handled elsewhere.
68      * This is basically only used for fields in non-core coprocessors
69      * (like the pxa2xx ones).
70      */
71     if (!ri->fieldoffset) {
72         return;
73     }
74
75     if (cpreg_field_is_64bit(ri)) {
76         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
77     } else {
78         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
79     }
80 }
81
82 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
83 {
84     /* Purely an assertion check: we've already done reset once,
85      * so now check that running the reset for the cpreg doesn't
86      * change its value. This traps bugs where two different cpregs
87      * both try to reset the same state field but to different values.
88      */
89     ARMCPRegInfo *ri = value;
90     ARMCPU *cpu = opaque;
91     uint64_t oldvalue, newvalue;
92
93     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
94         return;
95     }
96
97     oldvalue = read_raw_cp_reg(&cpu->env, ri);
98     cp_reg_reset(key, value, opaque);
99     newvalue = read_raw_cp_reg(&cpu->env, ri);
100     assert(oldvalue == newvalue);
101 }
102
103 /* CPUClass::reset() */
104 static void arm_cpu_reset(CPUState *s)
105 {
106     ARMCPU *cpu = ARM_CPU(s);
107     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
108     CPUARMState *env = &cpu->env;
109
110     acc->parent_reset(s);
111
112     memset(env, 0, offsetof(CPUARMState, features));
113     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
114     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
115
116     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
117     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
118     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
119     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
120
121     cpu->powered_off = cpu->start_powered_off;
122     s->halted = cpu->start_powered_off;
123
124     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
125         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
126     }
127
128     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
129         /* 64 bit CPUs always start in 64 bit mode */
130         env->aarch64 = 1;
131 #if defined(CONFIG_USER_ONLY)
132         env->pstate = PSTATE_MODE_EL0t;
133         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
134         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
135         /* and to the FP/Neon instructions */
136         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
137 #else
138         /* Reset into the highest available EL */
139         if (arm_feature(env, ARM_FEATURE_EL3)) {
140             env->pstate = PSTATE_MODE_EL3h;
141         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
142             env->pstate = PSTATE_MODE_EL2h;
143         } else {
144             env->pstate = PSTATE_MODE_EL1h;
145         }
146         env->pc = cpu->rvbar;
147 #endif
148     } else {
149 #if defined(CONFIG_USER_ONLY)
150         /* Userspace expects access to cp10 and cp11 for FP/Neon */
151         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
152 #endif
153     }
154
155 #if defined(CONFIG_USER_ONLY)
156     env->uncached_cpsr = ARM_CPU_MODE_USR;
157     /* For user mode we must enable access to coprocessors */
158     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
159     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
160         env->cp15.c15_cpar = 3;
161     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
162         env->cp15.c15_cpar = 1;
163     }
164 #else
165     /* SVC mode with interrupts disabled.  */
166     env->uncached_cpsr = ARM_CPU_MODE_SVC;
167     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
168     /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
169      * clear at reset. Initial SP and PC are loaded from ROM.
170      */
171     if (IS_M(env)) {
172         uint32_t initial_msp; /* Loaded from 0x0 */
173         uint32_t initial_pc; /* Loaded from 0x4 */
174         uint8_t *rom;
175
176         env->daif &= ~PSTATE_I;
177         rom = rom_ptr(0);
178         if (rom) {
179             /* Address zero is covered by ROM which hasn't yet been
180              * copied into physical memory.
181              */
182             initial_msp = ldl_p(rom);
183             initial_pc = ldl_p(rom + 4);
184         } else {
185             /* Address zero not covered by a ROM blob, or the ROM blob
186              * is in non-modifiable memory and this is a second reset after
187              * it got copied into memory. In the latter case, rom_ptr
188              * will return a NULL pointer and we should use ldl_phys instead.
189              */
190             initial_msp = ldl_phys(s->as, 0);
191             initial_pc = ldl_phys(s->as, 4);
192         }
193
194         env->regs[13] = initial_msp & 0xFFFFFFFC;
195         env->regs[15] = initial_pc & ~1;
196         env->thumb = initial_pc & 1;
197     }
198
199     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
200      * executing as AArch32 then check if highvecs are enabled and
201      * adjust the PC accordingly.
202      */
203     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
204         env->regs[15] = 0xFFFF0000;
205     }
206
207     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
208 #endif
209     set_flush_to_zero(1, &env->vfp.standard_fp_status);
210     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
211     set_default_nan_mode(1, &env->vfp.standard_fp_status);
212     set_float_detect_tininess(float_tininess_before_rounding,
213                               &env->vfp.fp_status);
214     set_float_detect_tininess(float_tininess_before_rounding,
215                               &env->vfp.standard_fp_status);
216     tlb_flush(s, 1);
217
218 #ifndef CONFIG_USER_ONLY
219     if (kvm_enabled()) {
220         kvm_arm_reset_vcpu(cpu);
221     }
222 #endif
223
224     hw_breakpoint_update_all(cpu);
225     hw_watchpoint_update_all(cpu);
226 }
227
228 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
229 {
230     CPUClass *cc = CPU_GET_CLASS(cs);
231     CPUARMState *env = cs->env_ptr;
232     uint32_t cur_el = arm_current_el(env);
233     bool secure = arm_is_secure(env);
234     uint32_t target_el;
235     uint32_t excp_idx;
236     bool ret = false;
237
238     if (interrupt_request & CPU_INTERRUPT_FIQ) {
239         excp_idx = EXCP_FIQ;
240         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
241         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
242             cs->exception_index = excp_idx;
243             env->exception.target_el = target_el;
244             cc->do_interrupt(cs);
245             ret = true;
246         }
247     }
248     if (interrupt_request & CPU_INTERRUPT_HARD) {
249         excp_idx = EXCP_IRQ;
250         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
251         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
252             cs->exception_index = excp_idx;
253             env->exception.target_el = target_el;
254             cc->do_interrupt(cs);
255             ret = true;
256         }
257     }
258     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
259         excp_idx = EXCP_VIRQ;
260         target_el = 1;
261         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
262             cs->exception_index = excp_idx;
263             env->exception.target_el = target_el;
264             cc->do_interrupt(cs);
265             ret = true;
266         }
267     }
268     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
269         excp_idx = EXCP_VFIQ;
270         target_el = 1;
271         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
272             cs->exception_index = excp_idx;
273             env->exception.target_el = target_el;
274             cc->do_interrupt(cs);
275             ret = true;
276         }
277     }
278
279     return ret;
280 }
281
282 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
283 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
284 {
285     CPUClass *cc = CPU_GET_CLASS(cs);
286     ARMCPU *cpu = ARM_CPU(cs);
287     CPUARMState *env = &cpu->env;
288     bool ret = false;
289
290
291     if (interrupt_request & CPU_INTERRUPT_FIQ
292         && !(env->daif & PSTATE_F)) {
293         cs->exception_index = EXCP_FIQ;
294         cc->do_interrupt(cs);
295         ret = true;
296     }
297     /* ARMv7-M interrupt return works by loading a magic value
298      * into the PC.  On real hardware the load causes the
299      * return to occur.  The qemu implementation performs the
300      * jump normally, then does the exception return when the
301      * CPU tries to execute code at the magic address.
302      * This will cause the magic PC value to be pushed to
303      * the stack if an interrupt occurred at the wrong time.
304      * We avoid this by disabling interrupts when
305      * pc contains a magic address.
306      */
307     if (interrupt_request & CPU_INTERRUPT_HARD
308         && !(env->daif & PSTATE_I)
309         && (env->regs[15] < 0xfffffff0)) {
310         cs->exception_index = EXCP_IRQ;
311         cc->do_interrupt(cs);
312         ret = true;
313     }
314     return ret;
315 }
316 #endif
317
318 #ifndef CONFIG_USER_ONLY
319 static void arm_cpu_set_irq(void *opaque, int irq, int level)
320 {
321     ARMCPU *cpu = opaque;
322     CPUARMState *env = &cpu->env;
323     CPUState *cs = CPU(cpu);
324     static const int mask[] = {
325         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
326         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
327         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
328         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
329     };
330
331     switch (irq) {
332     case ARM_CPU_VIRQ:
333     case ARM_CPU_VFIQ:
334         assert(arm_feature(env, ARM_FEATURE_EL2));
335         /* fall through */
336     case ARM_CPU_IRQ:
337     case ARM_CPU_FIQ:
338         if (level) {
339             cpu_interrupt(cs, mask[irq]);
340         } else {
341             cpu_reset_interrupt(cs, mask[irq]);
342         }
343         break;
344     default:
345         g_assert_not_reached();
346     }
347 }
348
349 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
350 {
351 #ifdef CONFIG_KVM
352     ARMCPU *cpu = opaque;
353     CPUState *cs = CPU(cpu);
354     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
355
356     switch (irq) {
357     case ARM_CPU_IRQ:
358         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
359         break;
360     case ARM_CPU_FIQ:
361         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
362         break;
363     default:
364         g_assert_not_reached();
365     }
366     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
367     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
368 #endif
369 }
370
371 static bool arm_cpu_is_big_endian(CPUState *cs)
372 {
373     ARMCPU *cpu = ARM_CPU(cs);
374     CPUARMState *env = &cpu->env;
375     int cur_el;
376
377     cpu_synchronize_state(cs);
378
379     /* In 32bit guest endianness is determined by looking at CPSR's E bit */
380     if (!is_a64(env)) {
381         return (env->uncached_cpsr & CPSR_E) ? 1 : 0;
382     }
383
384     cur_el = arm_current_el(env);
385
386     if (cur_el == 0) {
387         return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
388     }
389
390     return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
391 }
392
393 #endif
394
395 static inline void set_feature(CPUARMState *env, int feature)
396 {
397     env->features |= 1ULL << feature;
398 }
399
400 static inline void unset_feature(CPUARMState *env, int feature)
401 {
402     env->features &= ~(1ULL << feature);
403 }
404
405 static int
406 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
407 {
408   return print_insn_arm(pc | 1, info);
409 }
410
411 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
412 {
413     ARMCPU *ac = ARM_CPU(cpu);
414     CPUARMState *env = &ac->env;
415
416     if (is_a64(env)) {
417         /* We might not be compiled with the A64 disassembler
418          * because it needs a C++ compiler. Leave print_insn
419          * unset in this case to use the caller default behaviour.
420          */
421 #if defined(CONFIG_ARM_A64_DIS)
422         info->print_insn = print_insn_arm_a64;
423 #endif
424     } else if (env->thumb) {
425         info->print_insn = print_insn_thumb1;
426     } else {
427         info->print_insn = print_insn_arm;
428     }
429     if (env->bswap_code) {
430 #ifdef TARGET_WORDS_BIGENDIAN
431         info->endian = BFD_ENDIAN_LITTLE;
432 #else
433         info->endian = BFD_ENDIAN_BIG;
434 #endif
435     }
436 }
437
438 #define ARM_CPUS_PER_CLUSTER 8
439
440 static void arm_cpu_initfn(Object *obj)
441 {
442     CPUState *cs = CPU(obj);
443     ARMCPU *cpu = ARM_CPU(obj);
444     static bool inited;
445     uint32_t Aff1, Aff0;
446
447     cs->env_ptr = &cpu->env;
448     cpu_exec_init(cs, &error_abort);
449     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
450                                          g_free, g_free);
451
452     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
453      * We don't support setting cluster ID ([16..23]) (known as Aff2
454      * in later ARM ARM versions), or any of the higher affinity level fields,
455      * so these bits always RAZ.
456      */
457     Aff1 = cs->cpu_index / ARM_CPUS_PER_CLUSTER;
458     Aff0 = cs->cpu_index % ARM_CPUS_PER_CLUSTER;
459     cpu->mp_affinity = (Aff1 << ARM_AFF1_SHIFT) | Aff0;
460
461 #ifndef CONFIG_USER_ONLY
462     /* Our inbound IRQ and FIQ lines */
463     if (kvm_enabled()) {
464         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
465          * the same interface as non-KVM CPUs.
466          */
467         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
468     } else {
469         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
470     }
471
472     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
473                                                 arm_gt_ptimer_cb, cpu);
474     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
475                                                 arm_gt_vtimer_cb, cpu);
476     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
477                                                 arm_gt_htimer_cb, cpu);
478     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
479                                                 arm_gt_stimer_cb, cpu);
480     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
481                        ARRAY_SIZE(cpu->gt_timer_outputs));
482 #endif
483
484     /* DTB consumers generally don't in fact care what the 'compatible'
485      * string is, so always provide some string and trust that a hypothetical
486      * picky DTB consumer will also provide a helpful error message.
487      */
488     cpu->dtb_compatible = "qemu,unknown";
489     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
490     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
491
492     if (tcg_enabled()) {
493         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
494         if (!inited) {
495             inited = true;
496             arm_translate_init();
497         }
498     }
499 }
500
501 static Property arm_cpu_reset_cbar_property =
502             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
503
504 static Property arm_cpu_reset_hivecs_property =
505             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
506
507 static Property arm_cpu_rvbar_property =
508             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
509
510 static Property arm_cpu_has_el3_property =
511             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
512
513 static Property arm_cpu_has_mpu_property =
514             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
515
516 static Property arm_cpu_pmsav7_dregion_property =
517             DEFINE_PROP_UINT32("pmsav7-dregion", ARMCPU, pmsav7_dregion, 16);
518
519 static void arm_cpu_post_init(Object *obj)
520 {
521     ARMCPU *cpu = ARM_CPU(obj);
522
523     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
524         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
525         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
526                                  &error_abort);
527     }
528
529     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
530         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
531                                  &error_abort);
532     }
533
534     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
535         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
536                                  &error_abort);
537     }
538
539     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
540         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
541          * prevent "has_el3" from existing on CPUs which cannot support EL3.
542          */
543         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
544                                  &error_abort);
545     }
546
547     if (arm_feature(&cpu->env, ARM_FEATURE_MPU)) {
548         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
549                                  &error_abort);
550         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
551             qdev_property_add_static(DEVICE(obj),
552                                      &arm_cpu_pmsav7_dregion_property,
553                                      &error_abort);
554         }
555     }
556
557 }
558
559 static void arm_cpu_finalizefn(Object *obj)
560 {
561     ARMCPU *cpu = ARM_CPU(obj);
562     g_hash_table_destroy(cpu->cp_regs);
563 }
564
565 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
566 {
567     CPUState *cs = CPU(dev);
568     ARMCPU *cpu = ARM_CPU(dev);
569     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
570     CPUARMState *env = &cpu->env;
571
572     /* Some features automatically imply others: */
573     if (arm_feature(env, ARM_FEATURE_V8)) {
574         set_feature(env, ARM_FEATURE_V7);
575         set_feature(env, ARM_FEATURE_ARM_DIV);
576         set_feature(env, ARM_FEATURE_LPAE);
577     }
578     if (arm_feature(env, ARM_FEATURE_V7)) {
579         set_feature(env, ARM_FEATURE_VAPA);
580         set_feature(env, ARM_FEATURE_THUMB2);
581         set_feature(env, ARM_FEATURE_MPIDR);
582         if (!arm_feature(env, ARM_FEATURE_M)) {
583             set_feature(env, ARM_FEATURE_V6K);
584         } else {
585             set_feature(env, ARM_FEATURE_V6);
586         }
587     }
588     if (arm_feature(env, ARM_FEATURE_V6K)) {
589         set_feature(env, ARM_FEATURE_V6);
590         set_feature(env, ARM_FEATURE_MVFR);
591     }
592     if (arm_feature(env, ARM_FEATURE_V6)) {
593         set_feature(env, ARM_FEATURE_V5);
594         if (!arm_feature(env, ARM_FEATURE_M)) {
595             set_feature(env, ARM_FEATURE_AUXCR);
596         }
597     }
598     if (arm_feature(env, ARM_FEATURE_V5)) {
599         set_feature(env, ARM_FEATURE_V4T);
600     }
601     if (arm_feature(env, ARM_FEATURE_M)) {
602         set_feature(env, ARM_FEATURE_THUMB_DIV);
603     }
604     if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
605         set_feature(env, ARM_FEATURE_THUMB_DIV);
606     }
607     if (arm_feature(env, ARM_FEATURE_VFP4)) {
608         set_feature(env, ARM_FEATURE_VFP3);
609         set_feature(env, ARM_FEATURE_VFP_FP16);
610     }
611     if (arm_feature(env, ARM_FEATURE_VFP3)) {
612         set_feature(env, ARM_FEATURE_VFP);
613     }
614     if (arm_feature(env, ARM_FEATURE_LPAE)) {
615         set_feature(env, ARM_FEATURE_V7MP);
616         set_feature(env, ARM_FEATURE_PXN);
617     }
618     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
619         set_feature(env, ARM_FEATURE_CBAR);
620     }
621     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
622         !arm_feature(env, ARM_FEATURE_M)) {
623         set_feature(env, ARM_FEATURE_THUMB_DSP);
624     }
625
626     if (cpu->reset_hivecs) {
627             cpu->reset_sctlr |= (1 << 13);
628     }
629
630     if (!cpu->has_el3) {
631         /* If the has_el3 CPU property is disabled then we need to disable the
632          * feature.
633          */
634         unset_feature(env, ARM_FEATURE_EL3);
635
636         /* Disable the security extension feature bits in the processor feature
637          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
638          */
639         cpu->id_pfr1 &= ~0xf0;
640         cpu->id_aa64pfr0 &= ~0xf000;
641     }
642
643     if (!cpu->has_mpu) {
644         unset_feature(env, ARM_FEATURE_MPU);
645     }
646
647     if (arm_feature(env, ARM_FEATURE_MPU) &&
648         arm_feature(env, ARM_FEATURE_V7)) {
649         uint32_t nr = cpu->pmsav7_dregion;
650
651         if (nr > 0xff) {
652             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32 "\n", nr);
653             return;
654         }
655
656         if (nr) {
657             env->pmsav7.drbar = g_new0(uint32_t, nr);
658             env->pmsav7.drsr = g_new0(uint32_t, nr);
659             env->pmsav7.dracr = g_new0(uint32_t, nr);
660         }
661     }
662
663     register_cp_regs_for_features(cpu);
664     arm_cpu_register_gdb_regs_for_features(cpu);
665
666     init_cpreg_list(cpu);
667
668     qemu_init_vcpu(cs);
669     cpu_reset(cs);
670
671     acc->parent_realize(dev, errp);
672 }
673
674 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
675 {
676     ObjectClass *oc;
677     char *typename;
678     char **cpuname;
679
680     if (!cpu_model) {
681         return NULL;
682     }
683
684     cpuname = g_strsplit(cpu_model, ",", 1);
685     typename = g_strdup_printf("%s-" TYPE_ARM_CPU, cpuname[0]);
686     oc = object_class_by_name(typename);
687     g_strfreev(cpuname);
688     g_free(typename);
689     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
690         object_class_is_abstract(oc)) {
691         return NULL;
692     }
693     return oc;
694 }
695
696 /* CPU models. These are not needed for the AArch64 linux-user build. */
697 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
698
699 static void arm926_initfn(Object *obj)
700 {
701     ARMCPU *cpu = ARM_CPU(obj);
702
703     cpu->dtb_compatible = "arm,arm926";
704     set_feature(&cpu->env, ARM_FEATURE_V5);
705     set_feature(&cpu->env, ARM_FEATURE_VFP);
706     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
707     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
708     cpu->midr = 0x41069265;
709     cpu->reset_fpsid = 0x41011090;
710     cpu->ctr = 0x1dd20d2;
711     cpu->reset_sctlr = 0x00090078;
712 }
713
714 static void arm946_initfn(Object *obj)
715 {
716     ARMCPU *cpu = ARM_CPU(obj);
717
718     cpu->dtb_compatible = "arm,arm946";
719     set_feature(&cpu->env, ARM_FEATURE_V5);
720     set_feature(&cpu->env, ARM_FEATURE_MPU);
721     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
722     cpu->midr = 0x41059461;
723     cpu->ctr = 0x0f004006;
724     cpu->reset_sctlr = 0x00000078;
725 }
726
727 static void arm1026_initfn(Object *obj)
728 {
729     ARMCPU *cpu = ARM_CPU(obj);
730
731     cpu->dtb_compatible = "arm,arm1026";
732     set_feature(&cpu->env, ARM_FEATURE_V5);
733     set_feature(&cpu->env, ARM_FEATURE_VFP);
734     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
735     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
736     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
737     cpu->midr = 0x4106a262;
738     cpu->reset_fpsid = 0x410110a0;
739     cpu->ctr = 0x1dd20d2;
740     cpu->reset_sctlr = 0x00090078;
741     cpu->reset_auxcr = 1;
742     {
743         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
744         ARMCPRegInfo ifar = {
745             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
746             .access = PL1_RW,
747             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
748             .resetvalue = 0
749         };
750         define_one_arm_cp_reg(cpu, &ifar);
751     }
752 }
753
754 static void arm1136_r2_initfn(Object *obj)
755 {
756     ARMCPU *cpu = ARM_CPU(obj);
757     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
758      * older core than plain "arm1136". In particular this does not
759      * have the v6K features.
760      * These ID register values are correct for 1136 but may be wrong
761      * for 1136_r2 (in particular r0p2 does not actually implement most
762      * of the ID registers).
763      */
764
765     cpu->dtb_compatible = "arm,arm1136";
766     set_feature(&cpu->env, ARM_FEATURE_V6);
767     set_feature(&cpu->env, ARM_FEATURE_VFP);
768     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
769     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
770     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
771     cpu->midr = 0x4107b362;
772     cpu->reset_fpsid = 0x410120b4;
773     cpu->mvfr0 = 0x11111111;
774     cpu->mvfr1 = 0x00000000;
775     cpu->ctr = 0x1dd20d2;
776     cpu->reset_sctlr = 0x00050078;
777     cpu->id_pfr0 = 0x111;
778     cpu->id_pfr1 = 0x1;
779     cpu->id_dfr0 = 0x2;
780     cpu->id_afr0 = 0x3;
781     cpu->id_mmfr0 = 0x01130003;
782     cpu->id_mmfr1 = 0x10030302;
783     cpu->id_mmfr2 = 0x01222110;
784     cpu->id_isar0 = 0x00140011;
785     cpu->id_isar1 = 0x12002111;
786     cpu->id_isar2 = 0x11231111;
787     cpu->id_isar3 = 0x01102131;
788     cpu->id_isar4 = 0x141;
789     cpu->reset_auxcr = 7;
790 }
791
792 static void arm1136_initfn(Object *obj)
793 {
794     ARMCPU *cpu = ARM_CPU(obj);
795
796     cpu->dtb_compatible = "arm,arm1136";
797     set_feature(&cpu->env, ARM_FEATURE_V6K);
798     set_feature(&cpu->env, ARM_FEATURE_V6);
799     set_feature(&cpu->env, ARM_FEATURE_VFP);
800     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
801     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
802     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
803     cpu->midr = 0x4117b363;
804     cpu->reset_fpsid = 0x410120b4;
805     cpu->mvfr0 = 0x11111111;
806     cpu->mvfr1 = 0x00000000;
807     cpu->ctr = 0x1dd20d2;
808     cpu->reset_sctlr = 0x00050078;
809     cpu->id_pfr0 = 0x111;
810     cpu->id_pfr1 = 0x1;
811     cpu->id_dfr0 = 0x2;
812     cpu->id_afr0 = 0x3;
813     cpu->id_mmfr0 = 0x01130003;
814     cpu->id_mmfr1 = 0x10030302;
815     cpu->id_mmfr2 = 0x01222110;
816     cpu->id_isar0 = 0x00140011;
817     cpu->id_isar1 = 0x12002111;
818     cpu->id_isar2 = 0x11231111;
819     cpu->id_isar3 = 0x01102131;
820     cpu->id_isar4 = 0x141;
821     cpu->reset_auxcr = 7;
822 }
823
824 static void arm1176_initfn(Object *obj)
825 {
826     ARMCPU *cpu = ARM_CPU(obj);
827
828     cpu->dtb_compatible = "arm,arm1176";
829     set_feature(&cpu->env, ARM_FEATURE_V6K);
830     set_feature(&cpu->env, ARM_FEATURE_VFP);
831     set_feature(&cpu->env, ARM_FEATURE_VAPA);
832     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
833     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
834     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
835     set_feature(&cpu->env, ARM_FEATURE_EL3);
836     cpu->midr = 0x410fb767;
837     cpu->reset_fpsid = 0x410120b5;
838     cpu->mvfr0 = 0x11111111;
839     cpu->mvfr1 = 0x00000000;
840     cpu->ctr = 0x1dd20d2;
841     cpu->reset_sctlr = 0x00050078;
842     cpu->id_pfr0 = 0x111;
843     cpu->id_pfr1 = 0x11;
844     cpu->id_dfr0 = 0x33;
845     cpu->id_afr0 = 0;
846     cpu->id_mmfr0 = 0x01130003;
847     cpu->id_mmfr1 = 0x10030302;
848     cpu->id_mmfr2 = 0x01222100;
849     cpu->id_isar0 = 0x0140011;
850     cpu->id_isar1 = 0x12002111;
851     cpu->id_isar2 = 0x11231121;
852     cpu->id_isar3 = 0x01102131;
853     cpu->id_isar4 = 0x01141;
854     cpu->reset_auxcr = 7;
855 }
856
857 static void arm11mpcore_initfn(Object *obj)
858 {
859     ARMCPU *cpu = ARM_CPU(obj);
860
861     cpu->dtb_compatible = "arm,arm11mpcore";
862     set_feature(&cpu->env, ARM_FEATURE_V6K);
863     set_feature(&cpu->env, ARM_FEATURE_VFP);
864     set_feature(&cpu->env, ARM_FEATURE_VAPA);
865     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
866     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
867     cpu->midr = 0x410fb022;
868     cpu->reset_fpsid = 0x410120b4;
869     cpu->mvfr0 = 0x11111111;
870     cpu->mvfr1 = 0x00000000;
871     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
872     cpu->id_pfr0 = 0x111;
873     cpu->id_pfr1 = 0x1;
874     cpu->id_dfr0 = 0;
875     cpu->id_afr0 = 0x2;
876     cpu->id_mmfr0 = 0x01100103;
877     cpu->id_mmfr1 = 0x10020302;
878     cpu->id_mmfr2 = 0x01222000;
879     cpu->id_isar0 = 0x00100011;
880     cpu->id_isar1 = 0x12002111;
881     cpu->id_isar2 = 0x11221011;
882     cpu->id_isar3 = 0x01102131;
883     cpu->id_isar4 = 0x141;
884     cpu->reset_auxcr = 1;
885 }
886
887 static void cortex_m3_initfn(Object *obj)
888 {
889     ARMCPU *cpu = ARM_CPU(obj);
890     set_feature(&cpu->env, ARM_FEATURE_V7);
891     set_feature(&cpu->env, ARM_FEATURE_M);
892     cpu->midr = 0x410fc231;
893 }
894
895 static void cortex_m4_initfn(Object *obj)
896 {
897     ARMCPU *cpu = ARM_CPU(obj);
898
899     set_feature(&cpu->env, ARM_FEATURE_V7);
900     set_feature(&cpu->env, ARM_FEATURE_M);
901     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
902     cpu->midr = 0x410fc240; /* r0p0 */
903 }
904 static void arm_v7m_class_init(ObjectClass *oc, void *data)
905 {
906     CPUClass *cc = CPU_CLASS(oc);
907
908 #ifndef CONFIG_USER_ONLY
909     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
910 #endif
911
912     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
913 }
914
915 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
916     /* Dummy the TCM region regs for the moment */
917     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
918       .access = PL1_RW, .type = ARM_CP_CONST },
919     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
920       .access = PL1_RW, .type = ARM_CP_CONST },
921     REGINFO_SENTINEL
922 };
923
924 static void cortex_r5_initfn(Object *obj)
925 {
926     ARMCPU *cpu = ARM_CPU(obj);
927
928     set_feature(&cpu->env, ARM_FEATURE_V7);
929     set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV);
930     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
931     set_feature(&cpu->env, ARM_FEATURE_V7MP);
932     set_feature(&cpu->env, ARM_FEATURE_MPU);
933     cpu->midr = 0x411fc153; /* r1p3 */
934     cpu->id_pfr0 = 0x0131;
935     cpu->id_pfr1 = 0x001;
936     cpu->id_dfr0 = 0x010400;
937     cpu->id_afr0 = 0x0;
938     cpu->id_mmfr0 = 0x0210030;
939     cpu->id_mmfr1 = 0x00000000;
940     cpu->id_mmfr2 = 0x01200000;
941     cpu->id_mmfr3 = 0x0211;
942     cpu->id_isar0 = 0x2101111;
943     cpu->id_isar1 = 0x13112111;
944     cpu->id_isar2 = 0x21232141;
945     cpu->id_isar3 = 0x01112131;
946     cpu->id_isar4 = 0x0010142;
947     cpu->id_isar5 = 0x0;
948     cpu->mp_is_up = true;
949     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
950 }
951
952 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
953     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
954       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
955     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
956       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
957     REGINFO_SENTINEL
958 };
959
960 static void cortex_a8_initfn(Object *obj)
961 {
962     ARMCPU *cpu = ARM_CPU(obj);
963
964     cpu->dtb_compatible = "arm,cortex-a8";
965     set_feature(&cpu->env, ARM_FEATURE_V7);
966     set_feature(&cpu->env, ARM_FEATURE_VFP3);
967     set_feature(&cpu->env, ARM_FEATURE_NEON);
968     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
969     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
970     set_feature(&cpu->env, ARM_FEATURE_EL3);
971     cpu->midr = 0x410fc080;
972     cpu->reset_fpsid = 0x410330c0;
973     cpu->mvfr0 = 0x11110222;
974     cpu->mvfr1 = 0x00011100;
975     cpu->ctr = 0x82048004;
976     cpu->reset_sctlr = 0x00c50078;
977     cpu->id_pfr0 = 0x1031;
978     cpu->id_pfr1 = 0x11;
979     cpu->id_dfr0 = 0x400;
980     cpu->id_afr0 = 0;
981     cpu->id_mmfr0 = 0x31100003;
982     cpu->id_mmfr1 = 0x20000000;
983     cpu->id_mmfr2 = 0x01202000;
984     cpu->id_mmfr3 = 0x11;
985     cpu->id_isar0 = 0x00101111;
986     cpu->id_isar1 = 0x12112111;
987     cpu->id_isar2 = 0x21232031;
988     cpu->id_isar3 = 0x11112131;
989     cpu->id_isar4 = 0x00111142;
990     cpu->dbgdidr = 0x15141000;
991     cpu->clidr = (1 << 27) | (2 << 24) | 3;
992     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
993     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
994     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
995     cpu->reset_auxcr = 2;
996     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
997 }
998
999 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1000     /* power_control should be set to maximum latency. Again,
1001      * default to 0 and set by private hook
1002      */
1003     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1004       .access = PL1_RW, .resetvalue = 0,
1005       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1006     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1007       .access = PL1_RW, .resetvalue = 0,
1008       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1009     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1010       .access = PL1_RW, .resetvalue = 0,
1011       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1012     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1013       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1014     /* TLB lockdown control */
1015     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1016       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1017     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1018       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1019     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1020       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1021     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1022       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1023     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1024       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1025     REGINFO_SENTINEL
1026 };
1027
1028 static void cortex_a9_initfn(Object *obj)
1029 {
1030     ARMCPU *cpu = ARM_CPU(obj);
1031
1032     cpu->dtb_compatible = "arm,cortex-a9";
1033     set_feature(&cpu->env, ARM_FEATURE_V7);
1034     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1035     set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1036     set_feature(&cpu->env, ARM_FEATURE_NEON);
1037     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1038     set_feature(&cpu->env, ARM_FEATURE_EL3);
1039     /* Note that A9 supports the MP extensions even for
1040      * A9UP and single-core A9MP (which are both different
1041      * and valid configurations; we don't model A9UP).
1042      */
1043     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1044     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1045     cpu->midr = 0x410fc090;
1046     cpu->reset_fpsid = 0x41033090;
1047     cpu->mvfr0 = 0x11110222;
1048     cpu->mvfr1 = 0x01111111;
1049     cpu->ctr = 0x80038003;
1050     cpu->reset_sctlr = 0x00c50078;
1051     cpu->id_pfr0 = 0x1031;
1052     cpu->id_pfr1 = 0x11;
1053     cpu->id_dfr0 = 0x000;
1054     cpu->id_afr0 = 0;
1055     cpu->id_mmfr0 = 0x00100103;
1056     cpu->id_mmfr1 = 0x20000000;
1057     cpu->id_mmfr2 = 0x01230000;
1058     cpu->id_mmfr3 = 0x00002111;
1059     cpu->id_isar0 = 0x00101111;
1060     cpu->id_isar1 = 0x13112111;
1061     cpu->id_isar2 = 0x21232041;
1062     cpu->id_isar3 = 0x11112131;
1063     cpu->id_isar4 = 0x00111142;
1064     cpu->dbgdidr = 0x35141000;
1065     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1066     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1067     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1068     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1069 }
1070
1071 #ifndef CONFIG_USER_ONLY
1072 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1073 {
1074     /* Linux wants the number of processors from here.
1075      * Might as well set the interrupt-controller bit too.
1076      */
1077     return ((smp_cpus - 1) << 24) | (1 << 23);
1078 }
1079 #endif
1080
1081 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1082 #ifndef CONFIG_USER_ONLY
1083     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1084       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1085       .writefn = arm_cp_write_ignore, },
1086 #endif
1087     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1088       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1089     REGINFO_SENTINEL
1090 };
1091
1092 static void cortex_a15_initfn(Object *obj)
1093 {
1094     ARMCPU *cpu = ARM_CPU(obj);
1095
1096     cpu->dtb_compatible = "arm,cortex-a15";
1097     set_feature(&cpu->env, ARM_FEATURE_V7);
1098     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1099     set_feature(&cpu->env, ARM_FEATURE_NEON);
1100     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1101     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1102     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1103     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1104     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1105     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1106     set_feature(&cpu->env, ARM_FEATURE_EL3);
1107     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1108     cpu->midr = 0x412fc0f1;
1109     cpu->reset_fpsid = 0x410430f0;
1110     cpu->mvfr0 = 0x10110222;
1111     cpu->mvfr1 = 0x11111111;
1112     cpu->ctr = 0x8444c004;
1113     cpu->reset_sctlr = 0x00c50078;
1114     cpu->id_pfr0 = 0x00001131;
1115     cpu->id_pfr1 = 0x00011011;
1116     cpu->id_dfr0 = 0x02010555;
1117     cpu->id_afr0 = 0x00000000;
1118     cpu->id_mmfr0 = 0x10201105;
1119     cpu->id_mmfr1 = 0x20000000;
1120     cpu->id_mmfr2 = 0x01240000;
1121     cpu->id_mmfr3 = 0x02102211;
1122     cpu->id_isar0 = 0x02101110;
1123     cpu->id_isar1 = 0x13112111;
1124     cpu->id_isar2 = 0x21232041;
1125     cpu->id_isar3 = 0x11112131;
1126     cpu->id_isar4 = 0x10011142;
1127     cpu->dbgdidr = 0x3515f021;
1128     cpu->clidr = 0x0a200023;
1129     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1130     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1131     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1132     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1133 }
1134
1135 static void ti925t_initfn(Object *obj)
1136 {
1137     ARMCPU *cpu = ARM_CPU(obj);
1138     set_feature(&cpu->env, ARM_FEATURE_V4T);
1139     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1140     cpu->midr = ARM_CPUID_TI925T;
1141     cpu->ctr = 0x5109149;
1142     cpu->reset_sctlr = 0x00000070;
1143 }
1144
1145 static void sa1100_initfn(Object *obj)
1146 {
1147     ARMCPU *cpu = ARM_CPU(obj);
1148
1149     cpu->dtb_compatible = "intel,sa1100";
1150     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1151     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1152     cpu->midr = 0x4401A11B;
1153     cpu->reset_sctlr = 0x00000070;
1154 }
1155
1156 static void sa1110_initfn(Object *obj)
1157 {
1158     ARMCPU *cpu = ARM_CPU(obj);
1159     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1160     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1161     cpu->midr = 0x6901B119;
1162     cpu->reset_sctlr = 0x00000070;
1163 }
1164
1165 static void pxa250_initfn(Object *obj)
1166 {
1167     ARMCPU *cpu = ARM_CPU(obj);
1168
1169     cpu->dtb_compatible = "marvell,xscale";
1170     set_feature(&cpu->env, ARM_FEATURE_V5);
1171     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1172     cpu->midr = 0x69052100;
1173     cpu->ctr = 0xd172172;
1174     cpu->reset_sctlr = 0x00000078;
1175 }
1176
1177 static void pxa255_initfn(Object *obj)
1178 {
1179     ARMCPU *cpu = ARM_CPU(obj);
1180
1181     cpu->dtb_compatible = "marvell,xscale";
1182     set_feature(&cpu->env, ARM_FEATURE_V5);
1183     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1184     cpu->midr = 0x69052d00;
1185     cpu->ctr = 0xd172172;
1186     cpu->reset_sctlr = 0x00000078;
1187 }
1188
1189 static void pxa260_initfn(Object *obj)
1190 {
1191     ARMCPU *cpu = ARM_CPU(obj);
1192
1193     cpu->dtb_compatible = "marvell,xscale";
1194     set_feature(&cpu->env, ARM_FEATURE_V5);
1195     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1196     cpu->midr = 0x69052903;
1197     cpu->ctr = 0xd172172;
1198     cpu->reset_sctlr = 0x00000078;
1199 }
1200
1201 static void pxa261_initfn(Object *obj)
1202 {
1203     ARMCPU *cpu = ARM_CPU(obj);
1204
1205     cpu->dtb_compatible = "marvell,xscale";
1206     set_feature(&cpu->env, ARM_FEATURE_V5);
1207     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1208     cpu->midr = 0x69052d05;
1209     cpu->ctr = 0xd172172;
1210     cpu->reset_sctlr = 0x00000078;
1211 }
1212
1213 static void pxa262_initfn(Object *obj)
1214 {
1215     ARMCPU *cpu = ARM_CPU(obj);
1216
1217     cpu->dtb_compatible = "marvell,xscale";
1218     set_feature(&cpu->env, ARM_FEATURE_V5);
1219     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1220     cpu->midr = 0x69052d06;
1221     cpu->ctr = 0xd172172;
1222     cpu->reset_sctlr = 0x00000078;
1223 }
1224
1225 static void pxa270a0_initfn(Object *obj)
1226 {
1227     ARMCPU *cpu = ARM_CPU(obj);
1228
1229     cpu->dtb_compatible = "marvell,xscale";
1230     set_feature(&cpu->env, ARM_FEATURE_V5);
1231     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1232     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1233     cpu->midr = 0x69054110;
1234     cpu->ctr = 0xd172172;
1235     cpu->reset_sctlr = 0x00000078;
1236 }
1237
1238 static void pxa270a1_initfn(Object *obj)
1239 {
1240     ARMCPU *cpu = ARM_CPU(obj);
1241
1242     cpu->dtb_compatible = "marvell,xscale";
1243     set_feature(&cpu->env, ARM_FEATURE_V5);
1244     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1245     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1246     cpu->midr = 0x69054111;
1247     cpu->ctr = 0xd172172;
1248     cpu->reset_sctlr = 0x00000078;
1249 }
1250
1251 static void pxa270b0_initfn(Object *obj)
1252 {
1253     ARMCPU *cpu = ARM_CPU(obj);
1254
1255     cpu->dtb_compatible = "marvell,xscale";
1256     set_feature(&cpu->env, ARM_FEATURE_V5);
1257     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1258     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1259     cpu->midr = 0x69054112;
1260     cpu->ctr = 0xd172172;
1261     cpu->reset_sctlr = 0x00000078;
1262 }
1263
1264 static void pxa270b1_initfn(Object *obj)
1265 {
1266     ARMCPU *cpu = ARM_CPU(obj);
1267
1268     cpu->dtb_compatible = "marvell,xscale";
1269     set_feature(&cpu->env, ARM_FEATURE_V5);
1270     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1271     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1272     cpu->midr = 0x69054113;
1273     cpu->ctr = 0xd172172;
1274     cpu->reset_sctlr = 0x00000078;
1275 }
1276
1277 static void pxa270c0_initfn(Object *obj)
1278 {
1279     ARMCPU *cpu = ARM_CPU(obj);
1280
1281     cpu->dtb_compatible = "marvell,xscale";
1282     set_feature(&cpu->env, ARM_FEATURE_V5);
1283     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1284     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1285     cpu->midr = 0x69054114;
1286     cpu->ctr = 0xd172172;
1287     cpu->reset_sctlr = 0x00000078;
1288 }
1289
1290 static void pxa270c5_initfn(Object *obj)
1291 {
1292     ARMCPU *cpu = ARM_CPU(obj);
1293
1294     cpu->dtb_compatible = "marvell,xscale";
1295     set_feature(&cpu->env, ARM_FEATURE_V5);
1296     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1297     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1298     cpu->midr = 0x69054117;
1299     cpu->ctr = 0xd172172;
1300     cpu->reset_sctlr = 0x00000078;
1301 }
1302
1303 #ifdef CONFIG_USER_ONLY
1304 static void arm_any_initfn(Object *obj)
1305 {
1306     ARMCPU *cpu = ARM_CPU(obj);
1307     set_feature(&cpu->env, ARM_FEATURE_V8);
1308     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1309     set_feature(&cpu->env, ARM_FEATURE_NEON);
1310     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1311     set_feature(&cpu->env, ARM_FEATURE_V8_AES);
1312     set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
1313     set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
1314     set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
1315     set_feature(&cpu->env, ARM_FEATURE_CRC);
1316     cpu->midr = 0xffffffff;
1317 }
1318 #endif
1319
1320 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1321
1322 typedef struct ARMCPUInfo {
1323     const char *name;
1324     void (*initfn)(Object *obj);
1325     void (*class_init)(ObjectClass *oc, void *data);
1326 } ARMCPUInfo;
1327
1328 static const ARMCPUInfo arm_cpus[] = {
1329 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1330     { .name = "arm926",      .initfn = arm926_initfn },
1331     { .name = "arm946",      .initfn = arm946_initfn },
1332     { .name = "arm1026",     .initfn = arm1026_initfn },
1333     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1334      * older core than plain "arm1136". In particular this does not
1335      * have the v6K features.
1336      */
1337     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
1338     { .name = "arm1136",     .initfn = arm1136_initfn },
1339     { .name = "arm1176",     .initfn = arm1176_initfn },
1340     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1341     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
1342                              .class_init = arm_v7m_class_init },
1343     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
1344                              .class_init = arm_v7m_class_init },
1345     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
1346     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
1347     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
1348     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
1349     { .name = "ti925t",      .initfn = ti925t_initfn },
1350     { .name = "sa1100",      .initfn = sa1100_initfn },
1351     { .name = "sa1110",      .initfn = sa1110_initfn },
1352     { .name = "pxa250",      .initfn = pxa250_initfn },
1353     { .name = "pxa255",      .initfn = pxa255_initfn },
1354     { .name = "pxa260",      .initfn = pxa260_initfn },
1355     { .name = "pxa261",      .initfn = pxa261_initfn },
1356     { .name = "pxa262",      .initfn = pxa262_initfn },
1357     /* "pxa270" is an alias for "pxa270-a0" */
1358     { .name = "pxa270",      .initfn = pxa270a0_initfn },
1359     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
1360     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
1361     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
1362     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
1363     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
1364     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
1365 #ifdef CONFIG_USER_ONLY
1366     { .name = "any",         .initfn = arm_any_initfn },
1367 #endif
1368 #endif
1369     { .name = NULL }
1370 };
1371
1372 static Property arm_cpu_properties[] = {
1373     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1374     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1375     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1376     DEFINE_PROP_END_OF_LIST()
1377 };
1378
1379 #ifdef CONFIG_USER_ONLY
1380 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
1381                                     int mmu_idx)
1382 {
1383     ARMCPU *cpu = ARM_CPU(cs);
1384     CPUARMState *env = &cpu->env;
1385
1386     env->exception.vaddress = address;
1387     if (rw == 2) {
1388         cs->exception_index = EXCP_PREFETCH_ABORT;
1389     } else {
1390         cs->exception_index = EXCP_DATA_ABORT;
1391     }
1392     return 1;
1393 }
1394 #endif
1395
1396 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1397 {
1398     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1399     CPUClass *cc = CPU_CLASS(acc);
1400     DeviceClass *dc = DEVICE_CLASS(oc);
1401
1402     acc->parent_realize = dc->realize;
1403     dc->realize = arm_cpu_realizefn;
1404     dc->props = arm_cpu_properties;
1405
1406     acc->parent_reset = cc->reset;
1407     cc->reset = arm_cpu_reset;
1408
1409     cc->class_by_name = arm_cpu_class_by_name;
1410     cc->has_work = arm_cpu_has_work;
1411     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
1412     cc->dump_state = arm_cpu_dump_state;
1413     cc->set_pc = arm_cpu_set_pc;
1414     cc->gdb_read_register = arm_cpu_gdb_read_register;
1415     cc->gdb_write_register = arm_cpu_gdb_write_register;
1416 #ifdef CONFIG_USER_ONLY
1417     cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
1418 #else
1419     cc->do_interrupt = arm_cpu_do_interrupt;
1420     cc->get_phys_page_debug = arm_cpu_get_phys_page_debug;
1421     cc->vmsd = &vmstate_arm_cpu;
1422     cc->virtio_is_big_endian = arm_cpu_is_big_endian;
1423 #endif
1424     cc->gdb_num_core_regs = 26;
1425     cc->gdb_core_xml_file = "arm-core.xml";
1426     cc->gdb_stop_before_watchpoint = true;
1427     cc->debug_excp_handler = arm_debug_excp_handler;
1428
1429     cc->disas_set_info = arm_disas_set_info;
1430
1431     /*
1432      * Reason: arm_cpu_initfn() calls cpu_exec_init(), which saves
1433      * the object in cpus -> dangling pointer after final
1434      * object_unref().
1435      *
1436      * Once this is fixed, the devices that create ARM CPUs should be
1437      * updated not to set cannot_destroy_with_object_finalize_yet,
1438      * unless they still screw up something else.
1439      */
1440     dc->cannot_destroy_with_object_finalize_yet = true;
1441 }
1442
1443 static void cpu_register(const ARMCPUInfo *info)
1444 {
1445     TypeInfo type_info = {
1446         .parent = TYPE_ARM_CPU,
1447         .instance_size = sizeof(ARMCPU),
1448         .instance_init = info->initfn,
1449         .class_size = sizeof(ARMCPUClass),
1450         .class_init = info->class_init,
1451     };
1452
1453     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1454     type_register(&type_info);
1455     g_free((void *)type_info.name);
1456 }
1457
1458 static const TypeInfo arm_cpu_type_info = {
1459     .name = TYPE_ARM_CPU,
1460     .parent = TYPE_CPU,
1461     .instance_size = sizeof(ARMCPU),
1462     .instance_init = arm_cpu_initfn,
1463     .instance_post_init = arm_cpu_post_init,
1464     .instance_finalize = arm_cpu_finalizefn,
1465     .abstract = true,
1466     .class_size = sizeof(ARMCPUClass),
1467     .class_init = arm_cpu_class_init,
1468 };
1469
1470 static void arm_cpu_register_types(void)
1471 {
1472     const ARMCPUInfo *info = arm_cpus;
1473
1474     type_register_static(&arm_cpu_type_info);
1475
1476     while (info->name) {
1477         cpu_register(info);
1478         info++;
1479     }
1480 }
1481
1482 type_init(arm_cpu_register_types)
This page took 0.10593 seconds and 4 git commands to generate.